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Introduction

Chest Radiography

X-rays were discovered by Conrad Wilhelm Rontgen in 1895 [68], while he
was experimenting with electric current flowing in a cathode-ray tube. He
noticed that the cathode emitted some unknown radiation that could be
made visible with photographic paper and that passed through many mate-
rials. He did not realize that the radiation was a form of light and therefore
called it “X-rays”. His discovery heralded the age of modern physics and
revolutionized the field of diagnostic medicine [11]. The great impact and
change that this new technology caused in the case of chest examinations is
proved by the fact that, since its discovery, chest radiographs make up 40%
of all “X-Ray” examinations in total.

In Figure 1 a normal PA chest radiograph is shown. PA stands for Posterior-
Anterior meaning that the radiation passes through the patient from back
to front. The patient always faces the observer: the left side of the image
shows the right lung.

The lung are radiolucent baskets of air, therefore they show up black in
the image (by convention brightness indicates absorbed radiation). Within
the lung fields, only bony structures and vessels are visible. The posterior
ribs (in the back of the patient) are visible more clearly; it can be possible
to follow them “turning” into the anterior ribs whose shadow appears less
clearly. Other structures are visible, which may appear with very different
shapes and brightness characteristics in other radiographs, or their appear-
ance may vary a lot even if they are located in different positions in the
same radiograph. This is one of the difficulties encountered by diagnosti-
cians when looking at the thorax images. Some structures, such as gases
or vessels, may seem similar to abnormal findings, since they do not have a
unique representation. A specific example are the blood vessels: they may
appear as round dots when running in the same direction of the X-Rays;
in this case they could not be easily distinguished from abnormal findings
such as lung nodules. This is just one example to motivate studies presented
over the last two decades, such as [92] and [53], proving and also explaining
why chest radiograph is one of the most challenging radiograph to produce
technically and to interpret diagnostically. The authors of the mentioned



papers also noticed the large inter-observer and intra-observer differences
occurring when radiologists rate the severity of abnormal findings.
Furthermore some studies by Samei and its colleagues [70] described and
proved the great influence of noise in the detection of abnormalities by physi-
cians. In the context of medical diagnosis from X-Ray images, “noise” is
generally defined as the ensemble of all the variations (fluctuating intensities)
present on the image, that interfere with the detection of the “true” signal
being sought by the diagnostician, as for example lung tumors in the case of
nodule detection. In this case the term “noise” is used to describe relative
noise, or variations of the signal divided by the mean. On chest radiographs
there are two major sources of such variations: “quantum noise” (mottle),
which reflects the variations due to the finite number of x-ray quanta that
form the image, and “anatomic noise”, which reflects the highly “correlated”
variations formed by the projection of anatomic features in the thorax, such
as ribs, pulmonary vessels, and lung tissue. The influence of quantum noise
in the analysis of chest radiographs to detect any kind of abnormality has
been widely proved. This influence can be minimized either by increasing
the patient dose, an action that is generally discouraged, or by improving
the detecting quantum efficiency of the imaging system. Despite the sub-
stantial improvement in the detective quantum efficiency of imaging systems
in the past few decades, which has reduced the level of quantum noise on
chest radiographs, no or little improvement in the detection of abnormalities
by radiologists has been assessed; this is a further proof of the difficulty of
interpreting a radiographic image.

Nevertheless, chest radiographs is often used as the most common exam-
ple of an “X-Ray Image”; this is due to the fact that, even though in the
field of medical diagnosis a wide variety of more precise and more sensitive
techniques are currently available, such as Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI), the chest radiography is still by far the
most common type of procedure for the initial detection and diagnosis of ev-
ery kind of abnormality, due to all the characteristics that make it the most
easy and routinely available investigation procedure. They are for example
non-invasivity characteristics, radiation dose and economic consideration.

Computer Aided Diagnosis Systems

Soon after the invention of the modern digital computer at the end of the
1940s, a great deal of research work has been focused at the realization of
computer systems performing tasks that had previously been carried out
manually by humans. The basic motivations supporting these kind of re-
searches were the speeding up of certain automatic and repetitive operations
but also the support, and sometime even partial or entire substitution, of
the human computation in the cases of difficult tasks requiring continuous



Figure 1: 1) The heart. 2) The aortic arch where the aorta bends. 3) The (in the case left)
hilum, where the arteries and veins enter the lung. 4) A darker vertical stripe indicates
the trachea. 5) Below the lung field the diaphragm starts. 6) Clavicle. 7) Shoulder-blade.
8) Usually stomach gases can be seen in the left diaphragm. 9) If there is enough contrast
in the mediastinum (the area projected between the lung fields) the spine may be visible.
10)A round dot like this is the shadow of a vessel that runs in the same direction as the
X-rays.

attention and hence subject to errors due to distractions. Given the pos-
sibility of the realization of such systems, their advantages were of course
the better performances in terms of time (since computers process certain
kind of data much faster then the human being), costs (1 computer program
can substitute the work of more persons), and error rate (the attention of
the computer never decreases). In the case of medical image analysis on
thorax radiographs the first articles introducing the idea of such systems
appeared in the 1960s ([7], [59]). Duncan and Ayache in [20] and then Gin-
neken in [86] presented good reviews of all the work presented in this field;
their description starts from the 1970s, when more specific articles describ-
ing techniques and studies specifically designed for computerized detection
of abnormalities in chest radiographs began to appear. These early stud-
ies were referred in a review by Conners et al. in [16] as attempts to fully
automatize the chest exams, and displayed a considerable optimism regard-
ing the capabilities of computers to generate complete diagnoses. Over the
decades this expectation has subsided, as seems to have been the case with
the early enthusiasm regarding artificial intelligence in general. Instead of
trying to substitute diagnosticians, the current trend is to create Computer



Aided Diagnosis (CAD) Systems. They may be defined as a “diagnosis made
by a radiologist who takes into account the result of a computer analysis”.
Thus, the aim of the computer program is to process the image in order to
extract and create information useful for physicists and radiologists during
their decision making process. In the field of computer aided diagnostic,
almost all work is applied to frontal (Postero-Anterior) chest radiographs.
Few studies are aimed at lateral radiographs, as for example the one pre-
sented by Armato et al. in [3] and by Carrascal et al. in [14]. The main
purposes of the documented automatic systems for PA chest radiographs
analysis are well summarized by Ginneken in his review; they are divided
into three main areas listed below:

Segmentation
Lung field Segmentation
Rib cage
Other structures such as clavicles

General processing
Enhancement
Subtraction techniques

Analysis
Size measurement (such as cardiothoracic ratio, estimation of total
lung volume)
Lung Nodules Detection
Texture Analysis

The first two areas basically include applications that are mandatory for the
analysis of any kind of abnormalities in the chest radiographs. Their pur-
pose is indeed to perform the first two steps of the normal process carried
out by the diagnosticians: first, they extract the area of interest where they
will be searching for the pathology (i.e. they focus on the lung fields), then
they try to look better at it (this can be done via computer by means of
an enhancement of the image designed specifically for the required diagno-
sis). The last area includes all the programs simulating the analysis method
performed by humans; it is based on steps for knowledge extraction and its
interpretation to produce a final diagnosis.



Lung Nodule detection in Postero anterior chest ra-
diographs

Lung cancer is a major cause of mortality in the Western World; clinical
reports state that in the United States it is one of the leading cause of
death, second only to cardiovascular diseases. In 1999 the American Can-
cer Society reported that an estimated 171600 new cases of lung tumors
where discovered in the United States, which accounted for 14% of cancer
diagnoses, and an estimated that 158900 deaths were caused, accounting
for 28% of all cancer deaths (ACS, 1999). American Lung Cancer Society
statistics indicate that the 5-year survival rate for patients with lung cancer
can be improved from an average of 14% to up to the 49% if the disease is
diagnosed and treated at its early stage ([61]). The treatment options are
surgery, radiation therapy and chemotherapy. For the case of localized but
already large cell lung cancer, surgery combined with radiation therapy and
chemotherapy is usually the treatment choice, even though no guarantee of
success in the treatment can be given to the patients. In the case of small
cell lung cancer, patients are treated with chemotherapy alone or combined
with radiation.

The correct detection and diagnosis of solitary, circumscribed pulmonary
nodules in radiographic chest images are of great importance because many
of these lesions are early primary bronchogenic carcinomas, classified by the
American Joint Committee on Cancer Staging as “AJC stage 1”7 lung can-
cer. Several studies, reported in [87], [75], [10] and [33], proved that the
survival rate can be improved greatly if the carcinoma is removed at this
stage. Moreover failure to detect these lesions may results in costly delays in
appropriate treatment. At their first stage the tumors are generally referred
as nodules for they are generally bright round shaped abnormalities.

The previously cited numbers and reports explain why the detection of subtle
and early staged lung nodules on chest radiographs is one of the outstand-
ing challenges in the field of medical diagnosis on chest radiographs. In the
1980s Stitik and his colleagues found that a single radiologist did miss 32%
of all lung nodules viewed retrospectively, and that two radiologists working
together missed only the 15% ([29], [60], [76]). The same average miss rate
was calculated during several contemporaneous studies, such as the ones
presented by Forrest and Friedman in [23], and by Austin in [6]. The most
impressive number has been reported again by Muhm et al. in [60], who
conduced a long-term project on lung cancer detection at the Mayo Clinic
to discover that 90% of peripheral lung cancers were visible in radiographs
produced earlier than the date of the carcinoma discovery by the radiologist.
Despite many technologic advances in the last 4 decades, this numbers and
statistics have not been improved, as reported by Gavelli and Giampalma
in [25].



The most common techniques for lung tumors detection currently used
and known include chest radiography, cytologic analysis of sputum sam-
ples, fiber-optic examination of bronchial airways, and finally Computerized
Tomography scans (CT) and Magnetic Resonance Imaging (MRI). Although
the last two are more sensitive and precise techniques, chest radiology re-
mains the initial and most common procedure since it is the most cost-
effective, the most routinely available, and also the most dose effective di-
agnostic tool for the detection of lung cancer, as reported by Murphy in
[61]. It is often preferred also for its ability of revealing some unsuspected
pathologic alterations (lung nodules are the most cited example). Freedman
and his colleagues in [101] estimated that the 90% of lung cancer detection
now takes place on chest radiographs. All these clinical reports explain why
the discovery of the early stage nodules in radiographic images is a source
of major concern in the field of medical diagnosis for physicians, radiologists
and also patients. Several studies in the last decade have been devoted at
the analyzing the major causes of errors by the radiologists; some of them,
as for example the ones presented by Samei and his colleagues in [70] and
[71], try to asses the influence on the detection accuracy of the noise in the
image, proving that both anatomical noise and the one created by the imag-
ing device, named as quantum noise, have a great influence in the detection
accuracy. Giger (in [26]) gave a list of the observer error which may cause
several lesions to be missed. They are generally due to the camouflaging
effect of the surrounding anatomic background on the nodule of interest, or
to the quantum noise caused by the imaging system, or to the subjective
and varying decision criteria used by the radiologists. Under-reading of a
radiograph may also be due to a lack of experience, lack of clinical data, a
premature discontinuation of the radiograph reading because of a definite
finding, focusing of attention on another abnormality by virtue of a specif-
ical clinical question, failure to review previous radiographs, distractions,
and “illusory visual experiences” ([73], [2]).

A computer approach is attractive because it has the potential to provide
objective and consistent results; thus, an automatic scheme that alerts ra-
diologists to the location of highly suspected lung nodules should allow the
number of False Negative (or missed nodules, see Appendix C) diagnosis to
be reduced. This could lead to earlier detection of primary lung cancer and
of metastatic nodules and, it is hoped, a better prognosis for the patient.
Moreover the advent of digital thorax units and digital radiology depart-
ments with Picture Archiving Communication Systems (PACS) makes it
possible to use computerized methods for the analysis of chest radiographs
as a routine basis. A successful detection scheme could eventually be hard-
wire implemented for on-line screening of all chest radiographs, prior to
viewing by a physician. Thus, chest radiographs ordered for medical rea-
sons other than suspected lung cancer would also undergo careful screening
for nodule detection. The motivation of this last sentence is that there is



no national screening program currently in place for lung cancer, so that
early stage lung cancer are often discovered in the form of solitary lung nod-
ules when a chest radiograph is obtained from a patient for another purpose
([71]). The feasibility of Computer Aided System for lung nodule detection
was demonstrated by several authors such as Kobayashi et al. in [79], Mat-
sumoto et al. in [80], MacMahon et al. in [54]; they proved the possibility
of improving radiologists’ detection accuracy for lung nodules in chest ra-
diographs by means of a system providing the radiologists with a “second
opinion”.

These reasons, together with the fact that a shortage of radiologists has
been predicted in the next decades, explain why in the last two decades lot
of research work has been focused on the creation of CAD systems aimed
at lung nodules detection. Kundel and Revesz in [45] introduced the con-
cept of conspicuity to describe those properties of an abnormality and its
surrounding which either contribute to or distract from its visibility. Many
other studies were concentrated on the factors that influence the visibility of
the nodules, and found out that the visibility of nodules of same size varies
according to their location in the same radiograph (an example are the pe-
ripheral nodules, that are more difficult to be detected for their position);
on the other hand also the size influences the visibility of nodules in the
same location and in the same radiographs. Thus, a computerized search
scheme would have to be capable of locating nodules of different size and
with varying degrees of conspicuity, i.e. nodules immersed in backgrounds
of various anatomic complexity.

Almost all the methods presented in the literature use a three step approach
for nodule detection, that resembles the normal process of the human in-
telligence. In the first step the lung field is segmented and the area of the
lung is processed to produce an enhancement of the image with the spe-
cific aim of increasing the visibility of the nodules; in the second step all
the regions that may contain nodules are extracted; they are referred as
False Positive regions when they don’t contain nodules in reality, and True
Positive regions if they are really containing nodules; the final step consists
of eliminating as many Fualse Positives as possible without sacrificing too
many True Positives. Even though a great deal of research work has been
focused on Computer Aided Systems for lung cancer detection and a wide
variety of them has been already proposed, none of them has been applied
successfully on clinical trials. At the state of the art, the results presented
are still far from being useful in practice since too many True Positives are
lost in the last step or too many False Positive regions are kept. Ginneken
in his review ([86]) made a schematic list of all the methods presented.
From his table it is clear that there is a considerable overlap between the
methods employed in various studies, since they are often presented by the
same researchers; despite the big number of studies reported, the number
of groups that have been working, or are working on this problem is indeed



limited. Lately this number is even decreasing due to the advent of new
and more appealing techniques (such as CT or M RI images), which may
seem attractive because the development of computerized systems to detect
tumors on the chest scans, produced by them, is surely easier. Nevertheless,
as pointed out in the previous section, they are not so routinely available,
cost and dose effective: chest exams using them are generally required by
diagnosticians when they already doubt the presence of a tumor or when it
has been already detected, to check its condition; in this cases radiologists
do not need further help to analyze the images obtained, since they are so
detailed and precise representation of the chest that no error can be done
and no information could be missed. This is the reason why a computerized
system aimed at early stage lung nodules detection and using as input CT’
or M RI images is considered to be of less use.

Another problem regarding CAD systems working on radiographs is that
almost all the results presented do not prove the efficiency of the meth-
ods: most of the systems are tested on private and very little databases;
other papers report results on radiographic images where a simulated nod-
ule has been superimposed. This raises another problem of creating com-
mon databases that can be used by different researchers to test and compare
their methods. One database, described in the section “Materials”, has been
created by the Japanase Society of Radiological Technology (JSRT) ([72]),
meanwhile another is being actually created in the AZU hospital in Utrecht
where a chest screening program has been started at the beginning of this
year.

Once a robust method for nodule detection will be realized the next step will
be the development of systems aimed at the classification of the detected
nodules as benign or malignant. Few studies have appeared on this subject
where the nodule regions are still extracted manually. They are presented
by Nakamura et al. in [62], and by Gurney and Swensen in [30].

Outline of the work

This thesis describes a Computer Aided System aimed at lung nodules de-
tection. The fully automatized method developed to search for nodules is
composed by four steps. They are the segmentation of the lung field, the
enhancement of the image, the extraction of the candidate regions, and the
selection between them of the regions with the highest chance to be True
Positives. The steps of segmentation, enhancement and candidates extrac-
tion are based on multi-scale analysis. The common assumption underlying
their development is that the signal representing the details to be detected
by each of them (lung borders or nodule regions) is composed by a mixture
of more simple signals belonging to different scales and level of details.

The last step of candidate region classification is the most complicate; its



task is to discern among a high number of candidate regions, the few True
Positives. To this aim several features and different classifiers have been
investigated.

In Chapter 1 the segmentation algorithm is described; the algorithm has
been tested on the images of two different databases, the JSRT and the
Niguarda database, both described in the next section, for a total of 409
images. We compared the results obtained with another method presented
in the literature and described by Ginneken, in [85], as the one obtaining
the best performance at the state of the art; it has been tested on the same
images of the JSRT database. No errors have been detected in the results
obtained by our method, meanwhile the one previously mentioned produced
an overall number of error equal to 50. Also the results obtained on the
images of the Niguarda database confirmed the efficacy of the system re-
alized, allowing us to say that this is the best method presented so far in
the literature. This sentence is based also on the fact that this is the only
system tested on such an amount of images, and they are belonging to two
different databases.

Chapter 2 is aimed at the description of the multi-scale enhancement and
the extraction methods.

The enhancement allows to produce an image where the “conspicuity” of
nodules is increased, so that nodules of different sizes and located in parts
of the lungs characterized by completely different anatomic noise are more
visible. Based on the same assumption the candidates extraction procedure,
described in the same chapter, employs a multi-scale method to detect all
the nodules of different sizes. Also this step has been compared with two
methods ([8] and [1]) described in the literature and tested on the same
images. Our implementation of the first one of them ([8]) produced really
poor results; the second one obtained a sensitivity ratio (See Appendix C
for its definition) equal to 86%. The considerably better performance of our
method is proved by the fact that the sensitivity ratio we obtained is much
higher (it is equal to 97%) and also the number of False positives detected
is much less.

The experiments aimed at the classification of the candidates are described
in chapter 3; both a rule based technique and 2 learning systems, the Multi
Layer Perceptron (M LP) and the Support Vector Machine (SV M), have
been investigated. Their input is a set of 16 features. The rule based system
obtained the best performance: the cardinality of the set of candidates left is
highly reduced without lowering the sensitivity of the system, since no True
Positive region is lost. It can be added that this performance is much better
than the one of the system used by Ginneken and Schilam in [1], since its
sensitivity is lower (equal to 77%) and the number of False Positive left is
comparable. The drawback of a rule based system is the need of setting the



thresholds used by the rules; since they are experimentally set the system is
dependent on the images used to develop it. Therefore it may happen that,
on different databases, the performance could not be so good.

The result of the M LPs and of the SV M s are described in detail and the
ROC' analysis is also reported, regarding the experiments performed with
the SVMs.

Furthermore, the attempt to improve the performance of the classification
leaded to other experiments employing SVMs trained with more compli-
cate feature sets. The results obtained, since not better than the previous,
showed the need of a proper selection of the features. Future works will then
be focused at testing other sets of features, and their combination obtained
by means of proper feature selection techniques.

Materials

All the method presented in this thesis work have been developed and tested
on a standard database acquired by the Japanese Society of Radiological
Technology. It is a standard database containing a total of 247 radiographs:
154 containing lung nodules of different diameter (ranging from 5 to 35mm)
and subtleties (ranging from 1 to 5, from “obvious” to “extremely sub-
tle”), and 93 of patients with no disease. The images were digitized with a
0.165mm pixel size, a matrix size of 2048 by 2048, and 4096 grey levels. This
database contains images with different characteristic of brightness; more-
over some images may be affected by noise due to the imaging system (dark
lines, or bright borders). The position of the chest is generally vertical, but
some images are radiographs of patients with chest abnormalities, in some
other one of the two lungs is not visible due to the inspiration of the patient.
Other type of noise may be due to external devices that appear as external
structures contained in the chest. Examples of these images are shown in
Figure 2. When present, the tumors are indicated by the intersection of
vertical and horizontal lines.

