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Supplementary Figure 1: Extinction efficiency cross section map. Color plot of

cross-sectional efficiency as a function of energy and radius for spherical silver nanoparticles

fully embedded in a medium with permittivity εB = 3.3. Due to the plane wave excitation, only

the dipole mode is efficiently excited.
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Supplementary Figure 2: Conformal coating - FIB cross section and SEM image. (a) STEM

image of the cross section of one of our samples, prepared using FIB, with labels denoting the

different materials. The platinum on top originates from the FIB lamella procedure and is not

present during our EELS measurements. Scale bar is 50 nm. (b) Scanning electron microscope

image displaying, from the top, the same sample without the platinum. Clear bumps in the surface

topography due to the conformal coating of the silicon nitride are present. The sample shown in

this figure has a slightly thicker silicon nitride coating (approximately 60 nm in total) than the one

used for the EELS measurements in the main text (approximately 30 nm in total). Scale bar is

200 nm.
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Supplementary Figure 3: Conformal coating - EDS and EELS signals. (a) STEM image of

silver nanoparticle with radius R = 22.1± 0.7 nm encapsulated in silicon nitride. Scale bar is

10 nm. (b-c) EDS and EELS signals, respectively, acquired from the impact positions shown in

(a). The legend in (c) designates the position-dependent thickness t of the silicon nitride layer due

to the conformal coating. The thickness intervals are extracted from the EELS data using the

log-ratio method.1
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R = 11.2± 0.1 nmR = 12.6± 0.1 nm

R = 37± 0.8 nmR = 20.9± 0.7 nm

a b

c d

Supplementary Figure 4: Silver nanoparticles with and without silicon nitride

encapsulation. STEM micrographs of (a-b) non-encapsulated bare silver nanoparticles (scale

bars are 20 nm) and (c-d) encapsulated silver nanoparticles (scale bars are 10 nm). The

nanoparticles are deposited on a 20 nm thick silicon nitride substrate and the encapsulating

medium is also silicon nitride.
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Supplementary Figure 5: BEM simulation domain. Side-view of the radially-symmetric

geometry used for the BEM EELS simulations. The spherical Ag nanoparticle of radius R is

conformally encapsulated by top and bottom layers of SiNx with thickness hT and hB,

respectively. The encapsulating layer is modelled as a circular membrane of diameter dmem and

height hT + hB, forming a union with a hemispherical cap centered at the center of the particle and

with a radius of R + hT. A smoothing profile rS(z) is applied at the region defined by the length

lS, which connects the hemispherical cap and the circular membrane.
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Supplementary Figure 6: Permittivity of silicon nitride. Real and imaginary parts of the

dielectric constant of deposited silicon nitride coating extracted from EELS data using the

Kramers–Kronig method.1 The red curve shows the result with the reflected tail method for

removal of the zero-loss peak, while for the blue curve the sum of a Gaussian and squared

Lorentzian function is used to fit the zero-loss peak. The black line shows the tabulated values for

bulk silicon nitride.2 For the Kramers–Kronig method,1 the following values are used: collection

semi-angle θcoll = 16 mrad, convergence semi-angle θconv = 16 mrad, and optical refractive index

nopt = 2.
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Supplementary Figure 7: EELS data of non-encapsulated silver nanoparticle. Same as the

experimental part of Figure 3 in the main manuscript, but for a non-encapsulated silver

nanoparticle with similar size R = 9.1± 0.2 nm. The silver nanoparticle is situated on a 20 nm

thick silicon nitride substrate. The EELS data show a single surface plasmon excitation at

approximately 3.5 eV, corresponding to the dipole mode. In contrast to the encapsulated

nanoparticles studied in the main manuscript, we observe no additional peak that would

correspond to HO modes. Scale bar is 10 nm.
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Supplementary Figure 8: EELS data of silicon nitride. Raw EELS data acquired through

silicon nitride away from the silver nanoparticles. The EELS data are featureless in the 2− 4 eV

range, confirming that the observed HO modes are a feature of the silver nanoparticles rather than

the encapsulating medium. The shoulder below 2 eV is the tail of the zero-loss peak.
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Supplementary Figure 9: Residual plot of Figure 4. (a-h) Absolute value of EELS data with

the fit of Gaussian functions being subtracted, relative to (i.e., divided by) the EELS data

