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Abstract
One strategy deployed by plants to endure water scarcity is to accelerate the transition to flowering adaptively via 
the drought escape (DE) response. In Arabidopsis thaliana, activation of the DE response requires the photoperiodic 
response gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF). The 
phytohormone abscisic acid (ABA) is also required for the DE response, by promoting the transcriptional up-regula-
tion of the florigen genes. The mode of interaction between ABA and the photoperiodic genes remains obscure. In 
this work we use a genetic approach to demonstrate that ABA modulates GI signalling and consequently its ability to 
activate the florigen genes. We also reveal that the ABA-dependent activation of FT, but not TSF, requires CONSTANS 
(CO) and that impairing ABA signalling dramatically reduces the expression of florigen genes with little effect on 
the CO transcript profile. ABA signalling thus has an impact on the core genes of photoperiodic signalling GI and 
CO by modulating their downstream function and/or activities rather than their transcript accumulation. In addition, 
we show that as well as promoting flowering, ABA simultaneously represses flowering, independent of the florigen 
genes. Genetic analysis indicates that the target of the repressive function of ABA is the flowering-promoting gene 
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a transcription factor integrating floral cues in the 
shoot meristem. Our study suggests that variations in ABA signalling provide different developmental information that 
allows plants to co-ordinate the onset of the reproductive phase according to the available water resources.
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Introduction
Water deprivation triggers several physiological adjustments 
at the cellular and organ levels (Shinozaki and Yamaguchi-
Shinozaki, 2007). Depending on the intensity and duration 
of drought episodes, some plants can also respond adaptively, 

by activating the drought escape (DE) response (Franks, 
2011; Riboni et al., 2013, 2014; Kazan and Lyons, 2016). DE 
allows plants to accelerate the floral transition and set seeds 
before drought conditions become too severe. While escaping 
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Abbreviations: DE, drought escape; LD, long day;SD, short day.
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the potentially lethal effects of drought, plants undergoing 
DE usually produce fewer fruits and seeds, indicating a trade-
off  between plant survival and successful seed set (Su et al., 
2013; Kenney et al., 2014). Therefore, a more precise under-
standing of the mechanisms leading to DE is of fundamen-
tal importance to assess the diverse modes of adaptations of 
natural plant populations as well as to produce crops with 
increased productivity under water deprivation (Lovell et al., 
2013; Kooyers, 2015).

Arabidopsis thaliana is a facultative long-day (LD) plant, 
flowering much earlier under LDs, typical of  spring/sum-
mer compared with short days (SDs). The DE response 
occurs under LDs, but not SDs, indicating an interdepend-
ence between DE and photoperiod signalling in Arabidopsis 
(Han et al., 2013; Riboni et al., 2013). The photoperiodic 
pathway comprises three key genes, whose regulation 
and activity are required for the correct interpretation of 
day length: GIGANTEA (GI), CONSTANS (CO), and 
FLOWERING LOCUS T (FT) (Putterill et al., 1995; Fowler 
et al., 1999; Kardailsky et al., 1999; Kobayashi et al., 1999; 
Park et al., 1999). CO encodes a nuclear protein (Putterill 
et  al., 1995; Samach et  al., 2000) able to induce the tran-
scriptional activation of  the florigen genes FT and TWIN 
SISTER OF FT (TSF) (An et al., 2004; Yamaguchi et al., 
2005; Jang et al., 2009). Accumulation of  the CO transcript 
during the day depends on LIGHT OXYGEN VOLTAGE 
(LOV) domain-containing, blue light receptor FLAVIN-
BINDING, KELCH REPEAT F-BOX 1 (FKF1), and GI 
(Imaizumi et  al., 2003, 2005; Sawa et  al., 2007; Fornara 
et al., 2009; Song et al., 2012). Formation of  a GI–FKF1 
complex is stimulated by blue light and leads to degrada-
tion of  the CO transcriptional repressors CYCLING DOF 
FACTORs (CDFs) (Imaizumi et  al., 2005; Fornara et  al., 
2009), allowing CO transcription. While CO transcript 
accumulation broadly occurs under both LDs and SDs, CO 
protein is activated to promote flowering only under LDs 
when CO mRNA peaks in the light phase at the end of  the 
day (Suarez-Lopez et  al., 2001). Such a daily pattern of 
CO protein accumulation is controlled by several types of 
photoreceptors, which generate a peak of  CO abundance 
in coincidence with dusk under LDs (Valverde et al., 2004; 
Jang et al., 2008; Liu et al., 2008; Zuo et al., 2011; Lazaro 
et al., 2012; Song et al., 2012).

CO promotes FT transcription in the phloem compan-
ion cells (Adrian et al., 2010). However, FT protein acts as 
a florigenic signal, moving long distance to the shoot api-
cal meristem (SAM), where it interacts with the bZIP tran-
scription factors FLOWERING LOCUS D (FD) and FD 
PARALOGUE (FDP) to orchestrate the floral transition 
(Abe et al., 2005; Wigge et al., 2005; Corbesier et al., 2007; 
Jaeger and Wigge, 2007; Mathieu et al., 2007; Jaeger et al., 
2013). Amongst the early targets of the FT–FD complex is 
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 
1 (SOC1), a MADS box transcription factor, which integrates 
several floral pathways in the SAM (Borner et al., 2000; Lee 
et al., 2000; Samach et al., 2000; Moon et al., 2003; Searle 
et al., 2006; Jang et al., 2009; Wang et al., 2009; Lee and Lee, 
2010).

Besides photoperiod, FT activation is modulated by several 
environmental cues (Pin and Nilsson, 2012), including drought 
stress (Riboni et al., 2013). The activation of FT by drought 
requires abscisic acid (ABA), a key hormone mediating water 
stress stimuli (Riboni et al., 2013). ABA derives from the carot-
enoid zeaxanthin synthetized in chloroplasts. Here, different 
enzymes, including ABA1, transform zeaxanthin into xanth-
oxin prior to its translocation to the cytoplasm where another 
set of enzymes, namely ABA2, complete the last biosynthetic 
steps leading to bioactive ABA (Nambara and Marion-Poll, 
2005). Three signalling proteins form the core ABA signal-
ling, including the PYRABACTIN RESISTANCE (PYR)/
REGULATORY COMPONENT OF ABA RECEPTOR 
(RCAR), the PROTEIN PHOSPHATASE 2Cs (PP2Cs), and 
SNF1-RELATED PROTEIN KINASE 2s (SnRK2s) (Cutler 
et al., 2010). The PYR/RCARs are the ABA receptors, the 
PP2Cs [e.g. the ABA INSENSITIVE 1 (ABI1) gene] act as 
negative regulators of the pathway, and the SnRK2s act as 
positive regulators of downstream signalling (Ma et al., 2009; 
Park et al., 2009).