A detailed description and an article describing the procedure used to create
the database has been reported in [72].

The segmentation algorithm has been tested also on 162 radiographic im-
ages acquired in the Department of Radiology of the Niguarda Hospital in
Milan. The images were digitized with a 0.160 mm pixel size, a maximum
matrix size of 2128 by 2584, and 4096 grey levels. They have not a fixed
squared size and their resolution is not the same as the ones in the JSRT
database, since they have been created with a different imaging system.
Their characteristics are completely different from the ones in the JSRT
Database; they are affected by a completely different type of noise due to

10



the imaging system: it is often more visible and appears as more scattered;
moreover lots of images contain chests with structural abnormalities. The
patients are often tilted or rotated, the position of the chest in the radio-
graph is not always at the center and there is a lot of variation in the size
of the thoraxes. Some of these images are visible in Figure 3.

For the Niguarda Database no information regarding the presence of lung
nodules is available. For this reason they have been used as input only to
the segmentation algorithm.

A further observation that must be added is that the big differences be-
tween thorax images, both in the same database and especially in different
databases, make the development of systems aimed at chest analysis even
more challenging. This is for the impossibility to define a general model
describing the physical structure of the chest or the noise affecting the ra-
diographs.

11
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Chapter 1

Segmentation of the Lung
Field in Digital Postero
Anterior Chest Radiographs

The first step for the development of an automatic system aimed at any
kind of computerized analysis on digital chest radiographs, is the automatic
segmentation of the thorax image in order to extract the area of the lungs.
In this chapter a segmentation method is described, whose result is a close
contour strictly enclosing the lung area. The method has been developed
and tested on the standard JSRT database, containing 247 radiographs. To
have a further validation of its efficacy it has been tested also on 162 images
acquired from the Niguarda hospital in Milan. The results obtained and
the comparison with other methods presented in the literature, prove the
robustness of the algorithm developed.

1.1 Introduction

The reason motivating the widespread use of chest radiography, for the ini-
tial detection of every type of abnormal pulmonary condition, is the fact
that it is by far the most routinely available type of screening procedure.
Between all the other more precise and complicated procedures this is indeed
the one preferred by physicians for its ability of revealing some unsuspected
pathologic alteration, for its non-invasivity characteristics, radiation dose
and economic considerations. The segmentation of the lung field is surely
the first and mandatory step of an automated system aimed to any type of
computer analysis on chest radiographs, so that the algorithms for the iden-
tification of the abnormalities will be applied just to the lung area defined.
This is the reason why a great deal of research work has been focused on
the segmentation of the lung field in Postero-Anterior chest radiographs.

Several theoretical studies in the past decades have been focused on the

14



demonstration of the fact that the automatic segmentation of the lung fields
is indeed a hard problem from a computer vision point, and several rea-
sons have been highlighted. Studies by Vyborny [92] and MacMahon [53]
are aimed at explaining why chest radiograph is one of the most challeng-
ing radiograph to produce technically and to interpret diagnostically. First,
there are large anatomical differences between the chests of different pa-
tients. Second, the habitus, the position and finally the level of inspiration
of the person in the moment of the acquisition of the radiographs can cause
big variations in radiographs of the same patient; the inspiration especially
has a great impact on the visibility of some parts of the lung. Third, the
setting of the chest unit, particularly the peak tube voltage, determines the
visibility of several structures such as the bones and the vessels ([5]). One
thing to be noticed is that quantum noise, due to the imaging system, is
not considered as deleterious and it may not affect the performances of a
segmentation method; it is proved that the disturb it causes in the images
influences the visibility of certain subtle pathologies, meanwhile it doesn’t
decrease the visibility of the rib cage. The last but most important cause of
problems is that radiographs are projection images and hence represent all
at once superimposed structures. The task of segmentation is then mislead
if some external structures are superimposed to the real borders of the lungs.
Examples are the hilum, where the arteries and veins enter the lungs, bony
structures such as the clavicles, the spine and the shoulder-blade, that are
often better visible then the rib cage boundaries, the heart, the diaphragm,
that is often hiding the costophrenic angles, and the intestinal gases in the
left lung area. It is obvious to understand that the incorporation of knowl-
edge is strictly needed to recognize all the listed problems and solve, or even
avoid, the errors caused by their effects.

Another important issue about lung segmentation is the definition of the
lung area to be detected and delineated. All the methods presented in the
literature are indeed aimed at the definition of the most visible parts of the
left and right lung, i.e. the ones which are not hidden behind the diaphragm,
the heart and the spinal column. This kind of segmentation identifies an
area, which will be referred as wvisible lung area, that is optimal when the
abnormalities or pathologies to be detected by the computerized system,
such as tuberculosis, are restricted just to the visible lung area or, when
present, are spread all over the lung. In these cases it is better to restrict
the processing just to this search area since it is much less extended hence
needing less computational costs. This wvisible area is not enough for lung
nodules detection systems, since tumors may be present also in the not vis-
ible parts of the lungs, and in these cases they would be lost by the system.
Examples of the visible lung area extracted by the algorithm presented by
Ginneken are shown in Figure 1.1; they are thorax images of patients with
lung tumors. Note that some nodules are outside the segmented area.
Another weak point of several methods presented in the literature is the fact
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that they are based on assumptions regarding the position, orientation and
size of the chest in the image.
At the state of the art two main approaches have been presented in the

Figure 1.1: General result of a lung segmentation algorithm and the position of the
nodules

literature for solving the task of chest radiographs segmentation: they are
rule-based reasoning and pixel classification.

We classify as rule based systems those composed of algorithms performing
consecutive steps, and each containing specific processing and usually cer-
tain adjustable parameters. Examples of such schemes have been presented
by Xu et al. in [96] and [97], Duryea and Boone in [21], Carrascal in [14],
Armato et al. in [4], Pietka in [65], Chen et al. in [15], Brown et al. in [9].
Pixel classification methods are based on the classification of the pixels of
the image into two classes, “lung pizels” and “not lung pizels”; the classifi-
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cation is based on a set of features calculated for each pixel itself. Examples
of such systems using Neural Networks for learning and classification have
been proposed by McNitt-Gray in [58] and [57], by Hasegawa et al. in [32],
and Tsujii in [81]. A less common pixel classifier has been experimented
by Vittitoe and described in [90] and [91]: the author developed a pixel
classifier for the identification of the lung area using Markov random field
modelling.

Other approaches, but less common, identify the lung area making use of
classical methods for image segmentation, such as the Active Shape Mod-
els, introduced by several authors as for examples Jain (in [36]) and Cootes
(in [17]) who experimented them also for lung segmentation in chest radio-
graphs. Ginneken presented an extension of these models for image seg-
mentation in general, and then described its application also for the specific
task of lung segmentation (see the work described in [85] and Figure 1.1
for some examples of the results obtained). Another possible approach for
the detection of lung borders is the registration and matching of a common
reference image to the input radiograph. Despite this is a common scheme
for most type of medical image segmentation problems, for the analysis of
chest radiographs its use has been generally restricted to the step of ribs
detection and it has not been explored for the task of lung definition.

An interesting study was described in [84] by Ginneken, who compared the
performances of 9 simple algorithms based on different techniques. The first
8 of them are simple methods employing matching, rule based reasoning and
pixel classification based on different features (such as intensity or location);
the ninth is a hybrid system composed by the proper integration of a rule
based reasoning technique and pixel classifiers of various type. The best
performances were obtained with this last system; the results obtained with
the systems using rule based reasoning and pixel classifiers were less good
but still promising. This comparison is helpful to explain the widespread
use of the techniques just mentioned, and prove that knowledge based pro-
cessing is necessary to solve the task of lung area segmentation.

1.2 Purpose and Materials

In this chapter we describe our segmentation method which identifies the
lung area in digital Postero-Anterior (PA) chest radiographs. This is the
first step of an automatic system for the detection of lung nodules; this mo-
tivates the decision to include into the segmented lung field also the area
behind the heart, the spine and the diaphragm, where lung nodules may still
be present. As pointed out in the previous section this choice differs from
that of all the other methods presented in the literature. Another difference
from these methods is that the algorithm avoids all kind of assumptions
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about the position, orientation and size of the thoraxes. It works with im-
ages where the chest is not always located in the central part of the image,
it can be tilted and it can have structural abnormalities.

When the whole area of the lungs has been detected a further processing
is aimed at the separation of the parts hidden, behind the heart, the di-
aphragm or the spinal column, from the visible ones. This step is helpful to
increase the information about the lung field produced by the segmentation.
This kind of information is indeed required to get a better description about
the “nodule candidate regions” extracted by the automatized algorithm that
will be described in the next chapter.

To detect the lung borders the method employs two different edge detec-
tion techniques and then combines their results. The first one is based on
the application of first derivatives of gaussian filters taken at 4 different
orientations (See Appendix A for a description of the oriented derivative
operators). The second one is a multi-scale method based on the applica-
tion of the Laplacian of Gaussian (LoG) operator (See Appendix B for a
description of this operator): it employs 3 different scales to search for all
the structures of the lung border. This multi-scale analysis constitutes the
great difference with all the methods presented in the literature and it is
based on the inherent multi-scale property of the lungs. Specifically, the
lung borders are formed by structures which differ for their level of detail
and their dimensions; some of them can be identified when analyzing the
image at a finer scale, others are detected at coarser scales. A good intro-
duction and motivation of the utmost importance of multi-scale methods for
image analysis and information retrieval in general can be found in [48], [49]
and [50].

To separate the visible and not visible parts of the segmented lung area a
classical clustering method presented by Arbib and Uchiyama in [82] and
based on competitive learning has been used; the refinement of the area thus
detected is carried out by its integration with the result of simple derivative
filters to detect the edges in the image. This method proved to be helpful
also to detect and correct some errors that couldn’t be avoided by the first
step of segmentation to define the full lung area.

Materials

The whole method has been developed and tested on the radiographs of the
standard database acquired by the Japanese Society of Radiological Tech-
nology. For the first segmentation part, the images have been down-sampled
to a dimension of 256 x 256 pixels, for the second part of segmentation their
size has been reduced to 512 x 512 pixels: these sizes have been experi-
mentally chosen in order to reduce the computational costs of the algorithm
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without losing any details that could have any influence on the performances
of the overall segmentation algorithm. These down-sampled images will be
referred as the Original images.

To have a further check on the efficacy of the method the algorithm has been
tested also on 162 radiographs acquired in the Department of Radiology of
the Niguarda Hospital in Milan. Note that even though these images are
not squared and their resolution is not the same as the ones in the JSRT
database, they have been down-sampled to the same dimension of 256 x 256
(and 512 x 512 for the second part) without causing any problem to the
algorithm, as proved by the results obtained.

In the following description the lungs will be referred as “left” and “right”
with respect to their position in the image. The coordinate system used to
give the position of the pixels in the image has the origin in the top left
corner, the positive Y axis corresponding to the height and the positive X
axis to the width.

Previous work

The algorithm described in the rest of the chapter is the result of a study fo-
cused on lung segmentation. During this study several classical techniques
for image segmentation have been experimented, and their performances,
when dealing with thorax images, have been assessed. Examples of such
techniques are the diffusion algorithm presented by Perona in [64], the Wa-
tersheed algorithm presented in [89], fuzzy classification techniques, and
iterative thresholding methods. The experiments executed with the first
two techniques have proved their inadequacy for the task of lung field de-
tection, meanwhile better results have been obtained with the last two. The
two systems realized and based on these two techniques have been described
and compared in [74]. Moreover their combination with the classical edge
detectors techniques has lead to an algorithm showing good performance
when tested on the Niguarda Database; it is described with details in [12]
and some results are shown in Figure 1.2.

Despite the good results obtained on the Niguarda database, on the JSRT
database the number of errors was high (around 40). This motivated the
development of the algorithm described in the rest of this chapter.

1.3 Segmentation of the full lung area

1.3.1 Edges detected by derivatives of gaussian filters

A rough outline of the lung borders is obtained by searching the edge pixels
at four different directions, 90°, 180°, 45° and 135° since they correspond to
the orientation of most of the edges in the lung contour. Their location is
obtained by means of steerable first derivatives of gaussian filters (See Ap-
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Figure 1.2: some results of the segmentation described in [12]

pendix A) at a scale o = 1, oriented along the four directions perpendicular
to the ones previously mentioned. Maintaining for each direction the 10% of
the pixels with the highest gradient value four different Binary edge images
are created, Bgg, Bas, Bi3s,B1so (the subscript index is referring to the main
orientation of the borders detected), whose union is a binary image, called
Global edge image, containing a rough outline of the lung borders but also
spurious details (see Figure 1.3). Those that are located along the margins
of the image are mainly due to noise caused by the acquisition system. To
eliminate them the algorithm analyzes the connected regions located in the
vertical margins and with a width of at most 20 pixels, and the ones located
in the horizontal margins and with a height of at most 10 pixels. They are
discarded if their rectangularity is bigger than 0.7, where the rectangularity
of a region is defined as the fraction of the area of the region itself and the
area of the maximum bounding box including it.

Two examples of the cleaned Global edge image are shown in the left of Fig-
ure 1.4; Other unwanted details in the Global edge image are due to bony
structures external to the lung field (such as the clavicles, the collar bones,
the vertebrae). Some of them are discarded by eliminating from the image
all the connected regions whose area is less then 0.05% of the image area.
Note that in this way also some regions that are part of the lung borders may
be deleted; to be able to recover from possible errors, the discarded regions
are stored in an image called Little regions image: they will be recuperated
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later, if needed. Since the edges belonging to bony structures attached to
the lung field, such as the clavicles or the collarbones, are basically oriented
at 180°, they are mainly contained in Bigg. Therefore a new image is built,
called Partial edge image, that does not contain them; it is the union of By,
Biss and Bys cleaned in the same way previously described; in Figure 1.4
the Partial edge image is shown, before (central column) and after cleaning
it (right column).

Figure 1.3: Original image - Global edge tmage

1.3.2 Finding the axis and further cleaning of spurious de-
tails

The Partial edge image is used to find the axis of the lung field. For each
horizontal line in it, the pixel in the center of the segment connecting the
leftmost and rightmost pixels is found and its position is stored. A polyno-
mial fitting method that minimizes the x — square error statistic, is used to
find the axis of the lung field. In Figure 1.4 the points used are shown red
colored in the Partial edge image, together with the axis found. It is always
located in the center of the dorsal column and between the two lungs. This
fact allows to delete those edges in the Global edge image belonging to the
dorsal column or to the neck. To this aim a “stripe” around the axis is
defined (it is containing the axis and has a width that is 1/20 of the width
of the image) and all the connected regions in it are deleted. The First edge
image thus obtained (see the right column in Figure 1.4) is a first outline of
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Figure 1.4: Cleaned Global edge image - Partial edge image created and then cleaned

the lung borders. This image still contains errors such as missing borders
and bony structures external to the lung field.

1.3.3 Contour finding by tracking the edges detected with
LoG operators

In this section our method based on edge detection by Laplacian of Gaussian
(Lo@G) operators (See Appendix B) at 3 different scales, followed by an edge
tracking technique is described. As already said, the choice of using a multi-
scale approach is well motivated by the fact that the borders of the lung
fields are composed by distinct structures and details visible at different
scales ([48]). The result of the integration of the information detected by
the three filters is the detection of a continuous path along the lateral and
top borders of the lung. The contour found will then be combined with the
First edge image to get a precise segmentation of the lung field. The method
used works separately on the left and right lung. Here, it will be described
just for the left side since the steps applied to the other lung are basically
the same (left and right lung are distinguished by means of the axis found).

The first step of the technique described in this section, is the definition of
three different binary images, L1, Lo and L3, created by simply applying to
the Original image the LoG filter at three different scales, (o = 1,2,3), and
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Figure 1.5: Global edge image - First edge image

selecting the pixels with positive values. It can be noticed from Figure 1.6
that L1, Ls and L3 capture details of the chest radiograph visible at different
scales. Their pixels are analyzed by an edge tracking algorithm to create
three possible contours, one in each image; these will then be combined to
get a final one.

Settings for the edge tracking procedure

The first step to start the edge tracking algorithm on the left border of the L,
(0 =1,2,3) images, is the selection of its starting point Pes = Pefi(,y),
located on the rib cage boundaries. To find it the intersection between the
First edge image and the Partial edge image is considered. This choice is
due to the fact that this intersection does not contain the errors due to the
horizontal bony structures, such as the clavicles, meanwhile it still contains
the most visible horizontal and vertical edges on the top part of the lung.
Preyi is found by taking the point in this image that is the nearest to a
line oriented at 135°, and passing trough the origin of the coordinate system
used. If more than one point is found the topmost is kept. This is a very
simple method to approximately find the point where the change of the
curvature of the lung borders is maximum; indeed, this is the point where
the edges orientation changes from horizontal (on the top border) to vertical
(on the lateral border).

Testing this searching method on the overall set of images in the database
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Figure 1.6: Original image (top left)- Positive pixels in the Laplacian images Lo (0 =
1,2,3)

a proper starting point has always been detected; this is generally located
on the lateral part of the lung boundaries and near to the top. In the
next paragraph the edge tracking algorithm is described. Its input is the
starting point Pr.s and a binary image, in this case L, (¢ = 1,2,3), on
which the path is to be searched; the output is a continuous path running
approximately from the top to the bottom of the lung field.

Edge tracking algorithm

The algorithm is composed by two steps, each one detecting a continuous
contour, Bpath and Tpath, along the borders of the lung field. Bpath is the
one created from the point Pr.p; to the bottom of the lung fields. Tpath
runs from Ppcy; to the top of the lung fields.

Construction of the path running to the Bottom

In this sub section the procedure used to define the Bpath is described. The
first thing needed is to check if the pixel in position Pr.f; is set to 1 in
the input image L, !. If it happens this will be used as starting pixel PSB

Note that this point was chosen from the intersection between the First edge image
and the Partial edge image, hence it may not be similarly set to 1 in the binary images,
L1, L2 and L3, used as input.
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for the descending path. If this is not the case another point ng , set to
1, is searched by scanning an area in the neighborhood of the pixel from
right to left, from top to bottom. The search area is a parallelogram located
below Prep; and on its left side (the top-right vertex is on this point); the
parallelogram has a width of 5 pixels and a height of 20 pixels (it is shown
schematically in Figure 1.7 where Prf; is red colored).

Fy

Figure 1.7: search area for the left descending path. Pr.s: is red colored

If no point Pg is found the algorithm reaches the end without creat-
ing any contour. Note that this is not a problem because the contour can
always be recovered by integrating the paths detected by the algorithm on
the other two images. As soon as a proper starting point, PZ = P8 (i, 5), is
found, a recursive procedure begins; it considers the three 8 — neighbors in
the row below Pg (they are shown in Figure 1.8: they are in the positions
Pp=(-1,741), Po = (i,j+ 1) and Pg = (i + 1,5 + 1)). If the pixel
Pr, is set to 1, it is recorded as belonging to the descending path and the
procedure is recursively launched using it as the starting point. The same
happens for Po. Pgr is recorded as pixel in a path, and the algorithm is
launched from that point, only if it is set to 1 and also the two pixels on
the left and on the top in its 4 — neighborhood (they are Pc itself and the
pixel Prepeck in position (i + 1, 7)) are set to 1. This is a more restrictive
condition if compared with the one used for P;, and Pg: the reason is that
the direction going towards the right could lead to a path inside the lung
itself (remember that the procedure described here is searching for the lat-
eral edge of the left lung). The algorithm stops if none of the conditions for
all the three pixels is verified, since no path can be started from them, or if
it has reached the bottom margin of the image.