(compare with Figure 4 of the main text). The good fit of the sum of two Gaussian functions in

(a-g) (which can be inferred from the vanishing relative residual in the energy range

∼ 2.5− 3.5 eV) shows that the HO modes peak is accurately captured by a single (symmetric)

Gaussian function. The non-negligible residual for energies above 3.5 eV is due to EELS signal

from the bulk plasmon, which is not accounted for in our two-Gaussian fit.
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Classical Nonlocal responsea b

Supplementary Figure 10: Fully-embedded approximation and nonlocal response. (a) Color

plot of simulated EELS signal for silver nanoparticles fully embedded in a background

homogeneous environment with permittivity εB = 3.3. The simulated EELS spectra have been

convoluted with a Lorentzian function with FWHM of 0.15 eV and normalized to unity area. The

impact parameter is chosen to be 0.1 nm outside the particle, i.e., b−R = 0.1 nm. The results

from the EELS measurements are also shown (same as in Figure 5 of main text but in a reduced

radius range). (b) Same as (a) but including the effects of nonlocal response through the GNOR

model.
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Supplementary Figure 11: EELS map with impact parameter outside the particles. Color

plot of simulated EELS spectra convoluted with a Lorentzian function with FWHM of 0.15 eV

and normalized to unit area (for each particle radius), as a function of energy and radius. The

impact parameter is chosen to be 1 nm outside the particle, i.e., b−R = 1 nm.
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Supplementary Figure 12: STEM image analysis. (a) STEM image of silver nanoparticle with

radius R = 2.56± 0.02 nm. (b) STEM image sharpened using Lucy–Richardson deconvolution.

(c) Grayscale-to-binary conversion. Grayscale threshold determined using Otsu’s method.

(d) Binary image after performing the following morphological operations: despeckle, fill, erode,

and dilate. Scale bars are 2 nm.
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Supplementary Figure 13: STEM image analysis. Overlay of the boundary (green line) of the

binary particle in Supplementary Figure 12(d) with the original STEM image. Scale bar is 2 nm.
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Supplementary Figure 14: EELS map with different thickness of the silicon nitride layers.

Same as Figure 5 in the main manuscript but with (a) 20% smaller silicon nitride thickness

(hB = 16 nm, hT = 12 nm) and (b) 20% larger silicon nitride thickness (hB = 24 nm,

hT = 18 nm). The impact parameter is b−R = −1 nm.
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Supplementary Note 1: Theoretical models for EELS simulations

In this Note we describe in detail the different theoretical simulations, which we have performed

to supplement and interpret the EELS measurements on SiNx-encapsulated Ag nanoparticles. The

EELS simulations shown in the main text are performed using the MNPBEM toolbox for MAT-

LAB, which solves Maxwell’s equations using the boundary-element method (BEM)3 via the four-

potential (ϕ,A).4 An illustration of the radially-symmetric domain used for the simulations is

shown in Supplementary Figure 5. A spherical Ag particle of radius R is conformally coated in a

silicon nitride membrane. The coating geometry is modelled as the union of a circular membrane

(i.e., disk) with diameter dmem and height hB + hT, and a hemispherical cap with radius R + hT

centered at the nanoparticle center . Here, hB and hT denote the thickness of the bottom and top

layers, respectively. In the region denoted by the lengths lS in Supplementary Figure 5, where the

hemispherical cap connects to the circular membrane, a smoothing profile rS(z) is applied, given

by the equation

rS(z) = ±
[√

(R + hT)2 − (R− z)2 + (lS + hT − z)4/l3S
]

for hT ≤ z ≤ hT + lS, (1)

where z = 0 is depicted by the horizontal dashed line in Supplementary Figure 5. The smoothing

profile given by Eq. (1) ensures that there are no unphysical sharp domain boundaries. For the

