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1 Background
During the 1990s, Robert Coleman constructed finite slope families of overconvergent,
elliptic modular forms parametrized by rigid analytic subspaces of the weight space in [6,
7]. This was an extension of Hida’s construction of ordinary families in the mid-1980s
n [10]. One striking difference was that while Hida’s theory was completely integral
and worked over formal schemes, Coleman’s theory was Q,-rigid analytic. Nevertheless,
Coleman observed that the characteristic series of the {/,-operator acting on finite slope
p-adic families of overconvergent modular form had coefficients in the Iwasawa algebra
(i.e., they were integral) and conjectured that there should exist an integral or positive
characteristic theory of overconvergent modular forms. Following Coleman’s intuition,
we obtained such a theory for elliptic modular forms in [3]. The present paper is an
extension of [3] to the case of Hilbert modular forms.

More precisely, in the present paper we accomplish the following. Let us first fix a totally
real number field F of degree g over Q. Then let us recall (see, e.g., [2] or Sect. 8 of the
present paper) that there are two relevant algebraic groups attached to F, denoted by
G := Resr;gGL> and G* =G XResr/gCm G-

From the point of view of automorphic forms, it is useful to work with modular forms
on G, but the Shimura variety associated with G is not a moduli space of abelian varieties.
Instead, the Shimura variety associated with G* is a moduli space of abelian varieties, and
so we first construct our modular sheaves for modular forms on G*, as in [2], and then we
descend these sheaves to the relevant varieties associated with G.
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1.1 Modular sheaves associated with G*

This construction is accomplished in Sects. 1-7, where we work with toroidal compacti-
fications of the moduli spaces of abelian schemes with Or-multiplication and we have a
semi-abelian scheme which extends the universal abelian scheme.

To fix ideas, let p denote a positive prime integer, T the torus Resr,0G,, and let Ar :=
Zp[T(Zy)] be the associated Iwasawa algebra. We denote by W the analytic adic space
(called the weight space for modular forms on G*) associated with the formal scheme
2 := SpfAr and k"™ : T(Z,) —> Aj the universal (weight) character. In particular, we
have a natural decomposition of the adic weight space Wr = W;ig U WE o, Where er_-ig
is the adic space associated with the rigid analytic generic fiber of Spf Ar (so this is the
“old, p-adic weight space”) and

WEoco = {x € WEIlplx = 0},

sometimes called the “boundary of the weight space” and consisting in points with values
in characteristic p-rings.

Let now N > 4 be an integer relatively prime to p and let 90(uy;, ¢) be the formal
scheme associated with a projective toroidal compactification of the Shimura variety for
G* of level (uy, ¢). Here ¢ is a fractional ideal of F (see Sect. 3 for more details).

Our main result is the construction of an integral family of sheaves of overconvergent
modular forms, parametrized by the formal spectrum of the Iwasawa algebra Ar. This
overconvergent family extends the family of p-adic modular forms defined by Katz [14]
and used by Hida in [11]. More precisely let us denote by QU% = SpfA% the free” com-
ponent of 20, where Ag is a complete regular local ring of dimension g + 1 with max-
imal ideal m and let 3 := M(uy, ¢) x QHIO:. We consider, for each r > 0 the formal
scheme 3, which should be thought of as a “formal neighborhood of the ordinary locus
in 3” and which is defined as the formal scheme which represents the functor associ-
ated with every m-adically complete A%-algebra R the set of equivalence classes of tuples
( Mps 11, M2, - - ., Mg), where i1 : SpfR — M(un, ¢) is a morphism of formal schemes and
Nps Ni € HO(SpfR, h*(det w;l_p)pm)), i=1,...,g¢ satisfying

HaernP = p mod p?, Haprﬂm =T modp? ..., Haprﬂng =T, mod p?.
See Sect. 6.3 for the definition of the equivalence relation between such tuples. Here A
is the universal semi-abelian scheme over M (i, ¢), denoted G in the main body of the
article, and Ty, T, ..., T, are chosen elements of m, which together with p generate it
(see Sect. 2.1 for more details). Let 91, be the base change, as formal schemes, of 3, to
2 r. We construct, for each » > 0, a coherent sheaf mfun on 91,. Let M, denote the adic
analytic space associated with 91, and w;" the associated analytic coherent sheaf. Then

K

wy " is invertible and it satisfies the following properties.

1. The restriction of w\™ to the rigid analytic space M, X Spa(ZyZy) Spa(Qy, Zy) is the
sheaf defined in [2, Definition 3.6].

2. For all classical weights k - x : T(Z,) — O(’Ep, where k is an algebraic weight and x
a finite order character, the specialization of w;" to k - x is the restriction to M, of
the sheaf a)ff\( x) of classical modular forms of weight k and nebentypus .

3. The family of sheaves {w}"},~0 is Frobenius compatible.

See Sect. 6.4.
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1.2 The modular sheaves associated with G

This construction is done in Sect. 8. Let Qﬂg, k&t denote the formal weight space and
respectively the universal character associated with the Iwasawa algebra Al_g for the group
G and let Qﬁg —> 2 be the natural morphism of formal schemes. Let now M(un, ©)G
denote the formal Shimura variety for the group G (i.e., the formal completion along the
special fiber of a projective, toroidal compactification of the Shimura variety for G). The
toroidal compactifications for the Shimura varieties for G* and G can be chosen in such
a way that we have a natural morphism of formal schemes «: M(un, ) — M(un, ).
Moreover, if A denotes the quotient of the group of totally real units of O by the square
of the units congruent to 1 modulo N, this finite group acts naturally on 9 (ux;, ¢) by
multiplication on the polarizations, such that:

1. The morphism « is finite, étale and Galois with Galois group A. It follows that
M g = (M(un; )/ A.

2. For every r > 0, we have a natural action of A on M, x gy, Qﬁg lifting to an action
on 1, , which is the pullback of <" to M, x oy, 20€. By finite étale descent, we

obtain a coherent sheaf, still denoted m:gn, on Mg := (M, Xau; G)/A

3. If we denote by ./\/er the analytic adic space associated w1th the formal scheme
M, c and by wrG the associated coherent sheaf, then a), G is invertible and the
overconvergent modular forms for G are overconvergent sections of specializations
of this modular sheaf. As in [2], one can show by a cohomological argument that
specialization is surjective on cuspidal forms.

The spectral theory of the operator I, on adic families of overconvergent modular forms
allows us to construct an adic eigenvariety sitting over the analytic adic space associated
with the Iwasawa algebra Ag. See Sect. 8.6.

Finally, this article generalizes and is crucially based on both [2,3]. In particular, for
many arguments we refer to loc. cit. Let us point out what is really new here:

1. The boundaries of the weight spaces, for both G and G*, are analytic spaces of
dimension g — 1. Therefore, the boundary overconvergent Hilbert modular forms
(i.e., the overconvergent Hilbert modular forms in characteristic p) are parameterized
by positive dimensional analytic spaces if g > 1, i.e,, live in true analytic families.

2. In [3], the universal integral modular sheaf ;" was a sheaf parameterized by the
formal blowup of the formal scheme SpfA with respect to the ideal m. Therefore, the
descent to the Iwasawa algebra in this paper improves [3].

3. If p is ramified in O, the descent of the perfect sheaves of overconvergent Hilbert
modular forms to finite levels by the use of Tate traces involves new problems due to
the non smoothness of the associated Hilbert modular varieties in characteristic p.

Remark 1.1 In [2] and also in this paper, we work with toroidal compactifications
M (un;, ) of the integral models of the Shimura varieties associated with G* defined by
Deligne and Pappas [9], completing previous work of Rapoport [16]. These models are
singular at primes dividing the discriminant of F. One could use one of the splitting mod-
els M(uun, c) — M(un, ) of M(uy;, ¢) introduced by Pappas and Rapoport [15]. Such
models depend on some auxiliary choices, namely an ordering of the embeddings of F
in an algebraic closure, but they have the advantage of being smooth. The given map
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is an isomorphism over an open dense subscheme (the Rapoport locus, see Sect. 3); in
particular, the two moduli spaces differ only at primes p dividing the discriminant of F.
Recall that the complement of the Rapoport locus is characterized by the fact that the
sheaf wg of invariant differentials of the versal semi-abelian scheme G over M(uy;, ¢) is not
locally free as O ® Oyy,,,,o-module. On the other hand on a splitting model, wg admits

a filtration by invertible (9]\:4( -modules, stable for the action of Of. These invertible

sheaves allow to define Hilbelirhthgqodular forms of non-parallel weight over the whole of
M(un; ©).

For our purposes, i.e., the construction of modular sheaves, it makes no difference
which model we choose and we prefer to work with the minimal (and more canonical)
one, the Deligne—Pappas model. The main reason is the fact that the key ingredient in the
construction of the modular sheaves is the introduction of a different integral structure F
of wg which is locally free as Or ® Ojg,,,,-module, e.g., even on the complement of the
Rapoport locus in the formal scheme 38,,,.; (see [2], Proposition 4.1, or Sect. 4.1 of the

present article).

Notations Let F be a totally real number field. Denote by g the degree [F : QQ]. Fix a prime
p- Denote by By, ..., By the prime ideals of O over p. For each i, let f; be the residual
degree and e; the ramification index. Write p = ‘P - - - By for the product of all the primes
of Of above p. Setg = pifp > 2and g =4 ifp = 2.

2 The weight space
2.1 The lwasawa algebra
Denote by T := Reso,/zG, and by Af the completed group algebra Z, [T(Z,)]. We write

" T(Zy) - Af
for the universal character. Fix an isomorphism of topological groups
p: H x Zf — T(Zp) = (O ® Zp)*

where H is the torsion subgroup of T(Z,). Write A% for Z,[Zy] = Z,[T, ..., T,] where
14+ T; = €, the ith vector basis of Zf,. Itis a complete, regular, local ring with maximal ideal
m. Furthermore, Ar = A?: [H]is a finite flat Ag—algebra. Actually, there is also a canonical
projectionmap Ar — A?_- obtained by sendingallz € Htol. Weletk : T(Z,) — (A?:)* be
the composition of k*” and the above projection. Welet x : H — A} be the composition
of the inclusion H — T(Z,) and the universal character.

We denote by 20F resp. QH% the m-adic formal scheme defined by Af resp. Ag. Then
we have a natural map 20r — Qﬂg which is finite and flat.

Remark 2.1 In [2], the weight space has been defined over the ring of integers of a finite
extension K of Q, splitting F. The reason is that the classical weights are defined over K.
Here we prefer to work over Z,. As a consequence, it will turn out that the characteristic
series of the U, operator will have coefficients in the Iwasawa algebra Ag defined in
Theorem 8.8, with no need to extend scalars.

2.2 A blowup of the formal weight space
Consider the blow-up Sp?c/A £ of Spec Ar with respect to theidealmandlet t: Wr — Wr
be the associated m-adic formal scheme.
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We describe in more detail the formal scheme 2. Notice that by the universal property
of the blowup, the ideal sheaf J := t~!(m) C O%F is invertible. For every element « € m,
we denote by 2, = D4 (a) = Spf(By) C 2Wr the open affine formal subscheme where J
is generated by o (2, is empty unless @ € m\m?). In particular, the m-adic topology on
B, coincides with the a-adic topology.

One has variants @2 — QH% of the spaces introduced above and associated with the
sub-algebra Ag of Ar. We also have a natural finite and flat morphism QETF — QE]% For
every element o € m, we write 209 = Spf(B) QET% for the open affine formal subscheme
defined by .

2.3 The adic weight space
Let WE be the analytic adic space associated with 0. For all open Spf A of 20F, the
associated open of We is the open subset of analytic points Spa(4, A)*” of Spa(4, A). For
every element o € m, let VW, be the open subset of Wr consisting of the analytic points
of the adic space associated with 2J,,. Then W, is affinoid equal to Spa(By[a 1], By) =
Spa(Ba, Ba)™.
Choosing generators (p, T1, . . ., Ty) of m then W is covered by the affinoids
W Wrys .. s Wr,.

14
We let W be the analytic adic space associated with 20r. Namely, Wr consists of the
analytic points Spa(Ar, Ap)*" C Spa(Ar, Ar). Wedenotebyt: WF — Wr the morphism

of analytic adic spaces associated with t: iﬁp — WF.

Lemma 2.2 The morphism t: We — Wr is an isomorphism of adic spaces.

