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Autocatalytic fibril nucleation has recently been proposed to be a determining factor for the spread of
neurodegenerative diseases, but the same process could also be exploited to amplify minute quantities of
protein aggregates in a diagnostic context. Recent advances in microfluidic technology allow the analysis
of protein aggregation in micron-scale samples, potentially enabling such diagnostic approaches, but the
theoretical foundations for the analysis and interpretation of such data are, so far, lacking. Here, we study
computationally the onset of protein aggregation in small volumes and show that the process is ruled by
intrinsic fluctuations whose volume-dependent distribution we also estimate theoretically. Based on these
results, we develop a strategy to quantify in silico the statistical errors associated with the detection of
aggregate-containing samples. Our work explores a different perspective on the forecasting of protein
aggregation in asymptomatic subjects.
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I. INTRODUCTION

The presence of aberrant conformations of the amyloid β
peptide and the protein α-synuclein is considered to be a
key factor behind the development of Alzheimer’s and
Parkinson’s diseases, respectively. The polymerization
kinetics of these proteins has been shown to consist of
nucleation and growth processes and to be strongly accel-
erated by the presence in solution of preexisting fibrils [1,2],
thereby circumventing the slow primary nucleation of aggre-
gates. It was found that surfaces, such as lipid bilayers [3,4]
and hydrophobic nanoparticles [5], can accelerate the nucle-
ation process dramatically. Indeed, in the case of α-synuclein,
it was found that in the absence of suitable surfaces, the
primary nucleation rate is undetectably slow [2]. Under
certain conditions, the surfaces of the aggregates themselves
appear to be able to catalyze the formation of new fibrils,
leading to autocatalytic behavior and exponential prolifer-
ation of the number of aggregates [2,6,7]. This so-called
secondary nucleation process is likely to play an important
role in the spreading of aggregate pathology in affected brains
[8], as the transmissionof a single aggregate into a healthy cell
with a pool of soluble protein might be sufficient for the
complete conversion of the soluble protein into aggregates.

An intriguing idea is to exploit this observation to screen
biological samples based on the presence of very low
concentrations of aggregates for preclinical diagnosis of
neurodegenerative diseases. Indeed, this has been achieved
in the case of prion diseases in a methodology called
prion-misfolding cyclic amplification [9], which is based
on the amplification of aggregates through repeated cycles
of mechanically induced fragmentation and growth.
Recently, the applicability of this approach to the detection
of aggregates formed from the amyloid β peptide has been
demonstrated [10]. Furthermore, the autocatalytic secon-
dary nucleation of amyloid β fibrils has been exploited to
demonstrate the presence of aggregates during the lag
phase of aggregation [11].
However, none of these methods currently allow one to

easily determine the absolute number of aggregates in a
given sample. One strategy to address this problem is to
divide a given sample into a large number of subvolumes
and determine for each of the subvolumes whether or not it
contains an aggregate. Because of advances in microfluidic
technology and microdroplet fabrication [12], it is now
possible to monitor protein aggregation in micron-scale
samples [13], a technique that could be used to design
microarrays targeted for protein polymerization assays. To
be successful, this program needs guidance from theory to*caterina.laporta@unimi.it
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quantify possible measurement errors due to false-positive
and false-negative detection. The current understanding of
protein polymerization is based on mean-field reaction
kinetics that have proved successful to describe key
features of the aggregation process in macroscopic samples
[7,14,15]. This theory is, however, designed to treat the
system in the infinite volume limit, where the intrinsic
stochasticity of the nucleation processes cannot manifest
itself, so that its applicability to small-volume samples is
questionable. The importance of noise in protein aggrega-
tion is clearly illustrated in Ref. [16], who proposed and
solved the master-equation kinetics of a model for polymer
elongation and fragmentation, obtaining good agreement
with experiments on insulin aggregation [13].
Here, we address the problem by numerical simulations

of a three-dimensional model of diffusion-limited aggre-
gation of linear polymers [17], including explicitly
autocatalytic secondary nucleation processes [2,6,7]. A
three-dimensional model overcomes the limitations posed
by both mean-field kinetics [7,14,15] and master-equation
approaches [16], which do not consider diffusion and
spatial fluctuations. Most practical realizations of pro-
tein-aggregation reactions are not diffusion limited, due
to the slow nature of the aggregation steps, caused by
significant free-energy barriers [18]. This leads to the
system being well mixed at all times and mean-field
theories providing a good description. There are, however,
cases both in vitro (e.g., when protein concentrations and
ionic strengths are high, leading to gel formation [2]) and
in vivo (due to the highly crowded interior of the cell),
where a realistic description cannot be achieved without the

explicit consideration of diffusion. Here, we use our model
to study fluctuations in the aggregation process induced by
small volumes and to provide predictions for the reliability
of a seed-detection assay.

