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This paper deals with the critical issue of approximating the pre-exponential factor in semiclas-
sical molecular dynamics. The pre-exponential factor is important because it accounts for the
quantum contribution to the semiclassical propagator of the classical Feynman path fluctuations.
Pre-exponential factor approximations are necessary when chaotic or complex systems are simulated.
We introduced pre-exponential factor approximations based either on analytical considerations or
numerical regularization. The approximations are tested for power spectrum calculations of more and
more chaotic model systems and on several molecules, for which exact quantum mechanical values
are available. The results show that the pre-exponential factor approximations introduced are accurate
enough to be safely employed for semiclassical simulations of complex systems. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4964308]

I. INTRODUCTION

Semiclassical (SC) molecular dynamics is a well
established molecular dynamics approach for including all
quantum effects starting from classical trajectories.1–3 Since its
introduction,4 the Semiclassical Initial Value Representation
(SC-IVR) formulation of the semiclassical propagator in the
coherent state representations5–7 has become a molecular
dynamics tool that embodies accuracy and, at the same time,
practicability.8–28 SC-IVR depends only on local potential
and it is very promising for the future, since it has been
implemented with “on the fly” direct molecular dynamics
approaches,29–36 allowing for calculations when an analytical
fitting of the Potential Energy Surface (PES) is not possible.
This aspect is fundamental when pursuing the simulation
of complex systems, where the high number of degrees
of freedom does not allow for a compact analytical PES
formulation.37–44

The main stumbling block of the SC-IVR propagator
is represented by the pre-exponential factor, which we will
describe below. Several approximations have been employed
in the past to obviate this limitation. Analytical considerations
include the linearization of the propagator (LSC-IVR) that
can be derived also using Wigner’s transform of the quantum
operators involved,19,45–51 the interaction picture,40,52 or the
Forward-Backward (FB) SC-IVR approximation, which is
suitable for correlation function calculations.17,53–55 Also,
the pre-exponential factor can be partially suppressed in a
series expansion of the propagator,15,56,57 or totally suppressed
in the amplitude-free quasicorrelation function.58 Numerical
considerations lead to the introduction of filtering techniques,
such as the one by Filinov54,59 or the time averaging one
in the instance of spectroscopic calculations.27,29–33,60–64

Considering that during “on the fly” direct dynamics
semiclassical simulations, the calculation of the Hessian,
necessary at each time-step for the pre-exponential factor

a)michele.ceotto@unimi.it

calculation, is the computational time bottleneck, a compact
finite difference (CFD) numerical approximation for the
Hessian has also been implemented.32,61

In this paper, after introducing the origin and the
physical importance of the semiclassical pre-exponential
factor, we extensively test different approximations to the
pre-exponential factor and introduce new ones. The tests
are performed on both artificial chaotic systems and real
molecules, in order to give a complete overview of the range
of applicability of the approximations and provide a reliable
tool for complex system simulations. Sec. II presents the
motivations of this work and Section III recalls the SC-
IVR expression for power spectra calculations. Section IV
illustrates the adiabatic approximation of the pre-exponential
prefactor, which still implies the numerical integration of
the pre-exponential factor components. Section V recalls the
“poor person’s” approximation. Section VI formulates the
log-derivative representation of the pre-exponential factor
which leads to a set of approximations like the harmonic
approximation (Section VI A), Johnson’s approximation
(Section VI B), one approximation designed by Miller
(Section VI C) and, eventually, our new approximations
at the end of the same section. Numerical approximation
of the pre-exponential factor is presented in Section VII
and numerical tests follow in Section VIII, both for model
chaotic systems (Sections VIII A and VIII B) and molecules
(Sections VIII C–VIII F). Section IX concludes the paper.

II. MOTIVATION

In the Feynman’s path integral representation,65 the
quantum propagator going from the starting point q0 to the
final one qt is formulated as a collection of paths


qt

���e
−i Ĥ t/~���q0


=

 qt

q0

D [q (t)] eiSt[q0,qt]/~, (1)
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where St [q0,qt] is the action functional for time t andD [q (t)]
is the differential over all possible paths (even the infinity
length ones!). The main obstacle to the numerical integration
of Eq. (1) is given by the oscillatory integrand. A common

strategy is to approximate the integral (1) to the contribution
that comes from the paths where the phase is stationary,
i.e., δSt [q (t)] = 0, provided that starting and ending points
are fixed. In this case, Eq. (1) becomes


qt

���e
−i Ĥ t/~���q0


≈
 qt

q0

D [q (t)] exp


i
~

(
Scl
t (q0,qt) + 1

2
δ2Scl

t (q0,qt)
δq(t)2 δq(t)2

)
, (2)

where the sum is now restricted to the classical paths from
q0 to qt and Scl

t (q0,qt) is the action of the classical paths.
It is important to stress that Eq. (2) is the embryo of several
semiclassical approximations and it accounts not only for
the classical paths contributions but also for the vicinity of
each path via second order path fluctuations. The goal of
this paper is to determine how important these fluctuations
are to “sew quantum mechanical flash onto classical
bones”65,66 and, thus, for an accurate quantum mechanics
description of molecular vibrations and molecular dynamics in
general.

By performing the integration in Eq. (2), the van Vleck
propagator is derived


qt

���e
−i Ĥ t/~���q0


≈


classical

paths


1

(2πi~)F
�����
−
∂2Scl

t (q0,qt)
∂qt∂q0

�����

× eiS
cl
t (q0,qt)/~−iνπ/2 (3)

=


classical
paths


1

(2πi~)F
�����
∂qt

∂p0

�����

−1

× eiS
cl
t (q0,qt)/~−iνπ/2, (4)

where the integral is now a sum over all classical trajectories
going from q0 with initial momentum p0 to qt in an amount
of time t for F degrees of freedom. ν is the Maslov
or Morse index and it takes into account the number of
times along each trajectory that the determinant in Eq. (3)
diverges. The square root in Eq. (3) is usually termed as
the “semiclassical pre-exponential factor” and it embodies
the second order path-fluctuations of Eq. (2). Unfortunately
Eq. (3) is plagued by the improbable task of finding
classical trajectories with fixed boundary values and the
integrand diverges whenever the determinant is zero. The
semiclassical “Initial Value Representation” (SC-IVR) trick
introduced by Miller4 avoids these issues by writing the
wavefunction evolution in terms of the classical paths and
the sum over the classical paths as a phase space integration
which includes the Jacobian accounting for the change of
variable


χ
���e
−i Ĥ t/~��� χ


≈
 

dp0dq0


1

(2πi~)F
�����
∂qt

∂p0

�����

× χ∗ (qt) χ (q0) eiS
cl
t (q0,p0)/~−iνπ/2. (5)

In Eq. (5), no root search is required and the zero
of the determinant at caustics is not a numerical issue
anymore. The second order path-fluctuations are now
represented by the square root term in Eq. (5), which
quantifies how much the final position depends on the initial
momentum.

A natural representation of the wavefunction in Eq. (5) is
given by coherent states of the type

⟨x |ptqt ⟩ =
(

det(γ)
πF

) 1
4

e−
1
2 (x−qt)Tγ(x−qt)+ i

~ pTt (x−qt), (6)

where γ is the coherent state width diagonal matrix containing
time-independent coefficients. This frozen Gaussian-dressed
semiclassical dynamics idea was introduced by Heller5 and
later implemented by Herman and Kluk6 and Kay,7 in the case
of the SC-IVR propagator of Eq. (5). The final expression for
the quantum propagator is

χ
���e
−i Ĥ t/~��� χ


≈

(
1

2π~

)F 
dp0dq0Ct (p0,q0)

× e
i
~ St(p0,q0) ⟨χ |ptqt⟩ ⟨p0q0| χ⟩ , (7)

where we have dropped “cl” for the classical action St (p0,q0)
and the original second order path-fluctuation of Eq. (2) is
now equal to

Ct (p0,q0)

=


det


1
2

(
Mqq +

1
γ

Mppγ +
i
~γ

Mpq +
~

i
Mqpγ

)
, (8)

where Mqq, etc., are elements of the F × F monodromy (or
stability) matrix67

M (t) ≡ *
,

Mpp Mpq

Mqp Mqq
+
-
= *
,

∂pt/∂p0 ∂pt/∂q0

∂qt/∂p0 ∂qt/∂q0

+
-
. (9)

In a system following the classical Hamilton equations of
motion for (pt,qt), as enforced by the stationary condition
of the action St (p0,q0) of Eq. (2), the evolution of the
monodromy matrix in Eq. (9) is

d
dt

M (t) = *
,

0 −Kt

m−1 0
+
-

M (t) , (10)

where Kt = ∂2V (qt) /∂q2
t is the local Hessian, V (qt) is the

potential of the system, and m−1 is the inverse of the mass
tensor and it is equal to the identity in mass-scaled coordinates.
The SC-IVR of Eq. (7) has been successfully employed in
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many fields using several variants. It provides a globally
uniform asymptotic approximation to the quantum propagator.
Each monodromy matrix element describes the dependency
of the phase space trajectory (pt,qt) with respect to its
initial conditions (p0,q0). Thus, the matrix M is the classical
representation of the quantum fluctuations about a classical
trajectory.68 Unfortunately, the semiclassical pre-exponential
factor poses two main serious issues for the application of the
SC-IVR propagator to complex systems. First, the calculation
of Ct (p0,q0) represents the bottleneck as the dimensionality
of the problem increases, because the numerical effort per
trajectory has an unfavorable scaling with respect to the
number of degrees of freedom. Then, for chaotic dynamics,
the monodromy matrix elements become exponentially large,
with the exponent being the Lyapunov number, which is
needed to properly account for the strong dependency on
the initial conditions. This amplifies the oscillatory behavior
of the phase space integrand and undermines the accuracy
and feasibility of any numerical approach to evaluate the
phase space integration necessary to obtain the semiclassical
propagator.69 The only way out rather than exponentially
improving the number of trajectories to have the chaotic
trajectories contribution mutually cancelled70 is to find
reasonable approximations for the calculation of Ct (p0,q0).
The goal of this paper is to provide suitable approximations
to avoid the pre-exponential factor to become huge. However,
such an approximation cannot simply consist of the complete
neglect of the pre-exponential factor, which would generally
be a very rough and so not desirable approximation. In fact, in
the ~ expansion of the Schroedinger equation solution given
by Miller and Kay,9 the semiclassical propagator (and thus the
pre-exponential factor) appears at zeroth order. Furthermore,
also in the perturbation approach of Pollak and co-workers,
Ct (p0,q0) turns out already in the unperturbated zero order
term.71