ABA-deficient mutants aba1 and aba2 display a general 
delay in flowering in LDs, which is more evident under drought 
conditions as well as reduced florigen transcript accumula-
tion. Similar to aba1, mutants of GI are impaired in DE, and 
display no florigen up-regulation under drought conditions 
(Riboni et al., 2013). The nature of GI signalling upstream of 
the florigen activation during DE is however unclear. Because 
no DE occurs in wild-type plants under SDs, one can conclude 
that GI activates DE by mediating photoperiodic signals. 
However, such a mechanism does not appear to require CO 
activity, since co mutants display a normal DE response (Han 
et al., 2013; Riboni et al., 2013). Modes of GI-dependent but 
CO-independent pathways include the activation of a class 
of miRNA, the miR172, which targets the APETALA 2-like 
factors that repress FT and other flowering genes (Jung et al., 
2007; Mathieu et al., 2009). The role of GI in DE may also be 
indirect and/or biochemically distinct from its role in photo-
periodic flowering. For example, GI affects phytochrome sig-
nalling (Huq et al., 2000; Martin-Tryon et al., 2007; Oliverio 
et al., 2007), clock function (Park et al., 1999; Fowler et al., 
1999; Mizoguchi et al., 2005), and several plant–environment 
responses, namely salinity and freezing tolerance (Han et al., 
2013; Kim et al., 2013b; Fornara et al., 2015; Xie et al., 2015), 
through mechanisms which cannot be fully ascribed to the 
canonical photoperiodic signalling cascade.

In this study, tests were carried out to elucidate the role of GI 
signalling in the DE response. We analysed the DE response 
and patterns of florigen accumulation in Arabidopsis mutant 
backgrounds with varying levels of CO and in the presence or 
absence of GI. To assess the role of ABA in the GI-mediated 
pathway, we combined mutants impaired in ABA signal-
ling with transgenic plants overexpressing GI. We show that 
impaired ABA signalling affects GI downstream functions 
and/or activity, thus causing reduced accumulation of florigen 
genes, but no effects on CO accumulation. Our results also 
clarify the relationship between GI and CO in the context of 
DE response by showing that the drought/ABA-dependent 
activation of FT requires CO. In contrast, up-regulation of 
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TSF under drought stress can occur without CO, thus expand-
ing the repertoire of regulatory mechanisms of florigen gene 
activation in plants. Alongside these results, we also demon-
strate a florigen-independent floral repressive role for ABA in 
flowering, which requires SOC1. The transition to flowering 
under drought conditions thus depends on activation of sepa-
rate ABA-dependent developmental programmes.

Materials and methods
Plant materials and growing conditions
In this study, we used wild-type Arabidopsis thaliana plants, ecotype 
Columbia (Col-0) or Landsberg erecta (Ler). Mutant or transgenic 
lines were obtained from the Nottingham Arabidopsis Stock Centre 
or other laboratories as detailed in Supplementary Table S3 at JXB 
online. Seeds were stratified in the dark at 4 °C for 2 d before sow-
ing, and plants grown in a controlled-environment cabinet at a 
temperature of 18–23 °C, 65% relative humidity, under either LD 
(16 h light/8 h dark) or SD (8 h light/16 h dark) photoperiods. Light 
was provided by cool white fluorescent tubes (Philips Lighting, 
F36W/33-640 36W) at a fluence of 120–150 μmol m−2 s−1 (photo-
synthetically active radiation). The procedures to impose drought 
stress, and perform photoperiod shift experiments were previously 
detailed (Riboni et al., 2013).

Experiments in Fig.  1B were performed in a greenhouse, with 
a semi-controlled climate. Temperature was 19–23  °C and relative 
humidity was set at 65%. Natural light was supplemented by incan-
descent (metal halide) lamps when external light was <150 μmol m−2 
s−1 (photosynthetically active radiation) in an LD photo cycle. Two 
independent greenhouse experiments were performed (autumn 2015 
in Milan). ABA application experiments were performed by daily 
supplying 2 ml of ABA (25 μM) or mock solutions (0.025% v/v eth-
anol) 7 h after dawn. ABA applications started 3 d after germination 
and continued for 21 d. Each Arabasket pot was fitted with a pipette 
tip to facilitate the application of the solutions directly in the soil 
and thus in contact with roots (Supplementary Fig. S1).

Isolation of double mutants and genotyping
Mutant combinations were generated by crossing. The aba1-6 
mutation was genotyped as described in Riboni et al. (2013). ft-10 
mutants were selected on Murashige and Skoog plates containing 
Sulafadiazide as described (Rosso et al., 2003). abi1-1 mutants were 
selected by genomic PCR amplification with primers flanking the 
abi1-1 polymorphism followed by digestion with NcoI. Genotyping 
primers for tsf1-1, co-10, and abi1-1 are listed in Supplementary 
Table S4. Plants carrying the gi-2 and soc1-1 alleles were selected 
based on their late flowering phenotype, while elf3-1 mutants were 
selected on the basis of their early flowering and long hypocotyl.

RNA extraction and real-time qPCR
Total RNA was extracted with TRIzol reagent (Invitrogen). A 1.5 µg 
aliquot of total RNA was used for cDNA synthesis with the 
SuperScript VILO cDNA Synthesis Kit (Invitrogen). Quantitative 
real-time PCR was performed as previously detailed (Riboni et al., 
2013) and PCR primers are provided in Supplementary Table S4.