Once all the recursive calls return, the result is a set DSetp(PZ) of pixels
which have been recorded as belonging to a possible descending path start-
ing from PZ. To check if DSetp(PF) is an acceptable set, the algorithm
looks at the location of the bottommost points in it. DSet B(PSB ) is rejected
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Figure 1.8: Neighbor pixels checked during the Descending path (Left) and the Ascending
Path (Right)

if they are located above the bottommost pixel in the left side of the First
edge image, i.e. if their Y — coordinate is less than the one of this last point;
in this case the algorithm is rerun using as new starting point the next one
found in the search area (Figure 1.7) of the parallelogram described before
and scanned in the same directions. If all the sets created after restarting
the algorithm from all the possible starting points are discarded, the overall
algorithm reaches the end without creating any contour.

When a set is finally accepted, there is the need to select from its pixels
the proper ones to be used to create a unique contour. To this purpose
the same recursive algorithm from the bottom to the top is run, using as
starting point, Qg ; it is the rightmost pixel among the bottommost in the
DSetp(PE). Once the “ascending” set ASetp(QY) is created, the intersec-
tion of the two sets obtained is considered; a unique chain of pixels that
constitutes the lateral contour is then formed by taking for each row the
rightmost pixel of the intersection.

in Figure 1.9 some of the created paths are shown. On the left of the top
row one example of discarded path can be seen. In these images also the
path running to the top of the lungs is visible; it is obtained in the way
described in the following paragraph.

Construction of the path running to the Top

The procedure used to detect the Tpath is aimed at the detection of a
continuous contour running from the point PST = Pg to the top of the
lung. A similar recursive algorithm, just in ascending order, is applied to
the input images; as before its output is a set of points ASetT(PST ). For
each point considered X = X(i,j), and already included in the set, the
algorithm now looks at the two 4 — neighbors located above it (i.e. in
the position (i,7 — 1)) and on its right side (in position (i + 1,7)). These
directions are chosen according to the shape of the borders of the top of
the lung. Both these neighbors are inserted in the ASetT(Pg ) if they are
set to 1, and the algorithm is recursively launched using them as starting
points. The algorithm stops when the top margin of the image is reached
or both the neighbors are set to zero. Once all the recursive calls return
the topmost points in the ASetr(PI) are checked. An error is detected
if they are located not further then 20 lines above PST , since in this case
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Figure 1.9: Contours created on the binary images L, (¢ = 1,2,3) - Final contour
(bottom right)

the T'path it’s too short and hence it is probably not reaching the top of
the lung field. This happens mainly when the input image does not have
continuous vertical edges due to the presence of the clavicles, whose edges
are superimposed to the lung borders: they show up as horizontal edges that
interrupt the vertical ones. To overcome this problem, the path just created
is stored, and the ascending algorithm is restarted from a new starting point.
It is found by scanning (from left to right and from the bottom towards the
top of the image) a search area located above the topmost point reached;
this area is a parallelogram similar to the one used to find Pg but whose
dimensions are the half (the search area and its location with respect to the
topmost point are shown in Figure 1.10, where the last point reached is red
colored). If no point set to 1 is found the algorithm is stopped definitely.
Otherwise, the new point is connected with a segment to the topmost point
reached and the algorithm is restarted; the output of this run is a set that
will be added to ASetr(PE).

To create the T'path from the set AS etT(Pg ) obtained, the rightmost among
the pixels belonging to it is selected for each row. The topmost pixel in
the Tpath delineated is often above the point at the top of the lung (this is
generally called the Apex point of the lung). Since the apex point is generally
located where the border of the lung is horizontal, to find it the absolute
value of difference of the X — Coordinates of points located in consecutive
lines is computed. The location of the top point (t,, where o indicates the
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Figure 1.10: search area for the left path going to the top. The topmost point reached
is red colored

path calculated on one of the three input images) is then found when this
difference is bigger than a certain value, that has been experimentally chosen
and differs according to the input image: it is proportionally dependent on
the scale used to create the input image L, ( equal to 14, 21, 28 for Ly, Lo,
L3 respectively).

A final contour running from the top till the bottom is created by connecting
the Bpath and Tpath.

The contours created on each image L, (o0 = 1,2, 3) are shown in Figure 1.9.
The fact that one of the three paths may be interrupted is not a problem
since at least one of the other two is all defined (this happened for all the 409
images on which the algorithm was run). The procedure used to compose
them can build a final contour just using the available paths.

Combining the paths detected

Since the top points t1 = (x4, yt,), ta = (X4, Yty ), t3 = (T4, Yts) of each
path may not have the same vertical position, the vertical coordinates of
the topmost point, T'op, in the final border is set to be the mean of v, ys,,
Yt;- The contour is then created by selecting for each row, below the one at
the vertical coordinate Top, the leftmost among all the pixels belonging to
the different paths available. In the following the obtained contour will be
referred as the Left border path. Repeating the same operations for the right
side a Right border path is easily created. In Figure 1.9 (bottom right) the
Left border path and Right border path obtained are visible; they are created
by combining the contours showed in the other three images.

1.3.4 Edge refinement and final contour delineation

This section describes the method used to integrate the information present
in the First edge image and in the border paths just presented, to get a
final definition of the lung field. This is necessary since both the techniques
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employed are not able to define precise contours. The First edge image con-
tains borders that are not continuous; moreover some contours, such as the
edges of the costophrenic angles, are often missing; another problem is that
it may still contain edge pixels that are not belonging to the borders of the
lung field. The advantage of this image is that those edge pixels correspond-
ing to the lung borders define a very precise contour. On the other hand
the contour obtained with the edge tracking algorithm, even though less
precise, is always continuous and running from a vertical position, that is a
good approximation of the top of the lung field, to the bottom of the im-
age. Observe that the points characterizing the costophrenic angles are still
uncertain since the contour, built by the edge tracking algorithm often runs
till the bottom margin of the image, meanwhile the bottommost points in
the left side of the First edge image may not correspond to the costophrenic
angle. Again only the operations on the left lung will be described.

Before applying any integration procedure, the edges in the First edge image
still need a refinement. The first thing to do is to add back to it the regions,
saved in the Little regions image, which are located on the left side of the
axis and below the topmost point, Top, of the Left border path.

Moreover, all the pixels in the First edge image located above Top are
deleted. This is because the Left border path is always a good upper bound
of the lung top.

The next step is based on the observation that the initialization point, Pr. ¢,
has been detected as the point of the left lung nearest to a line oriented at
135° and passing by the origin. All the points above the line with the same
orientation and passing through Pr.f; can then be discarded from the First
edge image, since they surely do not belong to the lung field. In this way the
procedure is able to discard the edges belonging to external bony structures,
such as clavicles, that may still be present in this image.

A constraint for the possible vertical position of the edges of the costophrenic
angle is defined by searching the vertical coordinate of the bottommost point
in the intersection of the First edge image and the Left border path. The
deletion of the edge pixels below this vertical coordinate in the First edge
image is the last step before proceeding to the integration of the edges it
contains and the Left border path.

The integration is carried out by following the borders in the First edge
1mage, starting from their topmost point and going in a descending direc-
tion, to search for a continuous path; when a hole is found, it is filled by
taking the pixels in the Left border path, whose advantage is to be always
continuous. The procedure stops when it reaches a point Lgyg. located on
the same row of the bottommost points in the First edge image, since it is
obvious that the rest of the Left lateral contour is the one belonging to the
Left border path. As required during the creation of the path running to
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the bottom (see paragraph 1.3.3) the algorithm is run also in a bottom-up
direction, and starting from the point Lgyg. itself, to get a more precise
definition of the contour.

On the right side of the left lung, nearby the spine, the aim is to have a
rough outline of the dorsal column. To do this a line parallel to the axis is
created, which passes by a point, in the First edge image, that is located
on the right border of the lung: this is the point that is the nearest to the
axis. This last point is then joint with a segment to the topmost pixel in
the First edge image in order to create a closed contour on the right side of
the left lung (this segment, together with the line parallel to the axis, are
drawn with the color blue in the images in the top rows of Figure 1.11).

R

Figure 1.11: Segment used to define the costophrenic angle

1.3.5 Costophrenic angles detection

To complete the contour, the positions of the costophrenic angles must be
defined. They are needed to create a bottom boundary for the area of the
lung field; this is indeed defined by the segment connecting the points corre-
sponding to the two costophrenic angles. These points are obviously located
at the junction of the lateral borders of the lungs and the borders of their
bottom (these last borders are defined by the presence of the diaphragm).
The edges of the bottom of the left lung are selected from the First edge
image; they are found by searching the region on the right side of the pixel
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in the position of Lg,gie, whose bottommost point is the nearest to Lgygie
itself. The 5 leftmost and bottommost points of this region, are fitted with
a polynomial fitting method that minimizes the xy — square error statistic.
The purpose is to find a line [ interpolating them. The intercept of [ is then
modified in order to create a parallel line, passing through the point with the
highest Y — Coordinate among the five selected (see the images in the top
row of Figure 1.11, where [ is drawn with the green color). The intersection
between this line and the Lateral contour detected defines the point L}m gle
where the costophrenic angle is located: the contour is ended in Ltlzngle‘
Repeating the same procedure for the right side the point Rlegle is found.
On this side the edges are often weaker, due to the presence of the heart.
This could cause problems in detecting the bottom part and hence the proper
position of the right costophrenic angle. Since our algorithm is always very
precise in detecting the point L}mgle this information is employed to check
the position of Rin gle- The underlying assumption is that Ltlm gle and Rclm gle
should be approximately located in a symmetric position with respect to the
axis. This is the reason why the check on R}m gle 18 performed by computing
the absolute value of the difference between its vertical coordinate and the
one of the point, Lfim, that is symmetric to L}m gle with respect to the axis
(and is of course located on the right side). If this distance is bigger than
15 pixels and Lﬁm is located below R}mgle, we substitute to R(lzngle the point
on the Right lateral contour that is in the same row of L% - in this way the
continuous lateral contour is stopped also in the right side.

To close the contour a segment is defined that connects the two costophrenic

points detected in the two lungs.

1.4 Results

1.4.1 Results on the JSRT database

To evaluate the quality of the contour obtained we considered as error a
part of the lung that is not properly enclosed into the segmented lung area
or a significant part, not belonging to the lung, but included into this area.
All the segmented images in the database have been divided into three
classes, Perfect, Little Errors and Bad FErrors, according to the errors they
contained. Images classified as Perfect are the ones where the lung field
perfectly encloses the lungs, adhering to their real borders; some examples
are shown in Figure 1.12. The images in the Little Errors class are 8. Some
errors are due to small parts of the lung that are not included; some others
have been detected at the bottom of the right lung, where the segmented
area includes a part, not belonging to the lung field, which can be rich of
edges due to organic gasses; they are shown in Figure 1.13. Images contain-
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ing Bad Errors are those with big parts of the lung not included into the
segmented lung field or they are due to extra parts, very big, not belonging
to the lungs and included into the segmented lung field. No bad errors have
been detected in the images of the JSRT database.

In the table 1.1 the results described are summarized and their percentage
is given. To be more specific they have been measured separately on the left
and right lung (first and second row); the third row gives an overview on
both the sides of the lung.

We compared our method with the only one developed and tested on the
same database. As already said this method, described in [85], does not
include in the lung area the parts behind the diaphragm, the spinal column
and the heart. The same qualitative criteria were used to judge the results
it produces, and 50 errors have been detected. Almost all of them are due
to missing parts; precisely we have classified 10 images as belonging to the
Bad Errors and 40 images as belonging to the Little Errors class. Moreover
it can be said that the contour detected is not as precise as the one created
by our method since it is often an internal contour. Note that this method
is the one, presented so far in the literature, with the best performance.

Examined Part ‘ % Perfect ‘ % Little errors \ % Bad Errors

Left Lung 99.6 0.4 0
Right Lung 97.1 2.9 0
Both Lungs 96.7 3.3 0

Table 1.1: Results on the JSRT Database (247 radiographs)

1.4.2 Results on the Niguarda Database

Our method has also been tested on the 162 images of the Niguarda database
and the results are summarized in table 1.2; 5 images are in the Bad Errors
class; they are shown in Figure 1.14. The images in the Little Errors class
are 8 and are shown in Figure 1.15. Examples of the Perfect results obtained
are shown in the Figure 1.16.

Note that no method already presented in the literature has been tested on
such an amount of images belonging to different databases.
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Figure 1.12: Examples of the perfect results obtained on the JSRT Database
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Figure 1.13: The 8 images containing Little errors in the JSRT Database
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‘ Examined Part ‘ % Perfect ‘ % Little errors ‘ % Bad Errors ‘

Left Lung 96.3 1.2 2.5
Right Lung 93.8 19 1.3
Both Lungs 92.0 5.0 3.0

Table 1.2: Results on the Niguarda Database (162 radiographs)

" ' -~

Figure 1.14: The 5 images containing Bad errors in the Niguarda Database

1.5 Segmentation of the visible lung area

1.5.1 Purpose

The aim of this section is to describe a further step which is added to the
previously described segmentation algorithm, to give a better definition of
the lung field, hence allowing to retrieve more information about the lung
structure itself. Its purpose is to separate, for each lung, the wvisible parts
from the ones hidden behind other structures such as the heart, the di-
aphragm and the spine. The hidden areas are completely different from the
visible areas: they are characterized by much brighter grey levels and a more
uniform texture. A differentiated analysis of the two areas may be helpful
for any kind of computerized analysis of the lungs. The separation between
them has indeed proved to be efficient to get a better characterization of the
candidate regions detected by our computer aided system for the detection
of lung nodules (see Chapter 3).
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Figure 1.15: The 8 images containing Little Errors in the Niguarda Database
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Moreover the analysis of the hidden areas has been helpful to detect and cor-
rect the errors, made by our previously described segmentation algorithm,
that are caused by external structures, such as gases, in the right side of
the radiographs. Since the two areas to be separated differ mainly for the
grey levels of their pixels, the method starts with a clustering algorithm, de-
scribed by Arbib and Uchiyama in [82] and based on competitive learning.
Each pixel is assigned to a certain cluster according to a distance measure
based on the grey level of the pixel itself. The result is a first rough separa-
tion between the two areas. The segmentation is improved trough the use
of simple derivative filters.

The input of the algorithm is a preprocessed version of the original radio-
graph, at its original dimension and with 4096 grey levels; the preprocessing
has the purpose of removing some noise. To this aim a median filter of 5
pixel is applied, followed by the convolution with a gaussian filter with stan-
dard deviation ¢ = 3. The grey levels are then scaled to the range [0, 255]
and the image is down-sampled to the dimension of 512 by 512 pixels. In the
following steps this preprocessed image will referred as the Original Image.

1.5.2 Clustering method

The result of the segmentation algorithm, described in the previous para-
graphs, allows to apply an enhancement procedure, and all the steps needed
to perform this further segmentation, just to the lung tissue and separately
on the left and right lung. An enhanced image, where the borders of the vis-
ible lung areas appear more visible is thus created by applying an histogram
equalization (see [67]) separately on the left and right lung in the Original
image. This operation is followed by a simple Min-Mazx filter to enhance
the image contrast by means of a non linear, extreme value sharpening tech-
nique, whose effect is to increase the contrast where the boundaries between
objects are characterized by gradual changes in the grey levels. Its definition
is the following:

max iff |max—G(z,y)| < |min —G(z,y)|
GN(z,y) = (1.1)

min otherwise

where min and max are the minimum and maximum grey values computed
on a window Win(z,y) centered in (x,y). The window size used is 3 pixels.
The resulting image is the input of the clustering algorithm to search for
three clusters. This decision is due to the fact that the visible area is char-
acterized by a darker mean grey level, the part behind the heart is often
characterized by lighter grey levels, similar also to the ones of the pixels in
the regions of the gases, and finally the part behind the diaphragm contains
pixels with the highest grey levels. In Figure 1.17 some examples of the
results of the clustering method are shown on the left side; all the pixels
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in the same cluster have the same value CValue € [1,2,3] (CValue = 1
corresponds to the cluster whose representative has the lowest grey value
with respect to the other clusters, C'Value = 3 corresponds to the cluster
represented by the highest grey value). In the right column the borders
of the three clusters are colored, with red and blue color, on the enhanced
image. For each lung the biggest region formed by the union of the two
clusters with CValue = 1 and C'Value = 2 is selected; filling it so that it
touches the external borders of the lung, a first Mask of the visible areas is
obtained. As shown in the top row of Figure 1.18, for some of the images
the clustering method well defines the wisible areas, for other images it is
not enough, especially at the bottom part of the right lung. Two examples
are shown in the bottom row of the same Figure; they are typically caused
by the missing costophrenic angles or by the fact that some external struc-
ture, such as internal gases or the spinal column, may still be included in
the Mask of the wvisible lung area; this last must then be refined with the
operation explained in the next section.

nin
AN

Figure 1.18: The mask obtained selecting using 2 Clusters in the result of the clustering
algorithm

1.5.3 Edges detected with derivative filters

The Mask of the visible lung areas often contains errors that are mainly
located at the bottom part or in the part nearby the spinal column. To
correct them the results of simple derivative filters have been used. The aim
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is to search for the most visible edges at the bottom and nearby the spine;
they will be used to discard the extra parts still contained in the Mask
of the wvisible lung areas or to add the parts lost. The horizontal edges,
such as those between the visible part of the lung and the diaphragm, are
obtained by filtering the enhanced image with a vertical Sobel filter, Y .Sob;
the mask used for this filter is shown in figure 1.19. The vertical edges
that separate the wisible lung area from the part behind the spinal column,
are obtained filtering the enhanced image, separately on the left and right
lung, with two horizontal Sobel filters; in Figure 1.19 the one used for the
left lung, XSobL, is shown; the right lung is filtered with a filter whose
mask is = —XSobL. To get two binary images, containing the horizontal
edge regions and the vertical edge regions respectively, the procedure selects
(separately on the two lungs) the 5% of the pixels with the highest value
of the corresponding derivative image. Deleting from the resulting binary
images all the connected regions with less then 100 pixels the horizontal edge
1mage and the vertical edge image are formed. Finally a total edge image is
obtained by keeping all the connected regions in the horizontal edge image
and selecting from the wertical edge image those regions that intersect at
least one of the regions in the horizontal edge image. The edges thus selected
always contain the borders of the bottom part of the wvisible lung area and
some of the vertical edges attached to it. Some unwanted edges belonging
to the intestinal gases or other structures may still be present. They can
be easily recognized for their shape and location with respect to the Mask
of the wvisible areas; based on this fact, the decision is to further discard the
connected regions in the total edge image which do not intersect the Mask,
those regions with a convex shape, and the ones with a rectangularity factor
bigger then 0.33. Some examples of the total edge image before and after
this cleaning are shown in Figure 1.20; the deleted edges are signed with a
red arrow in the figures in the left column.

-1 -2 -1 -1 0 1
Y Sob = 0O 0 O XSobL =1| -2 0 2
1 2 1 -1 0 1

Figure 1.19: Sobel filter used

1.5.4 Integration of the two techniques

The edges in the total edge image are employed to refine the Mask of the
visible areas. As before the process is applied separately on the right and
left lung. In the following it is described just for the left, since on the right
lung the operations are the same but opportunely reversed.

On the bottom part, the bottommost region (bottom edge region) is ex-
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Figure 1.20: Borders detected

42



tracted from the total edge image; it is the one corresponding to the bottom
contour of the wvisible lung areas, and defined by the upper border of the
diaphragm. Deleting all the pixels in the Mask of the visible areas below it,
all the extra parts in the bottom are deleted; in the same time the pixels
above it are added to the Mask, if they are not already present, to repair
the fact that some parts could be missing.