Proof For all @ € m, the subset {x € WF, 0 # |a|y > |Blx VB € m} of WF equals W, by
definition. Moreover, Wr is covered by the W,,. The conclusion follows. |

Remark 2.3 Let us denote by WFBW K the subset of rank 1 points of Wr. Then there is a
map:
O: W — P¢(R)
x> (1plo | Tilo - - 1 Tel)

with image included in [0, 1[¢*1. This map may be helpful in order to understand Wr. Let
us denote by (xo, . . ., x¢) the coordinates on P#(R). Then O~ I({xo # 0}) is the set of rank
one points on the usual (adic) weight space over Spa(Q,, Z,) associated with Af.

Let us denote by Wg the analytic adic space attached to QUIOD. For every element o € m,
we denote by WY the analytic adic space associated with 209.
Finally, let us remark that the classical weights are points of the subspace of Wr where

p is invertible.

2.4 Properties of the universal character
2.4.1 Congruence properties
First of all, we need to elaborate on the identification p: H x Z5 ~ (O ® Zp)* of the

previous section.

Lemma 2.4 (1) Thegroup H can berealized as a quotient of (O ®Z,)* /(14+qOFr ®Zy).
Its prime to p part is isomorphic to (O ® Zp)* /(1 + pOF ® Zy).
(2) Given(ay,...,aq) € Zf,, we have k(p(ay, . . ., ag)) = ‘;5:1(1 + Ty)% € (Ag)*,
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Proof (1) The group H is finite and its prime to p part maps isomorphically onto (Or ®
Zyp)* /(1 + pOf ® Zp) via p. Denote by L the quotient (O ® Zy)*/H. The subgroup
14 qOF ® Zy of (Or ® Z,)* is isomorphic to g(Of ® Zj), and hence to Zﬁ, via the
logarithm. In particular, it injects into L via the quotient map and the subgroup H of

(OF ® Zp)* injects into (O ® Zy)* /(1 + qOFr ® Zp). This proves the first claim.
(2) The standard basis elements €y, . . ., €5 of Zf, maptol+Ty,...,1+ Tgin Ag, O

We define the following ideals in A%:

1

,papnfz, P e (Th, .., Ty))ifn > 1.

e Mo —=—my :(Tl,..., Tg).

. my, = (O[pn,

Lemma 2.5 For every n € Z>1 we have that K(,o(p”’IZf,)) — 1 C my,. In particular, we
have for all n € Z>1

k(1+qp" 'Or®Z,) —1 Cmy,
Moreover, k(T(Zy)) — 1 C my.

Proof Note that k(p(p" a1, ...,p" ay)) = [[5_,(1 + T;?" '@, One computes that
1+ Ti)p'kl — 1is contained in the ideal (Tfnil,prniz, ..., P"1T;); see [3, Lemme 2.3].

Notice that « is trivial on H so that it factors via p(Zf,) = (Or ® Zp)*/H. Furthermore,
1+ qp"'O0F ® Zy) = 1 +q0Fr ® Zp)pn_1 (using the logarithm). In particular, (1 +
q" 'Or ® Zp) is contained in o 1OF ® Zyp) via the identification above. The second
claim follows. O

2.4.2 Akeylemma

We introduce a formalism inspired by Sen’s theory that will be repeatedly used in the

paper.Letn € Z>; and Ag — A;--- — A, be atower of A?_-—algebras which are domains.

We assume that the group (Or/p" Of)* acts on A, by automorphisms of A%-algebras and

that A; is the subring of A,, fixed by the kernel H of the map (Or /p"OF)* — (O /p*OF)*.
Leth € Apandlet pg =0 < p; < --- < p, be a sequence of integers. Let ¢, € h™PA,

be an element. Set ¢, = > H, O " Cn- We assume that:

o ¢g € hPsAgforalls > 0,

e co=1.

Set by = de(op/pSOF)* k(6)o(cs) € hPsAgfors > 1and by = 1. Here 6 € T(Zy) isa
lift of o so that b5 depends on ¢; and on the choices of lifts.

Lemma 2.6 1. Another system of choices of lifts & for the o’s would give an element b,
and we have

o by —bs e hmPmeAgifs>1,p > 3,
o b, —bs e hPms_1Asifs>2,p=2,
. bll — by € hmPlmpA, ifp =2

2. We have the following congruence relations:

o by—bs_1 e hPsmg_1Aifs>1,p >3
o by —bs_1 € hPsm;_sAsifs > 2,p >3,
e by — by € hm PlmpAg if p = 2.
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Proof The first point follows from Lemma 2.5. To prove the second point, assume that
s > 1 and notice that

b= >« > k@) - Dole) +en
7€(OF/p*~ 1 OF)* o €l4+p* 1 OF /pOF
= D k@ > @)= Dole) | + b
1€(OF /P Op)* 0 €l+psLOp /p*OF
One concludes by applying Lemma 2.5 and also using the first point. ]

2.4.3 Analyticity of the universal character

We now study the analytic properties of the universal character. The degree of analyticity
depends on the p-adic valuation of Ty, . . ., T,. This motivates the following definition. For
€ Qx1, we define the following rational open subsets of Wg:

<|P’lx #0, Yo e m},

0 0
« Wi_o = (e W Il

e Wo_, ={xeWp 3w em|p’ly < |'|x # O).
Set ngoo = WIQ. If I = [a,b] is a closed interval with a, b € Q=1 U {oo}, define
ng = W2<b n Wgza, For all « € m, we let Wg,[ = ng[ N Wg.

Remark 2.7 1f x € WY is a rank one point, then « is a pseudo-uniformizer of the residue
field k(x). Let us denote by v, : k(x) — R U {oco} the valuation on k(x) normalized by
ve(a) = 1. Notice that the norm p"’a(') represents the equivalence class of | - |;. Then
x € Wg,[ ifand only if vy (p) € I.

We now construct formal models. Take an element &« € m. We define Bg, ;=
HO (W1, O%%I).

Set Qﬂg, ;= Spf ljg ;- The analytic fiber of Qﬁgj ;s Wg} ;- For Xarious a’s, Ehe Qﬁgj ; glue to
a formal scheme QB% ; yith analytic fiber Wg ;- Remark that Qﬂ?:,[l, 0] = QIT?_-.

If I C [0, oof, then Qﬂg ; is a p-adic formal scheme (the m-adic topology is the p-adic
one). In the lemma below, G,,, G, are considered as functors on the category of p-adic
formal schemes equipped with a structural morphism to QH?:. Lete =1ifp #2ande =3

if p = 2. The group T(Zy) - (1 + p"t¢Of ® G,) is a subgroup of G,,,.

Proposition 2.8 Letn > 0 be an integer. Suppose thatI C [0, p”]. The character k extends
to a pairing

QE]%I x T(Zp) - (14 p"“Or ® G4) — Gy
It restricts to a pairing
@%1 X (1 +p”+€+”/(9p ® (G:{) — 1+ qpn/(GgZ
foralln' € Z>.
Proof Easy and left to the reader. ]
3 Hilbert modular varieties and the Igusa tower

3.1 Hilbert modular varieties

We recall the definition of Hilbert modular varieties following [9,16].
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Fix an integer N > 4 and a prime p not dividing N. Let ¢ be a fractional ideal of F
and let ¢* be the cone of totally positive elements. Denote by Df the different ideal of
OFf. Let M(un;, ¢) be the Hilbert modular scheme over Z, classifying triples (A, ¢, ¥, 1)
consisting of: (1) abelian schemes A — S of relative dimension g over S, (2) an embedding
t: O C Endg(A), (3) a closed immersion ¥: uy ® D;l — A compatible with Of-
actions, and (4) if P C Homp, (4, A") is the sheaf for the étale topology on S of symmetric
Of-linear homomorphisms from A to the dual abelian scheme A and if P* C P is the
subset of polarizations, then A is an isomorphism of étale sheaves A: (P, P*) = (¢, ¢t), as
invertible Or-modules with a notion of positivity. The triple is subject to the condition
that the map A®p, ¢ — A" isan isomorphism of abelian schemes (the so called Deligne—
Pappas condition).

We write M(un, ¢) and M (un, ¢) for a projective toroidal compactification, respec-
tively the minimal or Satake compactification of M(up,c) (see [16]). Let M(un, ©)
[resp. m (s ©)] be the associated formal schemes. They are endowed with a semi-abelian
scheme G with Of-action.

There exist maximal open subscheme, respectively formal subscheme MR(MN, ) C
M(un;, c), resp. ﬁR(MN, ¢) C M(uun, ©) such that wg, the conormal sheaf to the identity of
G, is an invertible O, TR i ®z Op-module, resp. (’) R e ®Z Of-module (the so called
Rapoport condition). The complement is empty if p does not divide the discriminant of
F and, in general, it is of codimension 2 in the characteristic p special fiber of M(uy;, ¢);
see [9].

We denote by Ha € HO(M*(ux, o)F,, det w‘g—l) the Hasse invariant. We let Hdg C
Oﬁ(uw, 0 be the Hodgi ideal defined by the Hasse invariant (see [3, SA.1] for a precise
definition: locally on M (uy;, ¢) it is the ideal generated by p and a (any) lift of a local
generator of Ha det le—p ).

3.2 Canonical subgroups
Let Ag be a Zy-algebra and a € Ag a nonzero element. We assume that Ay satisfies the

following:

(%) Ag is an integral domain, and it is the a-adic completion of a Z,-algebra of finite
type and p € aAy.

Let M(in, €) x Spec 7, Spec Ap be the base change of the toroidal compactification via
Spec Ag — Spec Z, and let ) be the associated formal scheme over Spf Ag.

Definition 3.1 For every integer r € N denote by ), — 2) the formal scheme over %)
representing the functor which to any a-adically complete Ag-algebra R without - torsion
associates the equivalence classes of pairs (/: SpfR — 2), n € HO(Spf R, i* detw (A=p)p™ )

such that
Haprﬂn =a mod p>
Two pairs (4, 1) et (i, 1') are declared equivalent if # = 4’ and n = '(1 + & u) for some
u ek
We also denote by YR C 9), the open formal subscheme where the Rapoport condition
holds (see Sect. 3).
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Proposition 3.2 Assume thatp € apkAo‘ Then for every integer 1 < n <r + k one has a

canonical subgroup scheme H, of G[p"] over ), and H, modulo pHng;’f_11 lifts the kernel
of the nth power of Frobenius. Moreover, H, is finite flat and locally of rank p™8, it is stable
under the action of O, and the Cartier dual HP is étale locally over Ao[a™'] isomorphic
to Op/p" (as Op-module).

Proof All claims follow from [3, Appendix A]. O

Proposition 3.3 Foreveryr € Zxo, theisogeny given by dividing by the canonical subgroup
Hj of level 1 defines a finite morphism ¢: Y, — Yr—1. The restriction to the Rapoport
locus ¢: PR — 2)5_1 is finite and flat of degree pS.

Proof This is the content of [3, Cor. A.2] which is written for general p-divisible groups.
The last claim follows as relative Frobenius is finite and it is flat over the (smooth) Rapoport
locus. |

3.3 The partial Igusa tower

3.3.1 Construction

We use the notations of the previous section. Let A := Ag[a~!]: It is a Tate ring in the
sense of Huber [12] with ring of definition Ag. Let AT C A be the normalization of Ay in
A. The fact that Ag is noetherian implies that Spa(4, A™) is an adic space; [13, Thm. 2.2].
We define

d
y’” = @?’ XSpa(Ao,Ao) Spa (A’A+) :

here @;‘d, resp. Spa(Ag, Ap), is the adic space associated with the formal scheme 2),,
resp. Spf Ao, and the fiber product is taken in the category of adic spaces.

Assume thatp € apkAo andletr € Nandn € Nbeanintegersuchthatl <n <r+4k.It
follows from Proposition 3.2 that H? over ), is étale locally isomorphic to Of /p" Op. We
letZG, , — Y, bethe Galois cover for the group (Or /p" OF)* classifying the isomorphisms
Or/p"OF — HP, as group schemes, equivariant for the Op-action.

We define J&,,, — 2, to be the formal scheme given by the normalization of ), in
ZG . See [3, §3.2] for details. Such morphism is finite and is endowed with an action of
(OF/p" OF)*. One then gets a sequence of finite, (O /p’ ¥ OF)*-equivariant morphisms

jQS;’+I<,V - j6r+k—1,r > QJV'

The morphisms /: 3&,,, — J6,_;, are finite and étale over ;. In particular, there is
atrace map Trye : 1:036,, = O5s,_1,-

3.3.2 Ramification
Proposition 3.4 We have
n—1
Hdgp qujn_l‘r C Trye (I’Z*Ojgn',)

foreveryl <m <r+k.

Moreover, if p is unramified one has Trye (h:O36,,) = Oy,.

