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1. Summary

Despite benefits of using light-sensitive geolocators to track
animal movements and describe patterns of migratory
connectivity, concerns have been raised about negative effects of
these devices, particularly in small species of aerial insectivore.
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Geolocators may act as handicaps that increase energetic expenditure, which could explain reported
effects of geolocators on survival. We tested this ‘Energetic Expenditure Hypothesis” in 12 populations of
tree swallows (Tachycineta bicolor) and barn swallows (Hirundo rustica) from North America and Europe,
using measurements of corticosterone from feathers (CORTf) grown after deployment of geolocators as a
measure of physiology relevant to energetics. Contrary to predictions, neither among- (both species) nor
within-individual (tree swallows only) levels of CORT; differed with respect to instrumentation. Thus, to
the extent that CORT reflects energetic expenditure, geolocators apparently were not a strong handicap
for birds that returned post-deployment. While this physiological evidence suggests that information
about migration obtained from returning geolocator-equipped swallows is unbiased with regard to
levels of stress, we cannot discount the possibility that corticosterone played a role in reported effects
of geolocators on survival in birds, and suggest that future studies relate corticosterone to antecedent
factors, such as reproductive history, and to downstream fitness costs.

2. Introduction

Understanding the ecological and population processes affecting migratory birds requires knowledge
of habitat use and individual movements throughout the annual cycle [1-3]. Recent insights have
been facilitated by advances in techniques for tracking animal movements and describing patterns
of migratory connectivity [4-7]. The use of light-sensitive geolocators has become especially popular
because the devices now weigh less than 1 g and, therefore, can be used on many species of small-bodied
migratory passerines [8]. Indeed, the recent rapid increase in research using geolocators has revealed
previously unknown information about breeding areas [9], migratory routes and stopover areas [10,11],
non-breeding areas [12-14] and migratory connectivity [9,12,15] for a variety of small bird species [8].

Despite obvious benefits of using geolocators to track migration, concerns have been raised about
negative effects of these devices and the potential biases in data derived from them [16-19]. A recent
meta-analysis provided evidence that geolocators can reduce survival, particularly for aerial foragers
and migratory species [17]. Effects of geolocators on flight mechanics can help explain these findings and
include increased wing loading and drag owing to altered aerodynamic profiles [20,21]. To compensate
for these effects, individuals carrying geolocators would be expected to increase energetic expenditure
[16,22,23]. This added workload could be particularly taxing during migration, which is a period of high
energetic demand [22,24] and high mortality [25]. Thus, geolocators have the potential to detrimentally
influence the energetic balance of migrants.

Although this ‘Energetic Expenditure Hypothesis” may provide a reasonable mechanism for reported
effects of geolocators, testing it requires measuring the energetics of free-living birds following
deployment. Unlike other tracking technologies [26], current geolocators suitable for use with small
birds (i.e. devices < 1.0 g) cannot collect any biotelemetry data other than location. Moreover, most small
migrant passerines cannot be recaptured until they return to the breeding grounds. These issues make it
difficult to assess differences in en route physiology of individuals with and without geolocators, which is
critical for establishing or refuting a physiological link between geolocators and variation in performance
measures affecting fitness.

The hormone corticosterone (CORT) may be a useful proxy for measuring the effect of geolocators
on the energetics of migratory birds. CORT is a metabolic hormone well known for its role in energy
management [27,28], and CORT levels rise in response to increased energetic demands and facilitate
the conversion (and thus depletion) of energy stores into usable forms [29-33]. In migratory passerines,
CORT levels are elevated seasonally to meet the physiological demands of migration, but birds still
respond to stressors during this period [33-35] and during winter [36,37]. Thus, if instrumentation with
a geolocator acts as a handicap that unpredictably increases energetic demands, CORT levels could
rise to a point where costs, such as increased catabolism of energy stores, degradation of muscle and
immunosuppression occur [28,38]. Short-term effects of geolocators and other tracking devices on CORT
physiology are either ephemeral (e.g. [39,40]) or not detectable (e.g. [41]), but studies of seabirds show
that baseline and handling-induced CORT levels are significantly elevated the year following geolocator
deployment [23,42]. All of these previous studies measured CORT during the breeding season (or in
captivity) so we lack any assessment of the effects of geolocators on energetics outside of this period in
wild populations.