II. THREE-DIMENSIONAL MODEL

Simulations are performed using a variant of the protein-
aggregation model described in Ref. [17], where individual
protein molecules sit on a three-dimensional cubic lattice.
The model considers primary nucleation due to monomer-
monomer interaction, polymer elongation due to the
addition of monomers to the polymer end points, and
secondary nucleation processes in which the rate of
monomer-monomer interaction is enhanced when the
process occurs close to a polymer [see Fig. 1(a) for an
illustration] [19]. In particular, monomers diffuse with rate
kD and attach to neighboring monomers with rate kM
(primary nucleation), but when a monomer is nearest
neighbor to a site containing a polymer composed of at
least n� monomers, then the nucleation rate increases to
kS ≫ kM (secondary nucleation). We do not consider
polymer fragmentation, since this term is mostly relevant
for samples under strong mechanical action [7], and some
of the most important amyloid-forming proteins have been
shown to exhibit aggregation kinetics dominated by sec-
ondary nucleation under quiescent conditions [2,7]. A
monomer can attach to a polymer with rate kH if it meets
its end points. Polymers move collectively by reptation
with a length-dependent rate kR=i2, where i is the number
of monomers in the polymer (see Ref. [20], p. 89), and

FIG. 1. (a) Schematic of the pro-
tein-aggregation model describing
the main processes involved: primary
nucleation occurring with rate kM
(and correspondingly kn in the mean
field), polymer elongation with rate
kH (kþ in the mean field), secondary
nucleation with rate kS (k2 in the
mean field), and diffusion with rate
kD, which is not described by mean-
field theory. (b) Simulations showing
the dependence on the minimal pol-
ymer size n� needed to catalyze
secondary nucleation of the aggrega-
tion curve, the polymer mass fraction
M=Mtot, obtained for kM ¼ 4×
10−4, kD ¼ 10−2, kS ¼ 1, kH ¼
104, and ρ ¼ 0.16. The dashed line
is the curve obtained in the limit
n� → ∞, or equivalently in the ab-
sence of secondary nucleation.
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locally by end rotations, with rate kE, and kink moves with
rate kK (for a review of lattice polymer models, see
Ref. [20]). Simulations start with a constant number of N
monomers in a cubic system of size L ¼ m0L0 (with m0

being an integer), whereL0 is the typicalmonomer diameter,
with periodic boundary conditions in all directions. We
perform numerical simulations using the Gillespie
Monte Carlo algorithm [21] and measure time in units of
1=kS and rates in units of kS. We explore the behavior of the
model by varying independently both the monomer con-
centration ρ≡ N=m3

0 and the number of monomers N at
fixed ρ, but also the rate constants. For the simulation results
reported in the following, the rates describing polymer
motion are chosen to be kE ¼ kR ¼ kK ¼ 10−2, which is
smaller than or equal to the diffusion rate of the mono-
mers kD.
As expected, secondary nucleation efficiently decreases

the half time before rapid polymerization. We illustrate this
by changing the critical polymer size n� needed to induce
secondary nucleation. We observe that the lower n� is, the
shorter the half time [see Fig. 1(b)]. Currently, no exper-
imental data exist on the value of n�, but it can be expected
to be of a similar magnitude as the smallest possible
amyloid fibril, defined as the smallest structure for which
monomer addition becomes independent of the size of the
aggregate and an energetic downhill event.