Molecular cloning and plant transformation
A 2.2 kbp promoter region upstream of the ABI1 coding sequence 
was cloned using the Gateway cloning technology (Invitrogen) with 
specifics primers (Supplementary Table S4). The promoter was 
cloned into the pDONR207 entry vector (Invitrogen) and moved 
into the pBGWFS7 destination vector (Karimi et  al., 2002). The 
resulting plasmid was introduced into Agrobacterium strain GV3101 

(pMP90RK) (Koncz and Schell, 1986) and transformed in wild-type 
Col-0 plants by floral dip (Clough and Bent, 1998). Six independent 
transgenic plants were selected based on the segregation of Basta 
resistance in a Mendellian 3:1 ratio in the T2 generation and ana-
lysed for β-glucuronidase (GUS) staining.

GUS assay
Plants were grown under LDs and sampled at the indicated Zeitgeber 
time (ZT) time. Tissue was fixed for 30 min at 0 °C with 90% (v/v) 
acetone. After being washed in 50  mM sodium phosphate buffer, 
pH 7.0 they were incubated for 14 h at 37 °C in staining solution 
[0.5 mg ml–1 X-Gluc (5-bromo-4-chloro-3-indolyl-β-D-glucuronide), 
50 mM sodium phosphate buffer, pH 7.0, 0.5 mM potassium fer-
rocyanide, 0.5  mM potassium ferricyanide, and 0.1% (v/v) Triton 
X-100]. Samples were cleared with a chloral hydrate:glycerol:water 
solution (8:1:2, v/v/v) for 3  h and then stored in 70% (v/v) etha-
nol before GUS histochemical reactions were visualized under a 
stereomicroscope.

Results
ABA promotes FT expression through CO

Mutants of aba1-6 were later flowering compared with the 
wild type under LDs (Fig. 1A–C). We confirmed a similar late 
flowering phenotype in aba2-1 mutants, defective in the final 
steps of ABA biosynthesis (Finkelstein, 2013). Soil applica-
tions of ABA could accelerate flowering in wild-type plants, 
reminiscent of DE response (Fig. 1A; Supplementary Table 
S1) (Koops et al., 2011). Using this experimental set-up, we 
could also largely rescue the late flowering of aba1-6 and 
aba2-1 mutants, indicating a role for ABA as an activator of 
flowering (Fig. 1A, B).

We have previously demonstrated that ABA activates flow-
ering under LDs but not SDs and that ABA affects photo-
periodic signalling upstream of FT expression (Riboni et al., 
2013). To understand how ABA interacts with photoperiod 
signalling to affect flowering, we generated combinations of 
ABA-deficient (aba1-6) and photoperiodic pathway mutants 
(Fig. 1C, D; Supplementary Table S1). Consistent with lack 
of flowering defects of aba1-6 under SDs (Riboni et al., 2013), 
double mutants of gi-2 aba1-6 displayed a similar flowering 
time compared with gi-2 single mutants under LDs (Fig. 1C, 
F). Since double mutants of ft-10 aba1-6 were later flowering 
than ft-10 single mutants, ABA could affect flowering time 
via other florigen genes, namely TSF (Fig. 1C, F). The tsf-1 
ft-10 aba1-6 triple mutants were slightly later flowering than 
tsf-1 ft-10 double mutants (Fig.  1C, F). TSF thus contrib-
utes to the late flowering phenotype of ft-10 aba1-6 plants 
although ABA also appears to have an effect on other floral 
pathways, independent of FT and TSF. Interestingly, double 
mutants of co-10 aba1-6 were similar to co-10 single mutants, 
indicating that CO is also required for the late flowering phe-
notype of aba1-6 mutants (Fig. 1D).

Unlike gi, co mutants generate a DE response, indicating 
that high levels of ABA accumulation, as a result of drought 
stress, may eventually overcome CO function to activate flow-
ering (Riboni et  al., 2013). To test whether drought could 
activate the florigen genes in the absence of a functional CO 
protein we grew wild-type and co-10 mutant plants under 
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control or water stress conditions in SDs before shifting 
to LDs to induce a photoperiodic response. As expected, 
in wild-type plants FT expression was strongly up-regu-
lated during the photo-extension period and even further 
increased under low watering conditions (Fig. 2A). In the co-
10 mutants, the levels of FT transcripts were barely detect-
able at any time point, independent of the watering regime, 
indicating that drought stress cannot cause FT up-regulation 
in the absence of a functional CO (Fig. 2B). The pattern of 

accumulation of TSF showed diurnal oscillations similar 
to those of FT in wild-type plants, peaking at dusk during 
the photo-extension period (Fig. 2A, B). Similar to FT, TSF 
expression was increased in coincidence with the photo-
extension period under drought conditions. Furthermore in 
co-10 mutants, TSF levels were much lower compared with 
the wild type under normal watering conditions, confirming 
a role for CO in TSF transcriptional activation (Yamaguchi 
et  al., 2005; Jang et  al., 2009). Surprisingly, drought stress 

Fig. 1. ABA activates flowering through GI, CO, and the florigen genes. (A) Mean number of rosette leaves of the wild type (Col-0) and ABA-deficient 
mutant plants grown under LDs and treated with ABA or mock treated. Error bars represent ±SE, n=15. Student’s t-test P-values ≤0.001 (***) compared 
with mock treatment. (B) Images of representative 24-day-old plants of the indicated genotypes grown under LDs and treated with ABA or mock treated. 
Inset of aba1-6 shows a visible inflorescence. (C and D) Mean number of rosette leaves of the wild type (Col-0) and flowering time mutants grown 
under LDs. Error bars represent ±SE, n=15. Student’s t-test P-values ≤0.05 (*), ≤0.001 (***), >0.05 not significant (NS) are shown to indicate differences 
between mutants and the corresponding mutant containing the aba1-6 allele. The experiment in (D) was performed under semi-controlled greenhouse 
conditions. (E) and (F), Images of representative plants of the indicated genotypes grown under LDs. (E) Wild-type Col-0 and aba1-6 mutant plants are 
4 weeks old, (F) ft-10, ft-10 aba1-6, ft-10 tsf-1, ft-10 tsf-1 aba1-6, gi-2, and gi-2 aba1-6 mutant plants are 14 weeks old. The arrow indicates the visible 
bolt in ft-10 tsf-1 aba1-6. Scale bars=1 cm. (This figure is available in colour at JXB online.)
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caused TSF up-regulation in the co-10 background, partially 
resuming its diurnal cycle with peaks at ZT8 under the SD 
part of the experiment and at ZT15 following a photo-exten-
sion. Slightly increased TSF levels were observed during SDs 
under drought conditions (on average 3.8 ± 1.6-fold) but this 
was not correlated with a DE phenotype under SDs in co-10 
mutants (Fig. 2B, D). Thus, unlike FT, TSF can be up-regu-
lated under drought conditions in a CO-independent manner.