Feathers may provide a retrospective ‘remote sensing’ of avian energetics because they contain a
record of CORT during the period of feather growth [43]. The CORT in feathers (CORTf) has been
shown experimentally to reflect levels of plasma CORT [44,45] and a variety of stressors [46-50] during
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feather growth. For birds that moult after the deployment of geolocators, CORT; could quantify a
physiologically relevant proxy of energetic costs arising from instrumentation. In migratory passerines,
assessing energetics during the pre-basic moult, which itself is energetically expensive [51,52], may
be particularly pertinent because this moult is preceded by physiologically demanding activities
(e.g. breeding, migration or both), the energetic costs of which could carry over into the moulting
period. Therefore, CORT¢ may reflect cumulative energetic costs that could be more pronounced in birds
carrying geolocators.

Using CORT¢ as a measure of physiological response to geolocators, we tested two predictions of
the Energetic Expenditure Hypothesis: (i) compared with returning adults without geolocators from the
same population (controls), individuals returning with geolocators (geolocator birds) should have higher
levels of CORTY, reflecting their increased energetic expenditure; and (ii) within individuals carrying a
geolocator, post-deployment levels of CORT¢ should be higher than pre-deployment levels. As a group,
small aerial insectivores should be particularly susceptible to the effects of geolocators [17], making
them appropriate models for this type of study. Thus, we tested our predictions in four populations
of tree swallows (Tachycineta bicolor) and eight populations of barn swallows (Hirundo rustica) from
North America and Europe. By studying how physiology of migratory passerines varies in response
to geolocators, this study also provides data useful for resolving potential ethical and scientific issues
facing researchers tracking small birds over long distances.

3. Material and methods
3.1. Fieldwork

Complete details of field methods, including geolocator instrumentation, for the birds in our study have
been presented elsewhere (tree swallows [11,18]; barn swallows [19,53]). For tree swallows, fieldwork
was conducted during May-July of 2011-2013 at three breeding sites in Canada (Prince George, British
Columbia: 53°50’ N, 122°57" W; St Denis National Wildlife Area, Saskatchewan: 52°13' N, 106°04’ W; Long
Point, Ontario: 42°39’ N, 80°26’ W) and one in the USA (Saukville, Wisconsin: 43°24’ N, 88°0’ W). Adults
were captured at their nest-boxes during the brood-rearing period and individuals were banded, sexed,
measured and dorsal contour feathers were collected from the upper back using forceps and stored in
paper envelopes until subsequent CORT analyses. Geolocators (0.67 g; Lotek Wireless model MK12-S in
2011, MK5-S in 2012) were attached using a modified leg-loop backpack harness [10], composed of 1 mm
diameter solid ethylenepropylene-diene rubber tubing, that had a combined mass of less than or equal
to 1.0 g (less than 5% of body mass). The geolocator, which sat just anterior to the tail, was secured to the
contour feathers on the bird’s back using a small amount of cyanoacrylate adhesive and did not directly
impede movement of the wings. Different adult tree swallows were marked with geolocators in 2011 and
2012.