The bottom edge region is used also to estimate a new point correspond-
ing to the position of the costophrenic angle. This is done by finding the
point where this region intersects the external border of the lung field; if
this doesn’t happen the new costophrenic angle position is estimated by se-
lecting 1/4 of the points of the skeleton of the bottom region which are the
most external (they are the leftmost for the left lung and the rightmost for
the right lung) and then fitting them with a polynomial fitting procedure
that minimizes the y — square error statistic. The purpose is to find a line [
interpolating these points. The intercept of this line is modified to create a
line, parallel to [, that passes through the bottommost point of the bottom
edge region. The intersection of this parallel line with the external border
of the lung field determines the new costophrenic angle. The Mask of the
visible areas is then filled above this line to have a close region. In the
left column of Figure 1.21 some examples are shown. Note that this simple
procedure may produce some jumps in the contour of the bottom area (see
the right lung in the second row). To overcome this problem and refine also
the borders of the visible lung area nearby the spine, a very simple contour
following procedure is used; this will be explained in the next section.

1.5.5 Contour following to get the final segmentation

To end the refinement procedure and get a good separation between the
two parts of the lung, a final and very simple contour following procedure is
used. The edge regions in the total edge image are often not so well defined
since the borders nearby the spine are characterized by a smooth and grad-
ual change of their grey levels; this is because, in this part of the thorax, the
lung and ribs “turn” gradually to become the anterior part of the lung and
ribs. For these reason the contour followed are the ones obtained by apply-
ing to the Original Image, input of this algorithm, a locally adaptive scaling
operator (described in [43]) whose purpose is to produce an enhancement of
low contrast edges, especially inside the bright image domain. The decision
to use this operator is indeed due to the fact that this area is characterized
by pixels with the highest grey values. This is a local operator working on
squared windows whose size has been set to be of 5 pixels. Its output has
been histogram equalized, separately on the two wvisible lung areas already
defined, to get a better enhancement of the edges. The final result, i.e. the
locally enhanced image, is shown in the right column of Figure 1.21. Note
that no histogram equalization has been applied to the hidden lung areas
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Figure 1.21: mask of the visible lung area before the final contour following (Left) -
locally enhanced image (Right)
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since the purpose of this step is to discard from the Mask of the visible lung
areas those regions of the hidden area that are still included; what is needed
then, is to detect and follow the edges of the hidden areas still contained in
the mask. Again the edge selection and the contour following are described
for the left lung, since the operations are the same, but reversed, for the
right lung.

A binary image containing these edges is formed by selecting the 50% of
the pixels in the Mask of the visible lung areas with the lowest grey value.
Starting from the costophrenic angle, the contour of the Mask of the visi-
ble lung area is followed from left to right to define a path without jumps.
A jump in the contour is found when the absolute value of the difference
between the Y — coordinates of the pixels in the contour, and located in
consecutive columns is bigger than 5. A jump is repaired by taking, from
the binary image, the nearest pixel to the previous in the contour, and ob-
viously located in the column of the jump. The procedure goes on from this
last pixel and stops when the vertical position Y, is reached: this is the
vertical coordinate of the point in the wisible lung area which is the nearest
to the axis. In the Left column of Figure 1.22 we show some of the edges
in the binary image that are nearby the spine (superimposed on the masks
of the visible lung area) and below Yg;,,. The masks obtained are shown in
the right column of Figure 1.22. Notice that the jumps have been repaired
and the contour is finally fixed.

1.6 Global Results and Conclusions

The method, just described, not only produces a good separation between
the wisible lung area and the not visible one, but it also repairs those errors
at the bottom of the lung, where extra parts due to the intestinal gases are
wrongly included in the segmented lung field. The errors that cannot be
fixed are the ones due to the missing parts of the lungs; anyway the perfor-
mance of the overall method are considerably increased with respect to the
ones reported in section 1.4.

Regarding the images in the JSRT Database, all the Little Errors have been
detected and corrected. In Figure 1.23 the corrected errors in the JSRT
Database are shown.

On the top row of Figure 1.24 we show the 3 corrected errors in the images
of the Niguarda Database, previously classified as Bad Errors. Note that,
in the first image, just the error at the bottom of the right lung is detected
and corrected; the error in the left lung is not repaired since it is due to a
missing part.

Figure 1.25 shows the results of the algorithm when run on the images clas-
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Figure 1.22: Edge used for following the contour and Final masks
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sified as Little Errors in the Niguarda Database: 5 errors are completely
corrected and 1 is partially corrected. In table 1.3 the performances of the
overall algorithm on the Niguarda Database are summarized.

Examined Part ‘ % Perfect ‘ % Little errors ‘ % Bad Errors

Left Lung 96.4 1.2 2.4
Right Lung 98.1 0.7 1.2
Both Lungs 95.7 1.9 2.4

Table 1.3: New Results on the Niguarda Database (162 radiographs)

The very good performance obtained by the overall lung segmentation
method presented in this chapter, confirms its efficacy: no errors are left in
the images of the JSRT Database and few of them are left in the Niguarda
Database. Its robustness is also proved by the fact that it has been tested on
a set of 409 images belonging to 2 different databases, containing completely
different images, and the results obtained are good in both the cases; at the
state of the art this is the method tested on the biggest amount of images.
Furthermore it differs from several of the methods already described in the
literature since it is based on no assumption such as those regarding the
position and the orientation of the thorax in the radiograph, the structural
abnormalities of the chest and the heart. Moreover, it not only identifies the
lung area generally defined by the other methods, but also includes into the
segmented lung field the bottom part of the lungs (hidden by the diaphragm)
and the parts behind the spine and the heart. This fact is of utmost im-
portance since the segmentation just described has been realized as the first
step of our Computer Aided Diagnosis system described in chapter 2.

The system described has been implemented in IDL, an interpreted lan-
guage; when executed on a Pentium IIT with 128 Mb of RAM it takes a
maximum of 50 seconds. This time can be reduced significantly, to at least
its 10%, by programming the algorithm in a compiled language and opti-
mizing the code.
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in the images of the JSRT database now all corre

Figure 1.23: the Little errors
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Figure 1.24: The results on the Bad Errors in the Niguarda Database; 3 corrected (Top
row) - 2 not corrected (Bottom row)
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Figure 1.25: The Little Errors on the Niguarda Database; 2 not corrected (Top row) -
1 partially corrected (Left in the second row) - 5 completely corrected
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Chapter 2

Extraction of the Nodule
Candidate Regions in
Postero-Anterior Chest
Radiographs

Image processing techniques and Computer Aided Diagnosis (CAD) systems
have proved to be effective for the improvement of radiologists’ diagnosis.
In this chapter we describe a system for processing Postero Anterior chest
radiographs in order to detect lung tumors. It extracts a set of nodule
candidate regions characterized by a high sensitivity ratio. This result is
obtained by means of two consecutive multi-scale methods to enhance the
visibility of the nodules and then extract a first set of candidates.

The method has been developed and experimented on the 247 radiographs
in the JSRT database: 154 of patients with lung nodules and the remaining
with no nodules. The set of candidates detected contains 31100 candidates,
approximately 125 per image, loosing only 5 True Positives out of 154, and
hence reaching a Sensitivity ratio equal to 0.97%.

2.1 Introduction

In the Introduction the reasons why CAD systems for lung tumors detection
would be helpful for clinical purposes are reported and motivated.

In the last two decades a lot of research work has been focused on the de-
velopment of such systems and a wide variety of them have been already
proposed ([28], [27], [52], [47], [95], [38], [41], [8], [80], [63], [78], [77], [1],
[100], [99], [98], [92], [39], [40], [95]). Most of the methods presented in the
literature start with the extraction of a first set of candidate nodules. The
aim is to extract all the regions that may contain nodules without loos-
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ing too many True Positives (in the following we will call True Positives
the candidates that are real nodules, and False Positives are the regions
wrongly extracted as candidates). This is generally done by means of a two
steps procedure which first enhances the visibility of the nodules, and then
extracts the candidates.

The enhancement procedure is generally done by subtracting a background
image from the original one, so that the regions characterized by the highest
frequencies are detected (see [26] and [51] for some examples). Second, all
the regions that may contain nodules are extracted. Since a nodule is gener-
ally considered as a bright circular region with high contrast, the candidates
extraction is generally performed with methods based on rules regarding
shape, grey level and contrast of the regions. Examples are the methods
that apply to the nodule enhanced image a template matching procedure or
a simple thresholding.

Since the focus of these first two steps is to detect all the nodules, if present,
the resulting set of candidates extracted is generally quite high and must
be reduced. Systems trying to extract a set with less candidates have been
developed, but their high True Positive loss has lead to approaches which
leave to proper classifiers the task of reduction. This problem will be dis-
cussed in the next chapter.

In this chapter an approach to enhance the visibility of the nodules, and then
extract a set of candidate regions, is presented. The comparison with other
two methods, presented by Ginneken and Shilham in [1] and by Keserci et
al. in [8], that are the only ones tested on the same database, proves the
very good performance of our method, both in terms of cardinality of the
set extracted and sensitivity ratio (See Appendix C). The system reaches
a sensitivity ratio equal to 97% and a set of candidates extracted with a
cardinality equal to 31100 regions, about 125 per image.

The novelty of the method is the use of two multi-scale algorithms to first
enhance the visibility of the nodules and then extract a set of candidates.
Both the multi-scale schemes are based on the fact that the nodules to be
detected have different sizes and are characterized by different texture, de-
pendent on their location in the lung. As an example, nodules nearby the
hilum appear with a more spiculated shape than the ones in the upper part
of the lungs, or located in the parts hidden behind the diaphragm; more-
over their texture is less homogeneous. Another difference can be noticed in
the grey levels of the pixels of nodules in the parts behind the spine or the
diaphragm; these have much higher grey levels than the ones in the part of
the lung defined as wvisible in the previous chapter.

To develop a scheme that is able to enhance the visibility of tumors with so
different characteristics a multi-scale scheme is of utmost importance. As
cited before, the schemes presented in the literature proceed with an en-
hancement that is often performed with the subtraction, from the original
image, of a smoothed version where the background structures are sup-
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pressed; others employ a similar procedure, generally called unsharp mask-
ing, based on the subtraction of a smoothed version of the image from an
image where the high frequencies are highlighted (see [28], [27], [98], [100]).
These operations are aimed at recovering the difference of the grey levels
between different nodules, due to their background, and they should high-
light the regions with a not homogeneous texture. Their result is of course
dependent on the size of the operator used to produce the smoothed image:
it indeed highlights only a limited range of frequencies, i.e. the details (or
frequencies) belonging to a limited scale (a certain range of frequencies).
It is straightforward to understand that such a method cannot be used to
capture all the details belonging to nodules of different sizes and grey lev-
els. A practical example is the enhancement procedure used by the scheme
presented by Giger et al. in [26]. The authors use a smoothing operator
of a certain size to enhance the visibility of the nodules. The candidate
regions are then extracted by thresholding the result, and some rules based
on shape are then used to discrad some of them. Our implementation of
the same method on the JSRT Database showed its weakness: lots of nod-
ules were lost, and the ones detected were just some of the tumors with the
biggest size. Some other, with the same size but with spiculated texture
characteristics where lost, since their grey levels frequencies belonged to the
highest ones not detected by the filter. This suggested the use of a multi-
scale method for both the steps of enhancement and extraction.

The framework of a general multi-scale scheme is often a function, param-
eterized by a scale parameter o, which is able to extract from the image
the information belonging to a limited range of frequencies (scales) strictly
related to o itself. Repeating the procedure for different values of the param-
eter, the multi-scale scheme is able to extract all the information belonging
to the different scales. The final result is then created by the integration of
all the results obtained at the various level of details considered.

2.2 Materials

The method has been developed and tested on the images in the JSRT
Database. The application of the method on the 162 images of the Niguarda
database is useless since no clinical information, regarding the presence of
nodules, is available for these radiographs.

Before processing, the images have been down-sampled to a dimension of
256 by 256 pixels, chosen experimentally in order to reduce the computa-
tional costs without worsening the performances of the system. They will
be referred as the Original images. An observation to be made is that the
algorithms described in the following are applied just to the full lung area
obtained by means of the segmentation algorithm described in chapter 1.
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2.3 Enhancing the conspicuity and visibility of the
nodules

As explained in the Introduction, the conspicuity of the nodules changes
according to their size and their location in the lungs. An enhancement
procedure with the aim of increasing the visibility of nodules with different
conspicuity should be designed in order to eliminate all the various factors
that lower their visibility, by means of highlighting their common character-
istics.

The nodules are generally characterized by a circular shape and the higher
grey values of their pixels, with respect to the ones in their surrounding.
This is the reason why the multi-scale scheme realized starts by producing
several smoothed versions of the image; each one of them is then subtracted
from the Original one. The Smoothed images are obtained by convolving
the original image with gaussian filters whose standard deviation, o, takes
values in the range 2 — 12, according to the minimum and maximum pos-
sible pixel size of the nodule radius in the image down-sampled to the size
of 256 x 256 pixels. For each scale, o, a Difference image is then obtained
by subtracting from the Original image its smoothed version. In the result
of the subtraction the details visible at the scale o are enhanced, as can be
noticed in Figure 2.1. Since the distribution of the grey levels in a nodule
sub-image can be approximated by a gaussian, the result of subtracting to
a nodule sub-image its smoothed version is usually an image with a positive
peak in the central part of the nodule, and negative values in the neighbor-
hood. Moreover the histogram of the Difference image shows that most of
the pixels take negative values, meanwhile on the set of positive values a
peak can always be identified. To identify all the details belonging to the
scale o, the pixels with a value bigger than the one corresponding to the
peak are selected and a binary image is created to store their position; these
pixels are the ones corresponding to the highest frequencies, i.e. the details,
that can be identified at the scale . Summing up all the binary images
obtained at different scales a final Sum image is created, two examples of
which are shown in Figure 2.2. Note how this new method, employing a
multi-scale approach to enhance the conspicuity of the nodules, works well
also in the case of extremely subtle nodules.

2.4 Extracting the nodule candidates

In the Sum image the nodules often appear as regions with circular shape
of different sizes, characterized by the highest grey levels at the center and
surrounded by a much darker ring. Based on this observation the image is
processed to look for a measure which helps in selecting the pixels corre-
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Figure 2.1: Difference images obtained with 0 =2, 0 = 12

sponding to the centers of nodules. To handle all the possible sizes of the
nodules the procedure described below is repeated for each possible radius
value (r = [2,..,12]) and all the results are then combined.

Having fixed the radius r, it is possible to calculate for each pixel P = P(z,y)
a coefficient P, (x,y) which measures the contrast between a circular region
with center P (and radius r) and its surrounding; P,(z,y) is thus defined:

P.(z,y) = MEAN (Circle,(P(x,y))) — MEAN (Ring,(P(z,y))) (2.1)

where M EAN (X) is the mean of the gray values of the pixels inside a generic
region X; Circle,(P(x,y)) is the region composed by the pixels contained
in the circle of radius r and centered in P; Ring,(P(z,y)) is the region
composed by the pixels in the 2-pixel-thick ring around the Circle,(P(z,y)).
Note that the thickness of the ring is fixed to 2 for every radius. This is
because what allows to identify a circular region is a darker ring surrounding
it, no matter which is the thickness of the ring itself.

To select the pixels which are potential nodule centers, a threshold on the
set of the coefficients {P.(z,y)} is automatically defined by means of the
algorithm described in [42] and based on the maximization of the entropy
of the histogram of the image: the threshold is set so that the two grey
level subsets created have the maximum possible entropy. Thresholding the
image with the value obtained a Binary image is created.

For each connected region in it, the circularity and the biggest diagonal,
D, of the minimum ellipse containing the region itself are calculated. The
circularity is defined as the fraction of the area of the region contained in
the circle, with the same area and centered in the center of mass, and the
area of the circle itself (the same circularity measure has been used also
in [26]). The analysis of these values allows to discard a candidate region
either if its circularity is lower than 0.5 or D is bigger than 2 % r. The
regions not discarded correspond to the candidate nodules with radius r.
Repeating the procedure for each possible radius a set of 11 Binary images
B(r) is created, each containing a set of candidate nodules. All these images
must be combined to extract a final set of candidates. First, all the regions
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Figure 2.2: Original image and Sum image - subtle nodule behind the diaphragm and
extremely subtle nodule

appearing in only one of the Binary images are taken as candidates. For
the others the following procedure is employed: when two regions, X and
Y, belonging to B(r1) and B(rz) (r1 and 79 being two consecutive radius
values) intersect, their union U is at first considered. If the biggest diagonal
D of the minimum ellipse containing it is less than 2 % ro, then U is taken
as representative; otherwise the following mean values are calculated:

1 1
My = x| > P, and My = v > P, (2.2)
peX peY

and we take as representative region the one with the higher value.
A final grey level image containing all the candidate tumors, and called
Regions image, is computed by assigning to each pixel in each candidate
region the value
G(z,y) = max (P(z,y)) (2.3)
ref2,12]
and then scaling it in the range [0,255]. Figure 2.3 and 2.4 show two ex-

amples of Regions image obtained for the case of a subtle and an extremely
subtle nodule.

With this extraction scheme 31100 regions are obtained on all the 247
images of the JSRT database, with an average of about 125 regions per
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Figure 2.4: Original Image, Sum and Regions Image - extremely subtle nodule

image and only 5 True Positives lost out of 154. The images containing the
lost tumors are shown in Figure 2.5: all of them have been classified in the
JSRT Database as containing extremely subtle nodules; moreover showing
them to radiologists, and indicating them the position of the nodule, as
reported in the data of the database, they still doubt that the one in the
second row on the left contains a nodule.

These results have been compared with those of the extraction schemes
tested on the same database and reported in [1] and [8]. The first method
is applied to the lung area defined by [85] but not extended as described in
chapter 1, bringing to a loss of 13 True Positives, out of 154, even before
the candidate extraction procedure. The result of the extraction scheme is a
set of about 33000 candidates and a loss of other 8 True Positives; the final
sensitivity ratio it reaches is then equal to 0.86. The implementation of the
second method and its application to the same lung area used in [85], gave
really poor results.

An observation regarding the number of candidates obtained at this first
stage is that the lung area used by the scheme described in this chapter
is about 1.5 times bigger than the one commonly considered; this number,
that is already lower than the ones of the other schemes, would have been
much less if we had used the area of the visible part only.
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Figure 2.5: Radiographs containing nodules lost

2.5 Conclusions

In this chapter we have described a method to extract a first set of candidate
nodules from the lung area defined by the segmentation algorithm presented
in chapter 1; the sensitivity ratio obtained by the system is equal to 97%; it
is higher than the other methods presented in the literature and tested on
the same database. Despite this good performance the number of candidates
selected, 31100 on 247 images (about 125 per image), is too high to be useful
for clinical purposes and must be reduced. A good system should indeed
get no more than 5 — 10 candidates per image. In the next chapter the
experiments aimed at a final True Positives selection are described in detail.
When executed on a Pentium III with 128 Mb of RAM the algorithm takes
a maximum of 20 seconds. This time can be reduced significantly, to at
least its 10%, by programming the algorithm in a compiled language and
optimizing the code.
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Chapter 3

Experiments for Candidate
Classification

In this chapter we describe the experiments aimed at the selection of the
True Positives from the set of the extracted candidates, whose cardinality
is too high to be useful for clinical purposes. The aim is to arrive at a
final set containing no more than 10 candidates per image. To prune the
candidate set, 16 most representative features have been calculated for each
region and used as input to three different classifiers, whose performances
have been compared. The classifiers are: a rule based system, Multi Layer
Perceptrons (MLPs), and Support Vector Machines (SVMs).