GI is required for DE downstream of CO transcriptional 
activation

Our experiments indicate that ABA promotes FT transcript 
accumulation through CO. However, CO transcript levels 
are not greatly affected by drought stress or when ABA level 
are reduced (Han et al., 2013; Riboni et al., 2014). Here we 
wanted to test whether drought could affect flowering down-
stream of CO transcriptional activation events, by analysing 
mutants of cdf1-R cdf2-1 cdf3-1 cdf5-1, hereafter referred to 
as cdf1235, characterized by constitutively elevated CO lev-
els (Fornara et al., 2009). The cdf1235 mutants flowered early 
and produced a DE response quantitatively similar to that of 
the wild type under LDs (Fig. 3A). Despite their early flow-
ering phenotype under SDs, cdf1235 plants did not produce 
any DE response (Fig. 3B), suggesting a requirement for LDs 
in DE response, even when CO levels are elevated (Fornara 
et al., 2009) (Fig. 3C). We therefore compared the flowering 
time and DE response of the quadruple cdf1235 mutant with 
that of gi cdf1235 quintuple mutants under LDs (Fig. 3A). 

As previously shown, mutants of cdf1235 are slightly earlier 
flowering than gi cdf1235 under normal watering conditions 
(Fornara et al., 2009). However, while the cdf1235 mutants 
produced a DE response, the gi cdf1235 did not (Fig. 3A). 
We next sought to ascertain if  the lack of DE response in 
the gi cdf1235 mutants was correlated with impaired tran-
scriptional up-regulation of the florigen genes under drought 
stress. Control and water-stressed wild-type, cdf1235 and gi 
cdf1235 plants were grown under SD conditions for 2 weeks 
before shifting to LDs, and transcript levels were analysed at 
ZT8 (corresponding to dusk in the SDs) and ZT12 (4 h after 
the photo-extension) (Fig. 3C–E). As expected, the levels of 
CO transcript were generally higher in cdf1235 and gi cdf1235 
mutants as compared with the wild type. Under drought 
conditions, we observed a small increase in CO transcript 
abundance in all the genotypes analysed at any time point, 
suggesting a contribution of drought stress in CO transcript 
accumulation (Fig. 3C). We finally determined how different 
patterns of CO transcript were correlated with accumulation 
of florigen genes (Fig. 3D, E). Under well-watered conditions, 
mutants of cdf1235 showed the largest FT and TSF transcript 
accumulations before and after the photo-extension period. 
Mutants of gi cdf1235 displayed levels of FT and TSF inter-
mediate between the wild type and the cdf1235 mutants. This 
is probably as a result of residual CDF-mediated repression 
in cdf1235 on both CO and FT promoters (Fornara et  al., 
2009; Song et al., 2012). However, while both the wild type 
and the cdf1235 mutants showed a significant and similar up-
regulation of FT and TSF under drought stress conditions 

Fig. 2. CO is required for the activation of FT under drought stress. (A–C) Real-time qPCR of CO, FT, and TSF transcripts in 3-week-old wild-type (Col-
0) (A), co-10, (B) and hab1-1 abi1-2 pp2ca-1 (C) seedlings. Plants were subject to normal watering (NW; black lines) or low watering (LW; grey lines) 
regimes and harvested at the indicated time points in coincidence with the light phase (open bar) or in the dark (black bar) during an SD to LD shift. At 
each time point, values represent fold change variations of CO, FT, and TSF transcript levels relative to Col-0 under NW. ACT2 expression was used for 
normalization; error bars represent the SD of two technical replicates. A representative experiment of two biological replicates is shown. 
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Fig. 3. ABA promotes GI and CO functions to activate the florigen genes. (A and B) Mean number of rosette leaves of the wild type (Col-0) and flowering 
time mutants subject to normal watering (NW; black bars) or low watering (LW; grey bars) regimes grown under LDs (A) and SDs (B). Error bars represent 
±SE n=15. Student’s t-test P values ≤0.001 (***), >0.05 not significant (NS) compared with NW. (C–E) Real-time qPCR of CO (C), TSF (D), and FT (E) 
transcripts in 2-week-old wild-type (Col-0), cdf1-R cdf2-1 cdf3-1 cdf5-1, and cdf1-R cdf2-1 cdf3-1 cdf5-1 gi-100 seedlings. Plants were subject to NW 
(black columns) or LW (grey columns) regimes and harvested at the indicated Zeitgeber time during a shift from SDs to LDs. ZT8 represents dusk in SDs 
and ZT12 represents 4 h of photo-extension. At each time point, values represent fold change variations of CO, FT, and TSF transcript levels relative to 
the wild type at ZT8 under NW. ACT2 expression was used for normalization; error bars represent the SD of two technical replicates. A representative 
experiment of two biological replicates is shown. (F) Images of representative plants grown under LDs for 27 d. Insets shows a visible inflorescence in 
elf3-1 aba1-6 double mutants, which is not visible in the wild type. (G) Mean numbers of rosette leaves of the wild type (Col-0) and mutants under LDs. 
Error bars represent ±SE, n=5–12. Student’s t-test P-values ≤0.001 (***) are shown to indicate differences between mutants and the corresponding 
mutant containing the aba1-6 allele. (H–K) Real-time qPCR of GI (H), CO (I), FT (J), and TSF (K) transcripts in 12-day-old seedlings grown under LDs and 
sampled at ZT16. Data shown are from 5–6 biological replicates. Error bars represent ±SD. Differences between the wild type versus aba1-6 and elf3-1 
versus elf3-1 aba1-6 double mutants are here highlighted with P-values ≤0.01 (**), ≤0.05 (*), >0.05 not significant (NS), one-way ANOVA with Tukey’s 
HSD (honestly significant difference) test. (This figure is available in colour at JXB online.)
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at ZT12 (2- to 4-fold, respectively), no such up-regulation 
occurred in the gi cdf1235 mutants (Fig. 3D, E).