III. MEAN-FIELD THEORY

The progress of reactions observed experimentally in bulk
systems can be well approximated by a mean-field model
[7,14,15], without fragmentation or depolymerization of
polymers. Such models are in contrast to our three-
dimensional computational model, which describes also

monomer diffusion and polymer motion due to reptation,
kink motion, and end rotations, which are not treated by
mean-field approximation.Despite this, it is still possible to fit
polymerization curves resulting from three-dimensional sim-
ulation results through mean-field theory with effective
diffusion-dependent parameters. The fact that both exper-
imental and simulated polymerization curves are described by
the same mean-field theory ensures that our model is
appropriate to describe experiments. In themean-fieldmodel,
the evolution of the concentration fj of polymers of length
j ≥ nc, where nc is the nucleation size, is given by [15]

_fjðtÞ ¼ knmðtÞncδj;nc þ 2mðtÞkþfj−1ðtÞ

− 2mðtÞkþfjðtÞ þ k2mðtÞn2
X∞
i¼nc

ifiðtÞδj;n2 ; ð1Þ

where dots indicate time derivatives andmðtÞ is the monomer
concentration. The first term on the right-hand side represents
an increase in the concentration of polymers of size nc due to
polymer nucleation by the aggregation of nc monomers with
rate constant kn; this is a generalized version of the dimer
formation with rate constant kM in the 3Dmodel. The second
term represents an increase in the concentration of polymers
of size j by the attachment of a monomer to a polymer of size
j − 1, with rate constant kþ. The third term is the correspond-
ing loss of concentration of polymers of size j when they
attach to a monomer. These two terms are the mean-field
equivalent of the end-point attachment of monomers to
polymers with rate constant kH in the 3D model. The final
term represents secondary nucleation, which in the mean-
field model is described as an increase in concentration of
polymersof sizen2 (the secondarynucleus size) occurring at a
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FIG. 2. Protein aggregation depends
onmonomer diffusion: (a) Simulations
showing the diffusion dependence of
the aggregation curve, the polymer
mass fraction M=Mtot, obtained for
kM ¼ 4 × 10−4, kS ¼ kH ¼ 1, N ¼
2450, and ρ ¼ 0.048. The curves are
well fit bymean-field theory (full lines)
with effective parameters that depend
on kD. (b) Simulations of the density
dependence of the polymer mass frac-
tion for N ¼ 2450, kM ¼ 4 × 10−4,
kH ¼ 1, and kD ¼ 10−2. Fits by
mean-field theory are plotted as lines
with effective parameters reported in
panels (c) and (d). Time is measured in
units of 1=kS. (c),(d) The effective
mean-field parameters

ffiffiffiffiffiffiffiffiffiffi
kþk2

p
andffiffiffiffiffiffiffiffiffiffi

kþkn
p

obtained by fitting simulations
performed for kM ¼ 4 × 10−4, kS ¼
kH ¼ 1 as a function of the concen-
tration ρ and the diffusion rate kD.
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rate proportional to the mass of polymers and with a rate
constant k2. By conservation of mass, the evolution of the
monomer concentration is

_mðtÞ ¼ −
X∞
i¼nc

i _fiðtÞ: ð2Þ

The evolution of the number concentration PðtÞ ¼P
j≥ncfjðtÞ and mass concentration MðtÞ ¼ P

j≥ncjfjðtÞ
can be found by summing over j in (1). After some algebra,
one obtains

_PðtÞ ¼ k2MðtÞmðtÞn2 þ knmðtÞnc ; ð3Þ

_MðtÞ ¼ 2kþmðtÞPðtÞ þ n2k2mðtÞn2 þ ncknmðtÞnc : ð4Þ

Analytical approximation [7,14,15] of the system of equa-
tions gives a solution that depends on two parameters, λ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþknmð0Þncp

and κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþk2mð0Þn2þ1

p
. We fit our data

with the formgiven inEq. (1) ofRef. [7], using a least-squares
method. Each curve is fitted independently. Diffusion plays
an important role in the aggregation progress, shifting the
aggregation curves as shown in Figs. 2(a) and 2(b). For a
considerable parameter range, however, the time evolution of

the fractional polymermass can be fitted bymean-field theory
[lines in Figs. 2(a) and 2(b)] with effective parameters that
now depend on the diffusion rate kD [see Figs. 2(c) and 2(d)].
Similarly, mean-field theory describes the density depend-
ence of the aggregation curves as shown in Fig. 2(b).