The results obtained with all the classifiers, even if promising, are still not
satisfactory and useful for clinical purposes. To improve the performance
of the methods, different set of features have been computed and different
types of SVMs have been trained using them as input. All the experiments
and the results obtained are described with details.

3.1 Introduction

Several methods have been presented in the literature, which are aimed at
True Positive selection from a first set of labelled candidate regions. Lots of
them use a rule based system, where all the rules classify the regions using
thresholds that are applied to set of features ([26], [28],[27], [56], [78], [77]).
Other methods employ learning systems such as feed forward artificial neu-
ral networks or other learning machines ([51], [52], [95], [40], [63],[58], [47]).
Xu et al. presented a classification method based on two consecutive steps:
a rule based system is used to first reduce the big number of candidates; this
classification is then followed by a learning algorithm. The same scheme has
been used by Schilham and Ginneken in [1].

The basis of both a rule based system and a classification system is the se-
lection of a proper set of features; this problem has been studied by McNitt-
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Gray in [57]. Almost all features presented in the literature are classical
features or their simple variations. Some of them describe the shape of the
candidate region considered: examples are the circularity, the width, the ra-
dius of the circle including it; some features are used to study the texture of
the sub-image containing the candidate and extracted from the original im-
age: examples are simple features such as the mean, the standard deviation,
the contrast of the grey values of the sub-image, but also more complicated
ones such as the Laws’ ([46]) and Haralick’s ([31]) texture features. We no-
ticed that there is also a considerable overlap between the features and the
method employed in various studies.

In this chapter we describe our experiments whose purpose is the classifica-
tion of the candidates in order to discard as many False Positives as possible
without loosing too many True Positives. This task is made more difficult
by the fact that the two sets to be separated are highly unbalanced.

The first problem we had to address is the choice of the features to be used
as description of the candidates. At the state of the art, none of the methods
computes features using the intermediate results created by the algorithms
for the candidate extraction. This means that the way the regions are cre-
ated and selected is not taken into account, even though it is obvious that
the candidates obtained (True Positives and False Positives) are strongly
dependent from them. This is the reason why some of the features used as
input for our classification systems have been calculated from the images
and values created and employed during the extraction scheme described in
the previous chapter.

To lower the number of the candidates extracted a set of 16 most representa-
tive features has been calculated for each region. These features allowed us
to create a rule based system composed of simple and intuitive rules, which
is able to discard 22633 False Positive regions (thus 8467 candidates are left)
without losing any True Positives. The Sensitivity ratio of the system is not
reduced and the number of candidates is decreased to approximately 35 per
image. The same feature set has been used as input to Neural Networks,
trained by back propagation, and Support Vector Machines, and their per-
formances have been compared with the ones obtained with the rule based
system (see sections 3.4 and 3.5).

Furthermore the results obtained are compared with the ones of the system
presented in the literature and tested on the same database ([1] and [8]),
performing the two steps of classification previously described; the best per-
forming between the two systems ([1]) employs a first step of classification
that reaches a sensitivity ratio equal to 77% and a number of candidates
equal to 5028; note that this last number is comparable to the one of our
scheme since the lung area where the authors search for the candidates is
equal to the 2/3 of the one we considered. The second step of classification
of the system just mentioned is able to discard many other False Positives,
but loosing to many True Positives.
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Since the number of candidates left, by all the three methods experimented,
is still too high to be useful for clinical purposes, we again tried to use
Support Vector Machines but trained with more complex feature sets, i.e.
composed of the 16 features already used plus more sophisticated ones.
The results, reported in the same paragraph (3.5), are worse than the ones
obtained with the feature set of 16 elements. This fact suggested, as fu-
ture works, to use feature selection techniques to select from big number
of features a proper subset; as demonstrated before, a good combination of
selected features could indeed be more discriminative than the whole set,
thence allowing to obtain better results.

3.2 Features extracted to describe the Candidate
regions

To prune the set of extracted candidates more than 40 features have been
calculated. Their statistical distribution has been observed in order to de-
rive a set of rules which could describe the main characteristics of the real
nodules, therefore allowing to discard some Fulse Positives. The statistical
analysis allowed to select a set of 14 most representative features; their com-
bination, by means of simple rules, has indeed proved to be effective for a
first candidates selection. The rule based scheme created is able to detect
and discard almost the 3/4 of the number of False Positives.

The features used are based on the shape and position of the regions, the
grey level distribution in the original radiograph down sampled to the di-
mension of 512 x 512, the values of the grey levels in the Regions image,
and the set of coefficients P,.(z,y) associated to each pixel for each radius
value (see section 2.4). The fact that some of the features are extracted with
the values produced by the extraction scheme is a novelty with respect to
the other methods in the literature, and it is due to the obvious and strong
dependency between the regions obtained and the algorithm used to extract
them.

This section describes how the selected features have been calculated; each
one is associated with a simple name that will be used in the next section
to make the description of the rules simpler.

Three features are calculated to describe the position of the region. The first
position feature (called Lung Border Overlapping, or LBO in the following)
has been introduced to eliminate false positives detected on the rib cage
boundaries, which are characterized by the fact that they are attached to
the lung borders and have an elongated shape. It is calculated considering
the external contour of the region and computing the fraction of the pixels
of the contour which lay outside the full lung area with respect to the total
of the pixels in the contour. Figure 3.1 shows the elements used to calculate
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Figure 3.1: Lung Border Overlapping

this feature.

The other two features are calculated thanks to the information obtained
with the segmentation aimed at defining a separation between the wvisible
lung areas and the parts hidden by the spine, the heart and the diaphragm.
One feature (Position) is indeed associated with a value corresponding to
the location of the centroid of the region. It takes a value equal to 1 if the
centroid is in the vistble lung area, and equal to 0 otherwise; each candidate
region is then considered as belonging to the lung area where its centroid
is located. This last sentence is due to the fact that some regions may be
partially located in the wisible lung part and partially located in the hidden
parts. These candidates are mainly false positives due to the high contrast
at the borders of the two areas. To identify them another features is calcu-
lated, as an evaluation of the percentage of the region itself that lays outside
the part of the lung where the centroid is located. This feature (AreaOut)
is greater than zero just for the candidates crossing the borders between
the wvisible lung parts and the not visible lung parts; it is calculated as the
fraction of the number of pixels outside the lung part where the centroid of
the region is located and the total number of pixels in the region itself. This
quantity is a good evaluation of how much the region is on the border just
mentioned and hence can be helpful to recognize the false positives there
located.

Six features are based on the shape; they are:
e circularity (Circ), as defined in the previous chapter;

o effective radius (F f f Radius) , that is the radius of the circle with an
area equivalent to the one of the region;

e the fraction between the perimeter of the region and the perimeter of
the circle with radius of 12 pixels (Normalized Perimeter) - remember
that the maximum radius value considered is 12 pixels-;

e the fraction between the area of the region and the area of the circle
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with radius of 12 pixels (NormalizedArea);

e the fraction between the two dimensions (smallest/biggest) of the min-
imum bounding box (MinBBFraction);

e the fraction between the two dimensions (smallest/biggest) of the max-
imum bounding box (MaxzBBFraction);

One feature is based on the mean grey level of the pixels of the region in the
original radiograph down-sampled to the dimension of 512 x 512 (MeanO).

Two features are calculated on the grey level of the pixels in the Regions
image: they are the mean (MeanCR) and the maximum value of the grey
level of the pixels (MaxCR).

Two features are calculated as an estimate of the most characteristic radius
value to be associated to a generic region X. Two different methods have
been employed to get it and hence obtain two values that can be compared.
One method first calculates for each pixel P = P(zx,y) a most eligible radius
rad(z,y). This is done by considering all the P, calculated for that pixel
and then calculating:

rad(z,y) = Argmazcz 19/ (Fi(z,y)) (3.1)

The first radius, R}(, associated with the region X is then equal to:
RY = max rad(x, 3.2
X (raex (z,y) (3.2)

The second method calculates the radius R% by considering for each different
value of r the sum

Sumx (r) = Z P.(z,y) (3.3)
(z,y)eX

Again R§( is calculated according to:
R% = Argmaz;gpa 19 (Sumx(r)) (3.4)

The fact that R}( and Rg( are very similar in case of true positive elements
and significantly different for many false positives allows to discard some of
them.

3.3 Rule Based System used to discard the False
Positives

A simple rule based system has been developed based on the features previ-
ously described. The rules it employs have been formulated after the obser-
vation of the distribution of the single features or the relationships between
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pairs of them. This system allows to discard 22633 false positive regions
without loosing any true positive, hence keeping the sensitivity ratio equal
to 0.97 and reaching a total number of candidates equal to 8467, approxi-
mately 35 candidates per image.

Some of the rules are based on thresholding of the input features. According
to these rules a region is discarded if:

o NormalizedArea > 1

e NormalizedPerimeter > 1.2

e FffRadius > 14 OR Ef fRadius < 2
LBO > 0.35

AreaOut > 0.3

The rules describing the relationships between couple of features are listed
below; some of them are also clarified with the use of some images. Figure
3.2 shows the relationship between the fraction of the two dimension of the
maximum Bounding Box (MaxBBFraction) and the fraction of the two di-
mensions of the minimum Bounding Box (MinBBF'raction). Each region is
viewed as a point in the two dimensional space where X = MaxBBFraction
and Y = MinBBFraction. The points corresponding to the True Pos-
itives are always located in the band between the lines Lpgw,, and Ly,
which have been experimentally set; L pgwn is the line passing by the points
P1 =(0.4,0.35) and P3 = (1.,0.6); Ly, is the line, parallel to Lpgwn, and
passing by the point P2 = (0.4,0.6). The possible location is red colored in
the corresponding image.

Figure 3.3 shows the relationship between the LungBorderOveralapping
(LBO) and the fraction of the two dimensions of the maximum Bounding
Box (MaxBBFraction). This rule is based on the fact that a lot of False
Positive candidates are located at the borders of the full lung area and have
an elongated shape; the rule describes the requirement that regions nearby
the borders cannot be too elongated. The line Ly, passing by the points
P1 = (0,0.3) and P2 = (0.35,0.95), is defined as a low boundary for the
candidates; the regions corresponding to points located below this line are
discarded.

The location of the not discarded regions is red colored in the corresponding
image.

The boundary just defined, describing the relationship between LBO and
MaxBBFraction, is used also to describe the relationship between the
AreaOut and MaxBBFraction. It is based on the fact that the False Posi-
tives detected due to the contrast in the border between the visible lung parts
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and the hidden lung parts are characterized by a bigger value of AreaOut,
since their centroid is generally located nearby the border detected, and an
elongated shape, i.e. a little value of MaxBBFracction.

The same reasoning can be used to explain the rules that relates LBO, and
AreaQOut, to the circularity C'irc of the region. The region is discarded if:

e (LBO =0 AND AreaOut = 0) AND Clirc < 0.35
e (LBO > 0 OR AreaOut > 0) AND Clire < 0.55

The following rules relate LBO to the mean grey level in the original Image
(MeanO), and to the two features, MeanCR and MaxzCR, calculated with
the values in the Regions image. Before applying the rules, MeanCR and
MaxCR are normalized w.r.t. the maximum value in the Regions Image;
MeanO is normalized w.r.t. the maximum value in the Original Image.
The rules defined are based on the fact that regions nearby the borders
have brighter values both in the original image and in the Regions image.
According to the rules a region is discarded if:

e LBO =0 AND (MeanCR < 0.45 OR MeanCR > 0.75)
e LBO =0AND MaxCR <0.5

e LBO =0 AND MeanO < 0.45

e LBO >0 AND (MeanCR < 0.55 OR MeanCR > 0.75)
e LBO >0 AND MaxCR < 0.75

e LBO >0 AND (MeanO < 0.75 OR MeanO > 0.95)

Regions located in the hidden lung area can be recognized by the feature
Position equal to 0; they are generally much brighter; this is the reason
why their normalized feature MeanO can be analyzed separately from the
ones in the wisible lung area to define a rule relating those two features.
According to the rule defined a candidate is discarded if:

e Position =0 AND (MeanO < 0.75 OR MeanO > 0.95)

The next rules express the relationship observed between the radius Rﬁ( and
the value PFrac computed from the (not normalized) Perimeter and the
effective radius (Ef f Radius) as:

PFrac = Perimeter /(211 Ef f Radius) (3.5)

According to the rules defined a region is eliminated if:

° R}( <7 AND PFrac<1OR PFrac>1.5

66



e RY <7 AND PFrac<1.1 OR PFrac >3

The choice of the value of 7 is due to the fact that the radius takes values
in the range [2,..,12]; 7 is the mean value.

The last rules are aimed at describing the relationships between the three
radius values calculated for each region. A candidate region is discarded if:

e RL >EffR+4
e EffRadius <7 AND R3 >8
e EffRadius > 7 AND R% > 11

In Figure 3.4 we show examples of the result of the pruning, realized by
the rule based system, on patients with very subtle and extremely subtle
nodules.

Our results can be compared with the ones of the method described in [1]
in which the authors apply a classifier that selects 5028 candidates from the
first set composed by 33000 regions, but loosing other 15 true positives in
addition to the 21 already lost by the extraction method (as reported in
section 2.4), for a total of 35 false negatives, thus decreasing the sensitivity
ratio of the overall system to approximately 77%. Our pruning method is
able to discard less false positives but does not loose any candidates. The
robustness of the method is ensured by the fact that the rules chosen are very
intuitive and simple. The drawback is the need of setting the thresholds,
which may depend on the images in the database. This fact could be the
cause of worse performances of the system when tested on images contained
in other databases.

3.4 Neural Network Classifiers to discard the False
Positives

In this section we describe the experiments aimed at the use of the feed-
forward Neural Networks, trained by standard back-propagation, to trim
the set of candidates extracted, composed by 31100 candidates. The advan-
tage of such systems with respect to the rule based ones is the fact that,
once the network is trained, it doesn’t need any threshold to be set and,
more important, it should be able to generalize with respect to unseen ex-
amples. Furthermore we expect that learning algorithms, working with the
same set of features as input, could have a better performance since they
could learn relationships between features that are more complicate than
the simple ones of our rule based system.

We performed Three kind of experiments that differ for the vector that is
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Figure 3.4: Original Image, Regions Image and Pruned set - very subtle nodule (top
row) and extremely subtle nodule (bottom row)

chosen as input of the network, i.e. the representation of the data, and for
the method used to create the training and validation sets. For each one of
these three experiments we also tested various values of the network param-
eters and various architectures, to experimentally choose the best set-up of
the learning system being trained.

The first Two experiments have been performed representing each candidate
with one vector of 16 features X = [z1,...., 214, T15, T16], Which is used as
input of the network; specifically, x1, .., 14 represent the features previously
described, and x15, 16 are the spatial coordinates of the centroid of the re-
gion; they are expressed in a local coordinate system which has its origin in
the center of mass of the lung field and it is scaled with respect to the width
and length of the lung area. We apply to the input vector a preprocessing
aimed to data normalization, followed by a scaling that brings all the values
to the range [0.0,1.0].

These experiments were executed using both training and validation set.

In the first experiment we randomly split the available positive data in 75
examples for training (approximately the 50% of the total number), 15 ex-
amples for validation (approximately the 10% of 149) and the remaining 59
examples were used for testing. From the available large set of negative data
we extracted without replacement a number of negative examples equal to
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five times the number of the Positives, both for the training and the valida-
tion, obtaining respectively 75 x 5 = 375 negative examples for the training
set and 15 x 5 = 75 negative examples for the validation set. The remaining
elements were of course in the test set. Several experiments were run, us-
ing different network architectures, changing the parameters of the learning
algorithm, and obviously the elements in the training, validation and test
sets. During these experiments an input data was classified as belonging to
a class when the corresponding output neuron had a value bigger than a
threshold set to 0.5. In any case the results were really poor: lots of True
Positive candidates were classified as False Positive, and this happened also
after we lowered the threshold associated to the output neuron correspond-
ing to the Nodule (i.e. True Positive) class. It is obvious that the network
cannot discern the True Positives since their number is too little with re-
spect to the Not Nodules in the training set; this is the motivation of the
poor discriminative power of the M LP which classifies almost all the new
element as belonging to the most represented class between the two learned.

According to the results obtained in the first experiment, the second one was
performed, using the same input vector to represent the candidates, but in
order to train the neural network to recognize and discard the regions whose
set of features is totally different from the one of the nodules. To this end a
new classification of the elements to be recognized was performed, obtaining
three classes defined as:

e “Real Nodules”, containing the 149 True Positives;

o “Possible nodules” containing the 8318 False Positives not discarded by
the rules;

e “NOT nodules” containing the 22633 elements discarded by the rule based
system.

The training set of the network was composed as before by randomly select-
ing as Positive examples the 50% of the “Real Nodules” (75) plus the same
percentage of elements from the class of the “Possible Nodules” (4160 ele-
ments), for a total of 4235 examples; the negative examples were extracted
by random selection of the 50% of the elements in the “NOT nodules” class
(11300 elements). Note that the training set created in this way, not only
contains a bigger number of Positive examples, but it is also not so unbal-
anced as in the previous experiment. As before, the validation set was cre-
ated by random selection of the 10% of the elements from the three classes,
where the Positive examples were always the ones belonging to the first two.
The remaining elements (approximately 40% of the total for each class) were
used for testing. The neural network architecture, experimentally chosen,
was composed by 1 hidden layer with 8 neurons and an output layer with
2 neurons; several experiments were performed changing the parameters of
the learning algorithm (which are the momentum and the learning rate, the
maximum number of epochs for the training, the minimum error allowed
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on the training set) and especially the elements in the input sets. During
these experiments an input data was classified as belonging to a class when
the corresponding output neuron had a value bigger than 0.7. The results
obtained are comparable with those of the rule based system: the network
does not loose any true positives and in the worst case the number of false
positives detected is never less than the 99% of the number recognized by
the rule based system.

The third, and not successful, experiment was run by using as input to the
network the sub image containing the candidate nodule. This sub image was
extracted by the radiograph, down-sampled at a dimension of 1024 x 1024,
by taking the maximum bounding box including the candidate region. Since
all the sub images extracted had different sizes, they have been all down-
sampled to a dimension of 8 x 8 pixels; this size has been chosen according
to the minimum size of the sub images extracted. Several training experi-
ments, using both training and validation set, were run.

These sets were formed as described in the first experiment, by choosing
from the classes of the “Nodules”, containing 149 elements, approximately
the 50% of the elements (i.e. 75 Positive examples), and from the class of the
“Not Nodules” (30951 elements) a number of elements equal to 75 x5 = 375.
Again, 15 Positive and 75 Negative examples were randomly selected to
create the validation set, meanwhile the remaining elements were used for
testing.

During these experiments an input data was classified as belonging to a
class when the corresponding output neuron had a value bigger than 0.5.
Despite several architectures of the network have been experimented, and
different settings of the learning parameters have been tried, no good re-
sults have been obtained: with the best settings we obtained a network that
recognized, on the average, the 1/3 of the True Positive regions. Several
reasons motivate this bad results. The highly unbalancing of the data has
of course a negative effect. To this observation we may be add the fact that
there are great differences between the sub images of the nodules, since too
few of them are available; moreover their down-sampling causes a loss of
information. To overcome these problems the best choice is indeed to use
as input to the learning system a set of features describing each region.

3.5 Support Vector Machines to discard the False
Positives

In this section the experiments aimed at the pruning of the set of extracted
31100 candidate regions, by means of Support Vector Machines, are ex-
plained and reported. This type of classifier has been widely used during
the last years in a lot of different fields and for various classification tasks,
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due to its good performances. A short introduction to Support Vector Ma-
chines is given in Appendix D.