EELS simulations presented in the main text, we use hB = 20 nm (5 nm from the TEM membrane

and 15 nm from the additional silicon nitride deposition) and hT = 15 nm. The smoothing length is

chosen as lS = min(R, 10 nm), such that the largest particles (R > 10 nm) show a fixed smoothing

profile while the smoothing profile for the smallest particles (R < 10 nm) is size-dependent.

For the truncation of the circular membrane (and thereby the simulation domain) we use dmem =
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15×max(R, hT), corresponding to dmem = 225 nm for radii below 15 nm, and up to dmem = 300 nm

for R = 20 nm. These truncation diameters are well-converged in the sense that the size of the

simulation domain does not influence the calculated EELS signal. Finally, the dielectric function

for silver is taken from tabulated data,5 while for silicon nitride we use εSiNx = 3.2, which, as

discussed in the main text, provides the best correspondence to the experimentally-measured dipole

resonance energies.

To supplement the EELS simulations in the main text, we use our BEM model to also perform

EELS simulations with the impact parameter positioned 1 nm outside the particle (i.e., b − R =

1 nm), see Supplementary Figure 11. There are two main differences compared to the EELS

simulations with the electron beam positioned 1 nm inside the particle (as shown in Figure 5 in

the main text). First, the bulk plasmon is no longer excited by the electron beam. The second

feature is the significantly stronger EELS signal from the dipole mode compared to that of the HO

modes. We observe both of these features in our EELS measurements, which is why we determine

the resonance energy of the dipole modes from EELS data acquired a few nanometers outside the

particle surface (see also the discussion in relation to Figure 3).

We have also examined the influence of the thickness of the silicon nitride encapsulating

layer using our BEM model. In Supplementary Figure 14, we show EELS simulations (with impact

parameter b−R = −1 nm) where we vary the thickness of the silicon nitride layer by ±20%. As in

Figure 5 of the main manuscript, we superimpose the experimentally-measured resonance energies

of the dipole and HO modes. The simulated resonance energies of both the dipole and HO modes

show no significant change for R . 10 nm, while for R & 10 nm a small blueshift (redshift) of
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the plasmon modes for thinner (thicker) silicon nitride is observed compared to Figure 5 of the

main manuscript. Importantly, these results demonstrate that our experimental observations of the

dipole and HO modes are robust with respect to small variations of the thickness of the silicon

nitride layers.

Fully-embedded approximation and nonlocal response As nonlocal response is not incorpo-

rated in the MNPBEM Toolbox, we assess the effects of nonlocality by using the analytical EELS

model of Refs.6 and 7, in which the system of a spherical metal particle fully embedded in a homo-

geneous dielectric medium is solved. However, we must first consider whether the fully-embedded

approximation is a valid scenario for the EELS measurements of the smallest nanoparticles, where

non-classical features are observed.

In relation to the classically maximal allowed energy of the HO modes, given by the l → ∞

limit of Eq. (1) in the main text, we estimated the effective background permittivity (in a fully em-

bedded quasistatic scenario) as εB = 3.3, a value very close to εSiNx = 3.2 used in our BEM simula-

tions to model the encapsulating silicon nitride layers. The small difference between these two val-

ues provides support for the interpretation that the SP modes of the smallest particles (R < 10 nm)

behave as in a fully embedded homogeneous background environment. To quantitatively substan-

tiate this interpretation, we perform EELS simulations of spherical silver particles embedded in a

homogeneous background environment with permittivity εB = 3.3. For this simpler geometry, the