Kay70 has proposed to simply remove the trajectories that
are unstable and that cause the trouble, whenever along the
evolution

|Ct (p0,q0)|2 ≥ Dt, (11)

where Dt is a time dependent or independent quantity. One
can choose Dt according to the target value. In our cases, the
target values are the vibrational energy levels and a Dt equal to
the number of trajectories does not perturb our results. In this
procedure, discarded trajectories still contribute to the Monte
Carlo phase space integration at times preceding the rejection.
Thus, also chaotic trajectories contribute to the propagator,
but at shorter times. When rejecting trajectories in the Monte
Carlo integration of Eq. (7), one should ask himself if enough
trajectories would survive the removal process to provide
any useful semiclassical information. Miller and coworkers72

came up with a numerical approach borrowed from quantum
scattering calculations. They formulate the pre-exponential
factor evolution in terms of log-derivative quantities. On one
hand, this approach avoids the branch cut problem which
has hampered other formulations. On the other, the numerical
issues induced by the chaotic dynamics still remains. Another
possible solution is the “poor person’s” approximation.73

Here, the pre-exponential factor is taken to be constant

with respect to the phase space Monte Carlo integration and
approximated to the one of the most probable trajectory,
according to the Husimi distribution of the integrand in
Eq. (7).

Unfortunately, none of these procedures completely
eliminate the problems arising from chaotic trajectories and
practical schemes need to be developed in order to adopt the
semiclassical propagator for obtaining quantum information
of complex systems. The present work tests previous
approximations of the pre-exponential factor Ct (p0,q0) and
proposes new and more efficient ones, and shows advantages
with regard to previous approximations.

III. SC-IVR EXPRESSION FOR POWER
SPECTRUM CALCULATIONS

In this paper, the accuracy of the pre-exponential factor
approximations will be tested by looking at the power
spectrum I (E) of several models and molecular systems.
I (E) is defined as

I (E) ≡ 

χ
�
δ
�
Ĥ − E

��
χ
�

=
1

2π~

 +∞

−∞


χ
���e
−i Ĥ t/~��� χ


eiEt/~dt, (12)

where | χ⟩ is a reference state of the type
�
peqqeq

�
and

Ĥ is the Hamiltonian of the system. We choose qeq to
be the global minimum position vector with respect to
the potential energy of Ĥ and peq is taken such that
p2

eq, j/2m = ~ω j (n + 1/2), whereω j is the frequency of the j-th
normal mode. The semiclassical expression of


χ
���e
−i Ĥ t/~��� χ


is reported in Eq. (7) and the matrix γ of (6) is taken to
be diagonal and constant in time, with γ j = mω j/~ for the
j-th mode. The SC-IVR expression for the power spectrum
calculations is obtained by substituting Eq. (7) into Eq. (12) to
obtain

I (E) = 1
2π~

 +∞

−∞
dt


dp0dq0 eiEt/~

(
1

2π~

)F
×Ct (p0,q0) e

i
~ St(p0,q0) ⟨χ |ptqt⟩ ⟨p0q0| χ⟩ . (13)

Several approaches have been introduced to speed up
the phase space integration of Eq. (13).29,53,60,74 Here we
employ the time-averaging filter to reduce the number of
phase space trajectories needed for the convergence of Monte
Carlo integration. An additional time integration is inserted
in Eq. (13), and the phase space average is performed for
a time-averaged integrand. After approximating the pre-
exponential factor as Ct (p0,q0) = exp [iφ (t) /~], the following
time averaged semiclassical expression for the power spectrum
of Eq. (13) can be obtained:

I (E) =
(

1
2π~

)F 
dp0dq0

1
2π~T

×
�����

 T

0
dte

i
~ [St(p0,q0)+Et+φ(t)] ⟨χ |ptqt ⟩

�����

2

. (14)

Clearly, the longer the time-averaging T is, the greater is the
advantage of the time filter.
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IV. THE ADIABATIC PRE-EXPONENTIAL
FACTOR APPROXIMATION

The idea of the adiabatic approximation of the pre-
exponential factor Ct (p0,q0) by Miller and coworkers75,76 is
to assume that the monodromy matrix elements are adiabatic
with respect to each other. The instantaneous normal mode
framework is enforced by the diagonalization of the Hessian
at each time step. First, the auxiliary variables,

Qt =Mqq − i~Mqpγ, (15)
Pt =Mpq − i~Mpp, γ (16)

are introduced, and the equations of motion of Pt and Qt are




Q̇t = Pt

Ṗt = −KtQt

, (17)

where initial conditions Q0 = 1 and P0 = −i~γ can be obtained
from Eqs. (9) and (10). Then, the pre-exponential factor of
Eq. (8) becomes

Ct (p0,q0) =


1
2F

det

Qt +

i
~γ

Pt


. (18)

This formulation is still exact. The set of instantaneous mass-
scaled normal mode coordinates is calculated at each time
step by the matrix Ut such that

U†tKtUt ≡ ω2
t , (19)

where ω2
t is the instantaneous diagonal Hessian matrix. In

the adiabatic approximation the time derivatives of Ut are
neglected and the new transformed matrices,

Q̃t ≡ U†tQtUt, (20)

P̃t ≡ U†tPtUt, (21)

remain diagonal at all times t. The system of equations (17)
for the new variables of Eqs. (20) and (21) becomes a set
of F-independent one-dimensional second-order differential
equations. Finally, the expression of the pre-exponential factor
in the adiabatic approximation is

Ct (p0,q0) ≈
 F

j

1
2

(
Q̃t ( j, j) + i

~γ
P̃t ( j, j)

)
, (22)

where Q̃t ( j, j) and P̃t ( j, j) are the diagonal elements of the
matrices, respectively, defined in Eqs. (20) and (21) and
evolved according to Eq. (17). This approximation should be
good as far as each frequency ω j, t of the j-th mode is well
separated and modes are not strongly coupled, i.e., adiabatic
with respect to each other. The opposite situation, the diabatic
limit, when frequencies are in resonance, is also favorable to
the adiabatic approximation, since the instantaneous normal
mode diagonalization can fit a local adiabatic representation.
The intermediate cases, where coupling cannot be removed,
are the worse case scenario for the adiabatic approximation.

The basic advantage of this approximation is to reduce
the computational cost. However, integration of Eq. (17) is
still sensitive to the initial conditions and problems related to
chaotic dynamics will hinder a straightforward application of
Eq. (22).

V. THE “POOR PERSON’S” APPROXIMATION

A more drastic approximation is the “poor person’s”
one, that we will abbreviate as “PPs.”73 This approximation is
motivated by the observation that the approximated propagator
should (i) be exact for harmonic systems, (ii) be not very
sensitive to the choice of the coherent states width parameter,
(ii) be local in the potential, and (iv) retain normalization.
Given the conditions (i)-(iv), the approximation should also
save computational time, making complex system simulations
possible. The PPs formulation approximates Eq. (7) as
χ
���e
−i Ĥ t/~��� χ


≈

(
1

2π~

)F
Ct

�
peq,qeq

� 
dp0dq0e

i
~ St(p0,q0)

×


χ
�
peq,qeq

� |ptqt⟩ ⟨p0q0| χ �
peq,qeq

��
, (23)

where the phase point
�
peq,qeq

�
is the location of the coherent

reference state | χ⟩ and the center of the Husimi distribution
employed for the Monte Carlo phase space sampling. In this
way, the pre-exponential factor Ct is calculated for a single
(and the most probable) trajectory and enforced on all the
others. Eq. (23) is exact for the harmonic oscillator, where
Ct does not depend on the phase space initial coordinates.
The monodromy matrix still needs to be calculated for the
trajectory starting at

�
peq,qeq

�
and the approximation cannot

be applied when the system is so chaotic that the monodromy
matrix of that single trajectory cannot be evolved. The PPs
approximation is particularly advantageous for “on the fly”
simulations, where the Hessian calculation is very demanding.

VI. THE LOG-DERIVATIVE FORMULATION
OF THE PRE-EXPONENTIAL FACTOR
AND ITS APPROXIMATIONS

To overcome the numerical issues of the monodromy
matrix evolution described above, Miller and co-workers
wrote the evolution of the pre-exponential factor Ct (p0,q0)
using the log-derivative formulation.72 The log-derivative
matrix Rt is defined by

Rt =
Q̇t

Qt
=

Pt

Qt
(24)

and it is properly defined since det (Qt) is never zero.7,70 The
pre-exponential factor can now be written as

Ct (p0,q0) =


det


1
2

(
I +

i
~γ

Rt

)
e

1
2
 t

0 dτTr[Rτ] (25)

and one is left with the calculation of the matrix Rt at each
time step. By deriving Eq. (24) on both sides with respect to
time and using Eq. (17), the equation of motion

Ṙt = −Kt − R2
t (26)

is what must be solved for the calculation of the pre-
exponential factor. No approximation has been introduced so
far and Eq. (25) is an exact formulation of the pre-exponential
factor. The issues related to the stability matrix for chaotic
systems are hidden inside the integration of the Riccati’s
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equation (26). A possible simplification is to assume that
the force constant matrix Kt is slowly varying and one can
set the square root in Eq. (25) equal to unity. However, this
approximation does not remove the numerical issues related
to chaotic motion. For these reasons, one should better employ
the following approximations.