Proof The claim for n > 2 follows arguing as in [3, Prop. 3.4]. We recall the argument.
By normality the natural map ZG,, — H,? over ), associated with an isomorphism
Or/p" O — HnD the image of 1 € O /p" OF, extends to a morphism of formal schemes
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3&,, — HP over 9),. In particular, we get a commutative diagram of formal schemes
over 9),:

I8, HP

.

jQﬁn—I,r — HnD_ 1

which is cartesian over the analytic fiber ),. In particular, 38,,, — J®&,_; , is the nor-
malization of the fppf (H,, /H,,_l)D -torsor over J®,,_; , obtained by the fiber product of
the diagram above. One reduces to prove the claimed result for the trace of the morphism
HP — HP | (over 9),), and this follows from the relation between the different and the
trace and a careful analysis of the different of (H,,/H,_1)" given in [3, Cor. A.2].

We are left to discuss the case n = 1. If p is unramified, then the degree of 7G;, — Y
is prime to p and the second claim of the proposition follows immediately. If p is ramified,
we let p be the product of all primes of O over p. We introduce a variant of ZG; , by
setting 7 Q’L, to be the adic space over ), classifying isomorphisms Or /pOr — H; [p]D ,as
group schemes, equivariant for the Or-action. Here H [p] is the kernel of multiplication
by p on Hj.

We have a natural map of adic spaces ZG;,, — 7| g/L » = V. Taking normalizations, we
get morphisms of formal schemes J&;, — J&) . — 9),.

The degree of Ig’L, — Y, is the order of (Of/pOfr)* which is prime to p so that
Tr:;@(h*(’)j@/u) = Oy,. We are left to estimate the image of the trace map associated
with the morphism J&;, — J®] . Arguing as at the beginning of the proof we get a
commutative diagram of formal schemes over ), which is cartesian over );:

36, —— HID

L

j®/l,r —H [P]D

Thus J&;, is the normalization of a torsor under (H;/H; [p])P. We have an exact
sequence 0 — (Hy/Hi[p])P — HID — (Hi[p])P — 0. It follows that Hdg is contained in
the different of (Hy /H;[p])® over 2), and we conclude. O

We immediately get the following

Corollary 3.5 Let Spf R be an open of ), such that the ideal sheaf Hdg is trivial and
choose a generator Ha. For every 0 < n < r + k there exist elements co = 1 and ¢, €

1

Ha 7T Oye,, (SpfR) for n > 1 such that Trye(cy) = cy—1 for everyn > 1.
3.3.3 Frobenius
Recall from Proposition 3.3 that we have a Frobenius map ¢: ), — 9,—_1.

Proposition 3.6 There exists an (Of /p" Of)*-equivariant map ¢: I6,,, — T&,, 1 lift-
ing the map ¢: Y, — Yr_1.

Proof As 3®,,, is constructed by normalizing ), in ZG,,,, it suffices to construct a lift
¢: LGy, — ZG, - at the level of adic spaces.
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Notice that Hy,,+1/H] is the canonical subgroup H;, of level n of G’ = G/H; thanks to
[3, cor. A.2]. As multiplication by p on H,41 defines an isomorphism H,+1/H1 = H, and
hence anisomorphism H, = H,, (over );). Any Of-linear isomorphism map O /p" O —
H,’? defines an Of-linear isomorphism ¥': Of /p"Of — (H,/,)D. O

3.4 The basic constructions

Recall from Sect. 2.2 that we have introduced an m-adic formal scheme @2, which is
a formal model of the weight space. It is characterized by the property that the inverse
image of the maximal ideal of A? is an invertible ideal sheaf of 0%2 .

For every element o € m, we have denoted by 29 := Spf BY the open formal affine
subscheme of @g defined by o. We have set Wg = Spa(Bg [~ 1], Bg) to be the analytic
adic subspace of Wg defined by 209.

Applying the construction of Sect. 3.2 with A9 = BY, one obtains a formal scheme X,
over 209. Set X, to be the associated analytic adic space over W,.

For all choices of , these formal schemes X,,, glue into a formal scheme X, — QE]%
We let X, — Wg be the analytic adic space associated with X,.

Let I = [pF, pk/] C [1, 00] be an interval. We defined a formal scheme ?ﬁ]% ;> Qﬁg and
now we consider X,,; = X, X0 @%I and X, = X0 ) QUgyI.

Letn € Nbeaninteger such that 1 < n < r+k. Applying the considerations of Sect. 3.3,
we obtain an étale cover of adic spaces

Ign,r,a,] e Xr,oz,]:

for the group (Of/p"OF)*, classifying the isomorphisms Of/p"Or — HP, as group
schemes, equivariant for the Of-action. This is a morphism of adic spaces associated with
a morphism of formal schemes

jan,r,ot,l - xr,a,]-

Forvariousa € m, these adic spaces and formal schemes glue and we obtain ZG,, ,,; — A1
and 36,1 — X, .

3.4.1 Equations
In this subsection, we give local equations for some of the spaces defined so far. We have:

T
B = p[[Tl,...,Tg]]<p L —g>.

o o’
If « € m\m? this is a regular ring. Otherwise, this ring is 0. Consider an interval
I = [pk, ph] with k > 0 an integer and # > k an integer or 1 = oco. Take @ € m\m?. If
lelanda = p, thent,I =By. Ifa =pand1 ¢, BgJ = 0. Assume now that o # p.

1. If h # oo, then 32,1 =Zp[Th, ..., Tg]}(%, s %, u, v)/(apkv —puv — "™,

T, k
2. Ifh = oo, then B} = Z,[T1, ..., TJ(L, ..., & u) /(¥ u— p).

In the second case, Bg, ; is a regular ring and, in particular, it is normal. In the first
case, one checks that B, ; is normal by verifying that it is Cohen—Macaulay and regular in
codimension 1 (Serre’s criterion).

Let U := Spf A be a formal open affine subscheme of M(un;, ¢) over which wg is trivial.
Let Ha be a lift of Ha. The inverse image of U/ in X, [p+,00] is SPf R with

R .= A®Zp82(u, w)/ (wl—iapurl —a, o u —p) .
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Similarly for integers 0 < k < & the inverse image of U in X, , [ ,» is Spf R’ with
R = A®z,BY(u,v, W)/ (w]—faphrl — o, u — pugvy — a"hik) .
Lemma 3.7 The rings R and R' are normal.

Proof The ring B2 (u, w)/ (apku — p) is Cohen—Macaulay, and the algebra A®ZpBg (u, wy/
(apku —p)is BY(u, w)/ (otpku — p)-flat. Moreover, A is Cohen—Macaulay and flat over Z,;
thus A/pA is also Cohen—Macaulay. As a result, A®ZPB2(L¢, w)/ (ozpku — p) is Cohen-
Macaulay over B (u, w)/ (otpku — p), so it is Cohen—Macaulay. Since R is a complete
intersection in A®ZpBg(u, w)/ (ocl’ku — p), it is Cohen—Macaulay. Let us check that R is
regular in codimension 1. Let °§ be a codimension 1 prime ideal of R. Then Ry is easily
seen to be regular if o ¢ . Assume that « lies in 3. Then ‘B is a generic point of

A/pA ®r, (BY/aBY) [u, ]/ (wHap’“) .

Either Ha? " e B and in that case 3 maps to the generic point P’ of an irreducible
component of A/(pA, Ha). By Andreatta and Goren [1] the ring (A/pA)q is a DVR so let
t be a generator of its maximal ideal. If # denotes a lift of ¢ in R, then ¢ is a generator of
the maximal ideal of Rz and we are done. Otherwise, w € ‘B3 and in that case f maps to
a generic point of A/pA, and w is a generator of the maximal ideal of Ryz. The normality
of the ring R’ follows along similar lines. ]

Corollary 3.8 The formal schemes X, |, ) are normal.

4 Overconvergent modular sheaves in characteristic 0

In this section, we will construct sheaves of overconvergent Hilbert modular forms over
the adic space Wr\{|p| = 0}. This was already accomplished in [2], but our goal now is to
provide canonical integral models for the modular sheaves constructed in [2].

4.1 A modified integral structure on wg
Fix an interval I = [pX, p*'] with k and k' integers such that k' > k > 0. Let r € Zs;
and fix a positive integer n with n < r + k. Let G be the semi-abelian scheme over X,,;. It
follows from Proposition 3.2 that there exists a canonical subgroup H, C G[p"].

Let g,: 3&,,,1 — X, be the partial Igusa tower defined in Sect. 3.4. Let wg be the
sheaf of invariant differentials of G. It followns from [3, Cor. A.2] that the kernel of the
map wg/p"wg — @H, is annihilated by Hdg]j“fill wg. We deduce that the projection map

-l
wc — wg/p"Hdg 7T wg factors via wp,. One then has a commutative diagram of fppf

sheaves of abelian groups over X, :

o
a)G/andg_%wG

where all vertical arrows are surjective and the horizontal arrow is the Hodge—Tate map.
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Over J®,,,; we have a universal section P € H? which is the image of 1 via the universal
morphism ¢,,: O /p"Op — H,Iz).

Proposition 4.1 Let F be the inverse image in wg of the Oje,, -submodule of
-1

wg/p"Hdg ™ =y wg spanned by HT(P). Then F is a locally free Or ® Oje,,,,-module

1
of rank 1, the cokernel of F C wg is annihilated by Hdg?=T, and the map HT oy, defines
an isomorphism of Or ® Oz, ,,-modules:

HT': OF ® Oj@n,r,]/andgi’%qujWJ = f/p"Hdi%]{

Proof This is a variant of [2, Prop. 3.4]. Let U := Spf R C J&,,; be an open
formal affine subschems such that wgly is free of rank g as an R-module. Write
M e Mnxn(R/p”Hdgf%R) for the matrix of the linearization of the map HT over
U. Thanks to [3, prop. A.3] it has determinant ideal equal to Hdglﬁ. In particular,
Hdgt’ﬁ a)G/p”Hng;’f_11 wg lies in the span of HT(P).

Let M € M,x,(R) be any lift of M. Its determinant § is HdgtYﬁ (up to unit). Let
S C wgl u be the submodule spanned by the columns of M. Then dwg C S. Since

p'Hdg = =y wg = p"Hdg = -8wg C S one deduces that F|;; coincides with the S. In

particular, it is a free R-module of rank g. By definition it is stable for the action of Of.

For every x € Op/p Op, the image y € HT(wn(x)) lies by construction in the image
-1

of § in wg/p”Hdg pp Twg. As Hdg™ Pp I = Hdg™ I; I Hdg!ﬁ and as wg/F is anni-
hilated by Hng 1, it follows that any two hfts y and y” in S differ by an element
lying in Hdg 1: T Hdgﬁ la)G = Hdg pﬁ T .S, We then get a well-defined map
Or/p"Or — }"/p”Hdg = 1.7-' inducing HT o v, when composed with the projection
to wg/p"Hdg™ ; 1 Fwg. This prov}:des the HT'. By construction, its restriction to U is a

surjective map of free R/ p”Hdg_fTl R-modules of rank g and hence it is an isomorphism.
It follows that S = F|y; is a free Or ® R-module of rank 1 concluding the proof of the
proposition. O

We denote by f,;: §,r,1 = JT8,,.1 the torsor for the group 1 +p”Hdg_;T1 Reso;/2Ga
defined by

-1
Furi(R) == [w e F, o=HT'(1) in f/p”Hdg_ij]: .
One has an action of (O ® Z,)* on §,,,, lifting the action of (Of /p”" Ofp)* on 38, .1,

given by X - (a), 1) = (Aw, 1). We then get a well-defined action of the group (Of ® Z)* -
(1 +p”Hdg p_l ReSOp/ZGa) on §u,nl-

4.2 The sheaves of overconvergent forms

Fix an interval I = [p¥, p¥'] with k and k’ integers such that k' > k > 0. Let r, n € Zx.
We assume that 7 > 3, r+k >n > k' +2 (resp.r+k > n > k' +4if p = 2). Set
W=n—k —2(esp.” =n—k' —4ifp =2).

i 7i !
Lemma 4.2 We have pHdg”" C Ose,,,. In particular, p"Hdg »1 C pX¥ 1056, ,
(resp. C X305, ifp = 2).
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Proof The claim is local on J&,,,.;. Let @ € m\m?. We prove the claim over an open
U = Spf R C 76,1 over the open 9172,1 = Spf BgJ of QET% By construction, we have
p/apk € BY ; and oszg_prJrl C R. Hence, pHdg_”ﬂrk+1 C R. In particular, pHdg ™" C R
and the second claim follows. ]

Proposition 2.8 implies that the character « extends to a character
k: (OF @ Zp)* - (1 —l—p"Hdg;lResoF/ZGa) — G,

over QB% Iz
Define m}m ; = fu+O3,,, k1] as the subsheaf of JnxO3,,,0f sections transforming
v

_r
according to the character k! under the action of 1 + p”"Hdg »~IResp;,;zG,. It is an
invertible sheaf over J&,, ,.;. Define to,,,,; C gn,*m}l . s the subsheaf of (g, 0 /,). O3, ., of

_
k ~!-equivariant sections for the action of (O ® Zp)* - (14 p"Hdg ?TResop,/2Gq).
Proposition 4.3 The sheaftv,,; is an invertible Ox, ;-module of rank 1.