IV. FLUCTUATIONS IN PROTEINAGGREGATION

Having confirmed that our computational model faithfully
reproduces polymerization kinetics in macroscopic samples,
we now turn to the main focus of the paper, the study of
sample-to-sample fluctuations in small volumes, a feature that
cannot be studied with mean-field kinetics. When the sample
volume is reduced, we observe increasing fluctuations in the
aggregation kinetics as shown in Figs. 3(a) and 3(b). These
results are summarized in Fig. 3(c) showing the comple-
mentary cumulative distributions of half times for different
monomer numbers N and constant monomer concentration,

Sðt1=2Þ≡
Z

∞

t1=2

PðxÞdx; ð5Þ

where PðxÞ is the probability density function and t1=2 is
defined as the half time of the polymerization curve (i.e., the
time at which M=M0 ¼ 1=2).

FIG. 3. Half-time sample-to-
sample fluctuations are due to
extreme value statistics. Different
replicates of the simulations display
wide fluctuations in half times,
especially for small numbers of
monomers. (a) Simulation results
obtained for N ¼ 10 000 monomers
at ρ ¼ 0.32, kM ¼ 4 × 10−6, kS ¼ 1,
kH ¼ 104, and kD ¼ 10−2. The
graph shows that the half time t1=2
is very close to the nucleation time
t0 at which the curves depart from
zero. (b) Same as panel (a), but with
N ¼ 1250. (c) The complementary
cumulative distributions of half
times obtained from simulations
for different values of N are in
agreement with the theory described
in the text. The inset shows the
average half times for different con-
centrations ρ as a function of N. The
general trend is in agreement with
experiments [13]. Time is measured
in units of 1=kS. Symbols represent
simulations, lines the theoretical
predictions.
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The steepness of the aggregation curves in Figs. 3(a) and
3(b) suggests that, for kS ≫ kM, fluctuations are mostly
ruled by the time of the first primary nucleation event t0,
whose complementary cumulative distribution S0ðt0Þ can
be estimated analytically as

S0ðt0Þ ¼ e−fMkMNt0 ; ð6Þ

where fM is the average number of possible primary
nucleation events per unit monomer (Figs. 4–6). We
estimate that fM ¼ 3ρ using a Poisson approximation, as
we show in detail in the following section. Note that Eq. (6)
displays a size dependence that is reminiscent of extreme
value statistics S0ðx; NÞ ¼ exp½−NFðxÞ�, where FðxÞ is a
function that does not depend onN [22,23]. If kS ≫ kM, the
half time t1=2 differs from the nucleation time by a weakly
fluctuating time τ. This comes from the observation that,
once the first primary nucleation event has happened, the
polymerization follows rapidly, thanks to fast growth and
secondary nucleation. This yields a weakly fluctuating

delay τðN; ρÞ ¼ t1=2 − t0, which in general depends on the
number density ρ and on the number of monomers N. The
distribution and average values of τ are reported in Fig. 7.
The average value of τ decreases with ρ and displays only a
smaller dependence on N. The distribution of τ is always
peaked around its average, but whereas at small values of ρ
the peak shifts with N while the standard deviation remains
constant, for higher values of ρ only the standard deviation
depends on N and the peak position does not change. Since
the fluctuations in τ are much smaller than the fluctuations
of t0, we can safely assume that t1=2 ≃ t0 þ hτi for t0 ≥ 0,
so the complementary cumulative distribution takes the
form

Sðt1=2Þ ¼
�
1 t1=2 ≤ hτi
S0ðt1=2 − hτiÞ t1=2 > hτi: ð7Þ

The predictions of Eqs. (6) and (7) are in agreement with
numerical simulation results for S0ðt0Þ and Sðt1=2Þ,

0 500 1000 1500 2000
t
0

0.0

0.2

0.4

0.6

0.8

1.0
S

0(t
0)