A. The Harmonic approximation

This is a crude approximation which is equivalent to take
at any time in Eq. (26),

Kt ≈ K0 = ω2
0, (27)

where ω2
o are the diagonal Hessian matrix elements at

equilibrium position. Since, for harmonic oscillators, the
coherent state width matrix γ is constant and equal to mω0/~,
the solution of Eq. (26) is analytical

Rt = −~γ
i + tan (~γt)
1 − itan (~γt) = −i~γ (28)

and the pre-exponential factor is approximated as

Ct (p0,q0) = e−i~
F

j=1γ j t/2
= e−i

F
j=1ω0, j t/2

, (29)

where ω0, j is the harmonic frequency of the j-th mode. The
same result can be obtained by inserting K0 into Eq. (10) and
solving the set of differential equations.

B. The Johnson multichannel approximation

To improve the accuracy of the harmonic approximation,
one can naively replace in Eq. (29) ω0, jt with

 t

0 ωτ, jdτ,
i.e., the initial harmonic frequencies with instantaneous ones
and consider the integral over time. A more elegant way to
reach the same conclusion is to assume that the term Ṙt in
Eq. (26) can be disregarded since the log-derivative matrix Rt

is much more slowly variant than Qt. The equation solution
of Eq. (26) becomes

Rt = −i


Kt, (30)

where the minus sign has been chosen to satisfy the initial
conditions R0 = −i~γ. By inserting Eq. (30) into Eq. (25), the
following approximation is obtained:

Ct (p0,q0) =


det


1
2

(
I +
√

Kt

~γ

)
e−i

 t
0 Tr(√Kτ)dτ/2. (31)

The pre-exponential term in Eq. (31) is also slowly variant
and by approximating each matrix element ratio

ωt, j

~γ j
≈ 1 (32)

the Johnson’s “multichannel WKB” approximation of the
semiclassical pre-exponential factor is derived,

Ct (p0,q0) ≈ exp

− i
~

 t

0

F
j=1

(
~

2
ωτ, j

)
dτ


. (33)

Eq. (33) approximates the pre-exponential factor as the
phase arising from the local zero-point energy along the

trajectory. This approximation has already been employed in
the past.36,77–80

C. A recursive perturbative approach

A possible accuracy improvement of Sec. VI A is the
following perturbative approach. We initially follow Miller
and co-workers,72 and we assume that Rt is given by the
harmonic value in Eq. (28) corrected by a perturbation term ε,

Rt = −i~γ + ε . (34)

By inserting (34) into the Riccati’s equation (26), and
assuming the perturbation constant in time, i.e., ε̇ ≈ 0,

−Kt + ~
2γ2 = ε2 − 2i~γε (35)

and neglecting the higher order terms in ε, the following
expression for the perturbation term is obtained:

ε = − i
2

(
Kt

~γ
− ~γ

)
. (36)

The resulting approximation of the log-derivative ma-
trix (24) is

R(1)
t = −

i
2

(
~γ +

Kt

~γ

)
, (37)

as previously suggested by Miller.72 Eq. (37) will provide
the approximate pre-exponential factor once inserted into
Eq. (25). Since the Hessian Kt is always real, the expression
of R(1)

t in Eq. (37) is purely imaginary. This pre-exponential
factor approximation mainly differs from the harmonic (29)
and Johnson’s (33) ones in the exponential term, which is
linearly dependent on the Hessian.

We now want to systematically improve the approxima-
tion (37). The idea is to use Eq. (37) as a more accurate solution
than the harmonic one (28), insert it into the Riccati equation,
and obtain a new perturbative correction. A new solution will
be obtained by iteratively using the new correction as an initial
guess. We start by inserting

R(2)
t = R(1)

t + ε = −
i
2


Kt

~γ
+ ~γ


+ ε (38)

into (26), and disregard higher order and time-derivative terms
of ϵ and Hessian time-derivatives. We obtain the following
equation:

0 =
1
4

(
~2γ2 +

K2
t

~2γ2 + 2Kt

)
+ iε

(
Kt

~γ
+ ~γ

)
−Kt (39)

which brings

ε =
i
4

(
~γ − Kt

~γ

)2

Kt
~γ + ~γ

. (40)

Then, the substitution of Eq. (40) into Eq. (38) provides the
expression

R(2)
t = −

i
2


Kt

~γ
+ ~γ


+

i
4

(
~γ − Kt

~γ

)2(
~γ + Kt

~γ

) . (41)
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Again, this solution is purely imaginary and the dependence
on the Hessian matrix is more complex than previous ones.
Eq. (41) is better written in terms of R(1)

t as

R(2)
t = R(1)

t +
1
23

(
~γ − Kt

~γ

)2

R(1)
t

. (42)

We can now look for the next order R(3)
t = R(2)

t + ε by inserting
this guess into the Riccati’s equation, take zero time derivative
for Kt and ε as usual, and disregarding the higher order
perturbation terms, we obtain

R(3)
t = R(2)

t −
1
27

(
~γ − Kt

~γ

)4

R(1)2
t R(2)

t

(43)

and, in the same fashion, one can find

R(4)
t = R(3)

t +
1

215

(
~γ − Kt

~γ

)8

R(1)4
t R(2)2

t R(3)
t

. (44)

By induction, the final n-order correction of the harmonic
log-derivative matrix is in closed form equal to

R(n)
t = R(n−1)

t +
(−)n

2(2n−1)

(
~γ − Kt

~γ

)2(n−1)

Πn−2
j=0

(
R(n−1− j)

t

)2 j
. (45)

We stress that Eq. (45) is not the formal solution of the
Riccati equation (26), even if it is a closed form for an
n-th order perturbation correction, because it was assumed
that the Hessian is constant, i.e., K̇t ≈ 0, throughout the
derivation.

VII. NUMERICAL APPROXIMATIONS

An alternative route with respect to the analytical
approximations presented in Secs. IV–VI, is to perform
numerical approximations. We consider two possibilities,
the log-derivative symplectic integrator and the monodromy
matrix regularization. We employ either one of these
numerical approximations as an alternative to the analytical
approximations.

A. Log-derivative symplectic integration

Another approach to solve the evolution of the
monodromy matrix elements in the presence of chaos is
to employ high order numerical algorithms. We usually
employ the 4th order symplectic algorithm described in
the Appendix of Ref. 18(c), and originally due to Calvo
and Sanz-Serna,81 to solve Eq. (10). One can similarly use
such an accurate algorithm to solve the Riccati equation
instead. Manolopoulos and Gray82 showed that the system of
equations




Xk = Rk−1 + bkKk∆t
Rk = [I + akXk∆t]−1Xk

, (46)

does this task when suitable coefficients ak and bk
82 are

employed (X is an auxiliary variable). We implemented

Eq. (46) in our calculations. The results indicate that
when the trajectory is experiencing a chaotic potential, the
numerical calculation of the log-derivative Rt cannot be
managed, similarly to the case of the monodromy matrix
elements.

B. Monodromy matrix regularization

Another route to deal with chaotic potentials is to
introduce an artificial and ad hoc numerical method to tame
the exponentially growing value of the monodromy matrix
elements. A possible procedure is to monitor the monodromy
elements at each time step. After the diagonalization of the
monodromy matrix, the degrees of freedom mostly responsible
for the chaotic behaviour can be identified by looking at their
complex eigenvalues. More specifically, each element of the
monodromy matrix can be written as

mi j = uikλku−1
k j , (47)

where uik and u−1
ik

are the elements of the U orthogonal matrix
that diagonalizes the monodromy matrix and the sum over
k is implied. The greater the modulus of an eigenvalue λs

is, the more sensitive to the initial conditions and chaotic
the s-degree of freedom is. Then, a brute force regularization
approach consists in setting either the most chaotic eigenvector
or eigenvalue or both equal to zero in the following
way:

Ũ−1 =
*...
,

· · · · · · · · ·
0 0 0
· · · · · · · · ·

+///
-

, Ũ =
*...
,

· · · 0 · · ·
· · · 0 · · ·
· · · 0 · · ·

+///
-

, (48)

where the s-th column and row is set to zero and a modified
diagonal matrix is obtained

Λ̃ =
*...
,

· · ·
0
· · ·

+///
-

(49)

by setting to zero the s-th diagonal element of the Λ
eigenvalues matrix. The criterion for setting the eigenvector
or the eigenvalue equal to zero is when |λs | ≥ ϵ thr, where
ϵ thr is an arbitrary positive number. Considering that for
unstable manifolds monodromy matrix eigenvalues are real,
this criterion can be directly applied by checking the absolute
value of the real eigenvalues. A tamed monodromy matrix M̃
suitable for time evolution is then obtained by transforming
back the modified eigenvalues matrix Λ̃ using the modified
orthogonal matrices Ũ,

M̃ = ŨΛ̃Ũ−1. (50)

A possible procedure for applying Eq. (50) is to monitor
the larger real eigenvalues and apply either Eq. (48) or (49)
or both whenever this is above ϵ thr. Numerical tests showed
either choice is equivalent. However, it may be necessary
to apply the regularization to more than a single degree of
freedom, when the system is very chaotic. We applied multiple
regularizations when a single one failed to limit numerical
divergence.
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VIII. NUMERICAL TESTS

To assess the accuracy of the pre-exponential factor
Ct (p0,q0) approximations introduced above, we consider
both chaotic model potentials, as well as real molecular
systems. The chaotic potentials are the bidimensional Henon-
Heiles potential83 and a bidimensional quartic potential.70,85

These examples are famously chaotic systems and their
accurate spectrum calculation represents a tough challenge
for semiclassical dynamics. Spectra have been calculated
using both Eq. (13) and the time-averaged expression of
Eq. (14). The second set of systems is represented by
molecules of growing dimensionality and complexity, i.e.,
H2O, CO2, H2CO, CH4, and CH2D2, and the spectra have
been calculated using Eq. (14). When the pre-exponential
factor is not approximated, the semiclassical trajectories are
rejected either if 1 − det

�
MT (t)M (t)� > 10−5, which is a quite

strict criterion for the accuracy of the monodromy matrix
M (t) evolution, or using Kay’s ad hoc method of Eq. (11).
Alternatively, when using the numerical regularization of
Subsection VII B, we tested different threshold values for
the highest monodromy matrix eigenvalue, and we found
out that ϵ thr = 1.15 × 103 is high enough to not perturb
vibrational spectra for both model and molecular systems.
This set of examples will allow the reader to fully appreciate
the accuracy of the approximations for future applications,
not only for models but also for real molecular systems.
In the following, unless specified, atomic units (~ = 1) are
adopted.