The rest of this section is devoted to the proof of Proposition 4.3. We follow closely
[3, §5] by starting with the following:

Lemma 4.4 Let (Ox,,)* be the ideal of topologically nilpotent elements of Ox, . Suppose
thatr > 1 (resp.r > 2 if p = 2). Then «((Or @ Zp)*) — 1 C Hdg((’)ggu)00 and for every
integer € such that2 < £ <r + k we have

-1 ) 00
c(1+p7'0F @172,) 1 C Hdg 7T (Ox,)”.

Proof We deal with the case p # 2 leaving to the reader the case p = 2. The claim
is local on X,;. We restrict ourselves to an open formal affine subscheme U = Spf R
mapping to the open 209 of QET% defined by an element « € m\m?2. By construction,
k((OF ® Zp)*) — 1 C aBg and since oszg_1 C (Ogg,),)oo, we can conclude that the first
point holds. Using Lemma 2.5, we see that for ¢ > 2, we have that K(1+p£_IOF®Zp)—1 C
(ap[_z, p)BY. Arguing as in Lemma 4.2 we deduce from the assumption that £ < r + k

that pHdg_pe € (035”)00. On the other hand as r > 1, then o € Hdgszgng so that
pi-1

_ 14 — Y it
o e Hdgp((’)xn,. As ’;:11 < pt, it follows that o’ 2Hdg =T C ((935,_,)00. O

We also have the following:

Lemma 4.5 The inclusion Oye,,, — fu,+xO5,,, defines an isomorphism
O n’o — 1ol n’ml
36,/ 036, il /AP W

Proof Consider an open formal affine subscheme &/ = Spf R C J®,,,,; mapping to the
open formal subscheme Qﬁg of QNB% defined by some o € m\m2. Assume that wg|y is
free. The choice of an element § € F|y lifting s := HT'(1) defines a section of the
morphism §, 1|y = I, 1|y and hence an isomorphism f; : mimllu — Oje,,,,;|u given
by evaluating the functions at 3.

Two different lifts 5 and s’ differ by an element of 1 + p"Hdg_;Tl OF ® R thanks to

Proposition 4.1. Proposition 4.2 implies that 1 +p”Hdg_1% Or®RC 1 +pk/+1+n’ Or QR
(resp. 1+ pK 3+ O @ Rif p = 2). As I = [p¥, p¥'] we conclude that k(1 + p* 1" OF ®
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R) C 1+ p" +1R (and similarly k(14 pX 3" O @ R) C 1+ qp” R for p = 2). Thus f; =f
modulo qp”/. This provides the inverse to the isomorphism in the lemma. O

Let U = Spf R be an open affine formal subscheme of X,,;. Suppose that v is free over
U. Thanks to Corollary 3.5 for every nonnegatlve integer n such that 0 < n < r + k there
exist elementscy = 1andc, € Ha~ = = O3e,,(SpfR) for n > 1such that Tryes (cy) = cn1
for every n > 1. If n satisfies r + k > n > k' + 3 (resp. n > k' + 4 if p = 2), we define a
projector:

Lot
ecn:gn,*m}q’nl(R) — Ha ?77',,;(R)
s z k(o)o(cus)
0 €(Of/p"OF)*

The following lemma proves Proposition 4.3:

Lemma 4.6 Lets € g,,,*m}”}](R) be an element such thats =1 mod p (in the sense of
Lemma 4.5). Then e, (s) € 10,,,1(R) and 0, 1(R) is the free R-module generated by e, (s).

Proof The proof is entirely analogous to the proof of [3, Lemme 5.4]. Write s = 1 + ph
for a section 1 € §,,,1(R). We get

)= D k@6)+p D, «k(6)6(cah).

o €(Of /p"OF)* o e(Of /p"OF)*

In this formula, & is an arbitrary lift of o to T(Z,). Since Ha” A | p and 1% <
PR it follows that p > c(0pjprop) K(6)G (cuh) € ROF, .1(R) where R is the ideal
of topologically nilpotent elements in R.

We need to show that

> k(6)6(cn) € 1+ RVF(R).
o €(Op /p" OF)*

This follows from Lemmas 2.6 and 4.4. As a consequence, e, (s) belongs to 1,,,;(R) and
one checks easily that it is a generator using the normality of R as in [3, Lemme 5.4]. O

4.3 Properties of v,

4.3.1 Functoriality

Fix intervals I’ C I, ' and r such that »’ > r and integers ' > n so that (I, 7/, #’) and
(L r, n) satisfy the assumptions given at the beginning of Sect. 4.2. We have the following

commutative diagram:

gn’,r/,l’ D &n,r,l

.

jQﬁn’,}”,[’ —— 36;4,;31
:{r‘/,l/ %— xr,]
which induces a morphism of Ox , ,-modules:

l*mn,r,l — Wy 1
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Proposition 4.7 The morphism above is an isomorphism.

Proof Consider O:{r’.l’ — L*m;’i ; ® 1, p. This last sheaf is the subsheaf of (g, o

fy,/)*Ogn,‘r,J, consisting of sections on which (O ® Z,)* - (1 +p”/Hdg_l% OF ® Zp) acts
trivially. This coincides with the sheaf O , , by the normality of X,,. The composite

map
-1
O:{r’,l’ — L*mn,r,l () Y, —> O:{r’.l’
is the identity. This proves the claim. -

We simplify the notations and write to; instead of tv,, ;7.

4.3.2 Frobenius

Propositions 3.3 and 3.6 provide compatible morphisms ¢: X,; — X,_1; and
I6,41,,1 — J,,_1 obtained by composing the projection 38,41, — JI&,,; and
the Frobenius map ¢ : 3,1 — J&,,,_1,. Let us recall the description of the mor-
phism 36,41,y — J6,,_1;. Let F: G — G/H; = G’ be the canonical isogeny
between the semi-abelian schemes G over X,; and G’ over X,_;;. This morphism
induces a surjective morphism of canonical subgroups H,+1 — Hu+1/H1 = H), of G
and G’ respectively. Dualizing we get an injective morphism FP: H,;D — Hfﬂ. The
map ¢: 36,117 — JIB, . associates with a morphism v : O /p" T O — HnD+1 the
morphism ¥': O /p"Of — H,/ID making the following diagram commute:

OF/pn+IOF LHD

n+1
XPT FDT
n v’ '.D
Or/P"OF H,;

We then get the commutative diagram:
Snt1n —— Sn,r/,l

.

jQ5n—0—1,r,1 —— jQSn,rCI

L,

¢
X1 X1

where the morphism §,41,1 — Tnr—11 is given by mapping a differential w € F to
pw € F' C we. One checks that this is well defined by using the following commutative
diagram:

/,D D
Hn Hn+1

lHT \LHT
F*

WG — WG

and thus obtains a morphism ¢*to; — to;.
Proposition 4.8 The morphism ¢p*vo; — 1o is an isomorphism.

Proof The proof is analogous to the proof of Proposition 4.7. O
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5 Perfect overconvergent modular forms
In this section, we define a sheaf of perfect overconvergent Hilbert modular forms over
the weight space QU% and in the next we will show that one can undo the perfectization.

5.1 The anti-canonical tower
Let I = [p, pk,] C [1,+oo] and r,m € Z>p and n < r + k. As explained in Sect. 4.3.2 we
have compatible morphisms

36,111 — 6,1

L,

xr+l,1 — xr,]

Taking the limits, we get formal schemes J&,, o1 — Xoo,1 OVer ﬁ]g Varying n we get
a tower of formal schemes -+ — T8,19 007 = TIB,11,000 —> IBy 001 Let TG 001 be
the projective limit. As the index r varies now, we denote by G, — X,,; the semi-abelian
scheme and by Hdg, C Ox,, the Hodge ideal defined by G,.

Recall from Sect. 3.3 that associated with the finite morphism J3&,,,,; — 3&,,_1,; we
have a trace map Trye: Oss,,, — Oze,_,,,;- These are compatible for varying r and
define a trace map Trye: O36,.,; = O36,_100:-

Proposition 5.1 We have Hdg O3, , ., C Tr3s(Ose,.,) foreverys > 1.
Proof Thanks to Proposition 3.4, we have Hdg? " 036,15 C Trye(hO5s,,,)- Itfollows

from (3, Cor. A.2] that Hdg!, | = Hdg,. Since Hdgfn_1 038,101 C Tr36(036,,,,) and s
is arbitrary, the claim follows. |

5.2 Tate traces
Let o € m\m?. Denote by I s,00,47 — Xooe the base change of the formal schemes
above to Qﬂg ;= QU%.

Let i1y : Xoo,0,1 = X101 be the projection map onto the rth factor.
Proposition 5.2 One has Tate traces:
Tr,: () Ox o, [1/] — Ox,,,[1/a]
such that f = lim,_, , Tr,(f). Moreover,
Try ((1)+Oxny) C o' Ox,yg

assoonasp’(p —1) > 2g + 1.

Proof The proof follows closely the proof of [3, Proposition 6.2]. We first provide the
analog of [3, §6.3.2 and §6.3.3] which reduces the proof to [3, Lemme 6.1].

0 = B° [o:pfk] One proves
alp=* ° ol :

as in Sect. 3.4.1 that it is a normal ring. Let Qﬁg Lk be the associated a-adic formal

For every nonnegative integer k > r 4 1, define B

scheme and let Wg’ kT Spa(BgJ’pfk [e™1], Bg,l,p*k]) be the associated analytic adic

0
space. Define X, ; « to be the fiber product X;,q,s Xwe, w, Ip

to be the normalization of X, in Xw’l’pf(,ﬂ) (see Sect. 3.3).’ ifor general k > r + 1
let X The

- Define X, /. ¢+

; 0
ra,lp-k De the base change of X, ; -+ via the map QH%LP% — Qﬂg,I,p—(m)'
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associated analytic adic space is X, , ;,—« such that we have morphisms

na,Lp

Xpqiptk = X 1) = Xnar = M, ©) x WY, — M(un, o). 1)

ralp raLp=

5.2.1 An explicit description of diagram (1) in Sect. 5.2
Let U := SpfA C M(un, ¢) be an open formal affine so that the sheaf wg is trivial. We
will describe the fiber of the above chain of morphisms over U. Choose a lift of the Hasse
invariant viewed as a scalar Ha.

The fiber of U in X, , ; P+ 18 the formal spectrum of

1/p'+l
— A®R° «
Rim ABEY oy <H—>
= A@ng,(,ﬂ) (4, v, w)/ (wHa — oM oy —puv — o _k) .

. . K —k P .
Here the variable u and the equation uv — o~ are missing in case k' = co. Arguing as

in the proof of Lemma 3.7, it follows that R is a normal ring.

—~ l/prJrl
SetRy ;== R®ro BO = A®B° ol
k ®Ba,1.p_(r+1) alp OB+ )

.Itis finite and free as an R-module
with basis a%/#" for 0 < a < pF*t1=7 — 1. The associated formal scheme Spf Ry is the open
of xr,a,l,p

Then the restriction of the diagram (1) to U is given by the ring homomorphisms:

_x over the open U C X.

A—)A@B&I—)A®Bg,1<%>—>R—>Rk. (2)
Ha”

5.2.2 Frobenius
The Frobenius morphism of Proposition 3.3 defines a cartesian diagram

Xr,a,l,p_k — X1 (3)

C

Xr—l,a,],p*k — X Lol

Due to Proposition 3.3, the morphism &, , ;,, -« — &,_; ;- is finite. Hence we get a
commutative diagram
36r,oz,l,sz —— xr,a,l,p*(’“’ —— Xyl
] L
%rfl,a,l,p*k — xrfl,a,l,p*”l) — X Lal
Over U = Spf A the morphism X, ; ,-« = X,_; , -« is given by
l/pr 1/pr+1
a0 o ~ 0 o .
Sk = A®Ba)1)p,k <_Ha > — A®B%I)p,k <—Ha > =: Ry. (4)

It is finite and modulo par~1/7" is induced by the absolute Frobenius on A/pA. Indeed this
holds true modulo p]—ia_1 due to [3, Cor. A.2] andpl-ia_1 = (pa~ 7). (al/prl-fa_l).
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5.2.3 The unramified case
We first assume that p is unramified in F. This implies that A is formally smooth over Zj.