Remember that the set of candidate regions considered is composed of 149
positive examples (“True Nodules”), and the remaining are negative exam-
ples (“False Positive”). Note that in the rest of this section the term False
Positive is used to indicate negative examples classified as positive by the
SVMs.

Three experiments are reported, which employ Three different data sets to
train the classifiers.

3.5.1 Data sets

The first data set, called the Original Data Set, is the same one used as input
to the Neural Networks (see section 3.4), and composed of 16 features.
The second data set, called Geometric Data Set, contains vectors of 110
geometric features.

The first 22 features are the 16 of the Original Data Set, plus other 6 features
to better describe the shape and the position of the region; they are:

e the X-coordinate and Y-coordinate of the centroid of the region, ex-
pressed in the local coordinate system that has its origin in the center
of mass of each lung (left or right, according to the one where the
region is located) and it is scaled with respect to its width and length;

e the ratio between the area of the region and the area of the Maximum
Bounding Box including it;

e the ratio between the area of the region and the area of the Minimum
Bounding Box including it;

e the ratio between the area of the region and the area of the circle
completely including it;

e the ratio between the Perimeter of the region and the perimeter of the
circle with the same area of the region;

The other 88 features are calculated taking the mean, the standard devia-
tion, the contrast and the maximum value of the grey levels of the pixels of
the candidate region in 22 different images; these are the 22 images com-
puted by the multi scale algorithm used to enhance the conspicuity of the
nodules (see section 2.3 in chapter 2). Specifically the images used are the
11 Smoothed version of the original image, and the 11 Difference images.
The contrast is calculated as the difference between the maximum and the
minimum value of all the pixels in the region.

The third data set, called the Gabor Data Set, is composed by vectors of 88
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features mainly obtained by means of the application of Gabor filters (for
a description of Gabor filters, and how to create a Gabor filter bank, see
Appendix E).

The first 22 features are the same described for the Geometric Data set.
The next 40 features are computed after filtering the sub image, contain-
ing the nodule candidate region and extracted from the original radiograph,
with a bank of 40 Gabor filters. The filter bank is composed by Gabor filters
at 5 different scales in 8 different directions. The scale parameter, k,, used
in the function expressing the filter, takes certain takes the values 0.555,
0.392, 0.277, 0.196, 0.138; they are chosen so that the supports of the filters
created for each scale have pixel sizes that cover the range of variation of all
the possible pixel sizes of the nodules in the original image. (The supports
of the filters created have pixel sizes which are equal to respectively 45, 64,
90, 128, 181; meanwhile the possible pixel size is in the range [33,..,193]).
The 40 features are calculated by computing, for each filtered version of the
sub image, the mean of the values of 9 pixels: they are the centroid of the
region and its 8 — neighboring pixels. The next 10 features are calculated
by splitting the 40 features just computed into 5 sets, each one containing
all the features computed on the sub-images filtered with filters belonging
to the same scale (in 8 different orientation). The 10 features calculated are
the mean and standard deviation of the elements in each one of the 5 sets.
In the same way we have split the 40 features in 8 sets, each one containing
the features calculated on the sub-images filtered with Gabor filters oriented
in the same direction; thence, they are each composed of 5 values; computing
the mean and the standard deviation of each one of the 8 sets considered,
the last 16 features for the Gabor Data Set are calculated.

Considering that all the data sets are very unbalanced, for training and
testing positive-enriched data sets were built. In particular Positive and
Negative examples were considered separately. We randomly split the avail-
able positive data in 89 examples for training and 60 examples for testing
according to a train/test ratio equal to 3/2. From the available large set of
negative data we extracted without replacement a number of negative ex-
amples equal to five times the number of positive data, both for the training
and the test set, obtaining respectively 89 x 5 = 445 negative examples for
the training set and 60 x 5 = 300 negative examples for the test set. We
randomly repeated the above process 10 times, obtaining 10 pairs of training
and test sets. In all the experiments we normalized the components of the
data vectors to 0 mean and unitary standard deviation.

3.5.2 Classification tasks

Three separated classification tasks were performed, using the Original Data
Set, Geometric Data Set and the Gabor Data Set. In any case we applied
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SVMs with linear, polynomial and gaussian kernels, varying the regulariza-
tion parameter (in the literature usually referred to as the C' parameter)
between 0.001 and 1000, the degree in polynomial kernels between 2 and 6
and the “width” (o parameter) in gaussian kernels between 0.01 and 10000.
We computed the mean error and standard deviation on the training and
test sets (considering the ten pairs of training and test sets).

In this context we need to obtain a high sensitivity in order to detect all
the positive examples, without a significant loss in specificity, because from
a medical point of view it is crucial to detect all the Positive examples,
but at the same time we need to significantly reduce the number of False
Positives. As explained before, if the number of False Positive is too high
the Computer Aided Diagnosis becomes not useful and impractical, because
the physician need to examine too many nodule images. For these reasons
we computed the sensitivity, specificity and precision (see Appendix C for
details).

With SVMs, lowering the decision threshold, we may increment the sen-
sitivity at the possible expense of a decreased specificity. In this way we
computed the specificity of the classifiers when the sensitivity is 1, that is
we computed the fraction of False Positive when all the true positive nod-
ules were correctly classified. Moreover, to better understand the behaviour
of the classifiers, we performed a ROC analysis, to jointly evaluate in a
synthetic way the sensitivity and specificity of the SVMs.

3.5.3 Results obtained with SVMs classification

Analysis of the overall test error

Tab. 3.1 shows the best results obtained with SVMs trained on the Original
Data Set. The first columns reports the characteristics of the SVM: the type
of the kernel and the corresponding regularization and kernel parameters (in
polynomial kernel d stands for degree, in gaussian kernel o represents the
“width” of the kernel). In the second and third column are represented the
test error averaged on 10 different test sets and the corresponding standard
deviation, in the fourth and fifth column the train error and its standard
deviation and the two last columns represent the sensitivity and the speci-
ficity.

Even if the average test error seems to be not too bad, we may see that the
corresponding sensitivity (whose level is critical for this task) is very low
(between 0.39 and 0.49 in the models with the lowest test error). If we add
more geometric features, quite surprisingly, the results are worse: tab. 3.2
shows the best results obtained with SVMs trained on the Geometric Data
Set. Indeed the estimated test error is significantly larger, and the sensitiv-
ity is lowered between 0.1 and 0.3. Similar results are obtained also with the
Gabor Data Set (Tab. 3.3): a not negligible average test error and a very
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Table 3.1: Original Data Set. Best SVM models with respect to the average test error.

SVM kernel Test Stdev Train stdev Sens. Spec.

Polyd=6,C =2 0.1181 | 0.0100 | 0.0940 | 0.0090 | 0.4550 | 0.9673
Linear C' = 0.1 0.1194 | 0.0227 | 0.1174 | 0.0043 | 0.4444 | 0.9678
Polyd=5,C=5 0.1203 | 0.0059 | 0.0886 | 0.0098 | 0.4733 | 0.9610
Poly d=5,C =2 0.1203 | 0.0118 | 0.1015 | 0.0083 | 0.4350 | 0.9687
Polyd=2,C=5 0.1206 | 0.0067 | 0.1148 | 0.0130 | 0.4117 | 0.9730
Poly d=3,C=5 0.1206 | 0.0100 | 0.0970 | 0.0092 | 0.4583 | 0.9637
Gauss. o = 1000, C' = 100 0.1206 | 0.0107 | 0.1157 | 0.0113 | 0.4500 | 0.9653
Poly d =3, C =20 0.1208 | 0.0073 | 0.0886 | 0.0078 | 0.4883 | 0.9573
Poly d=3,C =10 0.1208 | 0.0080 | 0.0983 | 0.0108 | 0.4667 | 0.9617
Gauss. ¢ = 1000, C = 1000 | 0.1214 | 0.0085 | 0.0989 | 0.0103 | 0.4850 | 0.9573
Polyd=4,C=1 0.1214 | 0.0101 | 0.1163 | 0.0147 | 0.3850 | 0.9773
Polyd=5,C=1 0.1214 | 0.0109 | 0.1103 | 0.0088 | 0.4017 | 0.9740
Poly d=2,C =20 0.1217 | 0.0085 | 0.1017 | 0.0104 | 0.4667 | 0.9607
Poly d=3,C =2 0.1217 | 0.0086 | 0.1144 | 0.0140 | 0.3967 | 0.9747
Polyd=6,C=1 0.1217 | 0.0101 | 0.1051 | 0.0087 | 0.4133 | 0.9713

bad sensitivity is registered.

Note that it is not difficult to obtain no error with the training sets, both
with the Gabor Data Set (Tab. 3.3), with the Geometric Data Set and with
the Original Data Set (in these last two cases results with no errors are not
shown in the related tables since not significant). This happens also when
using gaussian or polynomial kernels trained on the entire data set (31100
examples): in this case we can easily achieve no error (that is sensitivity
and specificity equal to 1), even if this fact does not guarantee general-
ization capabilities of the trained learning machines. SVMs are “strong”
classifiers and can easily fit training data, but in this case generalization is
not guaranteed.

Ranking of the SVMs with respect to the sensitivity.

Considering that sensitivity is so bad independently of the kernel used, we
ranked the SVM models with respect to the sensitivity level (Tab. 3.4, 3.5
and 3.6). In the best case, with the Original Data Set we achieved a value
of 0.53, with a slight decrement in the specificity (Tab.3.4). Unfortunately
this value is largely insufficient to be useful for diagnostic purposes.

With the Geometric Data Set we achieved a value of 0.43, at the expense of
a decrement in the specificity (Tab.3.5), and with the Gabor Data Set the
results are slightly worse: sensitivity is about 0.37 in the best case (Tab. 3.6).

Ranking the real-valued outputs of the SVMs and ROC analysis.

In order to understand the reasons why the SVMs fail to separate positive
from negative examples, we analyzed the real-valued discriminant function
computed by the SVMs. Indeed we may use the real-valued discriminant
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Table 3.2: Geometric Data Set. Best SVM models with respect to the average test error.

SVM kernel Test Stdev Train stdev Sens. Spec.

Gauss. o = 1000. C =100 0.1511 | 0.0112 | 0.0897 | 0.0117 | 0.2915 | 0.9603
Linear C' = 0.5 0.1514 | 0.0082 | 0.1282 | 0.0121 | 0.2119 | 0.9759
Gauss. o = 10000. C = 1000 | 0.1514 | 0.0097 | 0.1226 | 0.0143 | 0.2220 | 0.9739
Linear C =1 0.1523 | 0.0073 | 0.1249 | 0.0123 | 0.2390 | 0.9695
Polyd=2,C =2 0.1531 | 0.0132 | 0.1015 | 0.0115 | 0.2492 | 0.9664
Linear C' = 2 0.1531 | 0.0134 | 0.1193 | 0.0137 | 0.2492 | 0.9664
Poly d=2,C =2 0.1540 | 0.0120 | 0.1182 | 0.0129 | 0.1966 | 0.9759
Polyd=3,C=1 0.1545 | 0.0176 | 0.0646 | 0.0080 | 0.3119 | 0.9522
Poly d =3, C =0.1 0.1554 | 0.0082 | 0.1330 | 0.0092 | 0.1203 | 0.9895
Poly d=4,C =0.1 0.1556 | 0.0150 | 0.1006 | 0.0086 | 0.2051 | 0.9722
Polyd=2,C=5 0.1568 | 0.0125 | 0.0766 | 0.0112 | 0.3102 | 0.9498
Linear C =5 0.1568 | 0.0145 | 0.1161 | 0.0116 | 0.2746 | 0.9569
Poly d=5,C =0.1 0.1573 | 0.0212 | 0.0684 | 0.0090 | 0.2593 | 0.9593
Linear C = 0.1 0.1579 | 0.0079 | 0.1420 | 0.0186 | 0.1322 | 0.9841
Gauss. 0 =100. C =1 0.1582 | 0.0076 | 0.1287 | 0.0077 | 0.0966 | 0.9908

function computed by the SVM to rank the outputs of the SVM on the test
set data. In this way lowering the threshold of the corresponding decision
function we may increment the sensitivity at the expense of a lower speci-
ficity. To this purpose we ranked the real-valued outputs computed by the
SVMs; then we lowered the decision threshold to correctly classify all the
positive examples (that is to obtain a sensitivity equal to 1), and then we
computed the corresponding specificity. Unfortunately the specificity ob-
tained when the threshold is lowered to obtain a sensitivity equal to 1 is
very low: about 0.11 on the average (Tab. 3.7) in the best case, and in most
cases it also lower.

It is unlikely that these results are due to a weak discrimination capabil-
ity of the SVMs. Indeed the threshold we need to correctly classify all the
positive examples in most cases is very low (Tab. 3.7, columns 4,5 and 6):
the ranking of many positive examples is very low, or, in other words, it
seems that the SVMs “strongly believe” that many positive examples are
negative. This may due to an “intrinsic ambiguity” of the data: examples
classified as positive or negative, may not significantly differ with respect to
the extracted features. The bad performances of the SVMs are summarized
also in the ROC curves shown in Fig. 3.5 and 3.6. Fig. 3.5 shows the ROC
curves obtained with a gaussian SVM (the second one in Tab. 3.7) applied
to 10 different test sets drawn from the Geometric Data Set: the curves
confirm the bad performances of the SVM. Similar results are obtained also
with the Gabor Data Set (Fig. 3.6).
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Table 3.3: Gabor Data Set. Best SVM models with respect to the average test error.

SVM kernel Test Stdev Train stdev Sens. Spec.

Gauss. o =100. C =2 0.1553 | 0.0112 | 0.0605 | 0.0112 | 0.1659 | 0.9805
Gauss. o =100. C =5 0.1568 | 0.0147 | 0.0137 | 0.0039 | 0.2614 | 0.9595
Poly d=4,C =0.1 0.1591 | 0.0159 | 0.0425 | 0.0073 | 0.2205 | 0.9650
Poly d=6,C =0.1 0.1591 | 0.0182 | 0.0000 | 0.0000 | 0.2455 | 0.9600
Gauss. 0 =100. C' =10 | 0.1610 | 0.0148 | 0.0028 | 0.0020 | 0.2955 | 0.9477
Poly d=5,C =0.1 0.1614 | 0.0154 | 0.0114 | 0.0032 | 0.2386 | 0.9586
Polyd=6,C=1 0.1614 | 0.0203 | 0.0000 | 0.0000 | 0.2455 | 0.9573
Poly d=6, C =10 0.1614 | 0.0203 | 0.0000 | 0.0000 | 0.2455 | 0.9573
Poly d =6, C' =100 0.1614 | 0.0203 | 0.0000 | 0.0000 | 0.2455 | 0.9573
Poly d = 6, C' = 1000 0.1614 | 0.0203 | 0.0000 | 0.0000 | 0.2455 | 0.9573
Poly d=6,C =2 0.1614 | 0.0203 | 0.0000 | 0.0000 | 0.2455 | 0.9573
Poly d =6, C' = 20 0.1614 | 0.0203 | 0.0000 | 0.0000 | 0.2455 | 0.9573
Poly d =6, C' = 200 0.1614 | 0.0203 | 0.0000 | 0.0000 | 0.2455 | 0.9573
Polyd=6,C =5 0.1614 | 0.0203 | 0.0000 | 0.0000 | 0.2455 | 0.9573
Polyd=5,C=1 0.1629 | 0.0227 | 0.0000 | 0.0000 | 0.2773 | 0.9491

Table 3.4: Original Data Set. Best SVM models with respect to the sensitivity.

SVM kernel Sens. Spec. Test Stdev Train stdev

Poly d = 3, C' = 200 0.5333 | 0.9273 | 0.1383 | 0.0133 | 0.0579 | 0.0059
Poly d = 2, C' = 1000 0.5317 | 0.9237 | 0.1417 | 0.0093 | 0.0607 | 0.0061
Poly d =4, C = 1000 0.5317 | 0.8807 | 0.1775 | 0.0156 | 0.0139 | 0.0051
Gauss. o = 100. C' = 1000 0.5300 | 0.9003 | 0.1614 | 0.0195 | 0.0328 | 0.0080
Poly d = 6, C' = 200 0.5300 | 0.8897 | 0.1703 | 0.0126 | 0.0150 | 0.0047
Poly d =5, C' = 1000 0.5300 | 0.8740 | 0.1833 | 0.0143 | 0.0047 | 0.0032
Poly d =5, C'= 100 0.5283 | 0.9083 | 0.1550 | 0.0191 | 0.0352 | 0.0071
Poly d = 3, C' = 100 0.5267 | 0.9373 | 0.1311 | 0.0102 | 0.0642 | 0.0073
Poly d =2, C'= 200 0.5250 | 0.9407 | 0.1286 | 0.0086 | 0.0777 | 0.0069
Gauss. o = 100. C' = 200 0.5250 | 0.9357 | 0.1328 | 0.0114 | 0.0607 | 0.0071
Poly d =4, C' = 200 0.5250 | 0.9087 | 0.1553 | 0.0184 | 0.0399 | 0.0076
Gauss. o = 1000. C' = 10000 | 0.5233 | 0.9397 | 0.1297 | 0.0078 | 0.0766 | 0.0082
Poly d =4, C =100 0.5233 | 0.9220 | 0.1444 | 0.0182 | 0.0506 | 0.0068
Poly d = 3, C' = 1000 0.5217 | 0.8967 | 0.1658 | 0.0165 | 0.0315 | 0.0051
Poly d = 6, C' = 1000 0.5217 | 0.8687 | 0.1892 | 0.0106 | 0.0007 | 0.0010

Using very unbalanced training data.

In the previous examples we used positive-enriched data to train the SVMs.
In this way we may obtain a better balance between positive and negative
examples, but the cardinality of the training data is strongly reduced. In the
experiments presented in this subsection we try to improve the cardinality
of the training data at the expense of a larger unbalance between positive
and negative examples.

We present here the results only with the Original Data Set, as in the pre-
vious experiments we obtained the best results with this data set. We con-
sidered separately positive and negative examples. Similarly to the previous
experiments, we randomly split the available positive data in 89 examples
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Table 3.5: Geometric Data Set. Best SVM models with respect to the sensitivity.

SVM kernel Sens. Spec. Test Stdev Train stdev

Poly d =2, C = 200 0.4356 | 0.8749 | 0.1983 | 0.0175 | 0.0002 | 0.0006
Poly d = 2, C' = 1000 0.4305 | 0.8749 | 0.1992 | 0.0182 | 0.0000 | 0.0000
Poly d =2, C'= 100 0.4237 | 0.8875 | 0.1898 | 0.0173 | 0.0054 | 0.0030
Gauss. o = 1000. C' = 10000 | 0.4068 | 0.8797 | 0.1992 | 0.0243 | 0.0000 | 0.0000
Poly d =3, C' =20 0.4017 | 0.8895 | 0.1918 | 0.0224 | 0.0015 | 0.0015
Poly d = 3, C'= 200 0.3932 | 0.8864 | 0.1958 | 0.0259 | 0.0000 | 0.0000
Poly d =2, C' = 1000 0.3932 | 0.8864 | 0.1958 | 0.0259 | 0.0000 | 0.0000
Poly d =3, C =100 0.3932 | 0.8864 | 0.1958 | 0.0259 | 0.0000 | 0.0000
Poly d=3,C =10 0.3847 | 0.8993 | 0.1864 | 0.0241 | 0.0098 | 0.0034
Polyd=3,C =5 0.3831 | 0.9142 | 0.1743 | 0.0221 | 0.0259 | 0.0057
Linear C' = 1000 0.3831 | 0.8837 | 0.1997 | 0.0510 | 0.1100 | 0.0663
Poly d =2, C' =20 0.3729 | 0.9207 | 0.1706 | 0.0226 | 0.0385 | 0.0081
Poly d=4,C =20 0.3729 | 0.8868 | 0.1989 | 0.0314 | 0.0000 | 0.0000
Poly d =4, C' = 200 0.3712 | 0.8864 | 0.1994 | 0.0327 | 0.0000 | 0.0000
Poly d =4, C' = 1000 0.3712 | 0.8864 | 0.1994 | 0.0327 | 0.0000 | 0.0000

Table 3.6: Gabor Data Set. Best SVM models with respect to the sensitivity.