A. Bidimensional Henon-Heiles potential

Our first example of a model chaotic potential is the
bidimensional Henon-Heiles potential

V (x, y) = 1
2
�
x2 + y2� + λx2y − λ

3
y3, (51)

where the mass and the harmonic frequencies are taken to
be equal to unity. The λ parameter modulates the amount of
chaos added to the otherwise harmonic motion. There are four
stationary points for this potential. The minimum is at the
origin and the others are saddle points. We choose to look at
the power spectrum for two values of λ. One is λ = 0.118 03,
which is the same employed by others,54,83 and it represents a
soft chaos motion. The other is λ = 0.400 and it reproduces
a quite strongly chaotic motion, as far as we are aware never
considered before in semiclassical dynamics. For cases 1 and
2 below, the length of a typical semiclassical trajectory with
an approximated pre-exponential factor is 5000 time steps of
0.1 a.u. each. Semiclassical results are compared with exact
quantum mechanical Discrete Variable Representation (DVR)
calculations.84

1. Case 1: Soft chaos

The power spectrum is calculated employing Eq. (13)
and sampling 107 trajectories for the Monte Carlo integration,
which is already enough for convergence. The sampling is

performed such that the position center is set equal to the
equilibrium positions and the momentum center is located
at the first harmonic vibrational level, i.e., pj =


3~ω j in

mass-scaled coordinates, where ω j is the harmonic frequency
of the j-th mode. This choice is evident when observing that
the second and third peaks in Fig. 1 are the most intense
ones. The coupling λ = 0.118 03 is small and only 28% of the
trajectories are rejected using 1 − det

�
MT (t)M (t)� > 10−5,

while 26% using Kay’s criterion of Eq. (11), as it should be
for a soft chaotic regime. We find the two rejection criteria to
be very similar in terms of accuracy, shape of the spectra, and
number of rejected trajectories. Instead, 106 trajectories are
more than enough to converge the Monte Carlo integration for
the calculation of the spectra using Eq. (13) in conjunction
with the analytical and the numerical pre-exponential factor
approximations described above. Fig. 1 reports the power
spectra at the level of Eq. (13). The bottom spectra (a) are
calculated using the det

�
MT (t)M (t)� rejection criterion, while

(b) using Eq. (11). The two spectra are almost identical. As
far as the numerical regularization of Eq. (50) reported at
spectrum (c), the results are in very good agreement with
(a) and (b). Only 28% (the same percent of the determinant
rejection criterion) trajectories have been regularized and the
most chaotic one was tamed for 278 times out of 5000 steps.
Spectrum (d) is computed with the PPs pre-exponential factor
approximation of Section V, while spectrum (e) refers to the
harmonic pre-exponential factor of Section VI A. Spectrum
(f) is obtained by using R(1)

t approximation of Eq. (37), while

FIG. 1. SC-IVR spectra of a bidimensional Henon-Heiles potential with
λ = 0.118 03 using Eq. (13). (a) Black continuous lines are for the rejection
criterion 1−det

�
MT (t)M(t)� > 10−5; (b) dark green continuous lines for

the rejection method of Kay (11); (c) brown for the regularization of the
monodromy matrix (50); (d) maroon for the PPs approximation; (e) orange
for the harmonic pre-exponential factor approximation of Eq. (29); (f) light
green spectrum for the approximation in Eq. (37) R(1)

t ; (g) blue for the
pre-exponential factor reported in Eq. (41) R(2)

t , and (h) cyan for Eq. (43)
R(3)
t . Exact quantum mechanical values are indicated by the vertical magenta

lines with a height which is equal to the square of the overlap between the SC
reference state and the exact eigenstate calculated by DVR.
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TABLE I. Power spectrum of the Henon-Heiles potential with λ = 0.118 03. Comparison between results (in
atomic units) obtained using Eq. (13) at different levels of approximation. From left to right: Exact DVR values,
SC-IVR values using the rejection criterion 1−det

�
MT (t)M(t)� > 10−5, SC-IVR calculation using the ad hoc

Kay’s rejection method of Eq. (11), SC-IVR calculation using the monodromy matrix regularization (50), the
PPs approximation (23), the harmonic approximation (29), R(1)

t approximation (37), and our approximations of
Eqs. (41) and (43). In the last row the Mean Average Errors (MAE) are reported.

Exact SC-IVR Kay’s method Regularization PPs HO R(1)
t R(2)

t R(3)
t

0.998 0.995 0.995 0.995 0.971 1.003 1.003 0.998 0.998
1.989 1.987 1.987 1.987 1.974 2.004 2.004 1.994 1.994
1.989 1.987 1.987 1.987 1.974 2.004 2.004 1.994 1.994
2.951 2.947 2.948 2.948 2.948 2.979 2.979 2.962 2.961
2.984 2.983 2.983 2.983 2.980 3.012 3.012 2.995 2.994
2.984 2.983 2.983 2.983 2.980 3.012 3.012 2.995 2.994
3.917 3.92 3.920 3.920 3.920 3.958 3.958 3.931 3.931
3.918 3.92 3.920 3.920 3.920 3.958 3.958 3.931 3.931
3.980 3.982 3.982 3.983 3.995 4.025 4.025 4.000 3.999
3.984 3.982 3.982 3.983 3.995 4.025 4.025 4.000 3.999
4.856 4.873 4.873 4.874 4.876 4.907 4.907 4.868 4.864
4.888 4.889 4.889 4.889 4.910 4.942 4.942 4.906 4.903
4.888 4.889 4.889 4.889 4.910 4.942 4.942 4.906 4.903
4.985 4.985 4.985 4.986 5.009 5.041 5.041 5.008 5.007
4.985 4.985 4.985 4.986 5.009 5.041 5.041 5.008 5.007
5.800 5.812 5.811 5.811 5.818 5.849 5.849 5.795 5.783
5.800 5.812 5.811 5.811 5.818 5.849 5.849 5.795 5.783
5.853 5.862 5.862 5.862 5.833 5.863 5.863 5.882 5.878
5.872 5.878 5.878 5.878 5.898 5.928 5.928 5.882 5.878

MAE 0.004 0.004 0.004 0.015 0.038 0.038 0.013 0.013

(g) and (h) derive from our ansatzs presented in Section VI C
and formulated in Eqs. (41) and (43), respectively. Fig. 1 shows
quite a good agreement, both in peak position and intensity
between all approximations and the SC-IVR results. The pre-
exponential factor approximations formulated in Eqs. (41)
and (43) work better than the harmonic and R(1)

t approxi-
mations. The Johnson approximation of Sec. VI B cannot
be applied for the Henon-Heiles potential because ω j, t in
Eq. (33) is often imaginary, making the exponential term too
large to be calculated (overflowing code error). The adiabatic
approximation could not be applied, since Eqs. (20) and (21)
are too chaotic and cannot be integrated numerically. The
computed energy levels are reported in Table I.

When using the time averaged power spectrum approx-
imation of Eq. (14), we run only 5000 trajectories after
verifying that 103 trajectories are enough to reach numerical
convergence. The results are reported in Fig. 2 at different
levels of approximation. The bottom spectra (a) and (b)
are calculated by using Eq. (14) and without any of the
pre-exponential factor approximations. Starting from the
bottom, (c) is performed by using Eq. (50), where 12%
of trajectories have been regularized and for the most chaotic
one Eq. (50) is employed 99 times. Spectrum (d) is at
the level of adiabatic approximation (see Section IV), the
spectrum (e) is computed with the PPs pre-exponential factor
approximation of Section V, (f) refers to the harmonic pre-
exponential factor of Section VI A, the (g) spectrum is
obtained by using R(1)

t approximation of Eq. (37), (h) and
(i) derive from our ansatzs presented in Section VI C and
formulated in Eq. (41) and Eq. (43). We observe a quite

good agreement between all approximations and the original
SC-IVR calculations, both in peak position and intensity. The
Johnson approximation cannot be applied also in this case.
In addition with respect to Fig. 1, we can apply the adiabatic
approximation, since less trajectories are required for the
time averaged spectrum. Table II confirms the accuracy of
the separable time-averaging SC-IVR (14) values reported in
the second column with respect to the exact ones in the first
column, calculated by DVR. For the soft chaos Henon-Heiles
power spectrum calculation, SC-IVR displays an energy mean
average error (MAE) which is about 1% of the zero point
value. The “Regularization” column shows that the artificial
numerical regularization of Eq. (50) is not influential again,
showing the negligible contribution of the chaotic trajectories
to the spectrum calculation of this system. In this case the
prefactor approximations have been tested on the top of the
separable approximation. All other columns report the results
with different pre-exponential factor approximations and they
should be compared with the SC-IVR ones. R(1)

t approximation
(37) and the harmonic oscillator one (29) are, as before,
quite similar and they usually overestimate the exact and
semiclassical results as expected, since they do not properly
account for anharmonicity. Also the PPs overestimates by
about the same amount. The adiabatic approximation (22)
in the fourth column is more accurate than the PPs, the
Harmonic, and R(1)

t ones, but still overestimates the original
SC-IVR values. Finally, the ansatzs of Eqs. (41) and (43)
are the better performing pre-exponential factor analytical
approximations and quite similar to the adiabatic one, where
no harmonic assumptions have been introduced.
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FIG. 2. TA-SC-IVR (Eq. (14)) spectra of a bidimensional Henon-Heiles
potential with λ = 0.118 03. (a) Black continuous lines are for semiclassical
spectra (14) using the rejection criterion 1−det

�
MT (t)M(t)� > 10−5; (b) dark

green continuous lines are for the rejection method of Kay (11); (c) brown
for the regularization of the monodromy matrix (50); (d) violet for the
adiabatic approximation in Eq. (22); (e) maroon for the PPs approximation;
(f) orange for the harmonic pre-exponential factor approximation (Eq. (29));
(g) light green spectrum for the approximation in Eq. (37) R(1)

t ; (h) blue
for the pre-exponential factor reported in Eq. (41) R(2)

t and (i) cyan for the
pre-exponential factor reported in Eq. (43) R(3)

t . Exact quantum mechanical
values are indicated by the vertical magenta lines with an height which is
equal to square of the overlap between the SC reference state |χ⟩ and the
exact eigenstate calculated by DVR.