It follows from [3, Lemme 6.1] applied to the extension Sy C Ry that Si[a~'] C R[a™!]
(2g+1)

is a finite and flat extension and that Tr(R;) C pfa  #" Si. This implies that forall 7’ > r
andk >7r +1,

_ Z2etl
Tr¢r/7r (Oxr/,ot,l,p—k) = pga 70 Ox —k*

no,Lp

In particular, defining
1 _ _
TI‘,« = pTgTr¢s: hr,*Owa’I [Ol 1] — Oxw‘l [Ol 1],

we deduce that, if p"(p — 1) > 2g¢ + 1, the image of %,.0Ox,,,,, is contained in
1 —1 . . 1 .

o Oxmlfk N Ox,,le” ] whichisa™ - Ox,,, since X, , ,,

dominant morphism and X,,,,; is normal. The proposition follows from this. O

—« —> X,q is a finite and

5.2.4 The general case

We now drop the assumption that p is unramified in F. In this situation, M(uy;, ¢) is not
formally smooth. Nevertheless, the Rapoport locus M(un, )R M, c) is the smooth

locus and its complement is of codimension at least 2. We let xR cx _« be the
r,a,],p k ro,Lp
open formal subscheme where the Rapoport condition holds.
Arguing as in the unramified case, we obtain a map Tr, := p%gTr(ps: hy, *Oxﬁs,a,] —

a_loxze

ra,l

Lemma 5.3 The formal scheme .’{fu 1 is Zariski dense in Xy 1.

Proof This follows easily from the explicit equations. Note that we crucially use here that
the complement of the Rapoport locus is of codimension 1 in the non-ordinary locus of
the special fiber of M, ©). O

Consider the following commutative diagram:

%R

rsal T x’+3’0‘»1

\L¢x lq&s
:{fall — xr,a,[

We claim that it induces a commutative diagram:

O

O:{Hs,a,l rtsa,l

Tk

1 -1
o O%r,a,l — > OxR

ra,l

Proof Indeed, let Spf R be an open formal subscheme of X, ;. Take f € Ox, .., ;(R). Then
aTr,(f) isin Oxfa . (R). Moreover, as the morphism ¢*: R[é] — Ox,,,(R) [é] is finite flat,
we deduce that (’x,Trr(f) € R[ll?]. Since R is normal, R = NqRn where  runs over all
codimension 1 prime ideals in R. Thus we are left to check that aTr,(f) € Rq whenever
peEN.

Ifa ¢ Qas w]—fapr+1 — a = 0, we deduce that the image of 9 in M(un, c) lies in the
ordinary locus and in particular in the Rapoport locus. Thus aTr,(f) € Rq.Ifa € 9, then
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1 is a generic point of the special fiber of R and since the Rapoport locus is Zariski dense,
1 lies in the Rapoport locus. Thus aTr,(f) € Rqg. ]

5.3 The sheaf of perfect, overconvergent Hilbert modular forms
Lemma 5.4 Let o € m\m% The sheaf Ox.,, is integrally closed in Ox.,,[1/a]. More-

over,

(Oj@ow,a,z)(ofm" - Ox

oo,a,1*

Proof (1) Let U := Spf R be an open formal subscheme of X, o ;. For s large enough, it
is the inverse image of an open formal subscheme Spf R; of X, ;. Let f € R[1/a]. For s
large enough, we have f = f; + h with f; € R;[1/a] and & € R so that we may assume
that f € Rg[1/a]. Let f” —l-f”_la,,_l + -+ 4+ap =0withao, ..., as—1 € R be an integral
relation.

Applying Trg one gets f”* + f" ' Try(a,_1) + - -- + Try(ap) = 0 and as a; € R for
s large enough we have Trs(a;) € RN a IR, For h > 0 the morphism Ry — Rgyy
is a finite dominant morphism of normal rings. Hence Rs/a — Rsip/a is injective so
that R;/a — R/« is injective as well. We deduce that «Trg(a;) € oR; and hence that
Trs(a;) € Rs. Thus f is integral over Rs and, hence, f € R, proving the first claim of the
lemma.

(2) The inverse image of Spf R in I, o o 1 is equal to Spf R, with R,, integral over R and
Rla™1] € R,[a™!] finite and étale. In particular, (R, [ 1) ©CE/P"OF)" = R[a~] so that

;OF /P"OF)" contains R and is integral over R and, hence by the first claim, it must be equal
to R. Let Ro be the inverse image of Spf R in T8 00,4,1. Consider an element x € R
fixed by (O ® Zp)*. There exists # large enough and x,, € R, such that x — x,, = ax’ for
some x’ € Roo. In particular, ¥’ is fixed by 1 4+ p" O ® Z,. Thanks to Proposition 5.1 for
every n' > n there exists an element ¢,y € R}, such that Trr /R, (¢yy) = «. In particular,
the higher cohomology groups of (1 + p"OF/, " OF) acting on R,y are annihilated by «.

For every s, there exists n(s) > n such that ¥’ € (R, /o) 1P OF®Zp and hence there
exists ys € R, such that y; = ax’ modulo «*. We deduce that y; converges to an element
y for s — oo such that ax’ = y. Hence x € RCFPOD" which is R by the first part of the
argument. |

Define m})erf to be the subsheaf of Ox_,;-modules of O5¢ ., consisting of those sec-

tions transforming via the character x ~! for the action of (O ® Zp)*. Then:

Proposition 5.5 The sheaf! m?erf is an invertible Ox  ,-module. Moreover, for every subin-

terval ] C I the pullback of mferf via the natural morphism u1: X ) — Xoo,1 coincides

with 10
Proof We prove the first claim. Let &/ := Spf R be an open formal subscheme of
Xoo,a,1- Suppose that Hdg, is a principal ideal over Spf R with generator Ha;. Let Spf R,
(resp. Spf Roo) be the inverse image of U in I8, o0, 1 (resp. in IS o 00,0,1)- Due to Corollary
5.4 it suffices to exhibit an invertible element x € Rn, such that o (x) = k ~!(0')x for every
o € (Or ® Zp)*.

Proposition 5.1 implies that there exist elements ¢, € Hal_an such that Trg, /z,_, (cx) =
¢y—1 and ¢g = 1. Define b,, := ZGG(OF/pnOF)* k(6)o(cy) € Ha;lR,, for n > 1. Here
G € T(Zp) is a lift of o. It follows from Lemma 2.6 that b, converges to an element



Andreatta et al. Res Math Sci(2016)3:34 Page 22 of 36

boo € Roo such that o (beo) = k(o) for every o € (OF ® Zyp)* and by = 1 modulo
H'LalROO so that byis invertible in Ry as claimed.
The last claim can be proved as in Sect. 4.3. o

6 Descent
In this section, we prove that the sheaf mferf defined in Sect. 5.3 can be descended to some
finite level.

6.1 Comparison with the sheaf 1,
Consider an interval I = [p, pk/] with k and k&’ nonnegative integers. Thanks to Propo-

sition 4.3, we have an invertible sheaf to; over X,,;. Recall that we have a projection map
hr: xoo,I — 3€r,1. Then:

- . o . £
Proposition 6.1 There exists a canonical isomorphism wF" ~ ;.

Proof Over Xo,4,1 we have a chain of isogenies

< Gpr _F> Gutr—1 = - Gy

where G; is the versal semi-abelian scheme over X, ;. Denote by C,,,, < G, [p"] the kernel
of (FMP: G,[p"P — G,ynlp™P). Clearly C,,, = H,(G,1,)P. Theisogeny F: G,11 — G,
induces a morphism Cy,,+1 — C,, which is generically an isomorphism. Over 38, o
we have a universal morphism Of/p"Or — H,(G;)P for every s > n — k. The map
Cps — Gs[p"]/Hu(Gs) ~ H,(G,)P is generically an isomorphism as both group schemes
are generically étale. Composing we then get an Or-equivariant map Or/p"Or — Cys
for every s > n — k. Using the morphisms C,,,y1 — C,,, we get an Op-equivariant
morphism Or /p"Or — C,, for every n which is generically an isomorphism. Passing to
the projective limit, we get a Or-equivariant map Or ® Z, — lim, C,,,. Let HT*" be the
image of 1 in lim,, C,,, via the Hodge—Tate map lim, G,[p"] — wg,. Then HT*" defines
an (Of ® Zyp)*-equivariant map:

I800,001 = Snni
fitting in the commutative diagram:

jQﬁoo,oo,I E— Sn,r,]

.

j@n,oo,j — j®n,r,1

L,

Xoog ———= Xp1

We then get an injective homomorphism /}to; — m}’ erf, Moreover,
perf s, —1 (OF®Zp)*
m] ® hr m] - (03600,00.1) i O:{oo,l

thanks to Corollary 5.4. ]

perf

Corollary 6.2 We have a Tate trace map Tr,: hyst0; — aro;, which is functorial

inl.
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6.2 Descent along the anti-canonical tower
Fix @ € m\m?. Let I = [1, oo].

Lemma 6.3 The natural morphisms of sheaves

Ox.., — lim Ox and Ox — lim x
ol k415K >k>0 r,oz,[pk,pk,] oo,a,1 k+1>k'>k>0 oo,a,[pk,pk/]

are isomorphisms.

Proof We prove the first statement. The second follows arguing as in [3, Lemme 6.6] using
the Tate traces constructed in Proposition 5.2.

Let U := Spf A be a formal open affine subscheme of M(ux;, ¢) over which wg is
trivial. Let Ha be a lift of Ha. Arguing as in the proof of Lemma 3.7, one deduces that
the inverse image of U in X,,0,; is Spf R with R := A ®z, By (1, w)/(wl—far — o, au — p)
and that for integers 1 < /1 < k the inverse image of U in X, ) is Spf Ry with
Riyie = Rip vi) /@ 1y, — p, v — o 7).

There are maps R, — Ry for h < K < k < k' given by uy, +— ozph/’phuh/ and
Vi > apk/_pk vi. The argument in [3, Lemme 6.4] shows that the map R — limg Ry ¢ is
an isomorphism. This proves the claim. O

Theorem 6.4 The sheaf m?erf descends to an invertible sheaf vo; over X, for r >
sup{4,1 + log,2¢ + 1} if p = 3 and r = sup{6,1 + log,2¢ + 1} if p = 2. More pre-
cisely, voj is the subsheaf of Ox,,, -modules of m?erf characterized by the fact that for every
interval ] = [p*, pX | with k' > k >0 integers and denoting i1 : Xy,0] — Xy0,1 the natural
morphism, then ;v is the sheaf to; of Proposition 4.3 compatibly with the identification
of Proposition 6.1.

Moreover, 1oy is free of rank 1 over every formal affine subscheme U C IM(uy;, ¢) such
that wg|y is trivial.

Proof The proof is analogous to the proof of [3, Thm. 6.4]. We set

oy = lim 10
kt1zk'zkz0  [Pr¥ ]

where the limit is taken over integers k, k’. Let U := Spf A be a formal open affine

subscheme of M(un;, ¢) where wg is trivial. Let W := Spf B be the inverse image of U/ in
X;0,1- We prove that tog |y is a free Ow-module of rank 1 and it descends m?erf|
We prove the claim for the minimal r possible, i.e., r =4 ifp > 3andr = 6 forifp = 2.

Let Ha, be a lift of the Hasse invariant over /. Thanks to Corollary 3.5 and Proposition
pr-1

s O36,,,.,(W) for integers n < r and elements

5.1, we can find elements ¢, € I—far_
cy € ]-fa,_pr 036,000 (W) for general r < n so that co = 1 and Tryes(cy) = cy—1. Define
b, = ZUG(OP/P”OF)* k(6)o (cy) where 6 is a lift of o in (O @ Zp)*.