EELS signal can be calculated using an analytical approach, detailed in Refs. 6–8, as long as the

impact parameter is outside the sphere (b > R), the background permittivity is purely real-valued,

and, finally, the electron velocity is smaller than the speed of light in the background medium
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(v < c/
√
εB) to avoid effects of Cherenkov radiation. Fortunately, the two first conditions are suit-

able for our case, while the third condition requires us to use a slightly lower acceleration voltage

(U = 100 kV) in our analytical calculation than in the experimental setup (Uexp = 120 kV). How-

ever, we have checked that this slight decrease in electron velocity (from v = 0.59c to v = 0.55c)

does not influence the EELS signal notably by comparing the analytical approach to numerical

BEM simulations of fully-embedded spherical nanoparticles.

The analytical EELS calculation of fully-embedded silver particles is shown in Supplemen-

tary Figure 10(a) for impact parameters only 0.1 nm from the particle surface (b − R = 0.1 nm).

This value for the impact parameter is chosen to maximize the signal from the HO modes. We

find that the fully-embedded approximation captures quite well our experimental observations for

R < 10 nm, providing strong support for the interpretation that the SP modes of the encapsu-

lated silver particles behave as in a homogeneous background environment for these particle radii.

However, as with the BEM simulations of the encapsulated conformal geometry, we find that these

calculations based on classical electrodynamics do not agree with our experimental observations

for R < 4 nm, where the HO modes disappear and the dipole mode shows a rapid increase in

resonance energy with decreasing particle size.

To assess the origin of these two non-classical observed effects, i.e., the disappearance of

the HO modes and the blueshift of the dipole mode, we also perform EELS calculations of fully-

embedded particles taking into account nonlocal response in the silver nanoparticles.9, 10 As shown

in Refs. 6 and 7, the analytical approach used for the classical calculations can be extended to

include nonlocal response in the metal nanoparticle. Nonlocality in the metal is taken into account
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through the generalized nonlocal optical response (GNOR) model,9–11 which extends the nonlocal

hydrodynamic model12 by including the important effects of electron diffusion. The GNOR model

describes size-dependent resonance shifts and linewidth broadening of localized surface plasmon

excitations in noble metal particles.9 These effects have been shown to be stronger for increasing

multipolar order l.10 For the GNOR calculations we use the following parameters appropriate for

silver11: ~ωp = 8.99 eV, ~γ = 0.025 eV, vF = 1.39 × 106 m/s, and D = 3.61 × 10−4 m2/s. Here,

ωp is the plasma frequency, γ is the Drude damping rate, vF is the Fermi velocity, and D is the

diffusion constant. The core-response, i.e., εcore(ω), is determined from experimental data5 by the

subtraction of the Drude part −ω2
p/(ω

2 + iγω).

The EELS calculation of fully-embedded silver nanoparticles described by the GNOR model

is shown in Supplementary Figure 10(b), along with the EELS measurements. The strongest EELS

signal stems from the dipole mode, while the weaker higher-energy signal is from the excitation

of the HO modes. The GNOR calculations show several important differences compared to the

classical calculation in Supplementary Figure 10(a). First of all, in the GNOR model the HO

modes are not bound by the classical l → ∞ energy limit, thereby extending beyond the energy

~ωl→∞ = 3.27 eV and providing better agreement with the measured HO resonance energies. The

second feature is the decrease in strength of the HO modes with decreasing particle radii. This is a

consequence of the size- and l-dependent damping of localized surface plasmons, which is a main

feature of the GNOR model. In particular, with decreasing particle radius and increasing multipolar

order l the linewidth of the surface plasmon increases.10 From Supplementary Figure 10(b) we see

that the calculated EELS signal from the HO modes decreases with decreasing particle radius,

and almost completely disappears for particle radius below approximately 4 nm. Importantly, we
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also observe this effect in our EELS measurements, where EELS spectra of particles with radii

below 4 nm only show a single SP peak [see for instance Figure 4(h) in the main text]. From this

agreement, we find strong support for the interpretation that the disappearance of the HO modes

for very small particle radii is a consequence of nonlocal response, i.e., a fundamental property of

the free-electron gas in silver nanoparticles, and not due to, e.g., lack of instrumental resolution.