2. Case 2: Strong chaos

We now look at a strong chaotic motion scenario by
increasing the value of the coupling term to λ = 0.4. For
this value of λ, states above the ground one are quasi-
bound and complex valued. Nevertheless, the SC-IVR can
reproduce the real part of the vibrational eigenvalues. In the
case of Eq. (13), due to the high rejection ratio, we sample
108 trajectories in conjunction with the det

�
MT (t)M (t)�

and Kay’s criterion, while 107 trajectories are more than
enough for the pre-exponential factor approximated spectra
calculation. The system is so chaotic that Eq. (50) could not
avoid the monodromy matrix elements numerical divergence
to infinity when applied either to the modulus of the biggest
real eigenvalue or to the moduli of the real eigenvalues greater
than ϵ thr. The PPs approximation lead to a spectrum which is
too noisy to find peaks, and for this reason we choose to do
not report it in Fig. 3. Each peak value is reported in Table III.

Again the two rejection criteria seem to lead to very
similar spectra. The present approximations show comparable
results and better than the harmonic and R(1)

t ones. The spectra
are reported in Fig. 3. In the case of TA-SC-IVR calculations,
we sampled 50 000 trajectories for the Monte Carlo integration
of Eq. (14) rejecting 91% of the trajectories when using both
rejection criteria. Instead, 5000 trajectories are enough for the
approximated pre-exponential factor calculations. All power
spectra are reported in Fig. 4 and each peak value is reported
in Table IV.

The original semiclassical values reported in the second
column are less accurate in this case. Nevertheless, the MAE is

TABLE II. Time averaged spectra for the Henon-Heiles potential with λ = 0.118 03. Comparison between results
(in atomic units) obtained with different approximations. From left to right: Exact values, TA-SC-IVR values (14)
using the rejection criterion 1−det

�
MT (t)M(t)� > 10−5, TA-SC-IVR calculation using the ad hoc Kay’s rejection

method of Eq. (11), monodromy matrix regularization (50), adiabatic approximation (22), PPs approximation
(23), harmonic approximation (29), R(1)

t approximation (37), and our approximations of Eqs. (41) and (43). In the
last row the Mean Average Errors (MAE) are reported.

Exact SC-IVR Kay’s method Regularization Adiabatic PPs HO R(1)
t R(2)

t R(3)
t

0.998 0.995 0.995 0.995 0.998 0.965 1.003 1.003 0.997 0.997
1.989 1.988 1.988 1.988 1.995 1.967 2.004 2.004 1.993 1.993
1.989 1.988 1.988 1.988 2.012 2.001 2.038 2.038 2.007 2.005
2.951 2.901 2.901 2.901 2.923 2.913 2.950 2.950 2.917 2.917
2.984 2.983 2.983 2.982 3.004 2.994 3.031 3.031 2.997 2.996
2.984 2.983 2.983 2.982 3.004 2.994 3.031 3.031 2.997 2.996
3.917 3.893 3.893 3.893 3.916 3.907 3.943 3.942 3.911 3.910
3.918 3.893 3.893 3.893 3.916 3.907 3.943 3.942 3.911 3.910
3.980 3.975 3.975 3.975 3.997 3.987 4.024 4.023 3.993 3.992
3.984 3.975 3.975 3.975 3.997 3.987 4.024 4.023 3.993 3.992
4.856 4.805 4.805 4.805 4.828 4.818 4.854 4.853 4.822 4.821
4.888 4.886 4.886 4.886 4.909 4.899 4.935 4.934 4.902 4.912
4.888 4.886 4.886 4.886 4.909 4.899 4.935 4.934 4.902 4.912
4.985 4.970 4.97 4.97 4.99 4.968 5.005 5.004 4.984 4.984
4.985 4.970 4.97 4.97 5.003 4.968 5.005 5.004 5.002 5.000
5.800 5.798 5.798 5.798 5.820 5.810 5.846 5.845 5.811 5.812
5.800 5.798 5.798 5.798 5.820 5.810 5.846 5.845 5.811 5.812
5.853 5.859 5.859 5.859 5.835 5.857 5.894 5.893 5.874 5.870
5.872 5.879 5.879 5.879 5.902 5.892 5.929 5.927 5.896 5.894

MAE 0.011 0.011 0.012 0.017 0.016 0.033 0.032 0.014 0.015
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FIG. 3. SC-IVR spectra of a bidimensional Henon-Heiles potential with λ
= 0.4 using Eq. (13). (a) Black continuous lines are for the rejection criterion
1−det

�
MT (t)M(t)� > 10−5; (b) dark green continuous lines for the rejection

method of Kay (11); (c) orange for the harmonic pre-exponential factor
approximation (Eq. (29)); (d) light green spectrum for R(1)

t approximation
in Eq. (37); (e) blue for the pre-exponential factor reported in Eq. (41) and
(f) cyan for the pre-exponential factor reported in Eq. (43). Exact quantum
mechanical values are indicated by the vertical magenta lines with an height
which is equal to square of the overlap between the SC reference state and the
exact eigenstate calculated by DVR.

still about 3% the zero point energy value. As in the Herman-
Kluk calculation of Eq. (13), it is not possible to obtain the
spectrum with the monodromy matrix regularization. Once
again, the harmonic and R(1)

t approximations are quite similar.
The PPs approximation is on average overestimating the
peak values. As stressed above, the pre-exponential factor
approximated results should be compared with the SC-IVR
column and the better MAE of the last PPs approximation
is probably due to compensation of errors. Finally, the
strong chaotic regime confirms the better level of accuracy
of the perturbative recursive approximations of Eqs. (41)
and (43).

TABLE III. Henon-Heiles potential with λ = 0.4. Column labels as in
Table I.

Exact SC-IVR Kay’s method HO R(1)
t R(2)

t R(3)
t

0.986 0.918 0.918 1.003 1.003 0.953 0.967
1.081 1.078 1.073 1.106 1.092 1.011 1.01
1.084 1.078 1.073 1.106 1.092 1.011 1.01
1.092 1.078 1.073 1.106 1.016 1.011 1.01
1.883 1.886 1.886 2.018 2.018 1.902 1.932
1.884 1.886 1.886 2.018 2.018 1.902 1.945
2.437 2.368 2.367 2.714 2.713 2.517 2.508
2.706 2.693 2.694 2.779 2.779 2.653 2.647
2.708 2.693 2.694 2.779 2.779 2.653 2.647

MAE 0.022 0.023 0.085 0.089 0.054 0.061

FIG. 4. TA-SC-IVR spectra of a bidimensional Henon-Heiles potential with
λ = 0.4. (a) Black continuous lines are for semiclassical spectra (14) using
the rejection criterion 1−det

�
MT (t)M(t)� > 10−5; (b) dark green continuous

lines are for semiclassical spectra computed using the rejection method of
Kay; (c) violet for the adiabatic approximation in Eq. (22); (d) maroon for
the PPs approximation; (e) orange for the harmonic pre-exponential factor
approximation (Eq. (29)); (f) light green spectrum for R(1)

t approximation in
Eq. (37); (g) blue for the pre-exponential factor reported in Eq. (41), and
(h) cyan for the pre-exponential factor reported in Eq. (43). Exact quantum
mechanical values are indicated by the vertical magenta lines with a height
which is equal to square of the overlap between the SC reference state and the
exact eigenstate calculated by DVR.

B. Bidimensional quartic-like potential

We now consider an even more severe chaotic model,
the bidimensional potential of two Morse oscillators with a
significant quartic potential contribution of the type

V (q) =
2

i=1

D

1 − e−αi(qi−qeq

i )2
+ λ


β

4

(�
q1 − qeq

1

�4

+
�
q2 − qeq

2

�4)
+
�
q1 − qeq

1

�2�q2 − qeq
2

�2
, (52)

where q ≡
�
qeq

1 ,qeq
2

�
is the equilibrium position, D and αi are

the one-dimensional unitary mass Morse parameters, β tunes
the amount of quartic oscillator contributions, and λ also
the amount of coupling between the oscillators. The Morse
potential parameters are such that the equilibrium position is
at the origin, D = 0.2 a.u., the frequencies ω1 = 3000 cm−1

and ω2 = 1700 cm−1. The parameters of the quartic potential
are β = 0.02 a.u. and λ is tuned according to the amount of
chaos one wants to introduce. If we had taken a pure quartic
oscillator which has been studied in past years,70,85 on one
side, we would have not had any Hessian term in the potential
and the previous approximation could have not been tested.
On the other side, this would not be realistic since ab initio
calculations of equilibrium properties of real molecule are
such that the Hessian and normal modes can be calculated.
As in the case of the Henon-Heiles potential, we consider two
values of coupling λ, which correspond to small and strong
coupling.
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TABLE IV. Henon-Heiles potential with λ = 0.4. Column labels as in Table II.