Using Lemma 2.6, we deduce that:

+ The sequence b, converges to an element by,

¢ boo=1 mod Ha? «,andin particular, b, generates m?erf(W),

e bso = b, mod m,_ll-fa_pr (resp. mr_zl-fa_pr ifp=2).
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Consider an interval J = [p¥, p**1] and the commutative diagram:

I8 00,0001 < IGo0,000) — Sk+rra)

| | |

j®k+r,oo,a,1 I — jQ5/<+r,c>o,] - j®k+nr,a,]

R

.
xoo,a,] <~ xoo,a,] > %r,a,]

Let T := Spf C be the inverse image of W in X, ;. Then tv;|7 admits a generator f as

_pr
C-module constructed as follows. For every 0 < n < r+k take c), € Ha, ?7! 036,50, (T)
such that ¢j = 1, Trye(c;,) = ¢,_, and ¢, = ¢, if n < r. Take a section s € Og,,, . (T)
which is 1 mod p? and which generates 1, 4,;(T) (see Lemma 4.5, and note that
1l=k+r—(k+1)—2ifp #2and1 = k+r—(k+1) —4if p = 2). Let
f = Zgg(oﬁpkﬂ@ﬂ* K(&)o(c;Jrks).
Then
p’+k—1
f= Z k(6)o (c,,;,) mod Ha 7T p?
oe(Op/pktror)”

and it follows from 2.6 that

> «©)0o (g

oe(Op /Pt OF)*

P ~ _pr+k71
= Z k(@)oo () mod |my_1Ha 771,.. ,m,y_1Ha 77!
o €(Ofp/p" OF)*

. Pl AL
resp. mod | m,_oHa 77',...,m 4 _oHa 77! ifp=21.

k
Over the interval [p¥, p**1], we have p € o Bg, » and it follows that

n—1 k n—2 _ k
m,BY; C (a” e S +1).

Ll
Moreover,« € Ha ¥ T. Assume p # 2. We claim that

L Pl Lt
m,_jHa 771, .., m._Ha »7! C (az).
It is enough to check that:

— _ _ k-1
(mr,la Ve mpya? ) C (?)
k=1, o .
where the term m, ;™7 Vs missing if k = 0.
This boils down to the set of inequalities:

clt2<p B2 < A I 2 < R
o forr<m<r+k-1:

Pt < 2 < P S r2 < - )P 4L
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When p = 2, one proves similarly that
Lot AL
my_pHa 771, .. ,m.  oHa 71 ]C (ozz) .

It follows that

r+k _q

U et
f — b € (052; Ha ¢! PZ) Oj@oo,oo,a.](T)

Lt
sothat boo = (1+a?u+Ha 7T p?v)f for some elements u, v € Oz o, (T). Taking the

Tate trace Tr,: 1, Ox,,, — @ Ox,,, constructed in Proposition 5.2 we conclude that
r+k _q

Try(boo) = f(1 4+ &®Tr,(u) + Ha~ 7717 p?Tr,(v)). As Tr.(u), Tr,(v) € Ol_l(')xm‘](T) by
Proposition 5.2, we deduce that Tr,(b) is a generator of tos|7. Since the construction of
Tr,(boo) is functorial in J we get that to; (W) = Tr,(boo) - limg 15k >k>0 Oxr,a,[pk,pk,] (W) =
Tr,(boo)B thanks to Lemma 6.3. The theorem follows. O

Proposition 6.5 The sheaves to; over each X, 1 glue to a sheaf still denoted voy over X,,.
Let ¢: X,41,1 — X1 be the Frobenius. We have an isomorphism

w; >~ ¢*roy.

Proof Due to Theorem 6.4, the sheaf t; over X, is canonically determined by the
sheaves m?erf and the sheaves 1 for /| = [p, PX']. These glue for varying « and have
compatible Frobenius morphisms by Sect. 4.3.2. The claim follows. O

6.3 Descent to the Iwasawa algebra

Let 3 = M(un, c) x Qﬂ% For all » > 0, let 3, be the m-adic formal scheme repre-
senting the functor which associates with any m-adically complete Ag—algebra R with-
out A?_-—torsion the equivalence classes of tuples (4: Spf R — M(un, ©), Np M- -5 Mg €
HO(Spf R, i* det a)(Gl_p)‘yr+1 )) such that

r+1 r+1

Ha? n,=p mod p% Ha"rﬂm =T; mod p? ..., Ha? ng =T, mod )

Two tuples (i, 1p, 01, . . ., 1g) and (4, np, N1, . . ., 1g) are declared equivalent if # = /" and

np = 0,(L+pup),  m1 = ny + nppu, . .., g = Ny + Nppilg
for some up, uy, ..., ug €R.
There is a cartesian diagram of formal schemes:

4

X, —— 3

o

Wy ——= W

Theorem 6.6 (I) The natural map O3, — g,Ox, is an isomorphism.
(2) The sheaf g,y (here I = [1, 00]) is an invertible sheaf over 3, and g*g,to; = ;.

Proof Let U := Spf A be a formal open affine subscheme of M(un, ¢) where wg is
trivial. Let W := Spf B be the inverse image of U in 3,. In particular, we have ele-
ments 1, 11, . . ., g suchthat B = A[Ty, ..., T (np, 01, .. ., ng)/(Haernp—p, Haprﬂm—
Ty,...,Ha? " g — Tg). Arguing as in Lemma 3.7 we deduce that B is normal.
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(1) The map g is the base change of the morphism @2 — 20% which is the m-adic
completion of a blowup; therefore, it is proper. Thus C := g,Ox, (W) is a finite B-module.
The map B — Cisanisomorphism over the ordinarylocus of U/ and, hence, it is generically
an isomorphism. As X, is also normal, it follows that B = C as claimed.

(2) Let Z := g~'W. Thanks to (1) it suffices to prove that tv;|7 is a free Oz-module of
rank 1. Let ZP°"f be the inverse image of Z in X . We will actually prove that mlperfl perf
is a free O per-module of rank 1 and find a generator b, whose trace will be a generator
of to; |z.

We apply the construction of Sect. 3.3 with Ay = Z,. We thus obtain formal schemes
s together with partial Igusa towers 369, ; — s forn < s.

Passing to the limit over Frobenius, we obtain J&%),, ., = 2co. There is an obvious
commutative diagram:

16, —— 7389,

;]

%, 2,
W} W}

As in Corollary 3.5, one deduces from Proposition 3.4 the existence of elements

-1

C:,l (S Har_ﬁO:;@@W(W)

for integers n < r and elements ¢, € I—ia,_pr(%@g)ym(W) for general r < n so that (26 =1
and Trye(c),) = ¢,,_;. We call ¢, the pull back of ¢}, in O3, .. (Z). We can now repeat the
proof of Theorem 6.4 using these elements ¢, to obtain a trivialization b, of m?erfl Zperf
whose trace gives the trivialization of tv/|z. |

We set 0" = g, to;.

6.4 The main theorem

Let H be the torsion subgroup of T(Zy). Let x : H — A} be the restriction of the universal
character to H. Due to Lemma 2.4, it is a quotient of (Or/p>OF)* and we view x as a
character of (Of /p>OF)*. For all r > 0, let

f)ﬁr = 3,« Xmg Qﬂp.

Let M, be the analytic adic space associated with 91, In other words, M, is the open
subset of the M (un, ¢) X Spec z, Wr defined by the conditions:

H pH—l
a’ | = sup{le|},

aem
where Ha is a local lift of the Hasse invariant. Over M, we have a canonical subgroup C,
of level 2. Let ZG M, be the torsor of trivializations of CZD . Let 3&IMM,,, —h> M1, be the
normalization. It carries an action of (Of /p>OF)*.
Let X be the subsheaf of (43),O3sm,, where (O /p*OF)* acts via the character
x L H - A} composed with the projection (Op/p*OF)* — H. This is a coherent
sheaf, invertible over the ordinary locus and over the analytic fiber M,..
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We define <" := (s*10") ® X where s: M, — 3, is the projection. We let <" be
the associated sheaf over M,..

Theorem 6.7 The sheaf o< over M, enjoys the following properties:

1. the restriction of @ " to the classical analytic space M, x Spa(ZyZp) Spa(Qy, Zyp) is the
sheaf defined in [2, Def. 3.6];

2. for all locally algebraic weight k x : T(Z,) — O(’Ep where k is an algebraic weight and
X is a finite character, then o' | ky = o (x) is the sheaf of weight k modular forms
and nebentypus x.

3. Ifi: My41 — M, is the inclusion and ¢: M,11 — M, is the Frobenius, then we
have a canonical isomorphism i*o*"" ~ ¢**".

7 Overconvergent forms in characteristic p

Specializing the sheaf " of Theorem 6.7 to characteristic p points of W, we obtain
sheaves of overconvergent Hilbert modular forms in characteristic p. The goal of this
section is to describe them via a construction purely in characteristic p.

7.1 The characteristic p Igusa tower

Let M(un, ¢)r, be the special fiber of M(un;, ¢) and denote by Mora (1N, o)r, the ordinary
locus. It is an open dense subscheme of M(un; ¢)r,, smooth over Spec F),. Fix a positive
integer n. Over M(un;, ¢)r, we have a canonical subgroup of level 1, denoted by H,,. It
is the kernel of the nth power Frobenius map F” : G — G®"), The canonical subgroup
over Mord (N, c)]Fp is of multiplicative type and its dual H,? is étale locally isomorphic
to Op/p"OF. We denote by 1G,,ord — Mord(un; ¢)5, the finite, étale and Galois cover
for the group (Of /p"OF)* of trivializations of HY. Passing to the projective limit over ,
we get a scheme Ew,ord over Mopq(un, ¢)r,- For every n define 1G, - M(un, ¢)r, to be
the normalization of M(un; ¢)r, in IGy,ord- The scheme 1Gy, is finite over M(un; ¢)r, and
carries an action of the group (Of/p"Or)*. It is characterized by the following universal
property:

Lemma 7.1 For every normal Fy-algebra R and every R-valued point x € M(un, ¢)(R)
such that the ordinary locus (Spec R)orq is dense in Spec R, the R-valued points of 1G,, over

x consist of the Op-equivariant morphisms Of [p"Op — HP,, which are isomorphisms

X

over (Spec R)orq- Here Hy, y is the pull back of the canonical subgroup to Spec R via x.

Let i,41: 1G,q1 — IG,, (with the convention IGg = M (uy;, ¢)r,). Let us denote by
Trig: (hn+1)*0@n+l — O,
the trace of this morphism.

Lemma 7.2 Forall n > 0, we have Hdgpn C Trig ((hn+1)*(9ﬁn).

Proof Similar to the proof of Proposition 3.4. ]

Corollary 7.3 Let Spec A be an open subset of M(ux;, ¢)r, such that the sheaf Hdg is
trivial. Let us identify Ha with a generator of Hdg. There is a sequence of elements ¢y = 1,

v

_r -1
¢y, € Ha »-1 Oﬁn (Spec A) for n > 1 such that Trig(cy) = cn—1.
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7.2 Formal schemes attached to the Hilbert modular variety in characteristic p

Let ﬁ~be the maximal ideal (T7, . . ., Tg) of A% /pA%. We set QH%{OO} = Spf A?,/pAg. Recall

that ﬂﬂ%{oo} is the blowup of QU%{OO}
In Sect. 6.3, we define an m-adic formal scheme 3, — Qﬂ%. We set 3p,(00) = 3r X gn0

along m.

QH%{OO}. Its ordinary locus is 3ord, (00} = Mord (N, OF, XSJ?eC F, Spf QH%{OO}.
In Sect. 3.4, we define a formal scheme X, () over QU% o0} and it follows from the
definitions that:

770
Xnfoo) = 3nioo) Xand, W oo)

Let 363,00} = Gy XSpec F, 31{c0} be the partial Igusa tower of level # over 3,0}
Passing to the limit over #, we get an m-adic formal scheme % : IB3. (00} = 3r{o0)
which carries an action of T(Z,).

Lemma 7.4 1. The formal scheme IJ®3,, (o0 is normal.
2. Wehave 3&,,1,(00) = B3, (00} X 3, 100) X1{00) Where I8y, ;. (oc) is defined in Sect. 3.4.
3. (h*oj®3oo,r,(oo))T(Zp) = O3r,(oc)'

Proof Easy and left to the reader. ]

We have the following:

Proposition 7.5 For any normal, m-adically complete torsion free Ag / pAg—algebm, the
R-valued points 383, (R) classify tuples (x, 01, . .., N1, Yn) where

o x € M(un, ¢)(R), "

o Ny e N1, € HO(R, det a)g_p)p ) satisfy HaernTl. =T,

o Yn: Op/p"Op — HP is a Op-linear morphism of group schemes which is an isomor-
phism over (Spec R)rq.

7.3 Convergent Hilbert modular forms in characteristic p
Letk: (OFQZy)* — (AIO:/pAg)* be the reduction modulo p of the character «. Following
Katz [14], we define

m{OO} = Ojﬁaoo,ord,(oc} [Iz_l]'

It follows from loc. cit. that it is an invertible sheaf of O3 o0} -modules. Moreover, the

Frobenius on B3 ord, {00} defines an isomorphism ¢*10 (o0} = 10(s0).