The third and final feature in the GNOR calculations is the increase in resonance energy of the

dipole mode as the particle radius decreases. We find that the GNOR calculations are only in

qualitative agreement with the EELS measurements, since the experimentally measured blueshift

is much larger than predicted by theory. This discrepancy suggests that other effects in silver

besides nonlocal response play a part in the observed blueshift of the dipole mode.

Extinction cross section To provide context for the use of EELS to excite HO modes, we present

in this subsection calculations of fully-embedded silver nanoparticles using a plane wave as an

excitation source (instead of a swift electron beam). Plane wave excitation is typical in far-field

measurements. In Supplementary Figure 1, we show the cross-sectional efficiency (extinction cross

section normalized to sphere cross section) of a silver nanoparticle embedded in a homogeneous

environment with permittivity εB = 3.3. The calculations are performed using Mie theory.13 For

the nanoscopic particles under consideration, we find only a single resonance, associated with the

excitation of the dipole mode. The resonance energy decreases with increasing particle size due to

retardation. We point out that no higher-order modes are observed, since the excitation source is a

plane wave which couples inefficiently to modes of higher angular momentum.
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Supplementary Note 2: Conformal silicon nitride coating of silver nanoparticles

We have thoroughly investigated the morphology of the silicon nitride coating to ensure that the

nanoparticles are conformally coated. In this Note, we present two different experimental analyses

confirming the conformal morphology of the silicon nitride layer. For the first analysis, we prepare

a cut-out of a representative TEM sample using focused ion beam (FIB) milling for production of

a lamella, used to obtain a cross-sectional view of the sample. The sample used for this purpose

has a thicker silicon nitride encapsulating layer (approximately 33 nm below and 27 nm above

the particles) compared to the sample used in the main text (see Methods section in main text).

The additional thickness in the bottom layer stems from the approximately 5 nm thick silicon

nitride TEM membrane. In order to protect the region of the sample we wanted to investigate,

we deposited in situ a layer of platinum. Afterwards, the TEM lamella was cut free on three

sides and at the bottom (in the Si substrate under the silicon nitride layer) before welding the

lamella to an etched tungsten tip using in situ platinum deposition. The lamella was detached

from the sample using the FIB and welded on a TEM grid using the gas injection system. Finally

the lamella was carefully thinned to approximately 80 nm with the FIB to allow investigation

in the TEM. In Supplementary Figure 2(a) we show a cross-sectional view of our FIB-prepared

lamella. The contrast in STEM images depends on both the thickness and atomic number of

the materials in the sample. As the thickness of the lamella is constant in the viewing direction

(∼ 80 nm), the contrast seen in Supplementary Figure 2(a) originates to a good approximation only

from differences in atomic number. In particular, the top platinum layer from the FIB procedure is

visible along with the silver nanoparticles encapsulated in the silicon nitride coating. It is evident

that the silicon nitride layer conformally coats the nanoparticles with larger domes in the surface
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topography around larger particles. The image contrast in the dome region is due to both the

encapsulating nitride layer and the grainy platinum layer; the latter in particular is responsible

for the non-uniform appearance of the domes. We stress, however, that the silicon nitride domes

are uniform, as is also seen in Supplementary Figure 2(b), which displays a scanning electron

microscope (SEM) top-view image of the sample before the FIB procedure. The SEM image

shows clear uniform domes in the silicon nitride and, additionally, provides further evidence for

the conformal morphology of the encapsulating layer.