Exact TA-SC-IVR Kay’s method Adiabatic PPs HO R(1)
t R(2)

t R(3)
t

0.986 0.949 0.949 0.98 0.889 1.004 1.003 0.945 0.973
1.081 1.078 1.077 1.088 1.093 1.102 1.003 1.083 1.083
1.084 1.078 1.077 1.088 1.093 1.102 1.023 1.083 1.083
1.092 1.078 1.077 1.088 1.093 1.102 1.023 1.102 1.097
1.883 1.895 1.895 1.789 1.900 2.015 2.015 1.900 1.881
1.884 1.895 1.895 1.942 1.900 2.015 2.015 1.900 1.881
2.437 2.373 2.373 2.436 2.402 2.517 2.516 2.544 2.312
2.706 2.761 2.761 2.591 2.722 2.722 2.676 2.687
2.708 2.761 2.761 2.659 2.722 2.722 2.676 2.687

MAE 0.028 0.029 0.038 0.027 0.049 0.044 0.028 0.021

1. Case 1: λ = 1 · 10−6

We run 108 trajectories to overcome the high rejection
rate, which is 97% for the 1 − det

�
MT (t)M (t)� > 10−3

criterion and 96% using Eq. (11). Instead, for the approximated
pre-exponential factor approximations, 107 classical trajec-
tories are enough since there is no rejection in this case. Each
trajectory is 5000 time steps long, and each time step is 10 a.u.
long. The Herman-Kluk spectra of Eq. (13) reproduce approx-
imately the first three energy levels as shown in Figure 5.
From the same figure, the two rejection criteria lead to very
similar spectra and the regularization procedure provides
features quite similar to the original Herman-Kluk spectrum,
in particular for the ZPE peak. The Johnson, the adiabatic, and
the PPs approximations of Secs. VI B, IV, and V respectively,

FIG. 5. Power spectrum of potential (52) with λ = 10−6 using Eq. (13)
and its approximations. (a) Black line for the rejection criterion 1
− det

�
MT (t)M(t)� > 10−3, (b) dark green line for Kay’s rejection method of

Eq. (11), (c) brown line for the spectrum computed using the regularization
procedure (50), (d) orange line for the HO approximation, (e) light green line
for the R(1)

t approximation spectrum, (f) blue line for the spectrum computed
using Eq. (41), and (g) cyan line for the spectrum computed using Eq. (43).
The vertical magenta lines represent the exact energy levels with an intensity
equal to square of the overlap between the SC reference state and the exact
eigenstate calculated by DVR. The vertical cyan dashed-dotted lines represent
the uncoupled Morse potential energy levels.

lead to too noisy spectra for energy levels to be detected.
The harmonic approximation results are very similar to the
uncoupled energy levels, while approximation of Eq. (37) and
our proposed ones of Eqs. (43) and (41) give quite good results.

When calculating the spectra using the TA-SC-IVR
expression of Eq. (14), we run 80 000 trajectories when the
rejection criteria are used, and 5000 trajectories when we use
the approximations of the pre-exponential factor propagators.
The numerical taming of Eq. (50) cannot avoid the numerical
issues when the cut-off is applied both to the modulus of
the biggest real eigenvalue and to the moduli of the real
eigenvalues greater than ϵ thr.

Fig. 6 reports the power spectra at different semiclassical
pre-exponential factor levels of approximation using Eq. (14).

FIG. 6. Power spectrum of potential (52) with λ = 10−6 using the time
averaged formula of Eq. (14). (a) Black line for the rejection criterion 1
−det

�
MT (t)M(t)� > 10−3, (b) dark green line for the Kay’s rejection method

of Eq. (11), (c) red line for the Johnson’s approximation spectrum, (d) maroon
line for the spectrum computed using the PPs approximation, (e) orange line
for the HO approximation, (f) light green line for the R(1)

t approximation
spectrum, (g) blue line for the spectrum computed using Eq. (41), and (h) cyan
line for the spectrum computed using Eq. (43). The vertical magenta lines
represent the exact energy levels with an intensity equal to the square of the
overlap between the SC reference state |χ⟩ and the exact eigenstate calculated
by DVR. The vertical cyan dashed-dotted lines are the uncoupled Morse
potential energy levels.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  159.149.99.54 On: Fri, 14 Oct

2016 08:06:06



144107-12 G. Di Liberto and M. Ceotto J. Chem. Phys. 145, 144107 (2016)

The (a) spectrum is the original TA-SC-IVR spectrum
of Eq. (14) using 1 − det

�
MT (t)M (t)� > 10−3, while the

spectrum (b) is obtained employing the ad hoc method of
Kay (11). The (c) spectrum is obtained using the Johnson’s
approximation (33), the (d) spectrum is computed using
the PPs approximation (23), the (e) spectrum the harmonic
approximation (29), the (f) spectrum using R(1)

t approximation
(37), the (g) spectrum using R(2)

t , and, finally, the (h) spectrum
using R(3)

t . The exact values are indicated as vertical magenta
lines with intensity equal to the overlap between the SC
reference state | χ⟩ and the DVR eigenvector, while the
uncoupled Morse oscillator values are the vertical dotted-
dashed cyan lines. The adiabatic approximation could not be
applied since Eqs. (20) and (21) are too chaotic and cannot be
integrated numerically.

The TA-SC-IVR is quite approximated in this case and it
approximately reproduces the first three peaks. It presents
a ghost peak at about 3400 cm−1 and the highest peak
is significantly shifted toward the uncoupled Morse value.
Johnson’s approximation is mimicking quite well the sequence
of exact peaks, while the PPs is mainly reproducing the
ground energy peak. The R(1)

t approximation spectrum is too
noisy to judge. The harmonic approximation is definitely
shifted toward the uncoupled Morse oscillator values, while
the present approximations of Eqs. (41) and (43) are well
reproducing the exact values. In particular, the higher order
correction of Eq. (43) is more accurate with respect to the
(a) TA-SC-IVR spectrum. This extreme example tells us
that when the system is strongly chaotic, the semiclassical
separable time-averaging SC-IVR is not very accurate and the
approximated pre-exponential factors can better mimic the
exact spectroscopic sequence.

2. Case 2: λ = 2.5 · 10−6

Since we want to test the pre-exponential factor
approximations to even more extreme (and probably
unrealistic) cases, we consider an even bigger coupling value
between the Morse and the quartic part of the potential. We
run the same number of trajectories as the previous case for
the Herman-Kluk expression of Eq. (13). With these values
of λ, the regularization method fails because of the highly
chaotic regime of the potential. This is proved by the high
ratio of rejected trajectories, 99.1% and 98.6%, found when
the alternative rejection criteria 1 − det

�
MT (t)M (t)� > 10−3

and Eq. (11) are employed. Again, the two spectra are
quite similar, while the harmonic approximation is more
similar to the uncoupled eigenvalues than the coupled
ones. The R(1)

t approximation seems to work very well,
while the approximations of Eqs. (41) and (43) follow the
original SC-IVR spectrum. When TA-SC-IVR calculations
are employed, we run 250 000 trajectories for 5000 time
steps of 10 a.u. each, of which 98.3% are rejected using
1 − det

�
MT (t)M (t)� > 10−3 and 97.5% using the method

of Kay of Eq. (11). The approximated pre-exponential
factor calculations are performed as above, i.e., with 5000
trajectories. The monodromy matrix regularization fails as
in the previous case. Instead, the Johnson approximation
leads to a resolute spectrum. The harmonic approximation

FIG. 7. The same as in Fig. 5 but with λ equal to 2.5 ·10−6.

is reproducing peaks in harmonic sequence and the R(1)
t

approximation is too noisy. The only reasonable results are
those by Johnson and the new approximations of Eqs. (41) and
(43). In more detail, the TA-SC-IVR zero point energy (ZPE)
is 2620 cm−1, 2746 cm−1 for the Johnson approximation,
2885 cm−1 for Eq. (41), and 2688 cm−1 for the higher order
approximation of Eq. (43). Once again, Eq. (43) is more
similar to the original TA-SC-IVR values. However, at any
semiclassical level of calculation, the first fundamental is
reproduced (Figs. 7 and 8).

Overall, the present approximation of Eq. (43) is the
most accurate in these model potential energy surface
scenarios. We now turn to real molecules’ potential energy
surfaces.