N = 1250
N = 2450
N = 5120
N = 10 000

0 2×10
-4

4×10
-4

6×10
-4

8×10
-4

1/N

0

100

200

300

400

500

600

〈t 0〉

ρ = 0.16
ρ = 0.32
ρ = 0.49
ρ = 0.72

ρ = 0.32

(a) (b)
FIG. 4. (a) The complementary cumula-
tive distribution functions Sðt0Þ for four
different monomer numbers N and density
ρ ¼ 0.32. The symbols correspond to the
numerical simulations, while lines corre-
spond to the theoretical predictions obtained
from Eq. (6). (b) The average time ht0i as a
function of 1=N for four different number
densities. The theoretical predictions
(dashed lines) are obtained from Eq. (12).
Here, kD ¼ 10−2 and kM ¼ 4 × 10−6.
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respectively [see Figs. 3(c) and 4]. In particular, the
behavior of S0ðt0Þ is obtained without any fitting param-
eters, while Sðt1=2Þ only needs the estimate of the single
parameter hτi (additional comparisons for different values
of ρ are reported in Figs. 5 and 6). The corresponding
average values of ht1=2i are shown in the inset of Fig. 3(c)
as a function of N [see also Fig. 4(b)].

V. THEORETICAL DERIVATION OF THE
HALF-TIME DISTRIBUTION

In this section, we provide a detailed derivation of
Eqs. (6) and (7) in the limit of relatively large diffusion
when the system is well mixed. To this end, we consider a
cubic lattice composed ofm3

0 nodes, in which N monomers
are placed randomly at time t ¼ 0. As illustrated in Fig. 8,
each monomer i sits near lðiÞ neighboring monomers and
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FIG. 8. A schematic representation of the possibilities of
diffusion (dashed arrow) and aggregation (double arrow) for a
monomer (red circle) placed in the center of the cubic lattice unit
cell. The monomer partners for the dimerization (from l ¼ 1 to
l ¼ 6) are colored in gray, while the empty sites are represented
by white circles. The aggregation and diffusion rate are, respec-
tively, kM and kD.
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6 − lðiÞ neighboring empty sites, where lðiÞ is in general a
fluctuating time-dependent quantity. In the model, each
monomer i can either diffuse into one of the 6 − lðiÞ empty
sites or form a dimer with one of the lðiÞ neighboring
monomers. Therefore, at any given time t the number
of possible diffusion events in the system is nDðtÞ ¼P

ið6 − lðiÞÞ and the number of possible aggregation events
is nMðtÞ ¼ 1=2

P
il
ðiÞ, where the factor 1=2 is needed to

correct for the double counting of the number of monomer
pairs. We can compute the time of first aggregation of N
monomers using Poisson statistics, considering for sim-
plicity the case in which the number of possible aggrega-
tion events nM would not depend on time. In this case, the
probability of having an aggregation event within Δt is
nMkMΔt. We can then divide the time interval t0 into n
elementary time subintervals Δt ¼ ðt0=nÞ. The rate of the
aggregation event at t0, i.e., the probability per unit time to
have the first dimer formed after a time interval t0 has
elapsed, is given by the following expression:

~P0ðt0Þ ¼ lim
n→∞

�
1 − nMkM

t0
n

�
n−1

nMkM ¼ nMkMe−nMkMt0 :

ð8Þ

As stressed above, nM and nD are, in principle, fluctuating
quantities and therefore Eq. (8) is not valid. Yet, as shown
in Fig. 9: nM and nD are both (i) stationary, (ii) ergodic,
(iii) weakly fluctuating, and (iv) linearly dependent on N,
on average. Hence, the probability ~P0ðt0Þ for a monomer to
form a dimer at t0 can reasonably be approximated by its
ensemble average

P0ðt0Þ≃ h ~P0ðt0Þi≃ hnMikMe−fMkMNt0 ; ð9Þ

where we have replaced nM by its average value hnMi and
defined fM ≡ ðhnMi=NÞ. From Eq. (9), we easily obtain
the complementary cumulative distribution function

S0ðt0Þ ¼
Z

∞

t0

dτP0ðτÞ ¼ e−fMkMNt0 ; ð10Þ

recovering Eq. (6).
To conclude our calculation, we still need to evaluate fM.