In the second experimental analysis, we use EELS and energy-dispersive X-ray spectroscopy

(EDS) measurements to study the composition of our sample. These measurements are acquired on

the same sample as the one studied in the main text. In Supplementary Figure 3(b-c) we show EDS

and EELS spectra, respectively, acquired at the two positions shown in Supplementary Figure 3(a).

One of the impact positions is close to a silver nanoparticle of radius R = 22.1 ± 0.7 nm (shown

in blue), while the other position is at a distance from the particle (shown in red). On compar-

ing the EDS spectra from these two positions [Supplementary Figure 3(b)], we find similar EDS

signal from the two positions with a clear peak from silicon. Due to the low atomic number, the

EDS signal from nitrogen is quite weak and not clearly distinguished. However, elemental quan-

tification from the EELS spectra (which is more suitable for materials with low atomic number)

shows the same silicon-to-nitrogen ratio at the two positions, indicating that the two regions are

compositionally the same. Elemental quantification from the EDS spectra also shows that the com-

position of the coating close to and far away from the particle is similar. Additionally, the EELS

spectra in Supplementary Figure 3(c) reveal that the thickness of the coating is larger in the vicin-

ity of the particle, which explains the halo around the nanoparticle in Supplementary Figure 3(a).
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Combining the information from the correlated EDS and EELS measurements, we conclude that

the coating composition does not change in the vicinity of the particle while the coating thickness

increases, providing further evidence for the conformal morphology of the coating.
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Supplementary Note 3: Morphology of silver nanoparticles

To assess the effect of encapsulation on the morphology of the silver nanoparticles, we prepared an

additional sample without the top layer of silicon nitride (i.e., bare silver nanoparticles deposited

on a 20 nm thick silicon nitride substrate). In Supplementary Figure 4 we display STEM mi-

crographs of selected nanoparticles from the two different samples (with and without the silicon

nitride encapsulation). In both cases the nanoparticles appear almost spherical in shape. How-

ever, we observe that the non-encapsulated nanoparticles [Supplementary Figure 4(a-b)] show a

smooth morphology, while the encapsulated nanoparticles show a faceted icosahedral morphology

[Supplementary Figure 4(c-d)]. This difference in morphology is attributed to oxidation and for-

mation of silver sulfide on the non-encapsulated nanoparticles that cannot be avoided without the

protective top layer. This observation evidences that the encapsulation of the silver nanoparticles

with a top layer of silicon nitride enables us to obtain high-quality pure silver nanoparticles with

well-defined icosahedral morphologies.
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Supplementary Note 4: Dielectric constant of encapsulating silicon nitride

Using EELS data acquired by positioning the focused electron beam in a particle-free region, we

can estimate the dielectric constant of the encapsulating silicon nitride. We use the Kramers–

Kronig method1 to extract the real and imaginary parts of the dielectric constant. This method

requires EELS data with a large energy range, so we acquire energy losses separated by 0.25 eV,

giving us a total energy range of 512 eV (i.e., dispersion of 0.25 eV pr. channel). The EELS-

extracted dielectric constant is displayed in Supplementary Figure 6 using two methods to remove

the zero-loss peak (part of the Kramers–Kronig procedure). The red lines (blue lines) show the

result using the reflected-tail method (fitting of sum of Gaussian and Lorentzian squared functions)

to remove the zero-loss peak. The black lines show the previous result for bulk silicon nitride with

chemical composition Si3N4.2 While providing qualitative insight, we also find a strong variation

in the extracted dielectric constant depending on the zero-loss peak removal technique, which

prevents more accurate insight to the exact values for the dielectric constant of our encapsulating

silicon nitride layer. We have therefore decided to use a pragmatic approach to determining the

value of εSiNx , where, as described in the main text, we ensure the best correspondence between

the simulated and measured dipole resonance energies.
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Supplementary Note 5: Spatial dependence of the weight of higher-order modes relative to

the dipole mode

We here provide a brief discussion of the b-dependence of the excitation weights of HO modes

vis-à-vis the dipole mode. Additionally, we comment on its relation to the field-localization of the

plasmons and the exciting electron beam.