FIG. 8. The same as in Fig. 6 but with λ equal to 2.5 ·10−6.
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C. H2O molecule

The water molecule presents strong intermode couplings.
In the calculations presented here, we employ the PES
provided by Bowman86 and Eq. (14). Each trajectory is 1000
time steps long with a single time step 10 a.u. long for a
total of 8000 trajectories both with exact and approximated
pre-exponential factor formulations. Previous calculations29,60

showed that phase space Monte Carlo convergence is reached
already with 4000 trajectories. To better identify each peak,
we employ combinations of antisymmetric coherent states
and break down each spectrum in partial spectra for each
irreducible representation of the C2v point group symmetry,
as explained in previous publications.31,60 The spectra with
different pre-exponential factor approximations are reported
in Fig. 9. For each approximation, the A1 and B2 irreducible
representation spectra are reported in Fig. 9 with the
same color. This figure points out the major limitations of
the harmonic approximation, in particular for the highest
vibrational states. More specifically, the vibrational level of
each state is reported in Table V. For each vibrational state
labeled in the first column, one can read the exact quantum
mechanical results in the second column, the separable SC-
IVR ones in the third and fourth, and the approximated ones in
the following columns, as labeled in the tables above. From the
MAE, it is clear that the numerical regularization approach of
Eq. (50) is very good with respect to the exact values, showing
that the spectroscopic contribution of the chaotic trajectories is
negligible. In fact, the monodromy matrix is regularized just
for 2.1% of the total trajectories, and Eq. (50) is applied no
more than 5 times per trajectory. Instead, 56% of trajectories
are rejected in the standard SC-IVR calculations because of
the det

�
MT M

�
deviation from unity. This percent difference

proves that most of those chaotic trajectories, that are rejected
by the strict criterion 1 − det

�
MT (t)M (t)� > 10−5, actually do

FIG. 9. H2O spectra. (a) Black line for the separable SC-IVR (14) spectrum
using the rejection criterion 1−det

�
MT (t)M(t)� > 10−5, (b) using the ad hoc

Kay’s rejection method of Eq. (11), (c) brown for the regularization of the
monodromy matrix of Eq. (50), (d) violet line for the adiabatic approximation
(22) spectrum, (e) red line for the Johnson’s approximation (33) spectrum,
(f) maroon line for the PPs approximation (23) spectrum, (g) orange line for
the HO (29) approximation spectrum, (h) green line for the R(1)

t approxi-
mation (37) spectrum, (i) blue line for the spectrum computed using R(2)

t in
Eq. (41), and (j) cyan line for the spectrum computed using R(3)

t in Eq. (43).
The vertical magenta dashed lines represent the quantum energy levels. A1
and B2 spectra with the same color for each approximation.

not compromise the accuracy of the calculation. Moreover, the
spectrum obtained using the rejection criterion proposed by
Kay is very similar to the TA-SC-IVR one. From the following
columns, it is evident that the harmonic approximation is the
worse one and that R(1)

t , Johnson’s, the PPs, and the new

TABLE V. Vibrational energy levels of H2O. Wavenumbers unit. First column reports the spectroscopic terms, second column reports the exact quantum
mechanical values, third column reports the results computed with SC-IVR of Eq. (14) using the rejection criterion 1−det

�
MT (t)M(t)� > 10−5, fourth column

SC-IVR calculation using the ad hoc Kay’s rejection method of Eq. (11), and the others with the different pre-exponential factor approximations named as
above. In the last row is reported the Mean Average Error (MAE) of each column.

State Exact86 SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R(1)
t R(2)

t R(3)
t

ZPE 4 631.6 4 636 4 640 4 639 4 592 4 612 4 604 4 784 4 704 4 616 4 612
A1 (11) 6 222.8 6 220 6 220 6 222 6 148 6 176 6 220 6 404 6 280 6 180 6 176
A1 (12) 7 777.7 7 768 7 772 7 772 7 716 7 704 7 800 7 980 7 828 7 714 7 708
A1 (21) 8 287 8 308 8 320 8 320 8 188 8 216 8 356 8 540 8 428 8 236 8 218
B2 (31) 8 382.7 8 400 8 400 8 400 8 400 8 320 8 334 8 632 8 512 8 322 8 319
A1 (13) 9 294.1 9 286 9 268 9 266 9 156 9 208 9 327 9 510 9 352 9 123 9 264
A1 (1121) 9 862.1 9 884 9 888 9 884 9 808 9 764 9 952 10 136 9 988 9 773 9 764
B2 (1131) 9 954 9 936 9 940 9 940 9 936 9 828 9 846 10 208 10 056 9 848 9 827
A1 (1221) 11 400.5 11 400 11 408 11 409 11 280 11 278 11 609 11 792 11 508 11 294 11 267
B2 (1231) 11 490.4 11 440 11 440 11 447 11 440 11 304 11 342 11 780 11 548 11 337 11 305
A1 (22) 11 833.9 11 876 11 868 11 868 11 660 11 700 11 996 12 176 12 004 11 729 11 704
B2 (2131) 11 886 11 918 11 906 11 906 11 920 11 756 11 780 12 272 12 076 11 781 11 760
A1 (32) 12 069.8 12 060 12 044 12 044 12 164 11 912 12 224 12 408 12 220 11 933 11 900
A1 (1122) 13 399.1 13 404 13 412 13 412 13 294 13 212 13 207 13 760 13 536 13 224 13 208
B2 (112131) 13 443.7 13 452 13 440 13 442 13 452 13 244 13 276 13 824 13 576 13 278 13 254
A1 (1132) 13 622 13 560 13 560 13 555 13 596 13 582 13 712 13 674
MAE 19.6 21.8 20.1 72.6 108.0 98.8 285.8 110.7 105.0 106.3
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FIG. 10. The same as in Fig. 9 but for the CO2 molecule. Each approximation
includes the spectra of the Ag, B1u, B2u, and B3u irreducible representations
of the D2h point group symmetry.30

approximations R(2)
t and R(3)

t show about the same accuracy.
Once again, the adiabatic approximation is relatively accurate
when Eqs. (17) can be calculated.

D. CO2 molecule

To test the accuracy of the approximations in the case
of strong Fermi resonances, we choose as a test case the
carbon dioxide molecule.30,87 We employ Chedin’s potential88

and compare with the exact quantum mechanical results
by Vazquez et al.87 Each trajectory is 3000 time-steps
long with a time-step 10 a.u. long. We employ 15 000
trajectories for the phase space integration both with and
without the pre-exponential factor approximations, which
is by far enough for Monte Carlo convergence. Fig. 10
shows a good agreement between all approximations.

TABLE VI. The same as in Table V but for CO2.

State Exact87 SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R(1)
t R(2)

t R(3)
t

ZPE 2536.15 2535 2535 2536 2531 2534 2539 2564 2541 2534 2534
(000) 667.47 667 667 665 669 666 673 672 670 666 666�
0110

�
667.47 667 667 666 669 666 673 672 670 666 666�

0110
�

1285.1 1290 1288 1288 1275 1290 1299 1297 1294 1286 1291�
1000

�
1335.95 1333 1332 1332 1335 1334 1350 1351 1341 1334 1334�

0220
�

1335.95 1333 1332 1334 1335 1334 1350 1351 1341 1334 1334�
0220

�
1387.93 1388 1384 1386 1400 1383 1382 1393 1391 1382 1374�

0220
�

1929.56 1930 1928 1928 1923 1933 1947 1940 1940 1931 1931�
1110

�
1929.56 1930 1928 1929 1923 1933 1947 1940 1940 1931 1931�

1110
�

2005.25 1997 2001 2001 2015 2003 2021 2021 2012 2003 2003�
0330

�
2005.25 1997 2001 2001 2015 2003 2021 2021 2012 2003 2003�

0330
�

2078.15 2081 2080 2077 2093 2070 2083 2086 2084 2071 2071�
0310

�
2078.15 2081 2080 2079 2093 2070 2083 2084 2084 2071 2071�

0311
�

2349.38 2356 2355 2354 2347 2356 2371 2373 2359 2356 2354
MAE 3.0 2.7 2.1 6.9 3.8 11.4 12.4 6.3 3.2 3.9

Carbon dioxide has higher molecular weight than water and
its dynamics is probably more classical. Table VI reports
the values of each vibrational level for each approximation.
In this case, all approximations are quite accurate, as noted
above. The harmonic oscillator approximation is again the
less accurate one, followed by the PPs and R(1)

t ones.
Surprisingly, also the adiabatic is not very accurate. The
present approximations (R(2)

t and R(3)
t ) and Johnson’s one

are the most accurate and with almost no difference with
respect to the original SC-IVR integration. The disappointing
performance of the adiabatic approximation is probably due to
the coupling of the CO2 modes, which is intermediate between
the fully adiabatic and diabatic regime. The numerical taming
approach of Eq. (50) is as accurate as the reference SC-
IVR calculation. Their similarity is explained by the small
(0.6%) percentage of trajectory correction using Eq. (50) with
respect to the 14% rejected by looking at the determinant
of the monodromy matrix and 8% evaluating |Ct (p0,q0)|2.
The numerical taming is employed no more than 4 times per
trajectory.

E. CH2O molecule

Passing from 3 to 4 atom molecules, we choose to test the
pre-exponential factor approximations with the formaldehyde
vibrational spectrum, since this is a well tested case. Also,
CH2O presents light atoms, as well as strongly coupled
dynamics. We employ the PES designed by Martin et al.89

and we compare our semiclassical results with the exact
quantum mechanical calculations by Carter et al.90 We employ
24 000 trajectories for the SC-IVR calculations without pre-
exponential factor approximation (except for the basic one
implied by the separable approximation) and we reject 82.5%
with the monodromy matrix determinant criterion and 85.6%
by using Eq. (11). Instead, 8000 trajectories are used for the
approximated and numerically tamed pre-exponential factor.
All trajectories are evolved for 3000 time-steps with a time-
step 10 a.u. long for all simulations. The point group symmetry
is C2v, and spectra for all four irreducible representations are
reported at each approximation level of accuracy in Fig. 11.
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FIG. 11. The same as in Fig. 9 but for the CH2O molecule. Each approxima-
tion includes the spectra of the A1, A2, B1, and B2 irreducible representations
of the C2v point group symmetry.

The CH2O spectrum can be divided into a low energy
region, populated by the fundamentals of four vibrational
modes, and a higher energy region, where one can find the

fundamentals of the remaining modes and several overtones.
Since the accuracy of each approximation looks similar in
Fig. 11, we report in Tables VII and VIII each vibrational
state value.

For the sake of comparison, Table VII shows only the
fundamental excitations and Table VIII the overtones. The
MAE reported in the last row of Table VIII is calculated
over results reported in both tables. For this molecule,
the harmonic approximation is so drastic that most of the
peaks are missing. As far as the other approximations are
concerned, the PPs is similar to the harmonic one, the adiabatic
approximation is a little bit more accurate, followed by the
Johnson one. R(2)

t of Eq. (41) and R(3)
t of Eq. (43) are quite

accurate. In this case also R(1)
t is very accurate. As far as

the numerical regularization is concerned, the results are very
good with respect to the exact values and the ordinary SC-IVR
calculation. A fraction of 20.8% of trajectories has been tamed
and each one no more than 11 times. This percent proves once
again that most of the chaotic trajectories rejected by the
determinant criterion do not jeopardize the accuracy of the
spectrum.