In a complementary approach, we asked whether ABA pro-
duction might be required for FT transcriptional activation 
when GI levels are increased. Mutants of early flowering 3 (elf3) 
are extremely early flowering, accumulate high levels of FT, 
and present increased accumulation of GI transcript and GI 
protein (Fowler et al., 1999; Kim et al., 2005; Yu et al., 2008). 
This early flowering phenotype requires ABA since elf3-1 aba1-
6 double mutants were significantly later flowering compared 
with elf3-1 single mutants (Fig. 3F, G). FT and TSF transcript 
levels were slightly but not significantly reduced in aba1-6 
mutants compared with the wild type at this early developmen-
tal stage (Fig. 3J, K; Supplementary Table S2). However, dou-
ble mutants of elf3-1 aba1-6 had a significant reduction in both 
FT and TSF levels compared with the elf3-1 single mutants 
(Fig. 3J, K; Supplementary Table S2). The reduced levels of FT 
and TSF in elf3-1 aba1-6 compared with elf3-1 mutants were 
not caused by diminished GI or CO transcript accumulations 
(Fig.  3H, I; Supplementary Table S2), indicating that ABA 
might be required for the activation of GI and CO signalling.

ABA signalling genes control FT transcript 
accumulation with little effect on CO

We analysed ABA-hypersensitive mutants plants hab1-1 
abi1-2 pp2ca-1, impaired in three ABA-related PP2C phos-
phate genes, under different watering and photoperiodic 
conditions (Rubio et  al., 2009). Consistent with previous 
observations, mutants of  hab1-1 abi1-2 pp2ca-1 had much 
increased (up to 6-fold) levels of  FT compared with the wild 
type under LDs (Riboni et al., 2013) (Fig. 2C). The experi-
ment in Fig. 2C also shows that FT expression was even fur-
ther activated under drought conditions compared with the 
wild type (up to 13.3-fold). In contrast, TSF expression was 
not clearly increased in hab1-1 abi1-2 pp2ca-1 plants com-
pared with the wild type under any watering condition. No 
FT or TSF up-regulation occurred under SDs in the hab1-1 
abi1-2 pp2ca-1 mutants under any watering condition.

Under control conditions the strong up-regulation of FT 
in hab1-1 abi1-2 pp2ca-1 plants was not caused by increased 
CO levels, which were comparable with those observed in the 
wild type (Fig.  2C). Increased levels of CO were, however, 
observed in the hab1-1 abi1-2 pp2ca-1 mutants under drought 
stress, indicating that high levels of ABA signalling can ulti-
mately induce the transcriptional activation of CO (Koops 
et al., 2011; Yoshida et al., 2014).

To explore further the role of ABA signalling in the tran-
scriptional control of FT, we analysed abi1-1 mutant plants 
(Ler background), carrying a dominant mutation in the PP2C 
phosphatase ABI1 (Koornneef et  al., 1984) which results 
in severely reduced ABA responses. abi1-1 mutant plants 
did not show flowering defects under LDs, but exhibited an 
early flowering phenotype under SDs, consistent with previ-
ous observations (Martínez-Zapater et  al., 1994; Chandler 
et al., 2000) (Fig. 4A, B). Ruling out an ecotype-specific effect 
for ABA action in flowering, the ABA biosynthetic mutants 
aba1-1 and aba1-3 (Ler background) showed a marginal late 

flowering phenotype compared with the wild type under LDs 
(ANOVA P<0.01 and P<0.05, respectively), but no defects 
under SDs (Fig.  4A, B). The late flowering phenotype of 
these aba1 mutants was more pronounced under drought 
conditions and LDs, indicative of a reduced DE response 
(Fig. 4A). Mutants of abi1-1 were even more impaired in the 
DE response compared with the aba1 alleles, producing on 
average 14 ± 2% more leaves (n = 8 independent experiments, 
15 plants each), relative to the untreated control.

We next analysed the pattern of accumulation of the flo-
rigen genes in abi1-1 plants. As expected, in wild-type plants, 
the accumulation of FT was strongly induced under drought 
conditions in a photoperiod-dependent manner (Fig.  5A). 
TSF expression was instead down-regulated under drought 
conditions in the Ler background, revealing an ecotype-
specific effect for TSF regulation under drought (Fig.  5A). 
Lower levels of FT and TSF were observed in the aba1-1 
mutants compared with the wild type under both normal 
watering (TSF) and drought conditions (FT and TSF), con-
firming the contribution of ABA in both FT and TSF regula-
tion (Fig. 5B) (Riboni et al., 2013). Strikingly, in abi1-1 plants 
the levels of FT were dramatically reduced compared not 
only with the wild type but also with aba1-1 plants, under any 
watering condition analysed (Fig. 5C). Such low expression 
of the florigen genes did not depend on reduced CO tran-
script accumulation in abi1-1 which was, if  anything, up-reg-
ulated (Fig. 5C). Taken together, our data point to a model 
where ABA affects accumulation of florigen genes without an 
effect on CO expression.

Loss of  PP2C function (as in hab1-1 abi1-2 pp2ca-1) results 
in increased FT transcript accumulation, while expression 
of  a gain-of-function form of ABI1 (as in abi1-1) leads to 
reduced FT activation. To determine whether the negative 
regulation of  ABI1 on FT expression could be exerted in 
the cells expressing FT, we fused a 2.2 kb promoter region 
of  ABI1 to the GUS reporter. We detected GUS staining in 
several independent transgenic T2 plants (n = 6) with com-
parable results, at ZT8, where ABI1 transcript accumulation 
is highly abundant according to a publicly available data 
set (http://diurnal.mocklerlab.org; Mockler et  al., 2007). 
For comparison, we also studied the pattern of  GUS activ-
ity in Arabidopsis transgenic lines marking the FT expres-
sion domain; the ABA2 (Lin et  al., 2006; Kuromori et  al., 
2014) and the FT promoter itself  (Notaguchi et al., 2008). 
Histochemical detection in young seedlings revealed that 
ABI1 expression (Fig.  4E) occurred in the vasculature of 
cotyledons in a pattern similar to ABA2 and FT (Fig.  4C, 
D), demonstrating an overlap between ABA biosynthesis 
and signalling genes in the tissue known to be the source of 
FT protein production. Broadly distributed GUS staining 
was also observed in the apical region of  ABI1::GUS trans-
genic plants (Fig. 4H). This pattern of  expression may also 
indicate a role for ABA signalling in the shoot apex.