From a basic perspective, we note that the extents of the plasmon and electron beam fields

are of comparable magnitudes. Specifically, the field of an l-order multipolar plasmon of an iso-

lated sphere decays approximately as ∼ r−(l+2) (quasistatic limit) and exhibits a 1/e decay length

∼ R/e(l+2), significantly shorter than the particle radius, and decreasing exponentially with mul-

tipole order. The radial extent of the field associated with the electron beam is ∼ vγv/ω (with

Lorentz factor γv), on the order of 50 nm in our measurements; but is sharply peaked (in fact

divergently so, in the limit of vanishing beam width) about its origin. Evidently, appreciable elec-

tron energy loss requires significant overlap of the fields of both plasmon and probe: the tighter

confinement of HO modes restricts their excitation to grazing impacts. Similarly, the increasingly

inhomogeneous nature of the HO modes require a comparably inhomogeneous excitation field for

significant overlap – otherwise the overlap is zeroed by repeated oscillations – thus compounding

the severity of the previous statement.

A fully quantitative explanation originates in the quasistatic multipolar expansion of the elec-

tron energy loss for a single sphere (in vacuum, with impact b > R)6, 8, 14

Γ(ω) = αv
4R

πv

∞∑
l=1

l∑
m=−l

(
ωR

v

)2l

K2
m

(
ωb

v

)
Im

[
lε(ω)− l

lε(ω) + l + 1

]
1

(l +m)!(l −m)!
, (2)

26



with αv ≡ e2/4πε0~v. Though still an expansive formula, it is clear that the impact parameter b

enters only the Coulomb term K2
m(ωb/v); with the exception of the m = 0 contribution, this term

diverges as K2
m(x) ∼ [2|m|−1(|m| − 1)!x−|m|]2 for x ≪ 1. For sufficiently small ωb/v the m = ±l

terms then dominate all other m, allowing the approximate form

Γ(ω) ≃ αv
2R

πv

∞∑
l=1

nl

(
R

b

)2l

Im

[
lε(ω)− l

lε(ω) + l + 1

]
, (3)

with coefficients nl ≡ 22l[(l − 1)!]2/(2l)!. From this simpler formula, it is clear that the weight

of moderately high l-order modes is enhanced as R/b approaches unity from below, i.e., as b is

reduced towards R (while very high angular momenta remain suppressed owing to the coefficients

nl which approach nl ∼
√
π/l3/2 for large l).
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Supplementary Note 6: Image analysis

The analysis of the STEM images is performed in MATLAB using the Image Processing Toolbox.

Each image contains only a single particle, see Supplementary Figure 12(a) for an example. The

image is first sharpened using the built-in Lucy–Richardson deconvolution scheme in MATLAB

[Supplementary Figure 12(b)]. For the deconvolution, the spatial distribution of the STEM probe is

assumed to be Gaussian with a full-width at half-maximum of 5 Å. The number of iterations in the

deconvolution is usually set to 3 to avoid deconvolution-induced artifacts. The sharpened grayscale

image is then converted to a binary image [Supplementary Figure 12(c)]. The grayscale thresh-

old limit for the conversion is determined using Otsu’s method, which is included in MATLAB.

Afterwards, we perform a number of morphological operations on the binary image to clearly de-

termine the boundary of the particle. In particular, we remove isolated white pixels, fill isolated

interior black pixels, and finally, erode and dilate the binary image with a disk-shaped structuring

element [Supplementary Figure 12(d)]. The boundary of the white binary particle is then extracted

[Supplementary Figure 13] and fitted to a circle and ellipse. Assuming the particle to be spherical

in shape, we take the radius of the fitted circle R as the particle radius. The difference between the

major axis a and minor axis b of the fitted ellipse is used to determine the error ∆R = a− b in the

particle radius.
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