For barn swallows, fieldwork in North America was conducted during May-July of 2012 and 2013
at two breeding sites in Canada (Prince Albert National Park, Saskatchewan: 53°42' N, 106°3’ W; near
Sackville, New Brunswick: 45°58' N, 64°13' W) and three in the USA (Auburn, Alabama: 32°33'N,
85°21' W; Greenville, Mississippi: 33°17' N, 91°2' W; Seattle, Washington: 47°39’ N, 122°21’ W). Fieldwork
in Europe took place during April-July of 2010-2012 at one breeding site in southern Switzerland
(Magadino: 46°09' N, 8°55' W) and two in northern Italy (Piedmont: 45°33'N, 8°44'E; Lombardy:
45°19'N, 9°40" E). Adults were captured with mist-nets, individually marked with coloured leg bands,
sexed, measured and the fourth outermost tail feather (R4) was plucked and stored for CORT analysis.
For North American breeding sites, geolocators (0.7 g; Migrate Technology model Intigeo-P55B1-7) were
deployed at this time and were attached using a leg-loop harness composed of elastic cord (Stretch
Magic, Pepperell, MA, USA). The combined mass was less than 0.8 g (approx. 4.5% of body mass). For
European breeding sites, adults were recaptured at the end of the breeding season and geolocators (Swiss
Ornithological Institute model SOI-GDL2.10 in 2010, SOI-GDL2.11 in 2011) were deployed. Geolocators
(2010: approx. 0.77 g; 2011: approx. 0.68 g) were attached using a leg-loop harness composed of an elastic
silicone rubber tubing, and the combined mass was less than 0.8 g (less than 4% of body mass).

3.2. Nomenclature and sample sizes of feathers

Feathers from geolocator birds were either grown the autumn before (pre-deployment) or after (post-
deployment) deployment. The moulting of tree swallow back feathers occurs from mid-July to early
November, corresponding to the beginning of autumn migration for the majority of individuals, and is
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probably completed within North America ([11,54,55] and references therein). Barn swallow tail feathers
are moulted at the end of autumn migration on wintering grounds in Africa and South America ([55-57]
and references therein).

As not all geolocator birds returned the year following deployment, for among-individual analyses
of tree swallows we had four categories of feathers that comprised treatment groups: (i) feathers
from controls reflecting the general population of returning individuals, (ii) post-deployment feathers
from geolocator birds that returned the subsequent year, (iii) pre-deployment feathers from returning
geolocator birds, and (iv) pre-deployment feathers from geolocator birds that did not return. Groups
(iii) and (iv) are analogous to controls; analysing them separately enabled us to determine if differences
in CORT physiology existed in these treatments prior to deployment (see Statistical analyses section).
We had feathers from 40 tree swallows recaptured the year subsequent to their original sampling
(control: n =12 birds; geolocator: n = 28 birds). We did not have any pre-deployment feathers for barn
swallows, and thus only had feathers in two treatment groups: (i) feathers from controls reflecting the
general population of returning individuals and (ii) post-deployment feathers from geolocator birds that
returned the subsequent year. Sample sizes for each treatment described above are presented in table 1.

For tree swallows, geolocator birds were randomly selected from previously banded adults. Control
birds were selected as the next banded adult captured, which was generally the same day or shortly
after deployment of a geolocator, so control and geolocator birds were well matched in their timing of
breeding. For barn swallows, in 2010, birds were assigned alternately to control or geolocator groups
within each colony of each breeding site. In 2011, this procedure was maintained at the Magadino
and Piedmont breeding sites, but at the Lombardy site different breeding colonies were assigned to
different treatment groups for practical reasons. Regardless, in both years and at all sites, birds in the
two treatment groups were well matched in their timing of breeding.