Impaired ABA signalling negatively affects GI action

Whether impairing ABA signalling affects GI action was 
tested by generating abi1-1 35S::GI plants. As previously 
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observed, 35S::GI plants had increased levels of FT under 
both SDs and LDs compared with the wild type (Mizoguchi 
et al., 2005). Under drought conditions, FT expression was 
generally less responsive to drought in the 35S::GI back-
ground compared with the wild type (Fig.  5D). The levels 
of TSF were much more increased in 35S::GI plants com-
pared with the wild type during the SD part of the experi-
ment. However, no further up-regulation of TSF occurred 
as a result of drought stress compared with normal watering 
(Fig. 5D). The overaccumulation of FT observed in 35S::GI 
plants was strongly rescued in the abi1-1 35S::GI mutants 
under any watering conditions (Fig. 5E). The levels of TSF 
transcript fell even more severely in abi1-1 35S::GI plants 
compared with 35S::GI. Such reductions in florigen accumu-
lation in abi1-1 35S::GI plants were not related to decreased 
CO levels as these were much higher than in the wild type 
(Fig. 5A, E). Interestingly the levels of CO in abi1-1 35S::GI 
plants were only mildly reduced compared with 35S::GI, 
which could suggest that the negative role exerted by abi1-1 
protein on GI signalling is more related to FT and TSF regu-
lation rather than to CO (Fig. 5D, E).

Our data describe a regulatory role of ABA in GI signal-
ling. Such ABA-mediated post-transcriptional activation of 
GI is consistent with previous observations on 35S::GI plants 

showing a DE-responsive phenotype under SDs (Riboni 
et al., 2013). In contrast, no DE response occurred in abi1-1 
35S::GI mutants, which flowered much later compared with 
well-watered plants of the same genotype, although still ear-
lier than abi1-1 plants (Fig.  5F). Under normal watering 
conditions, double mutants of abi1-1 35S::GI had a simi-
lar flowering phenotype to 35S::GI plants, despite showing 
reduced accumulation of the florigen genes (Fig.  5E, F). 
A similar observation could be made for abi1-1 plants, which 
did not show flowering defects under LDs compared with the 
wild type, but had reduced florigen expression (Fig. 5A, C). 
We conclude that late flowering of abi1-1 or abi1-1 35S::GI 
plants under drought stress cannot be solely ascribed to 
reduced florigen up-regulation.

A negative role for ABA signalling in flowering

The early flowering of  abi1-1 plants under SDs (Fig.  4B) 
implies that ABA signalling also exerts a negative role in 
flowering, which is usually undetectable under LDs or 
in ABA biosynthetic mutants (Fig.  4A). Supporting this 
model, we have previously reported a delay of  flowering 
time under SDs in mutants of  hab1-1 abi1-2 pp2ca-1 and 
observed a similar phenotype also in hab1-1 abi1-2 abi2-2 

Fig. 4. A negative role for ABA in flowering. (A and B) Mean number of rosette leaves of the wild type (Ler) and ABA-deficient or signalling mutants 
grown under LDs and subject to normal watering (NW; black bars) or low watering (LW; grey bars) regimes (A), or under SDs in NW regime (B). Error 
bars represent ±SE n=15. Student’s t-test P-values ≤0.001 (***), >0.05 not significant (NS), compared with NW (A). One-way ANOVA with Tukey’s HSD 
(honestly significant difference) test P-values ≤0.01 (**), >0.05 not significant (NS), compared with the wild type (B). (C–H) Histochemical GUS detection 
in transgenic seedlings expressing pFT::GUS (C) and (F), pABA2::GUS (D) and (G), and pABI1::GUS (line # 1) (E) and (H) in the Col-0 background, scale 
bars=100 µm. (This figure is available in colour at JXB online.)
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plants (Riboni et al., 2013) (Supplementary Fig. S2). abi1-
1 mutants showed no increase in FT and TSF levels under 
SDs (Fig.  5B). In contrast, the accumulation of  another 
floral integrator, SOC1, was increased in abi1-1 plants 
as compared with the wild type under any photoperiodic 
condition (Fig.  6A). Mutants of  abi1-1 also had strongly 
reduced levels of  FLOWERING LOCUS C (FLC) (Fig. 6B), 
a transcriptional repressor of  SOC1 which contributes to 
delaying flowering under drought condition (Riboni et al., 
2013; Y. Wang et al., 2013; Shu et al., 2016). Since SOC1 
integrates different floral pathways in the SAM (Moon 
et al., 2003; Wang et al., 2009; Song et al., 2012, 2014) which 
promote flowering under SDs we created the abi1-1 soc1-1 
double mutants. Under SDs, these plants displayed a flower-
ing time similar to the soc1-1 single mutants. With respect to 
flowering time, soc1-1 is thus completely epistatic to abi1-1, 

indicating that SOC1 activity is required for the early flow-
ering of  abi1-1 mutants under SDs (Fig. 6C).

Under LDs, abi1-1 soc1-1 double mutants were later flow-
ering than soc1-1 single mutants (Fig. 6D). Thus, the knock-
ing out of SOC1 produces a novel flowering phenotype in the 
abi1-1 background, consistent with ABA being able to affect 
flowering differentially in different domains of the plant; by 
promoting FT expression in the leaves and negatively regulat-
ing floral stimuli in the SAM (Fig. 6E).