F. CH4 and CH2D2 molecule

In terms of chaotic motion, methane and dideuterated
methane are quite challenging given the nine strongly coupled

TABLE VII. The same as in Table V but for the fundamentals of CH2O.

Symmetry Exact90
SC-
IVR

Kay’s
method Regularization Adiabatic Johnson PPs HO R(1)

t R(2)
t R(3)

t

ZPE (A1) 5774 5774 5780 5744 5744 5932 6112 5819 5744 5744
B1 (11) 1171 1162 1162 1169 1160 1159 1000 1004 1159 1160 1158
B2 (21) 1253 1245 1246 1248 1240 1240 1164 1168 1253 1240 1240
A1 (31) 1509 1509 1506 1513 1501 1509 1573 1575 1516 1509 1506
A1 (41) 1750 1747 1745 1752 1737 1743 1745 1743 1745 1745 1740
A1 (51) 2783 2810 2810 2785 2745 2747 2708 2711 2799 2750 2741
B2 (61) 2842 2850 2846 2836 2801 2862 2741 2846 2807 2800

TABLE VIII. The same as in Table V but for the overtones of CH2O.

State Exact90 SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R(1)
t R(2)

t R(3)
t

A1 (12) 2333 2310 2310 2309 2302 2308 2163 2453 2307 2307 2304
A2 (1121) 2431 2410 2408 2405 2403 2399 2356 2360 2408 2401 2396
A1 (22) 2502 2497 2494 2489 2477 2486 2712 2495 2486 2480
B1 (1131) 2680 2672 2670 2675 2654 2656 2736 2679 2658 2654
B2 (2131) 2729 2731 2730 2728 2800 2719 2762 2761 2734 2723 2716
B1 (1141) 2913 2898 2896 2896 2886 2887 2871 2896 2888 2889
B2 (2141) 3007 3002 3002 3002 2976 2986 2946 3010 2989 2983
A1 (32) 3016 3018 3014 3018 2986 2996 3086 3022 2993 3010
A1 (3141) 3250 3254 3252 3256 3230 3240 3157 3263 3238 3234
A1 (42) 3480 3476 3475 3480 3462 3463 3323 3516 3468 3460
B1 (1151) 3947 3957 3960 3937 3892 3897 3864 3868 3949 3897 3890
A2 (1161) 4001 3979 3978 3974 3941 3942 3858 3864 3977 3945 3944
B2 (2151) 4027 4056 4054 4029 3990 3994 3934 3938 4045 4010 3994
A1 (2161) 4089 4038 4034 4043 4042 4053 4196 4074 4048 4048
A1 (3151) 4266 4275 4273 4268 4218 4225 4481 4216 4281 4225 4216
MAE 12.8 13.1 9.9 31.9 25.2 91.1 91.9 12.1 23.4 30.2
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FIG. 12. The same as in Fig. 9 but for the CH4 molecule. Each approximation
includes the spectra of the A1, E, and T2 irreducible representations of the Td

point group of symmetry.

degrees of freedom and the light atom dynamics. We employ
the PES by Lee et al.91 and compare with the exact
quantum energy levels,92 as done in previous semiclassical
calculations.60(b) We employ 32 000 trajectories for the SC-
IVR calculation, out of which 88.8% and 88.7% are rejected
using the monodromy matrix criterion, while 98.9% and
97.4% using the criterion of Kay, respectively, for the CH4
and CH2D2 molecule. Instead, 14 000 classical trajectories
are used for the approximated and numerical tamed pre-
exponential factor calculations. All trajectories are made of
3000 time steps each, with the same time-step length as
above and for all simulations. In the case of methane, the
point group symmetry is Td. The spectrum of each irreducible
representation is reported in Fig. 12 with the same color code
as above and for different approximations. Table IX shows
the low lying energy levels. These can be compared to the
exact ones reported, as before, in the second column. The fifth
column reports the regularization results, where 37.6% of the
trajectories experienced a monodromy matrix regularization
for no more than 21 times. This was enough to not reject
any trajectory and reproduce the quantum mechanical results

FIG. 13. The same as in Fig. 9 but for the CH2D2 molecule. Each approxima-
tion includes the spectra of the A1, A2, B1, and B2 irreducible representations
of the C2v point group of symmetry.

quite accurately. The PPs approximation is very similar to
the harmonic one. Overall, R(2)

t and R(3)
t are offering the

most accurate pre-exponential factor approximation, a part
from the adiabatic and the regularization ones that imply the
integration of the equation of motion of the monodromy matrix
elements.

The point group symmetry for CH2D2 is C2v and each
irreducible representation is reported in Fig. 13. As in previous
figures, Fig. 13 reports the results for each approximation.
From this figure, results are quite similar, except for the
highest vibrational levels. A more detailed view is provided
by Table X, where 44.1% of the 14 000 trajectories have
been regularized for no more than 19 times each. The PPs
is confirming to be about as accurate as the harmonic one,
and the adiabatic approximation is a quite accurate one.
The Johnson approximation is also quite accurate. The R(3)

t

approximation of Eq. (43) is overall more accurate than R(2)
t

and R(1)
t . A harmonic approximation of the pre-exponential

factor would be too brutal in this case and some of the peak
signals are missing.

TABLE IX. The same as in Table V but for CH4.

State Exact92 SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R(1)
t R(2)

t R(3)
t

ZPE (A1) 9707 9708 9708 9704 9669 9657 9846 10 124 9941 9659 9652
T2 (11) 1313 1296 1297 1304 1309 1300 1390 1 390 1257 1305 1304
E (21) 1535 1524 1524 1528 1531 1518 1500 1 497 1496 1522 1520
T2 (12) 2624 2596 2593 2636 2616 2601 2646 2 636 2497 2605 2600
T2 (1121) 2836 2820 2821 2832 1309 2818 2890 2 887 2753 2827 2824
T1 (1121) 2836 2820 2821 2832 1309 2818 2890 2 887 2753 2827 2824
A (31) 2949 2942 2942 2982 2963 2944 2914 2 916 2936 2951 2928
E (22) 3067 3040 3042 3062 3052 3028 3065 3 066 2993 3035 3044
T2(41) 3053 3038 3040 3052 3044 3037 3092 3 069 2983 3041 3044
MAE 15.3 16.6 8.7 7.8 18.6 39.8 34.9 68.1 13.0 15.6
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TABLE X. The same as in Table V but for CH2D2.

Symmetry Exact92 SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R(2)
t R(2)

t R(3)
t

ZPE (A1) 8443 8442 8438 8440 8410 8401 8510 8860 8508 8408 8404
A1 (11) 1034 1019 1018 1035 1026 1027 997 875 1003 1021 1025
B2 (21) 1093 1078 1074 1076 1092 1084 1185 1056 1108 1086 1092
B1 (31) 1238 1240 1224 1244 1228 1225 1335 1208 1208 1216 1228
A2 (41) 1332 1326 1324 1334 1316 1323 1425 1306 1312 1321 1315
A1 (51) 1436 1431 1431 1432 1421 1414 1409 1409 1413
B2 (1121) 2128 2098 2094 2128 2104 2105 2098 2068 2103 2101 2111
A1 (61) 2211 2203 2202 2220 2200 2207 2194 2207 2205 2192
B1 (1121) 2242 2222 2214 2224 2344 2217 2218 2212
B1 (71) 2294 2270 2276 2273 2267 2273 2265 2269 2288
A2 (1141) 2368 2349 2342 2370 2359 2360 2474 2273 2325 2358 2360
A1 (1151) 2474 2465 2455 2457 2459 2444 2359 2413 2428 2437 2448
B2 (2151) 2519 2510 2518 2512 2491 2497 2592 2456 2513 2477 2494
B1 (3151) 2674 2658 2647 2650 2631 2635 2742 2624 2656 2627 2631
A2 (4151) 2769 2764 2762 2754 2741 2745 2748 2743 2748
A1 (81) 3008 3044 3048 3024 3032 3033 3074 3065 3014 3035 3000
MAE 14.6 18.1 9.7 18.5 18.3 74.7 60.3 22.9 23.4 17.5

IX. CONCLUSIONS

The series of calculations reported above show the
importance of the semiclassical pre-exponential factor of
Eq. (8) to properly account for the quantum mechanical
effects of the semiclassical propagator. Unfortunately, the
semiclassical calculation of the pre-exponential factor of
classical trajectories for chaotic systems is hampered
by numerical issues, as already known and once more
demonstrated here on several model systems. To bypass
this numerical empasse, we recall and present possible
approximations to the pre-exponential factor in SC-IVR
dynamics. These approximations are motivated either by
analytical considerations or by numerical regularizations.
Each approximation is presented, derived, and then applied
separately to both model systems with an artificial amount
of chaos and real systems of growing dimensionality and
complexity. The accuracy of each approximation has been
tested with the Herman-Kluk and the time-averaging SC-
IVR methods versus the number of rejected trajectories,
which is an empirical measure of the amount of chaos as
well as with respect to the established ad hoc method of
Kay.70 The numerical regularization is quite accurate but it
cannot be applied a priori for any system since it implies
the calculation of the monodromy matrix. The regularization
results are very similar to the original SC-IVR ones, since
the chaotic trajectories are not counting in the regularized
monodromy matrix. The pre-exponential factor analytical
approximations, which are R(2)

t in Eq. (41) and R(3)
t in

Eq. (43), are quite accurate compared to both the exact
values and the SC-IVR ones, and we suggest them for
semiclassical simulations of systems when the integration
of the monodromy matrix and its regularization are not
possible.
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