3.3. Analysis of corticosterone from feathers

Analyses of CORT¢ were conducted as in previous studies of tree swallows [44,58]. We first processed
feathers by removing the calamus, weighing and measuring the length of the remaining portion of
feather, placing each sample into a separate glass vial, and cutting the samples into small pieces with
scissors. We then added 10ml of HPLC-grade methanol (VWR International, Mississauga, Ontario,
Canada) to each sample, sonicated all samples at room temperature for 30 min, followed by incubation
at 50°C overnight in a water bath. A vacuum filtration system consisting of a plug of polyester wool in a
glass filtration funnel was used to separate the methanol extract from the feather material. The original
sample vial, remnant feather pieces and filtration material were washed twice with approximately 2.5 ml
of additional methanol that was then added to the original methanol extract. Methanol extracts were
placed in a 50°C water bath and subsequently evaporated in a fume hood. Samples were extracted in
six batches. Recovery efficiency of the methanol extraction was assessed by including feather samples
spiked with approximately 5000 CPM of 3H-labelled CORT, and an average of 93.4% (s.d. =6.1) of the
radioactivity was recoverable in the reconstituted samples. Samples were adjusted for recoveries. Extract
residues were reconstituted in a small volume of phosphate buffer (0.05mol1~!, pH 7.6) and analysed by
radioimmunoassay in duplicate following [59]. Serial dilutions of sample extracts of both species were
parallel to the standard curve, indicating no interference with the antibody. All samples were run blind
with regard to individual identity. Samples from all populations except Saukville, WI, were randomly
distributed throughout five assays, and the average intra-assay variability, computed using three aliquots
per assay of the same standard, was 8.8% (s.d. =5.4), inter-assay variability was 9.1%, and all samples
were above the limit of detection (EDgp; average + s.d.: 16.08 + 2.42 pg 100 ul~!). Saukville samples were
obtained 1 year later and randomized throughout a single assay run with a different internal standard but
same antiserum as all previous samples. Our statistical analyses do not compare CORT¢ values among
populations (we intentionally control for this using population as a random effect; see Statistical analyses
section) and are instead tested for differences among treatments within sites. This single assay had an
intra-assay variability of 5.7% (i.e. was internally valid) and all samples were above its limit of detection
(EDgp) of 12.99 pg 100 ul~1 (similar to the other assays). CORT; values were standardized by feather
length (i.e. CORT mm 1) to best represent the time-dependent deposition of CORT [43,60,61].

3.4. Statistical analyses

CORT; values were log-transformed to improve normality. We used mixed models to analyse the effect
of geolocators on CORTf, using PROC MIXED in SAS v. 9.2 (SAS Institute, Cary, NC, USA), including

4000512 s ado 205y Bio‘Buiysignd/iaposiefor'soss



Table 1. Sample sizes of feathers from each species, population, year and sex (male/female) in each treatment group. (See text for -
explanation of treatments.)

pre-deployment pre-deployment  post-deployment

from non-returning  from returning from geolocator population

population control  geolocator birds geolocator birds birds total
tree swallows

4000512 Psuado 205y Bio‘Buiysigndfiaposyeforsoss
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population and year as random effects to account for clustered data and annual effects. Owing to
the unbalanced sample sizes among treatment, sex, year and population, all mixed models used the
Kenward-Rogers method for approximating degrees of freedom. Non-significant interaction terms (p >
0.05) were eliminated from models. Because different types of feathers were used for tree swallows and
barn swallows, we analysed each species separately.

For both species, we first examined the variation in CORT¢ among treatments. These models started
with fixed effects of treatment (for definitions see Nomenclature and sample sizes section), minimum
age (youngest reliably estimable age) and sex, and included a treatment x sex interaction. Only known-
sex birds were used in analyses that included sex. Second, for tree swallows alone, we addressed
within-individual effects of instrumentation with a geolocator using the 40 individuals sampled in
two consecutive years. Each bird was used as its own control by subtracting pre-deployment (year 1)
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Figure 1. Levels of corticosterone in feathers (CORT¢) from tree swallows instrumented with a geolocator compared to non-instrumented
(control) birds. All feathers were grown post-breeding, and pre-deployment feathers were grown the year prior to deployment of
geolocators. See text for complete descriptions of treatments. Note that some populations contain multiple years of data (table 1).

values from post-deployment (year 2) values. This created a single variable that reflected the within-
individual change in CORT physiology from one year to the next. We compared this variable between
geolocator and control birds in a model that also included the fixed effects of minimum age and sex, and
a treatment x sex interaction.