Discussion
A fundamental question related to the DE mechanism is 
how ABA signals are integrated in the photoperiodic flower-
ing network. Here we provide evidence for how ABA con-
trols FT gene expression under normal and drought stress 

Fig. 5. ABA activates GI signalling and florigen expression with little effect on CO transcript accumulation. (A–E) Real-time qPCR of CO, FT, and TSF 
transcripts in 2-week-old wild-type (Ler) (A), aba1-1 (B), abi1-1 (C), 35S::GI (D), and 35S::GI abi1-1 (E) seedlings. Plants were subject to normal watering 
(NW; black lines) or low watering (LW; grey lines) regimes and harvested at the indicated time points in coincidence with the light phase (open bar) or in 
the dark (black bar) during an SD to LD shift. At each time point, values represent fold change variations of CO, FT, and TSF transcript levels relative to 
Ler under NW. ACT2 expression was used for normalization; error bars represent the SD of two technical replicates. A representative experiment of two 
biological replicates is shown. (F) Mean number of rosette leaves of the wild type (Ler) and mutants grown under SDs and subject to NW (black bars) or 
LW (grey bars) regimes, Error bars represent ±SE n=15. Student’s t-test P-values ≤0.05 (*), ≤0.001 (***) compared with NW. (G) Images of representative 
5-week-old plants of the indicated genotypes grown under SDs and subject to NW or LW regimes. Scale bar=1 cm. (H) Higher magnification of LW 
35S::GI and 35S::GI abi1-1 plants shown in (G). Note the appearance of a bolt in 35S::GI but not in 35S::GI abi1-1.
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conditions by affecting photoperiodic signalling. We also 
highlight a negative effect of ABA during the floral transition 
of Arabidopsis, which is independent of the photoperiodic 
pathway.

ABA requires both GI and CO to regulate FT

Our genetic data point to a model where ABA requires both 
GI and CO to affect flowering under LDs through the tran-
scriptional activation of the florigen genes. Since mutants of 
ft-10 tsf-1 aba1-6 were still slightly later flowering than ft-10 

tsf-1, it is possible that ABA may act on other pathways or 
through activation of MFT, a third florigen gene with a mar-
ginal role in flowering (Kim et al., 2013a).

Expression and phenotypic analyses of cdf1235, gi cdf1235, 
as well as aba1 elf3 mutants collectively suggest that ABA 
promotes GI and CO signalling upstream of the florigen 
genes. CO function is essential for the drought-dependent 
activation of FT (but not TSF) as demonstrated by the lack 
of FT accumulation in co mutants under drought conditions. 
Therefore, although we could not resolve the underlying 
molecular mechanism, our data underscore a regulatory role 

Fig. 6. The inhibitory role of ABA in flowering requires SOC1. (A and B) Real-time qPCR of SOC1 (A) and FLC (B) transcripts in 2-week-old wild-type (Ler) 
and abi1-1 seedlings. The experimental conditions were described in Fig. 5. ACT2 expression was used for normalization; error bars represent the SD of 
two technical replicates. A representative experiment of two biological replicates is shown. (C and D) Mean number of rosette leaves of the wild type (Ler) 
and mutants grown under SDs (C) or LDs (D). Error bars represent ±SE n=15. Differences between the wild type versus abi1-1 and soc1-1 versus soc1-1 
abi1-1 double mutants are here highlighted with P-values ≤0.001 (***), ≤0.01 (**), >0.05 not significant (NS), one-way ANOVA with Tukey’s HSD (honestly 
significant difference) test. (E) Model summarizing the proposed modes of ABA action in flowering. In the leaves, under LDs, drought promotes ABA 
accumulation leading to enhanced GI signalling and activation of florigen genes. CO protein is required for FT up-regulation, but not TSF. At the same 
time, at the shoot apex ABA represses flowering, downplaying SOC1 signalling, independent of photoperiodic conditions.
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for ABA in stimulating photoperiodic signalling. In further 
support of this model, 35S::GI plants under SDs generate 
a DE response, suggesting drought/ABA acting indepen-
dently of GI transcript accumulation. Secondly, we observe 
a strong reduction in accumulation of florigen transcripts 
in abi1-1 35S::GI compared with 35S::GI plants. Thirdly, 
the pattern of CO accumulation in abi1-1 or abi1-1 35S::GI 
plants is unaltered compared with their respective controls, 
as opposed to the florigen levels, which are very low. In the 
light of our results, abi1-1 protein appears to affect a specific 
aspect of GI function (the activation of FT) without produc-
ing significant effects on the transcriptional profile of CO 
accumulation. Previous studies have demonstrated geneti-
cally separable roles for GI in regulating the circadian clock 
and flowering (Mizoguchi et  al., 2005; Martin-Tryon et  al., 
2007) which could reflect distinct biochemical activities for 
GI in these two pathways. ABA might thus control a novel 
biochemical function of GI.

GI is found at different promoter locations of FT in asso-
ciation with transcriptional repressors including SHORT 
VEGETATIVE PHASE and TEMPRANILLO (Sawa and 
Kay, 2011). A  substrate of the GI–FKF1 complex, CDF1, 
also binds to the FT promoter and acts as a transcriptional 
repressor (Sawa et  al., 2007). Furthermore, by activating 
miR172 expression, GI directs post-transcriptional gene 
silencing of the AP2-type transcriptional repressors of FT 
(Jung et  al., 2007). Overexpression of a miR172-related 
miRNA of soybean facilitates the DE response, promotes FT 
accumulation under drought conditions, and increases ABA 
sensitivity of Arabidopsis (Li et al., 2016). Thus, one role of 
GI could be to favour the recruitment of CO at the FT pro-
moter by promoting the proteasome-dependent degradation 
or the post-transcriptional gene silencing of transcriptional 
repressors (such as AP2-like) in an ABA-dependent manner. 
Another, not mutually exclusive, model is that the combined 
presence of GI and ABA alters the pattern of CO protein 
accumulation during the day through an unknown mecha-
nism. In addition to these post-transcriptional effects, there 
is evidence for other layers of transcriptional regulation of 
CO exerted by drought/ABA (Fig. 2C) (Koops et al., 2011; 
Ito et al., 2012; P. Wang et al., 2013; Yoshida et al., 2014). 
The contribution of these regulatory nodes to DE will require 
further studies. Regardless of the mechanisms involved and 
considering the role of the circadian clock in the control of 
ABA accumulation and response (Fukushima et al., 2009), 
our results suggest that daily variations in ABA signalling 
may represent a further layer of regulation of CO protein 
function.