7.4 Overconvergent Hilbert modular forms in characteristic p

Let /1: 3&300,1,{0c0} = 3r{oo) be the structural morphism. As in the previous section, we
define the subsheaf oo} = 10363000 [€ 1] Of 1Oz, - It is a sheaf of O3, -
modules. Our main theorem is

Theorem 7.6 Assumethatr > 2 (resp.r > 3ifp = 2). Then the sheaf 0o is an invertible
sheaf of O3, ., -modules. Its restriction to Jord,(c0) is the sheaf defined in Sect. 7.3.

Proof The proofis local on M (i, ¢)r,- Let Spec A be an open subset of M(un, ¢)r, where
the Hodge ideal is trivial. We denote abusively Ha a generator. Let Spf R be the inverse
image of Spec A in 3,(0}, SPf R the inverse image in JBLL, , (o0} and Spf Ry, the inverse

image in &3, 1, (o0}- By Lemma 7.4, RESF ®2)" _ R. Thus to prove the theorem, it suffices
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to show that there exists an invertible element x € Ry, such that o (x) = ¥ (o )x for every
o € (Or ® Zp)*.

_r 1
By Corollary 7.3, there exist elements ¢, € Ha #-T R, such that Trg,/z, ,(cn) = cy—1

n

n

-1
and ¢g = 1. Define b,, := ZUGG” x(6)o(cy,) € Ha_i’j_pRn forn > 1. Here 6 € (O ®
Zp)* is alift of o € (O /p" OF)*. By Lemma 2.6, we deduce that

pn—l pn—l _[E .
o by—by1€(I7 ,....,T, )Ha rTR,ifn>1landp >3,

pn—2 pn—2 71&
e by—by1€(T7 ,....,T, )Ha 7 TR,ifn>2andp =2,
e b1 —1€(Ty,..., Tg)Ha_lRl for all p.

One then concludes that {b,}, is a Cauchy sequence of elements of Ry, converging
to a unit by, := lim, b, of Ry having the property that o(bs) = ® Y(0)bo for every
o € (O ® Zp)*. O

7.5 Comparison with the sheaf v} o]

In this section, we work over X, and prove that the specialization at {oo} of the
sheaf o[} o) of Theorem 6.4 equals the pull back to X, (o) of the sheaf tv(,) defined in
Sect. 7.4.

Proposition 7.7 Let « € m. For every integer ko > 1, the obvious inclusion N0k, 00) C

_pro-1_1

ki .
] factors modulo o?° as a morphism

Ose

00,00,0, [pko,oo

ko _pko—1_1
1o —- O / ol 7P .
[p*0,00] 3Q$r+k0m7[pk0m]

The restriction of 1] to Xyq,(cc} is a subsheaf of O3, , s Which identifies canonically
to V(o).

Proof Fix an integer ko > 1. Let Spf B be an open affine of X_ a,[ph0,00] AsSUME that

Hdg is trivial on Spf B, generated by Ha. Fix elements ¢o = 1 and, for 1 < n < ko + 1,
L
¢y € Ha 771 Os¢

oo ](Spf B) such that Trjg(c,) = ¢y—1. Complete the sequence
e > _rtko

by choosing, for n > r 4 ko + 1, elements ¢, € Ha P 056 o ](Spf B) satisfying

Trye(cn) = cu_1. Set b, = Zoe(op/pnop)* k(6)o.c,, where & ni's a lift of o in T(Zy). The

sequence b, convergesin Oy ] toagenerator by, of the sheaf m?erf. By Lemma 2.6,

00, kO,

v _pr+k0 - _prtko
forall m > r + ko, b, = by4r, mod m, 4 _1Ha (resp. mod m, 4, _oHa if
p = 2). It follows that boe = by4x, mod A A

Fix now an interval [pX, p**1] with k > ko. Let Spf C be the inverse image of Spf B in

i |
X, 0, [pkp 1] Fix elements c,€Ha 71 Os¢

nm[pkpkﬂ](Spr) forr+ko+1<n<r+k
satisfying Trye(c),) = ¢, forn > r 4+ ko + 2 and Trjqj(c;+k0+1) = Cr4k,- There is

a generator f of the sheaf tw; over Spf C such that f = 3 /(o oy k(6)o - ¢,

| o' it follows that f =
de(o/pr+ko)* k(6)o 'C;+k mod #0707, Using Lemma 2.6 one more time, we deduce
(Spf C) we have

r+k

" gtk - _
mod pHa ¥ . As in C we have o | p and Ha ?

k ko—1 .
that f = b, 4, mod o”°7° . As a consequence, in O5¢

oo,oo,a.[pk,pk+l]
ko ko— . ,
f = boo = brig, mod a?* 7" Using Tate’s traces, we get f = Tr(boo) = boo

mod a?® _pkofl_lml[!:;fpkﬂ] (Spf C). As this relation holds on all intervals [p*, p¥*+1], it fol-
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lows that Tr,(bso) = boo mod A A (Spf B). As aresult, Tr,(boo) = by,

Ko ko1 lpfo.0c]
mod o * P _1Oj@mma[pk0 N (Spf B).

It follows that there is a morphism L e Ose ol

ki .
]/al’ 0—p 1 which on

rko.na, (0,00

Spf B sends Tr,(bso) on by, . It factors the map 10,0, 00] = O56 ] /otl’k0 —po7i-1,

00,00, [pko,oo

Comparing the definition of b, x, and the construction of the sheaf v}, we obtain that
the restriction of 10[1,50] to X, (00} iS (o). O

7.6 Analytic overconvergent Hilbert modular forms in characteristic p
We now let M, (00) = M, xw WE(oc). Concretely, M, (o) is the open subset of
M(in; ©) X Specr, WE(oo) Where

‘Ha”r+1 ‘ > sup |a|.
aem
Let us recall that we denoted by " : T(Z,) — (Afr/pAF)* the universal mod p character.
Let " be the pull back of 0" to M, {o0}- An r-overconvergent Hilbert modular form
of weight ¥"" is a global section of " Here is the desired, a la Katz, description.

Proposition 7.8 An r-overconvergent modular form f of weight k" is a functorial
rule which associates with a tuple (R, R%),x: Spa(R RT) — Mioop ¥: OF ® Z,, =~
lim,, x*H,’?) an element in f(x, ) € R, where:

(R, R™) is a complete affinoid Tate algebra,

x*HP is the pullback of the dual canonical subgroup of level n to Spa(R, R™),

The isomorphism r is T(Zy)-equivariant,

Forallo € T(Zy), f(x, ¥ 0 o) = (&™)~ 1o )f (x, ¥).

There exists a rational cover Spa(R, RT) = USpa(R;, Rl.+) and for each i a bounded
and open subring Ry C Ri+ such that x*G|Spa(R,~,Rj) comes from a semi-abelian

AN

scheme Gg over SpfR; o and the isomorphism | Spa(r,R*+) COMes from a group scheme
morphism Yo : O ® Z, — lim,(Go [F")P defined over SpfR;o (where [F"] means
the kernel of the nth power of the Frobenius isogeny).

Proof Take (R, R") as in the proposition. Without loss of generality, we can assume that R
has a noetherian ring of definition. Using (5), we observe that the rule f defines compatible
sections of HO(Spf R; 0, W{sc)) ®g;o R which glue, by the sheaf property, to a section of "
on Spa(R, R™). o

8 Overconvergent arithmetic Hilbert modular forms

8.1 The Shimura variety M(un, ¢)g

Consider the group G := Resr/gGLz and G* := G XRes¢G,, Gm, where the morphism
G —> Resp/gGyy is the determinant. So far we have worked on the Shimura variety
associated with the group G*. From the point of view of automorphic formes, it is useful
to work with the Shimura variety defined by the group G.

Let O be the group of totally real units of O and let Uy C O% be the group of units
congruent to 1 modulo N. Consider the finite group A = (’)j_-"* / LII%[. Fore € (’);’*, we
have an action [€]: M(uy, ¢) — M(un;, ¢) given by multiplying the polarization A by e.
The action factors through A (see [2, intro., p. 6]).
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Lemma 8.1 The group A acts freely on M(uy;, ). One can form the quotient M(uy;, ¢)G =
M(un;, ¢)/A. The quotient map M(juy, ¢) — M(un;, ¢)g is finite étale with group A.

Proof Since M(uy; ¢) is a projective scheme, it can be covered by open affine subschemes
fixed by the action of A. Thus we can form the quotient M(uy, ¢)g. We now show thatA
acts freely on M(uy, ¢). This can be proved over an algebraically closed field k where the
freeness of the action amounts to proving the following:

Consider an abelian variety with real multiplication (4, ¢, ¥, 1) over k as in Sect. 3 and
a totally positive unit € € (9;3’*. Leta: A — A be an automorphism commuting with the
Or-action, the level N structure ¥ and such that A oo = ea¥ oA. Then o € Uy is a totally
positive unit, congruent to 1 modulo N.

As «a respects the level N structure, it suffices to prove that « is an endomorphism lying
in Of. Suppose this is not the case. Then E := Fla] C End®(A) would be a commutative
algebra of dimension at least 2g. It must be a field, else A would decompose as a product
of at least two abelian varieties of dimension less than g, with real multiplication by F
which is impossible. As a maximal commutative subalgebra of End®(A) has dimension
<2g, it follows that E is a CM field of degree 2 over F. Moreover, the Rosati involution
associated with any Of-invariant polarization induces complex conjugation on E. As the
rank of the group of units in Of is equal to the rank of the group of units of Of by
Dirichlet’s unit theorem, it follows that there exists an integer n > 2 such that «” € Of
and o1 ¢ Or. Hence ¢ = (a/a) is a primitive #-root of unity in Of. It preserves every
Of-equivariant polarization A as A" 0 ¢V oA o ¢ = ¢¢ = 1. As N > 4 it follows from
Serre’s lemma that ¢ = 1 leading to a contradiction. We are left to show that A acts freely
on the boundary D := M(uy;, ¢)g\M (un;, ¢)G. Recall that the boundary is the union of its
connected components parametrized by the cusps of the minimal compactification. Each
connected component of the boundary is stratified. More precisely, for each connected
component, there is a polyhedral decomposition X' of the cone of totally positive elements
MT inside a fractional ideal M C F determined by the cusp. To every cone ¢ € ¥
correspondsastratum S, C D. By construction of the toroidal compactification, ife € Uy,
then S.2, = S;. We now claim that the action of A on the set of all strata in D is free.
This follows from the fact that the stabilizer of o € X is a finite subgroup of (’)I_f’* and
thus trivial. This concludes the proof. O

8.2 Descending the sheaf w*"
We follow closely [2], see especially Sects. 1 and 4. First of all, the weight space associated
with G is the formal scheme Qﬂg defined by the Iwasawa algebra Ag = Zp[(OF ®
Zp)* x Z;;]]. There is a natural map of formal schemes Qﬁg — 2 defined by the group
homomorphism (O ® Z,)* — (O @ Zp)* x ZI’; given by t > (%, Nmpg,q(t)). This
induces a map of analytic adic spaces ¢: Wg — Wr. We denote by «¢" := (v, w): (Or ®
Zp)* x Z;; — Ag’* the universal character.

Consider the formal scheme 9, x gy, Qﬁg Let t*G be the pullback of the universal
sheaf to M, x oy, Qﬂg

As a consequence of Lemma 8.1, the group A acts freely on the formal schemes 2, x gy,
Qﬁg We denote by 90, g the quotients by the group A. We now claim that the action of
A on M, xgg, WE can be lifted to an action on the sheaf kG .
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Since w06 is defined without any reference to polarization, we have an isomorphism
te: [€]*0F6 — "G foralle € O;’*. We modify the action by multiplying u. by v(e).
One then verifies, see [2, §4.1], that this action factors through the group A. By finite étale
descent, we obtain a sheaf that we continue to denote 10*G over M, G. We let M, be the
analytic fiber of MM, g and denote by ®*G" theinvertible sheaf on M, g associated with ¢ .

8.3 The cohomology of the sheaf "G (D)
There is an obvious map M, — ﬁ(uN, ¢)g. Let D denote the boundary divisor in
M(un, ). We also denote by D its inverse image in 9,.G.

Recall that M*(up;, ¢) is the minimal compactification of M (i, ¢). Certainly, the con-
struction of 9, admits a variant where one uses M*(uy, ¢) as a starting point instead of
M(un;, ©). Let us denote by 9t* the resulting formal schemes.

We also define

e (zm; X 911y ﬂng”) /A.