To this end, we perform a discrete enumeration of the
possible configurations of a single monomer, in the spirit of
cluster expansions for percolation models. In particular, the
six relevant configurations for a single monomer in contact
with other monomers are reported in Fig. 8. The weight pl
of a configuration in which a monomer has l occupied
neighbors is assumed to be given by the binomial distri-
bution

pl ¼
6!

l!ð6 − lÞ! ρ
lð1 − ρÞ6−l: ð11Þ

This single particle picture suggests that the average
number of primary nucleation events per monomer fM
corresponds to the average number of nearest neighbors hli,
divided by a factor of 2 since any nucleation event
encompasses two particles. With a similar reasoning, we
estimate fD ¼ 6 − hli, i.e., the average number of empty
directions. Then, from the binomial distribution (11), we
get fM ¼ ð6ρ=2Þ and fD ¼ 6ð1 − ρÞ. Using these values in
Eqs. (6) and (7), we obtain agreement with numerical
simulations as illustrated in Figs. 5 and 6 [panels (a) and
(b), respectively] for different values of ρ.
Finally, we calculate the averages of the first aggregation

time and the half time as ht0i ¼
R
∞
0 dt0t0P0ðt0Þ and

ht1=2i ¼
R∞
0 dt1=2t1=2Pðt1=2Þ, where Pðt1=2Þ ¼ −½dSðt1=2Þ=

dt1=2�. The expression for ht0i is given by

ht0i ¼
1

3ρkMN
: ð12Þ

In Fig. 4(b) we show the perfect agreement of the
theoretical estimate given by Eq. (12) with the numerical
values of the average time for the first primary nucleation
event as a function of 1=N, for several densities. Notice that
no fitting parameters are involved. The average time of t1=2
follows from ht1=2i ¼ ht0i þ hτi: the inset of Fig. 3(c)
confirms the agreement between the theoretical estimates
(dashed lines) and the numerical values (symbols).

VI. STATISTICAL ANALYSIS OF SEED
DETECTION TESTS

While the fluctuations we observe are intrinsic to the
random nature of nucleation events, the ones usually
encountered in bulk experiments are likely due to con-
tamination or differences in initial conditions [3,24,25]. In
those bulk systems (μl and larger), the number of protein
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FIG. 9. (a) The number of possible primary nucleation and
diffusion events (nM and nD, respectively) are a linear function of
the number of monomers N. (b) The corresponding frequencies
fM and fD fluctuate very little in time. Here, kD ¼ 10−2,
kM ¼ 4 × 10−6, N ¼ 2450, and ρ ¼ 0.16.
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molecules involved in the aggregation process is extremely
large, even at low concentrations, so that we can exclude
intrinsic kinetic fluctuations. For instance, a volume of
100 μl at a concentration of 1 μM still contains 1014

monomers, leading to a large number (hundreds to thou-
sands) of nucleation events per second for a realistic value
of the nucleation rate [7,26]. However, if the relevant
volumes are made small enough (pico- to nanoliters), the
stochastic nature of primary nucleation can be directly
observed. This has been exploited by aggregation experi-
ments performed inside single microdroplets, where indi-
vidual nucleation events could be observed, due to their
amplification by secondary processes [13]. In these experi-
ments, the average half time is found to scale with volume
in a similar manner to what is shown in the inset of Fig. 3,
thus in agreement with our simulations.
We are now in a position to use our model to design a test

in silico to detect the presence of preformed polymers that
act as seeds and nucleation sites for the secondary nucle-
ation process, and that are thus amplified. As illustrated in
Fig. 10(a), the test considers a set of small-volume samples
containing protein solutions with a given concentration at
time t0 ¼ 0. The aim of the test is to detect the samples

containing at least one seed [case B in Fig. 10(a)]. In an
ideal experiment, the size of the microdroplets would be
adjusted so that most droplets contain no seeds, some
contain one seed, and the proportion of droplets containing
more than one seed is negligible. In practice, these
conditions can be easily adjusted experimentally by pro-
gressively reducing droplet volumes until only a small
fraction of them display aggregates. After a fixed time
t1 ∼ hτi, one can observe which samples contain macro-
scopic, detectable amounts of aggregates, enabling exact
quantification of the number of aggregates present in the
initial sample. Ideally, the test should be positive only when
at least one seed is initially present, but given the large
fluctuations intrinsic to the nucleation processes we dem-
onstrate above, as well as the competition with de novo
nucleation, there is a chance for false tests. In particular, a
false-positive test occurs when an unseeded sample is
found to contain aggregates, while a false-negative test
corresponds to the case in which a seeded sample does not
produce detectable amounts of aggregates within the time
scale of the experiment.
In Fig. 10(b) we report the complementary cumulative