SVM kernel Sens. Spec. Test Stdev Train stdev

Poly d=2,C =10 0.3727 | 0.8909 | 0.1955 | 0.0152 | 0.0011 | 0.0011
Poly d =2, C'= 200 0.3682 | 0.8859 | 0.2004 | 0.0149 | 0.0000 | 0.0000
Poly d =2, C' =20 0.3682 | 0.8859 | 0.2004 | 0.0149 [ 0.0000 | 0.0000
Poly d = 2, C' = 1000 0.3682 | 0.8859 | 0.2004 | 0.0149 | 0.0000 | 0.0000
Poly d =2, C'= 100 0.3682 | 0.8859 | 0.2004 | 0.0149 | 0.0000 | 0.0000
Gauss. o = 1000. C' = 10000 | 0.3682 | 0.8782 | 0.2068 | 0.0130 | 0.0000 | 0.0000
Polyd=2,C=5 0.3636 | 0.8977 | 0.1913 | 0.0199 | 0.0075 | 0.0028
Gauss. o = 1000. C = 1000 0.3636 | 0.8818 | 0.2045 | 0.0137 | 0.0013 | 0.0013
Polyd=3,C=5 0.3455 | 0.9109 | 0.1833 | 0.0192 | 0.0000 | 0.0000
Poly d = 3, C' = 200 0.3455 | 0.9109 | 0.1833 | 0.0192 | 0.0000 | 0.0000
Poly d=3,C =20 0.3455 | 0.9109 | 0.1833 | 0.0192 | 0.0000 | 0.0000
Poly d = 3, C' = 1000 0.3455 | 0.9109 | 0.1833 | 0.0192 | 0.0000 | 0.0000
Poly d =3, C' =100 0.3455 | 0.9109 | 0.1833 | 0.0192 | 0.0000 | 0.0000
Poly d =3, C =10 0.3455 | 0.9109 | 0.1833 | 0.0192 | 0.0000 | 0.0000
Poly d=3,C =2 0.3386 | 0.9145 | 0.1814 | 0.0210 | 0.0005 | 0.0011

for training and 60 examples for testing according to a train/test ratio equal
to 3/2. From the available large set of negative data we extracted without
replacement a number of negative examples equal to 30 times the number of
positive data, both for the training and the test set, obtaining respectively
89 x 30 = 2670 negative examples for the training set and 60 x 30 = 1800
negative examples for the test set. We randomly repeated the above process
10 times, obtaining 10 pairs of training and test sets. In all the experiments
we normalized the components of the data vectors to 0 mean and unitary
standard deviation. The results of Tab. 3.8 show that also this approach is
unsuccessful: even if the SVMs can learn from more examples, the overall
training set is probably too unbalanced. Indeed we achieved a very low sen-
sitivity (0.32 in the best case). Of course the test error is lower, but this is
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Table 3.7: SVM specificity when sensitivity is equal to 1. The first column refers to
the obtained average specificity (computed on 10 different test sets), while the second
and third column refer to the minimum and maximum specificity with respect to the 10
different test sets. The fourth column refers to the average value of the threshold we need
to achieve a sensitivity equal to 1, while the fifth and sixth column report the minimum
and maximum values of the threshold.

Specificity Threshold Data set and SVM kernel
average min max average min max
0.116818 0.0136364 0.281818 | -1.00005 -1.00009 -1.00003 Gabor, Gauss. o = 10000, C = 0.001
0.11661 0.0237288 0.267797 | -1.00054 -1.00097 -1.00019 geometric, Gauss. ¢ = 100,C = 0.001
0.0915254 | 0.020339 0.186441 | -1.59204 -2.22928 -1.21584 geometric, Gauss. o = 100’,C = 10
0.0831818 | 0.0590909 0.127273 | -0.998548 | -0.998893 | -0.99825 Gabor, Gauss. o = 100,C = 0.01
0.0818182 | 0.0136364 0.177273 | -1.01111 -1.02057 -1.00287 Gabor, Gauss. o = 10000,C = 0.1
0.0813636 | 0.0545455 0.122727 | -0.986577 | -0.990387 | -0.983329 | Gabor, Gauss. o = 10,C = 0.1
0.0804545 | 0.0545455 0.127273 | -0.777468 | -0.841121 | -0.723509 | Gabor, Gauss. ¢ = 10,C =5
0.0804545 | 0.0545455 0.127273 | -0.777468 | -0.841121 | -0.723509 | Gabor, Gauss. o = 10,C = 200
0.0804545 | 0.0545455 0.127273 | -0.777468 | -0.841121 | -0.723509 | Gabor, Gauss. ¢ = 10,C = 20
0.0804545 | 0.0545455 0.127273 | -0.777468 | -0.841121 | -0.723509 | Gabor, Gauss. o = 10, C' = 10000
0.0804545 | 0.0545455 0.127273 | -0.777468 | -0.841121 | -0.723509 | Gabor, Gauss. ¢ = 10,C = 1000
0.0804545 | 0.0545455 0.127273 | -0.777468 | -0.841121 | -0.723509 | Gabor, Gauss. ¢ = 10,C = 100
0.0804545 | 0.0545455 0.127273 | -0.777468 | -0.841121 | -0.723509 | Gabor, Gauss. o = 10,C' = 10
0.0804545 | 0.0545455 0.127273 | -0.777457 | -0.841121 | -0.723509 | Gabor, Gauss. ¢ = 10,C = 2
0.0804545 | 0.0545455 0.122727 | -0.866305 | -0.903155 | -0.833965 | Gabor, Gauss. o = 10,C =1
0.08 0.00677966 | 0.254237 | -1.00943 -1.02519 -1.0023 geometric, Poly d = 3,C = 0.1
0.08 0.00677966 | 0.183051 | -1.0781 -1.16484 -1.02147 geometric, Gauss. o = 1000,C =1
0.079322 0.00677966 | 0.19661 -1.0079 -1.01688 -1.00195 geometric, Gauss. ¢ = 1000,C = 0.1
0.0762712 | 0.00677966 | 0.223729 | -1.0957 -1.25254 -1.02274 geometric, Poly d = 3,C = 0.1
0.075 0.0318182 0.127273 | -3.0195 -3.61612 -2.14827 Gabor, Gauss. o = 10000, C' = 1000
0.075 0.0136364 0.168182 | -2.59202 -3.42032 -1.34429 Gabor, Gauss. o = 10000, C = 200
0.075 0.0136364 0.163636 | -1.05714 -1.1066 -1.00825 Gabor, Linear C' = 0.01
0.0749153 | 0.0135593 0.162712 | -1.34307 -1.58795 -1.19221 geometric, Gauss. ¢ = 100,C' =1
0.0749153 | 0.0101695 0.166102 | -1.0374 -1.06857 -1.01933 geometric, Gauss. o = 100,C' = 0.1
0.0745455 | 0.0136364 0.172727 | -1.05557 -1.10359 -1.00904 Gabor, Gauss. o = 10000,C =5
0.0740909 | 0.0136364 0.177273 | -1.11092 -1.20662 -1.0175 Gabor, Gauss. o = 10000, C = 10
0.0740909 | 0.0136364 0.172727 | -2.06812 -2.81113 -1.17646 Gabor, Gauss. o = 10000, C = 100
0.0731818 | 0.0136364 0.172727 | -1.22179 -1.4142 -1.03424 Gabor, Gauss. o = 10000, C' = 20
0.0731818 | 0.0136364 0.163636 | -1.57107 -2.06146 -1.08487 Gabor, Linear C' = 0.1

due to the unbalance of the data.

A possible new approach

Since we deal with very unbalanced data, we may introduce a cost-sensitive
approach to improve the sensitivity of the SVMs. Usually in classification
problems the 0/1 loss function is applied: this loss function weighs equally
errors on both positive and negative examples. In medical problems the cost
of misclassifying positive (diseased) patients is usually higher than misclas-
sifications of negative (healthy) patients. This is of course our case: we need
to correctly classify all positive examples, possibly misclassifying only a low
fraction of the negative ones. In the framework of SV M optimization prob-
lem we may introduce cost factors Cy and C_ to be able to adjust the cost
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Table 3.8: Original Data Set with very unbalanced data. Best SVM models with respect
to the sensitivity.

SVM kernel Sens. Spec. Test Stdev Train stdev

Poly d =5, C = 1000 0.3254 | 0.9771 | 0.0436 | 0.0044 | 0.0061 | 0.0008
Poly d =6, C' =200 0.3119 | 0.9839 | 0.0374 | 0.0053 | 0.0109 | 0.0004
Poly d = 6, C = 1000 0.3119 | 0.9732 | 0.0478 | 0.0061 | 0.0037 | 0.0007
Poly d = 4, C = 1000 0.3017 | 0.9819 | 0.0397 | 0.0047 | 0.0109 | 0.0012
Poly d =5, C' =200 0.2881 | 0.9878 | 0.0344 | 0.0034 | 0.0146 | 0.0010
Poly d = 6, C =100 0.2746 | 0.9884 | 0.0342 | 0.0029 | 0.0145 | 0.0006

Gauss. 0 = 10. C'=10000 | 0.2746 | 0.9769 | 0.0454 | 0.0031 | 0.0000 | 0.0000
Gauss. 0 = 10. C = 1000 0.2746 | 0.9769 | 0.0454 | 0.0031 | 0.0000 | 0.0000
Gauss. 0 = 100. C'=1000 | 0.2712 | 0.9917 | 0.0312 | 0.0023 | 0.0183 | 0.0010

Poly d = 3, C' = 1000 0.2712 | 0.9894 | 0.0334 | 0.0037 | 0.0179 | 0.0012
Gauss. 0 =10. C' =20 0.2712 | 0.9888 | 0.0340 | 0.0021 | 0.0062 | 0.0010
Poly d =5, C =100 0.2678 | 0.9911 | 0.0318 | 0.0038 | 0.0186 | 0.0012
Poly d =4, C = 200 0.2644 | 0.9921 | 0.0310 | 0.0030 | 0.0190 | 0.0014
Gauss. 0 =10. C' =10 0.2339 | 0.9930 | 0.0311 | 0.0020 | 0.0126 | 0.0008
Poly d =4, C =100 0.2169 | 0.9937 | 0.0310 | 0.0022 | 0.0223 | 0.0015

of false positives versus false negatives. Hence the minimization problem
associated to SVMs is translated in the following one, where asymmetrical
loss functions are used (see [44]):

Minimize w-w+Cy1>5 &+ Co Zj:yj:—l &
subject to  yr(w-xx +b) > 1 — &

& >0

1<k<n

In the preliminary experiments presented in this section we applied this cost
sensitive approach to the very unbalanced Original Data Set (in the training
set we used a positive versus negative ratio equal to 1/30). In particular we
considered cost-factors C'y and C_ obtained by considering C_ = C and
Cy = C x Cf; we run experiments where Cy was set equal to 2, 5, 10,
20, 50, 100, so that training errors on positive examples outweigh errors on
negative examples.

The results are summarized in Tab. 3.9. We achieved a significantly higher
sensitivity with respect to the previous approaches. With relatively low
values of C' and quite large values of the cost factor C'y by which errors on
positive examples are outweighed with respect to negative ones, we obtained
sensitivity equal or larger than 0.90 and specificity equal about to 0.70. We
can also obtain a sensitivity equal to 1, but at the expense of a very low
specificity (data not shown).

These results are quite encouraging, even if probably not sufficient for clinical

pre-screening of chest radiographs. Anyway ROC analysis of these results
might offer insights to improve jointly sensitivity and specificity of cost-
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sensitive SVMs. Moreover the better results obtained with the Original set
of features, suggest that applying feature selection methods we could choose
subsets of more informative features, both from geometric and Gabor ones.

Table 3.9: Original Data Set with very unbalanced data and using asymmetrical cost
functions. Best SVM models with respect to the sensitivity, and with specificity larger
than 0.50

SVM kernel Sens. Spec. Test Stdev Train stdev

Poly d =17, C'=0.001, C; = 100 0.9458 | 0.5566 | 0.4311 | 0.0334 | 0.4215 | 0.0352
Poly d =3, C = 0.01, Cy = 100 0.9458 | 0.5249 | 0.4618 | 0.0369 | 0.4481 | 0.0370
Gauss o = 1000, C = 5, Cf =100 0.9356 | 0.5170 | 0.4697 | 0.0365 | 0.4617 | 0.0411
Poly d =4, C'=0.01,Cy = 100 0.9288 | 0.5929 | 0.3964 | 0.0364 | 0.3864 | 0.0347
Gauss o = 1000, C'= 10, Cy = 100 0.9254 | 0.5364 | 0.4512 | 0.0351 | 0.4423 | 0.0384
Lineard = 6, C' = 0.01, Cy = 100 0.9254 | 0.5062 | 0.4805 | 0.0376 | 0.4750 | 0.0364
Gauss o = 1000, C' = 20, C¢ = 100 0.9220 | 0.5514 | 0.4368 | 0.0343 | 0.4234 | 0.0372
Gauss o = 1000, ¢' = 100, Cy = 100 0.9220 | 0.5191 | 0.4681 | 0.0301 | 0.4587 | 0.0316
Poly d =2, C = 0.1, Cy = 100 0.9186 | 0.5920 | 0.3976 | 0.0401 | 0.3860 | 0.0375
Gauss o = 10000, C' = 1000, Cf =100 | 0.9186 | 0.5538 | 0.4346 | 0.0324 | 0.4237 | 0.0372
Gauss 0 = 100, C'=1, Cy = 100 0.9153 | 0.5919 | 0.3978 | 0.0359 | 0.3848 | 0.0352
Poly d = 3, C = 0.001, Cf =50 0.9119 | 0.6086 | 0.3818 | 0.0335 | 0.3704 | 0.0394
Poly d = 4, C'=0.001, Cy = 50 0.9051 | 0.6490 | 0.3429 | 0.0266 | 0.3339 | 0.0337
Poly d=2,C =0.1, Cy = 50 0.8814 | 0.7007 | 0.2936 | 0.0174 | 0.2862 | 0.0158
Gauss 0 = 100, C' =2, Cy = 50 0.8780 | 0.7202 | 0.2748 | 0.0201 | 0.2723 | 0.0162

3.6 Conclusions

In this chapter we described the experiments aimed at the selection of the
True Positives from the set of the extracted candidates, whose cardinality
is too high. Three different classification systems have been experimented,
whose input is always a feature set composed by 16 most representative
features. The systems used are a Rule Based system, the Multi Layer Per-
ceptrons and the Support Vector Machines; the comparison of the results
obtained show that the best performances are obtained by the Rule Based
system. Nevertheless, the fact that the thresholds used by the rules are ex-
perimentally set doesn’t ensure the robustness of this method with respect
to a change of the database; this lead us to further experiments, whose pur-
pose is the improvement of the results of the SV Ms. Thus, more features
have been experimented as input to SV M s trained with different kernels
and different value of the parameter C.

The ROC' analysis has shown that promising results can be obtained when
the training is performed by setting different, and very unbalanced, values
for the cost factors C'; and C_ and using as input of the training a very
unbalanced data set selected from the one composed by the vectors of 16
features (see section 3.5.3). The fact that classifiers trained with this smaller
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set of features have better performance than the ones trained with bigger
ones, suggest as future development the use of feature selection techniques
that could select, between all the features considered, a subset that could be
more discriminative. Moreover the use of new features will be investigated,
together with new classifiers or ensembles of them.
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Figure 3.5: ROC curves obtained with the Geometric Data Set, using a gaussian kernel
with ¢ = 100 and C' = 0.001. The curves refer to 10 different test sets drawn from the
Geometric Data Set.
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Figure 3.6: ROC curves obtained with the %abor Data Set, using a gaussian kernel with
o = 10000 and C' = 0.001. (the first SVM in Tab. 3.7). The curves refer to 10 different
test sets drawn from the Gabor Data Set.



Summary, Conclusions and
Future Works

In this thesis work an automatic system for tumors detection in Postero-
Anterior chest radiographs is described; the final aim is the realization of a
CAD system aimed at the early detection of this type of pathology.

The Introduction reports in detail all the reasons why the availability of such
systems would be of utmost importance in the field of medical diagnosis on
chest radiographs.

In chapter 1 a system aimed at lung area segmentation is described. It is a
rule based method which employ a multi-scale technique. The result of this
method is different from the ones created by the algorithms presented in
the literature; it indeed includes in the segmented lung area also the parts
of the lung that are hidden behind the spine, the diaphragm and the heart.
This is because tumors may be present also there, and the segmentation is
aimed at defining the area where the algorithms for their extraction will be
applied. Nevertheless it also produces a good separation between the hidden
part and the visible one, thus providing more information that can be used
to better describe the nodule candidate regions extracted. A comparison
with the methods described in the literature proved the better efficacy of
the algorithm here presented; it indeed outperforms also the system ([85]),
usually described as the best at the state of the art. The novelty of the
system presented is the use of a multi-scale method, which allows to retrieve
the correct edges of the thorax by exploiting the information belonging to
different scales. This is because errors related to the edges found at a certain
scale are easily detected and corrected by means of the information belong-
ing to the other scales. The robustness of the method is ensured by the fact
that it has been tested on 409 images belonging to 2 different databases cre-
ated by different imaging systems, which employ different pixel resolutions
and are subject to different types of quantum noise.

two consecutive multi-scale techniques, described in chapter 2, have been
applied to the images (and restricted to the lung area defined with the seg-
mentation algorithm) with the aim of producing a first enhancement of the
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conspicuity of the nodules, followed by the extraction of a first set of candi-
date regions. Here the multi-scale method ensures that nodules of different
size and conspicuity are detected. This system have also shown to have very
good performance, especially if compared to the methods presented so far
in the literature and tested on the same database ([1] and [8]).

The last step of candidate selection is the one that needs to be improved
since the results obtained, even though promising, are still not sufficient for
clinical purposes. This problem is common to all the schemes presented.
So far no system has indeed been realized, whose performances allow to
make it clinically available and used as a routine basis. All the experiments
aimed at candidates selection are described in chapter 3. Both a rule based
system and different learning machines (M LPs and SV Ms) have been ex-
perimented. The input of these systems is a data set composed by vectors
of 16 most representative features to describe each candidate. The novelty
of the features used relies in the fact that some of them are calculated from
the intermediate images and measures, computed and used to perform the
extraction of the candidates itself. Since the candidates extracted are ob-
viously strongly dependent and related to these images and measures, it is
straightforward to expect that features computed with them, could be help-
ful also to recognize the True Positives from the Fualse Positives. The other
features used are classical features describing the shape an the grey level
characteristics of the candidates.

The rule based system, composed by simple and intuitive rules, obtains the
best performance. Nevertheless, the thresholds used by the rules have been
experimentally set on the overall set of features. This fact doesn’t ensure
the robustness of the method with respect to the change of the database.
For this reason future works will be aimed at experimenting systems, such
as the Decision Trees, that can be automatically created (or “grown”) by
means of a training set of data, in order to perform the same task of the
rules.