Different modes of regulation of FT and TSF by 
drought

While FT and TSF share a common mechanism of tran-
scriptional regulation through the photoperiodic pathway 
(Yamaguchi et al., 2005; Jang et al., 2009), they also display 
clear differences in their pattern of expression (Yamaguchi 
et al., 2005), response to ambient temperature (Blázquez et al., 
2003), and other kinds of regulation (Michaels et al., 2005; 

D’Aloia et al., 2011; Liu et al., 2014). In this work, we report 
variations in the transcriptional activations of TSF and FT in 
response to drought. Our expression studies on co-10 mutants 
revealed that the expression of TSF, but not FT, is strongly 
induced by drought, even in the absence of functional CO. 
Previously we proposed a model whereby photoperiod-stim-
ulated GI protein triggers a DE response via activation of 
the florigen genes, independent of CO (Riboni et al., 2013). 
Based on our new results, this model only applies to TSF reg-
ulation, not FT. The DE response observed in the co mutants 
could therefore derive from residual TSF expression, which 
still depends on GI (Riboni et al., 2013). Examples of GI act-
ing independently of CO in activating the florigen genes have 
been described in the literature, but how these mechanisms 
are related to ABA signalling is unknown (Kim et al., 2005; 
Mizoguchi et  al., 2005; Sawa and Kay, 2011). Other hor-
mones modulate the expression of the florigen genes without 
an apparent contribution of CO. Cytokinin can induce the 
transcriptional activation of TSF, but not FT, irrespective of 
photoperiod conditions (D’Aloia et al., 2011). Foliar applica-
tions of gibberellins under SDs promote flowering, at least 
in part through FT ad TSF and without a clear effect on CO 
transcript accumulation (Porri et al., 2012). Similarly, there 
are examples of environmental cues activating FT, which do 
not fully require the activity of CO or GI, namely under ele-
vated ambient temperature (Balasubramanian et  al., 2006). 
Here, we demonstrate that the activation of TSF can occur 
in the absence of CO under drought conditions but, unlike 
the previous examples, such activation requires GI (Riboni 
et al., 2013).

Multiple and contrasting roles of ABA in flowering

The role of ABA during the floral transitions is contro-
versial, as both positive and negative effects of ABA have 
been reported (Domagalska et al., 2010; Conti et al., 2014). 
Depending on the site of application, ABA exerts opposite 
roles in flowering. Unlike leaf applications, we show that root 
applications of ABA promote flowering, consistent with pre-
vious data (Koops et al., 2011). Also, this treatment largely 
rescues the late flowering of ABA biosynthetic mutants. In 
the light of these results, root applications fully mimic the 
positive role of endogenous ABA in flowering.

Impairing the function of ABA-activated kinases 
SnRK2.2/2.3/2.6 results in early flowering, especially under SDs, 
supporting a negative role for ABA in flowering (P. Wang et al., 
2013). Arguing against a direct negative role of the SnRK2s 
in the flowering network, overexpression of SnRK2.6/OST1 
causes a small flowering acceleration under LDs, not a delay 
(Zheng et al., 2010). The negative role of ABA in flowering has 
been linked to the direct activation of FLC by ABA-stimulated 
bZIP transcriptional factor ABSCISIC ACID-INSENSITIVE 
5 (ABI5) and AP2/ERF domain-containing transcription fac-
tor ABSCISIC ACID-INSENSITIVE 4 (ABI4) (Y. Wang et al., 
2013; Shu et al., 2016). Such activation of FLC may account for 
the general reduction in FT transcript accumulation following 
exogenous ABA applications on leaves (Hoth et al., 2002). The 
study of abi1-1 plants under SDs supports this negative effect 
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of ABA in flowering. ABA-deficient mutants do not produce 
similar flowering alterations under SDs, which could depend on 
ABA biosynthetic mutants still producing a sufficient amount 
of biologically active ABA (Léon-Kloosterziel et  al., 1996). 
The early flowering of abi1-1 plants in SDs can be completely 
suppressed by mutations in SOC1, a floral integrator activat-
ing flowering in the SAM (Searle et al., 2006). Elevated levels 
of SOC1 transcript in abi1-1 mutants also suggest a negative 
role for ABA in SOC1 expression, perhaps mediated by FLC 
(Fig.  6A, B). The proposed positive role of ABA-activated 
ABI5 on FLC transcriptional activation is consistent with this 
model (Y. Wang et al., 2013).

abi1-1 plants do not present obvious flowering phenotypes 
under LDs despite impaired photoperiod-dependent accumu-
lation of FT. We thus propose that the abi1-1 mutants compen-
sate for their defects in FT up-regulation with increased SOC1 
signalling. The late flowering phenotype of abi1-1 soc1-1 com-
pared with soc1-1 under LDs is consistent with ABA playing 
antagonistic and spatially distinct roles in flowering, through 
the transcriptional activation of the florigen genes in the leaves 
and the repression of SOC1 action in the shoot.

In addition to the ABA-dependent negative regulation 
of flowering, an ABA-independent floral repression mecha-
nism emerged from the study of abi1-1 plants. Under LDs, 
mutants of abi1-1 exhibit a late flowering phenotype under 
drought stress, which is even more severe than aba1 plants. We 
observed an even more pronounced delay in flowering under 
SDs in abi1-1 35S::GI plants upon drought stress compared 
with 35S::GI. We interpret these results to indicate that the 
defects in florigen up-regulation of abi1-1 contribute to the 
late flowering of abi1-1 under drought stress. However, the 
levels of florigen expression in abi1-1 were generally also low 
under normal watering conditions. Therefore, we hypothesize 
a further layer of negative regulation of flowering, which is 
triggered by drought stress and is probably independent of 
ABA (as it occurs in abi1-1 plants). Both flowering-repressive 
mechanisms, the ABA-dependent and the ABA-independent 
mechanism, can be largely overcome under LDs, upon migra-
tion of the florigen protein in the SAM.

In conclusion, Arabidopsis plants have independent and 
contrasting mechanisms to modulate flowering according 
to water inputs; ABA stimulates GI and CO signalling to 
boost FT activation. Under drought conditions TSF activa-
tion is independent of CO and requires photoactivated GI. 
Simultaneously, ABA negatively regulates flowering through a 
pathway that requires SOC1 (Fig. 6E), perhaps in conjunction 
with an ABA-independent type of regulation. Integration of 
these pathways in the SAM may provide plants with a flexible 
control of reproductive development under water stress and 
maximization of reproductive success.
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