4, Results

In tree swallows, there was no interaction between treatment and sex on CORT (F3 15, =0.22, p =0.88),
so the interaction term was removed from the model. The final model revealed no effect of geolocators
on CORT (F3 149 =0.69, p = 0.56; figure 1), and no effect of sex (Fy 154 = 1.14, p = 0.29) or minimum age
(Fg,153 = 0.45, p = 0.89). In barn swallows, there was no interaction between treatment and sex on CORT
(F1,160 = 0.07, p = 0.79), so this term was also removed from the model. The final model showed no effect
of geolocators on CORT¢ (Fy,171 = 0.47, p = 0.49; figure 2), and no effect of sex (F1,170 =2.45, p=0.12) or
age (F5,170 = 0.47, p= 0.80).

When we considered the 40 cases where tree swallows were sampled in two consecutive years, we
found that within-individual changes in CORT; were not related to the interaction of treatment with
sex (F1,30 =1.80, p =0.19) so this term was removed from the model. The final model revealed no effect
of geolocators on within-individual changes in CORT¢ from one year to the next (Fq31 =0.28, p = 0.60;
figure 3), and no effects of age (Fg31 =0.27, p = 0.95) or sex (F131 =0.53, p = 0.47).

5. Discussion

We tested the Energetic Expenditure Hypothesis that geolocators attached to aerial insectivores produce
a handicap that increases energetic demand. We predicted that if there was a pervasive effect of
geolocators it would be reflected in levels of CORT from feathers grown prior to or early-on during post-
breeding migration (tree swallows), or at the end of migration (barn swallows). We also expected that
our broad geographical and temporal approach of analysing 3 years of CORT; data from 12 populations
of two species of aerial insectivore on two continents would provide the power to detect an effect of
geolocators if one existed. However, our results based on both among-individual (both species) and
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Figure 2. Levels of corticosterone in feathers (CORT¢) from barn swallows instrumented with a geolocator compared to controls.
All feathers were grown post-breeding (i.e. after deployment of geolocators). Note that some populations contain multiple years of
data (table1).
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Figure 3. Within-individual change in levels of corticosterone from feathers (CORT;) of tree swallows in two consecutive years. For control
birds (n = 12), thisis the change in levels from year1to year 2; for geolocator birds (n = 28), this reflects the change from pre-deployment
(year1) to post-deployment (year 2) levels.

within-individual (tree swallows only) analyses show that there was no effect of geolocators on levels
of CORTy. The lack of effect in barn swallows is particularly revealing, considering that they carried
the geolocator for considerably longer before moulting than did tree swallows. Thus, to the extent that
CORT reflects energetic expenditure, our findings suggest that geolocators apparently did not act as
a strong handicap for birds that returned post-deployment. We further speculate that this provides
physiological evidence that data about locations and timing of migration obtained from returning
geolocator birds (e.g. [11]) may not be biased with regard to levels of stress, although this should be
tested directly.

Our findings do not rule out, however, an effect of geolocators on CORT physiology, nor do
they necessarily discount CORT as a potential mediator of the effects of geolocators on survival.
If non-returning geolocator birds had CORT physiology operating in homeostatic overload (sensu
[62]) for extended periods, then they could have experienced costs including reduced condition,
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increased susceptibility to disease or death (for reviews see [28,38]). Sub-lethal effects of CORT could
have reduced the ability of these birds to acquire resources during stopovers or on the wintering
grounds, or influenced their decision to not travel as far as controls, resulting in lower return rates to
breeding grounds the subsequent year, which have been detected in several of our populations [18,19].
Moreover, factors operating prior to departure from the breeding grounds could have predisposed
non-returning geolocator birds to potential negative effects arising from instrumentation. For example,
reproductive effort can influence CORT physiology during and at the end of the breeding season
[63,64] which, in turn, can have consequences for migration phenology [65,66]. If reproduction was
particularly energetically demanding for non-returning geolocator birds (i.e. CORT levels were already
near homeostatic overload), then geolocators could have further increased CORT levels and exacerbated
costs. Although behavioural data indicate that control and geolocator tree swallows do not appear to
differ immediately after instrumentation [18], physiological costs could have carried over into migration
which would further increase energetic demands. The duration, speed and distance of the migratory
journey, as well as habitat use during stopovers and on wintering grounds, can influence energetics,
CORT physiology and return rates of birds [36,37,67-69]. Indeed, migration distance is believed to
influence apparent survival rates of geolocator-marked birds [17], and CORT¢ could possibly predict
the pace of autumn and spring migration in tree swallows and barn swallows, respectively [65]. Thus,
the ecophysiological context before, during and after migration is important for fully understanding how
and when geolocators influence survival, the potential fitness consequences to survivors, and the extent
to which CORT physiology is involved in these processes.