The experiments employing M LPs and SV M s trained with the data set of
16 features, had performance that were not as good as the ones of the rule
based system, but demonstrated the better efficacy of the SV Ms with re-
spect to the M L Ps. Furthermore, other experiments were aimed at training
the Support vector machines with other two data sets composed by features
vectors containing more elements; both the new data sets contain vectors
composed of the same most representative 16 features plus others and more
sophisticated. The results obtained are not better than the ones produced by
the SV M s trained with the original data set of the 16 features statistically
selected; this means that more complicated set of features do not necessar-
ily improve the performances of the classifier, hence suggesting the need of
applying feature selection methods that could choose subsets of more infor-
mative features, from the big set composed of all the features considered.
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Furthermore, we run other experiments using SV Ms trained with a very
unbalanced data set, extracted from the original one; moreover we decided
to set different, and very unbalanced, values of the cost factors C and C_,
so that the training on positive examples outweighs errors on negative exam-
ples (see 3.5.3). With these settings better results have been obtained. This
is a promising and encouraging first step. Anyway ROC analysis of these
results might offer insights to improve jointly sensitivity and specificity of
cost-sensitive SV Ms. The use of feature selection techniques to form more
informative data set to be used as input of SV Ms trained with the settings
just mentioned could bring to an improvement of the performances. This
approach could also be combined with ensemble methods, such as Random
Subspace ensembles, in order to improve the accuracy and the reliability of
the predictions.

The experiments presented, together with the systems and results that have
been described in the literature, motivate the fact that nodules detection
in chest radiographs remains an open and very difficult task in the field of
Computer Aided Diagnosis, that is still far from being solved.
Nevertheless, given the widespread use and the clinical importance of this
kind of radiographic analysis, it is likely that Computer Aided Diagnosis
aimed at tumors detection in chest radiographs would be one of the first
areas for commercial exploitation.
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Appendix A

Oriented Derivatives of
Gaussian Filters

Edges are usually defined as those points in an image where the gradient
magnitude is maximum in the gradient direction [13]. Ridges are commonly
defined as extrema in the direction of the largest curvature. Instead of these
definitions, we consider structures defined by extrema in a fized direction,
for derivatives of a certain order in that same direction.

Derivatives are computed by convolving the image I(x, y) with the derivative
of a Gaussian G(zx,y; o) at a particular scale 0. The normalized Gaussian
in 2D is given by

1
G (z,y;0) = %e‘(x2+yg/z"2> (A1)

See Figure A.1 where a 2D gaussian function is drawn.
If we denote the nth order derivative in the direction defined by an angle

Figure A.1: Bidimensional gaussian function
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a as I we need to compute:
I(z,y;0) = G, y;0) x 1(2,y) (A.2)

where * denotes convolution, and G, is the nth order derivative of the Gaus-
sian kernel in the direction «.. Instead of calculating the convolution directly,
it is often convenient to express the response for an arbitrary direction « in
terms of combinations of a finite set of basis filters (such constructions are
commonly referred to as steerable filters). In particular in 2D, the deriva-
tives of any order n and for any direction «, can be computed from the set
of all derivatives up to order n derivatives in two fixed orthogonal directions,
e.g. z and y by substituting 2’ = xcosa — ysina and y' = —xsina + ycosa.
Other basis filters are also possible. See [24] for a general discussion on
steerable filters. In particular, for order n = 1 and n = 2 one obtains:

I (x,y;0) = cosaly + sinaly, (A.3)

I8(x,y;0) = cos®alyy + cosasinalyy, + sinaly, (A4)

where, on the right-hand side, subscripts denote differentiation to x and
y. More precisely I, on the right hand side denotes the convolution of the
image with the horizontal derivative of the gaussian filter; In the same way
I,, denotes the convolution of the image with the vertical derivative of the
gaussian filter.

Their mathematical formulations are:

L(r,) = 1(z,) » Ca(o,y) = I(a,) » 2 Gla,) (A.5)
Iy, y) = (2, ) * Gy(2,) = I(z,y) * jyam,y) (A.6)

In figure A.2 e A.3 G,(x,y) and Gy(x,y) are shown.

The order (n) of derivative determines the nature of the detected struc-
tures. Using n = 1 yields edges from dark to bright regions, or vice versa;
n = 2 finds bright and dark line structures, all in the direction perpendicular
to a. An Example of the result of applying to an image the oriented deriva-
tive of gaussian filters in 8 directions is shown in Figure A.4. In Figure A.5
the binary images created by keeping the 1% of the pixels with the highest
values are shown.
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Figure A.2: Horizontal derivative of the gaussian filter

Figure A.3: Vertical derivative of the gaussian filter
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Figure A.4: The result of the convolution of a chest image with a Gaussian derivative
Filter oriented in 8 different directions.
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Figure A.5: Binary results after the application of the oriented Gaussian Filters
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Appendix B

Laplacian of Gaussian
Operators

Definition
The Laplacian of a 2D function f(z,y) is a second order derivative defined
as:

*f(x,y) | f(z,y)
Ox? oy?
Eq. B.1 may be implemented in digital form in various ways. The horizontal

derivative can be approximated by:

V2 f(x,y) (B.1)

af (x,
D) < Aefle) = f) — 1~ 1)
and the horizontal second order derivative by:
0% f(z,y)
o2 Agof(2,y)

- Axf(mvy)_AIf($+1’y)
= flz,y)— flx—1,9) — flz+1,y) + f(z,y)
= 2f(z,y) — fle—1,y) — fx+1,y)

The vertical derivative can be approximated by:

of(x,
Pt < 8y @) = SGa) = Sy = 1)
and the vertical second order derivative by:
0% f(z,y)
TyQ Ayyf(l‘a Y)

= Ayf(z,y) —Ayf(z,y—1)
= flzy) = flxy—1)— flz,y+ 1)+ f(z,y)
= 2f(z,y) — flw,y —1) = f(z,y + 1)
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from the last equations the following formulation for the Laplacian operator
can be derived:

VQf(l',y) %4]0(1‘734)_ [f(ac—i—l,y)—i—f(:v—1,y)—|—f(x,y—1)+f(:v,y+l)]

this corresponds to the convolution of f(z,y) with the filter with the mask
LP:

V2 f(z,y) = f(x,y) =« LP

where
0-1]0
LP= |-1|4]-1
0]-1]0

Since the Laplacian is a derivative operator, the sum of the coefficients
has to be zero. Hence the response is zero whenever the point in question
and its neighbors have the same value.

A more general use of the Laplacian is in finding the location of edges
using its zero-crossing property. This concept is based on convolving an
image with the laplacian of a 2D Gaussian function of the form:

9o (2, y) = L @20 (B.2)

V2mo?

Let 72 = 22 + 92, then the gaussian takes the form:

]. 2 2
) = e(=77/20%) B.3
0 (0) = —=—; (B.3)
where o is standard deviation. Then from Eq. B.1 the Laplacian of g (that
is, the second derivative of g with respect to r) is

1 r2 — g2 —(r2 /252
VQQ(Taﬂ) = \/W( ol )6 (r*/20%) (B4)

Because of its shape, the laplacian of gaussian is called mexican hat and it
is shown in Figure B.1.
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Figure B.1: The mezican Hat function
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Appendix C

Sensitivity, Specificity and
ROC analysis

Considering a confusion matriz for a dichotomic problem, the test results
can be subdivided in 4 categories as shown in table C.1. The columns
refer to the true (expected) values and the rows to the predicted values.
P stands for Positive examples and N stands for Negative examples. True
Positives (TP) are Positive examples correctly classified as Positive; True
Negatives (TN) are Negative examples correctly classified as Negative; False
Positives (FP) are Negative examples incorrectly classified as Positive, and
False Negatives (FN) are Positives incorrectly classified as Negative. Using
these distinct notions of correct and incorrect classification, we can define
different quantities to evaluate the performance of a classifier.

Table C.1: Confusion matrix for a dichotomic problem.

FEzxpected

P | N

Predicted P | TP | FP
N | FN | TN

The Sensitivity expresses the ratio between the correctly predicted Pos-

itive examples and the total number of the Positive examples:
TP

TP+ FN

In the literature this quantity is also called Recall.

The Specificity expresses the ratio between the correctly predicted Negative

examples and the total number of the Negative examples:
TN

TN+ FP

(C.1)

Sensitivity =

Specificity = (C.2)

95



The Precision expresses the ratio between the correctly predicted Positive

examples and the total number of examples predicted as Positive:
TP

Precision = ———— C.3

recision = s (C.3)

The complementary of the Specificity (1 - Specificity) is the ratio between

the examples incorrectly predicted as Positive and the total number of Neg-

ative examples, i.e. it expresses the fraction of the incorrectly classified

Negative examples with respect to the total number of Negative examples:

TN rpP

L Goeei fieity — 1 _
Specificity TN+ FP TN+ FP

(C.4)

Using the above notation, the Accuracy is the ratio between the number of
correctly classified examples and the total number of examples:

TP+TN

A =
WY = TP TN + FP+ FN

(C.5)

C.0.1 Basic concepts of ROC curve

The Receiver Operating Characteristics (ROC) curve has been introduced
by the signal processing community in order to evaluate the capability of a
human operator to distinguish informative radar signals from noise [22]. At
the present, it is mostly used in the medical decision making community for
assessing the usefulness of a diagnostic test.

In order to express in a synthetic way the performance of a classifier system,
the Receiver Operating Characteristic (ROC') analysis offers a suitable tool
to jointly evaluate sensitivity and specificity: it can be understood as a plot
of the probability of classifying correctly the Positive examples against the
rate of incorrectly classifying True negative examples. In this sense, one
can interpret this curve as a comparison of the classifier across the entire
range of class distributions and error costs. In ROC analysis the perfor-
mance of a classifier is defined through pairs of Sensitivity and 1-Specificity
values. Hence, in this two-dimensional ROC space the performance of a
certain classifier is defined by a point, i.e. by its 1-Specificity (X-axis) and
Sensitivity (y-axis). In the case of classifiers obtained by thresholding, such
as M LP or SV M, the ROC curve can be computed by varying the decision
threshold of the classifier, which describes the trade-off between Specificity
and Sensitivity.

Using ROC curves the performance of different learning systems can be com-
pared: the best point in the ROC plane is (0, 1), i.e. 1—Specificity = 0 and
Sensitivity = 1; the worst point is the opposite (1,0); ROC curves lying
near the diagonal correspond to random guessing classifiers, and in general
learning systems with ROC curves lying on the the top and leftmost portion
of the ROC plane are the better ones. Figure (C.1) depicts an example of
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the ROC curve of a given classifier.

The most frequently used performance measure extracted from the ROC
curve is the value of the Area Under the Curve, commonly denoted as AUC.
When AUC is equal to 1, the classifier achieves perfect accuracy if the thresh-
old is correctly chosen, and a classifier that predicts the class at random has
an associated AUC of 0.5.

ROC curve

True Positive Rate

0 I I I I I I I I I
0 0.1 0.2 03 04 05 06 0.7 0.8 0.9 1

False Positive Rate

Figure C.1: Ezample of ROC obtained with 2-norm SVMs. the solid curve correspond
to a gaussian kernel and the dotted one is the ROC curve of a polynomial kernel.
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Appendix D

Support Vector Machines

In this section we provide a very brief overview of Support Vector Machines
in order to introduce the main notions and concepts used in the thesis. See
[88] and [18] for more detailed descriptions.
Given a data set Z = {(x;,¥:)}", x; € RN, y; € Y = {—1,1}, where y; are
the labels of two different classes of examples, a linear classifier computes a
decision function g(x) = sign(f(x)), where f(x) =w-x+b.

For a point x, on the separating hyperplane f(x,) = w-x, +b = 0 (See

A
g O
O
g O
0 O
Xm y
o X
o P
W
O O
@]
O
O
O

Figure D.1: Separating hyperplane and margins in a two-class classification problem

Figure D.1), a point X, on the margin whose width is v can be expressed as:
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+ A%
Xy = X _—
m T e

Then f(xm) = W -Xm +b=w-x, + 75y + b = 7||w|[. The functional

margin is v||w|| and the geometric margin is v = fﬁ:ﬁ).

To obtain the canonical separating hyperplane we need to normalize w.r.t
the functional margin:

)
AW

fe(x)

The canonical functional margin is

o J(Xm) _
Feboem) =S =

The canonical margin is v, = Tl
From this point we consider only the canonical hyperplane (that is the hy-
perplane with canonical margin 1/||w||.

In order to maximize the margin v = ﬁ and to correctly separate the

examples we need to solve a constrained quadratic optimization problem:

Minimize w-w
subject to  y;(w-x; +b) > 1
1<1<n

The hyperplane w-x+b = 0 that solves this quadratic optimization problem
is the mazximal margin hyperplane with margin v = Wl
The lagrangian associated with the primal optimization problem is:
1 n
L(w,b,a) = oW W= Z;ai(yi(w -x;+b)—1)
1=

leading to this set of optimality conditions:

OL(w,b, ) -
—ow V- ;yiaixi =0

OL(w,b,a) - B
o~ xuao

hence
n
w = E Yi0X;
i=1
n
0 = E Uiy
i=1
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Putting the relations obtained into the primal we have:

1 n
L(w,b,a) = oW W Zai(yi(w -x;+b)—1)
i=1
1 n n n n n
=3 SO wyseneg(xiox) = > > yiyiouc(xix5) + Y
i=1 j=1 i=1 j=1 i=1
n 1 n n
= D ai— 5> D vk X))
i=1 i=1 j=1

obtaining the associated dual optimization problem:

Maximize  ®(ar) = 371 aq — 5 D1y Djg Yiyjei (Xi - X;)
subject to >, yioy; =0
a; >0, 1<i<n

The hyperplane whose weight vector w* = """ | y;a;x; solves this quadratic

optimization problem is the mazimal margin hyperplane with geometric mar-

giny:H%|

The linear éVMs compute the family of linear functions:
F(x,w,b)={x-w+bweR" beR}
If o* is the solution of the dual optimization problem then

o wh=>"" yalx; is the weight vector of the maximal margin hyper-
plane

o f(x)=w"x+b"=>", yioix; - x+b* is the corresponding discrim-
inant function.

e The decision function g : R" — {—1,4+1} is g(x) = sign(>_;" ; yialx; -
x + b)

The SVM algorithm minimizes both the empirical risk and the confidence
interval [88]. Indeed, maximizing the margin, that is equivalently minimiz-
ing ||w]||, we minimize the Vapnik Chervonenkis (VC) dimension, and the
confidence interval depends mainly on the ratio (VC) dimension/cardinality
of the training set. In order to consider non linearly separable data we need
to introduce soft margin SVM and kernels. In this setting we first add to
the primal optimization problems a set of slack variables &;, and a

Minimize w-w+C>. " &
subject to  y;(w-x; +b) >1-¢;

& >0
1<:<n
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If K(x,x') is a symmetric function satisfying Mercer’s conditions, that is:

//Kxx x) f(x")dxdx' >0

for all f such that [ f%(x)dx < oo, then we can expand K(x,x’) in a some
inner product feature space:

)= Ngx)e(x)
j=1

Note that in the dual representation of linear SVMs the inputs appears only
in a dot-product form:as a consequence we can substitute the dot-products
in the input space with a kernel function obeying Mercer’s conditions:

Maximize ®(a) =", o — % Yoy Z?:l yiyjoiog K (xi%;)
subject to > 4 yioy =0
0<a; <C, 1<i<n

The discriminant function obtained from the solution of this quadratic op-
timization problem is:

f(x,a",b) = Zyzale, )+ b

The SVM receives as inputs patterns x in the input space, but works in a
high dimensional (possibly infinite) feature space, where it performs a linear
separation of the data. The symmetric function K(-,-) must be chosen
among the kernels of Reproducing Kernel Hilbert Spaces [93]; three possible
choices are:

e Linear kernel: K(u,v) =u-v
e Polynomial kernel: K(u,v) = (u-v + 1)¢
e Gaussian kernel: K(u,v) = exp(—|u— v||?/o?)

The bias and variance of SVMs are typically controlled by two parameters.
The parameter C' controls the tradeoff between fitting the data (achieved
by driving the ;’s to zero) and maximizing the margin (achieved by driving
|lw|| to zero). Setting C' large should tend to minimize bias. The second
parameter that controls bias arises only in SVMs that employ parameterized
kernels such as the polynomial kernel (where the parameter is the degree d of
the polynomial) and RBF kernels (where the parameter is the width o of the
gaussian kernel). Bias and variance depend critically on these parameters
[83].
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Appendix E

Gabor Filters

Simple cells in the primary visual cortex have receptive fields (RFs) which
are restricted to small regions of space and are highly structured (see the
work by Marcelja described in [55]). Earlier examinations by Hubel and
Wiesel leaded to a description of these cells as edge detectors. More recent
examinations, among others the one by Jones and Palmer in 1987 (see [37]),
showed that the response behaviour of simple cells of cats corresponds to
local measurements of frequencies. Furthermore Pollen and Ronner (in [66])
examined the phase relation of adjacent cells in the visual cortex of cats.
They concluded that that most of the simple cells can be combined in pairs,
one cell of each pair has an RF modelled by an even function and the other
one can be modelled with an odd function. This allows to model both RF's
of such a pair of cells by a complex-valued function; the authors suggested
the use of a Cosine function and a Sine function. Indeed, if the modelled
RFs of both cells are combined in a complex notation with

exp(ikx) = cos(kx) + isin(kx) (E.1)

the real part corresponds to the cell with even symmetry and the imaginary
part to the cell with odd symmetry. This observation leaded to the formu-
lation of a biologically motivated filter, approximating the characteristics of
the RFs of the cells in the visual cortex, and called the Gabor filter (see
[19]). A Gabor filter can be viewed as a sinusoidal plane of particular fre-
quency and orientation, modulated by a gaussian envelope. The sinusoidal
plane is expressed by a complex sinusoid, known as a carrier, meanwhile the
gaussian shaped function is commonly referred as the envelop. The mathe-
matical formulation of the 2 — D Gabor filter is:

Lk K2 | - o?
) (%) = —2eep | =5 exp(ik; @) — exp(—?) (E.2)
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where ¥ = (z,y) and the vector:

o k; _ ky cos
J k; ky sing,,
determines the scale (k,) and the orientations (cos ¢, and sin¢,,).
2

k=
The term =% compensates for the frequency-dependent decrease of the power
7 2
k2|7
spectrum in natural images (see [69]). The term exp (— i) i the Gaus-

202
sian envelope function restricting the sinusoidal plane. The first term in
the parenthesis of equation E.2 is the complex-valued sinusoidal plane itself;
note that the second term in parenthesis makes the function DC-free (i.e
with a zero mean):

[ wit@is® =0

This property ensures the robustness of the Gabor filters with respect to the
variations of the illumination.

In addition the Gabor filters have received considerable attention since they
have been shown to have good localization properties in both spatial and
frequency domain and thus are well suited for texture segmentation prob-
lems ([34], [35]). Gabor filters have been used in many applications, such
as texture segmentation, target detection, fractal dimension management,
document analysis, edge detection, retina identification, image coding and
image representation. ([94]).

E.0.2 Gabor filter bank

We realized a Gabor filter bank at 5 different scales and 8 orientations by
setting in k; the following values for the parameters:

v42

k,=2""%m 1v=0,1,234

‘10#:“%’ u:071>2’3747576a7
The subscript index j, in equation E.2, is then defined as j = p + 8v; the
width of the gaussian function used is o /k,, where we set o = 2.

Figure E.1 shows the real parts of the Gabor filters obtained by setting a
certain orientation value and varying the scale in the range established; Fig-
ure E.2 shows the 8 orientations of the real parts of the Gabor filters when
the same scale is kept constant. Figures E.3 and E.4 represents in the same
order the imaginary parts of the same Gabor filters.

Note that the real part of the Gabor filter is always an even function, mean-
while the imaginary part is always odd.
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Figure E.1: Real part of the Gabor filter at 5 different scales
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Figure E.2: Real part of the Gabor filters in 8 different orientations



Figure E.3: Imaginary part of the Gabor filter at 5 different scales
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Figure E.4: Imaginary part of the Gabor filters in 8 different orientations
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