distribution of aggregation half times t1=2 as a function of

FIG. 10. Intrinsic fluctuations rule errors in the detection of protein-aggregation-prone samples. (a) A test to detect seeds for protein
aggregation is based on small-volume sampling of protein solutions at time t0 ¼ 0 and on the assumption that only seeded samples (e.g.,
sample B) would form aggregates at time t1. (b) Simulations allow us to compute the distribution of half times for samples with and
without a seed as a function of the rate of primary nucleation kM. Data are obtained sampling over a n ¼ 1200 independent realization.
(c) Average half time (� standard deviation) as a function of the rate of primary nucleation kM. (d) Fraction of false positives (FP) and
false negatives (FN) for testing times t1 ¼ 600 and t1 ¼ 500. Time is measured in units of 1=kS, N ¼ 1250.
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the primary nucleation rate kM for samples with or without
seeds, in this case a single preformed trimer. For small
values of kM, seeded and unseeded samples yield distinct
results, as also illustrated by the average half times reported
in Fig. 10(c). As the value of kM increases, however, the
distributions become closer in the two cases. In Fig. 10(d),
we quantify the fraction of false-positive and false-negative
tests for two different testing times (e.g., t1 ¼ 500 and
t1 ¼ 600). As expected, for large kM errors are very likely
and the test would not be reliable. For intermediate values
of kM, one can try to adjust t1 to reduce possible errors with
a caveat: decreasing t1 reduces false-positive errors, but at
the same time increases false negatives [Fig. 10(d)]. It is,
however, possible to optimize t1 so that both types of errors
are minimized. In an experimental realization of such a
setup, the most important system parameter that needs to be
optimized for any given protein is the ratio of secondary
nucleation rate to primary nucleation rate. Because of
potentially different dependencies of these two rates on
the monomer concentration [27], pH [2], and potentially
other factors, such as temperature, salt concentration, etc., it
is possible to fine tune this ratio and adjust it to a value that
allows for an easy discrimination between droplets that do
contain a seed aggregate and those that do not.

VII. CONCLUSIONS

In conclusion, we study protein polymerization in a
three-dimensional computational model and elucidate the
role of protein diffusion in the polymerization process.
Most theoretical studies of protein aggregation neglect
completely the role of diffusion and any other spatial
effects. When the polymer diffusion and elongation rates
are large enough, we recover the standard polymerization
curves that can also be obtained from mean-field analytical
treatments and that can be used to fit, for example, kinetic
data of amyloid β aggregation [7]. It would be interesting to
explore if, for small diffusion rates and small densities,
mean-field kinetics would eventually fail to describe the
results, but this is a challenging computational task. At low
densities, diffusion could play an important role since a
critical time scale would be set by the time needed by two
monomers to meet before aggregating. This time scale can
be estimated considering the time for a monomer to cover a
distance xD ∼ ρ−1=3, yielding tD ∼ x2D=D ∼D−1ρ−2=3. This
time scale is not relevant for our simulations since at the
relatively high densities we study, a considerable fraction of
monomers are close to at least another monomer [see nM in
Fig. 9(a)]. Consequently, the distribution of the first
aggregation time does not depend on the diffusion rate
kD [see Eq. (6)]. The half-time distribution, however,
depends on diffusion even in this regime (Fig. 2).
Our simulations show intrinsic sample-to-sample fluc-

tuations that become very large in the limit of small
volumes and low aggregation rates. We show that the
corresponding half-time distributions are described by

Poisson statistics and display size dependence. As a
consequence of this, the average half times scale as the
inverse of the sample volume, in agreement with insulin
aggregation experiments performed in microdroplets [13]
and with calculations based on a master-equation approach
[16]. We use this result to design and validate in silico a
preclinical screening test based on a subdivision of the
macroscopic sample volume that will ultimately allow the
determination of the exact number of aggregates that are
initially present. This is the first step to develop microarray-
based in vitro tests for an early diagnosis of neurodegen-
erative diseases.
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