Regardless of the mechanism, individuals that were better able to manage their CORT physiology
may have been better able to avoid costs [62] and thus survive. Measuring CORT from feathers grown
post-deployment from non-returning geolocator birds is essential to substantiating this hypothesis but is
not possible owing to difficulties recapturing swallows once they leave the breeding grounds. Thus, our
ability to identify any obvious physiological differences between returning and non-returning geolocator
birds is limited to comparing their pre-deployment CORT¢ levels with controls, yet we found no
differences among these three groups. Investigation of plasma CORT at the time of deployment should
be a focus of future research. Although we lack evidence of physiological differences between returning
and non-returning geolocator birds, it may be the case that only high-quality birds were instrumented to
begin with, and this explains why CORT} levels of returning geolocator birds did not differ from controls.
This is a possibility for tree swallows because geolocators were deployed (albeit randomly) on previously
banded birds that had already survived at least two migrations, but we can rule out this hypothesis
for barn swallows because deployment of geolocators was completely randomized [19]. Nonetheless,
it is important to note that, despite surviving and not having significantly higher levels of CORTy,
returning geolocator birds may still have incurred a cost of instrumentation. Indeed, initial evidence in
European populations of barn swallows suggests that geolocators impair subsequent reproduction [19].
It is unknown what role CORT plays in such effects, so future studies would benefit from determining
whether body condition, health, or reproductive variables the spring following instrumentation vary
with respect to CORT} in returning geolocator birds.

Additional research is clearly needed to identify if physiological costs of instrumentation with
geolocators exist and whether these influence survival, and the Energetic Expenditure Hypothesis
provides testable predictions of such effects. To the extent that we can use CORT; to infer variation
in energetic expenditure, our results suggest that geolocators may not have imposed a handicap on
returning swallows. Moreover, compared with birds that did not return and breed, returning birds did
not have significantly different CORT; in the year prior to instrumentation. Whether or not only the
best-quality birds survived to be sampled and how CORT physiology may have contributed to this
require future research. Longitudinal demographic studies such as ours are particularly informative for
addressing how CORT} relates to antecedent factors, such as reproductive history, and to downstream
fitness costs. Validation studies are needed to determine if the levels of energetic exertion (or
physiological stress) necessary to influence CORT; are similar among species. As our understanding
of migratory movements and stopover areas improve (e.g. [11]), it will become easier to sample
geolocator and control birds throughout migration. Comparing physiological profiles of these birds at
multiple stages throughout their journey will be essential to substantiating or refuting the Energetic
Expenditure Hypothesis.

Ethics statement. All feathers were collected in accordance with appropriate ethics permits in North America (University
of Saskatchewan 20070041 and 20100084; University of Northern British Columbia ACUC-2011-13; University
of Guelph 11R042; Tulane University 0387) and Europe (Office fédéral de l'environnement, Division Especes,
écosystemes, paysages F044-0799; Regione Lombardia no. 329 and no. 2141; Provincia di Novara no. 905).
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