Let h: M, — M - be the canonical projection. The main result of this section is the
following cohomology vanishing theorem:

Theorem 8.2 We have Rih,10*G (—D) = 0 foralli > 0.

Proof This is a variant of [2, Theorem 3.17]. Recall that M(uy, ¢)g is the quotient of
M(un, €) by A. Let M* (i, ¢) be the minimal compactification and let M* (i, ¢)g be its
quotient by A. We haveamap /' : M(uy, ¢)g — M*(un, ¢)g. Let £ be a torsion invertible
sheaf on M(jn, ¢)g. Then we claim that R/, £(—D) = 0 for i > 0. This follows from [2,
Prop. 6.4]. Note that in that reference the proposition is stated for the trivial sheaf, but
the proof works without any change for a torsion sheaf.

The map h: Mg — M} is an isomorphism away from the cusps and in partic-
ular away from the ordinary locus, so we are left to prove the statement for the map
hord * Morag — I, 4G over the ordinary locus. In this case, the sheaf *6 (—D) is
invertible. Recall that the ring Ag is semi-local and complete. Let n be a maximal ideal
of Ag corresponding to a character 1 : (Op/pOrF)* x (Fp)* — Fg where Fy is a finite
extension of IF,. We are left to prove the vanishing for the sheaf 7 := 104G (—D) /n over
M ord,- This is an invertible sheaf on its support Moq(n, €)G,F . <> Mord,g- Moreover,
Feal = OMratiensdgx
conclude. O

because the order of the character n divides ¢ — 1, and we can
q

Corollary 8.3 Letg: M,g — WFG be the projection to the weight space.

1. We have the following vanishing result: Rig,*6 (—D) = 0 for all i > 0.
2. For every point k € Wg,

K*g*ngn(—D) =H’ (MV,G; K*wkén(_D))

is the space of r-overconvergent, cuspidal, arithmetic Hilbert modular forms of
weight k.
3. There exists a finite covering of the weight space WFG = U;Spa(R;, R;r) such that

2:0*G (—D) (Spa (R, R))

is a projective Banach R;-module, for every i.
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Proof We have a sequence of maps
g Mr,G _) M*G —) WF

The map g» is affine and therefore has no nonzero higher cohomology. Moreover,
Theorem 8.2 implies that Ri(gg)*w"gn (—D) = 0. The second point follows easily.

For the last point, fix some open Spa(R;, Rf) C WE . Since the sheaf 0¥ (—D) is invert-
ible, there is a finite covering USpa(S;, Sj+) of M,.g| Spa(r, &) such that the sheaf %6 (—D)
is trivial on every open of this covering. Arguing as in [3, Prop. 6.9], one proves that
each S; is a projective Banach R;-module. We can form the Chech complex associated
with the covering USpa(S;, S}f), which, by (1), is a resolution of g*a)’an(—D)(Spa(R,-, R:r)).
Moreover, each term appearing in the complex is a projective Banach module and thus
g*w’(én(—D)(Spa(Ri, Rj')) is a projective Banach module. O

8.4 Koecher principle and g-expansions

Consider the open moduli scheme M(uy) in place of M(ux). Correspondingly we obtain
anadic open subspace M? of the adic space M, introduced in Sect. 6.4. Letg®: M9 — Wr
and g: M, — Wr be the structural maps. Similarly, in the arithmetic case we have an
adic open subspace M - of the adic space M), and we denote again by g°, resp. g the
structural morphisms to WFG (see Sect. 8.2). The Koecher principle states that:

o . un un un un
Proposition 8.4 The natural morphisms g°w* — g0 and g°0*c — g, 0"G are
* *
isomorphisms.

Proof Since the complement of M(iy) in M(uy) is contained in the ordinary locus, one
may restrict to proving the two assertions on ordinary loci. This is classical: Unraveling
the constructions one is reduced to prove the claims for the structural sheaves on the adic
Igusa tower. This can be proven at the level of formal schemes and then, by devissage,

reducing to the Igusa tower I_Go CI G 4 modulo pover M (/,LN)Ord

Letf,: IG —> M (,u.N)Ord be the structural map. Notice that M (1N )P Ord is smooth, the

ord : ord

minimal compactlﬁcatlonM (,uN) isnormal and the map y : M(/LN)Ord -~ M (,uN)
is proper birational and it is an 1somorphlsm outside a Codlmensmn 2 locus. Then

Vief % O—ord is a coherent O+ M ()2 -module of normal rings and y.f; « Oﬁord,o is the
complement of a codimension two loci. Thus the map on global sections y,fy, « (’)Eord —
nmra,l

J/*fn,* TEorde is an isomorphism concluding the proof of the Proposition. O
a,]

The restriction of our construction to the ordinary locus gives back the theory of families
of p-adic modular forms of Katz [14] and Hida [11]; see [4, §5.4] for details. In particular,
one gets g-expansions at the cusps.

8.5 Hecke operators

Consider a polarization module ¢ as in Sect. 3. In this section, we work with the open
moduli scheme My, ¢) in place of M(uny;, ¢) in order to avoid the problem of finding
toroidal compactifications preserved by the Hecke operators and we will use the Koecher
principle to extend these operators over the cusps. Corresponding to the open subscheme
M(pn;, ¢) of M(un;, ¢), we get an open formal scheme X2(c) of X,(c), proceeding as in
Sect. 3.4.
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Let ¢ be an ideal of Of prime to N. If £ is not prime to p, we assume that it is either
equal to pOr or that it is prime. Proceeding as in [2, §3.7], we consider the normalization
Ser C X9(c) x X2(£c) of the Hecke correspondence classifying isogenies mp: G — G/,
where G and G’ are defined by points of X2(c) and X?(£c) respectively and 7, is an isogeny
of degree |Or/¢OF| compatible with Of-actions and polarizations, Kerr, C G[{] and
such that (1) Kerm, is étale locally isomorphic to O /£OF, if £ does not divide p or (2)
the scheme theoretic intersection of Kermy with the canonical subgroup H; of G is trivial,
if £ is prime and divides p or (3) the morphism Kermy — G[p]/H; is an isomorphism, if
£ =pOr.

We have the two natural projections p1: G, — X2(c) and p2: &, — X9(Lc).

Lemma 8.5 The universal isogeny my induces an isomorphism 7} : pjto; — pitoy, of the
pullbacks via p1 and pa, respectively, of the invertible sheaves vor on X9(c) and X2(€c),
respectively, defined in Theorem 6.4.

Proof Over WE(o,1] this is the content of [2, Cor. 3.25] using the compatibility given in
Theorem 6.7.

We deal with the general case. It follows from [3, Rmk A.1] and our assumptions on
¢ that the isogeny 7y: G — G’ induces an isomorphism from the canonical subgroup
of level n of G to the canonical subgroup of level # of G’. This implies that 7, defines an
isomorphism of the pullback to &, via p; and p, of the Igusa towers. By the functoriality
of the Hodge—Tate map we also get an isomorphism p5 7 — p]F of the modified integral
structures F of wg and wg of Proposition 4.1. Thus we get an isomorphism p3§,,,1 —
Pi8nr1 of the pullback to &y, of the torsors §y,,; of Sect. 4.1. Due to the normality
of &y, we get an isomorphism of the pull backs of the sheaves pito,,; — p3to,,r of
overconvergent forms defined in Proposition 4.3.

Similarly, 7, defines an isomorphism between the pull backs of B, s via p1 and
P2 respectively (see Sect. 5.2 for the definition). The analog of Lemma 5.4 over the base
&y, provides an isomorphism between the pullbacks via p; and py, respectively, of the
sheaves mferf of perfect overconvergent forms defined in Proposition 5.5. Thanks to the
normality of Gy, we deduce the sought for isomorphism of the pullbacks via p; and p; of
the sheaves tv;. O

Using the conventions of Sect. 6.3, we also have the normalization of the Hecke corre-
spondences p; : Ty, — 3%(c)and pa: Sy, — 32(£Lc) defined over the Iwasawa algebra. As
above we denote by 3%(c) the open formal subscheme of 3,(c) associated with M(un;, ¢).
Following the notations of Sect. 6.4, we let M?(c) be the adic analytic fiber of 32(c) x w0 Wr.

Corollary 8.6 The map my induces an isomorphism
wi:pre = pief
of the sheaves w* o defined over MY(c) and M?(Lc) respectively.

Proof We have a morphism g: &y, — %,, compatible with the natural projections
3%2(c) = X9(c) and X?2(c) — 3%(c). As in Theorem 6.6(1) and using the normality of ¥y,
one obtains that the natural morphism Og,, — g:Osg,, is an isomorphism. This implies
that the isomorphism of Lemma 8.5 induces an isomorphism of the pull backs via p; and
P2, respectively, of the invertible sheaves w* defined on 3°(c) and 3%(€c), respectively.
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Taking adic analytic fibers and twisting by the invertible sheaf to* as in Sect. 6.4 we get
the claimed isomorphism. O

Let g¢ := |Op/£OE|. In order to define the Hecke operators, we will need the following:

Lemma 8.7 (I) The morphism p1 is finite and étale of degree q¢ + 1 if £ is prime to p.
(2) At the level of analytic fibers, the morphism py is finite and flat of degree qq if ¢
divides p.

Proof The first statement is clear. We prove the second statement: The group scheme
Kermy, = G[€]/H1[{] is finite étale at the level of analytic fibers due to [3, Cor. A.2].
Since it is isomorphic to Hi[¢]V it follows from Proposition 3.2 that it is in fact étale
locally on M?(c) isomorphic to Of /£OF. Since p is represented over M?(c) by the Of
splittings of the exact sequence of group schemes (with Of-action) 0 — H;[{] — G[{] —
G[¢]/H1[¢] — 0, it follows that p; is a torsor under the finite and flat group scheme H; [£].
This proves the claim. O

Denote by g the structural maps of M, (£c) and respectively M,(c) to the weight space
Wr and by g° their restrictions to M?(¢c) and respectively M?(c). Taking the global
sections of the sheaves w*"" over M?(€c) and respectively M?(c), we get the morphism

o, k' 0 E PN ﬂlﬁil 0 PN q[lTrpl o, k'
& > &y (Pl,* (Pza’ )) — &« (171,* (P1a’ )) — &

Here Tr,, is the trace map of the finite flat morphism p1. One checks on g-expansions
that dividing by the normalization factor g, is a well-defined operation. Using the Koecher
principle of Sect. 8.4, we get a map gy@*  — gy*" from the global sections of *" over
M, (£c) to the global sections over M, (c), which are denoted T, for £ not dividing p, and
Uy, for £ = pOr or a prime ideal dividing p. This provides the definition of the Hecke
operators for the overconvergent (cuspidal) forms defined in Theorem 6.7 for the group
G*. Taking the quotient under the group A, we define such Hecke operators also for the
arithmetic overconvergent cuspidal modular forms defined in Sect. 8.2 for the group G.

8.6 The adic eigenvariety for arithmetic Hilbert modular forms
In [2, Theorem 5.1], we constructed a cuspidal eigenvariety over Wg\{lp| = 0} for the
p-adic, arithmetic Hilbert modular forms. We now extend it over WE .

Let Frac(F)®) be the group of fractional ideals prime to p. Let Princ(F) ™®) be the group of
positive elements which are p-adic units. The quotient Frac(F )®) /Princ(F )B®) = CIH(F)
is the strict class group of F.

For all ¢ € Frac(F)®, we have defined an adic space M, that we now denote by M, (c)
in order to mark its dependance on ¢ and a sheaf WG over M;(c). Let g.: M,(c) — WFG
be the projection. For all x € Princ(F)™®), we canonically identify (gc)*a)"gn(—D) and
(grc)» @G (—D) as in [2, Def. 4.6].

Taking the limit over r, we thus obtain a sheaf of projective Banach modules

P @) (-D).
ceCI(F)
Thanks to Sect. 8.5 this sheaf carries an action of the Hecke algebra H? of level prime to p
as well as an action of the U, operator and of the operators Usy; (see [2, § 4.3]). Moreover,
having taken the limit over r implies the lJ,-operator is compact thanks to Proposition 3.3.
Applying [3, Appendice B], we obtain the following theorem.
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Theorem 8.8 1. The characteristic series

POX) =det [1-XU,| € (g):0¢ (~D)
ceCI™(F)

takes values in AS[X].
2. The spectral variety Z2° = V(P%) — Wg is locally finite, flat and partially proper
over the weight space.
3. There is an eigenvariety E¢ — ZC, finite and torsion free over ZC, which parame-
trizes finite slope eigensystems of overconvergent, arithmetic Hilbert modular forms.
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