
DEPENDENCE ON GLUTAMINE UPTAKE AND GLUTAMINE ADDICTION CHARACTERIZE 

MYELOMA CELLS: A NEW ATTRACTIVE TARGET 

 

 

SHORT TITLE: Glutamine addiction of myeloma cells 

 

 

Marina Bolzoni1#, Martina Chiu2#, Fabrizio Accardi1,3#, Rosanna Vescovini1, Irma Airoldi5, Paola 
Storti1,4, Katia Todoerti6, Luca Agnelli7, Gabriele Missale8, Roberta Andreoli9, Massimiliano G. 
Bianchi2,9, Manfredi Allegri2, Amelia Barilli2, Francesco Nicolini10, Albertina Cavalli8, Federica 
Costa1, Valentina Marchica1,4, Denise Toscani1, Cristina Mancini11, Eugenia Martella11, Valeria 
Dall’Asta2, Gaetano Donofrio12, Franco Aversa1,3, Ovidio Bussolati2 and Nicola Giuliani1,3,4 

 

 
 
1Myeloma Unit, Dept. of Clinical and Experimental Medicine, University of Parma, Parma, Italy; 
2Unit of General Pathology, Dept. of Biomedical, Biotechnological and Translational Sciences, 
University of Parma, Parma, Italy; 3Hematology and BMT Center, “Azienda Ospedaliero-
Universitaria di Parma”, Parma, Italy; 4CoreLab, “Azienda Ospedaliero-Universitaria di Parma”, 
Parma, Italy; 5“Laboratorio di Oncologia”, “Istituto Giannina Gaslini”, Genoa, Italy; 6Lab. of Pre-
clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in 
Vulture, Italy; 7Dept. of Oncology and Hemato-oncology, University of Milan, Milan, Italy; 8Infectious 
Disease Unit and Hepatology Unit, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy; 
9Unit of Occupational Medicine, Dept. of Clinical and Experimental Medicine, University of Parma, 
Parma, Italy; 10Cardiac Surgery Unit, Dept. of Clinical and Experimental Medicine, University of 
Parma; 11“U.O. di Anatomia Patologica, Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy 
and 12 Dept. of Medical-Veterinary Science, University of Parma, Parma, Italy 
 
# These Authors equally contributed to the study. 
 
 
 
 
Scientific category: Lymphoid Neoplasia 
Word count: Text: 4000, Abstract: 250 
Figures/Tables count: 7 
References count: 59 
 
Addresses Correspondence to: 
Nicola Giuliani, MD, PhD 
Myeloma Unit, Dept. of Clinical and Experimental Medicine 
University of Parma 
Via Gramsci 14, 43126, Parma, Italy 
Tel: +390521033299; Fax: +390521033271 
Email: nicola.giuliani@unipr.it 

 Blood First Edition Paper, prepublished online June 6, 2016; DOI 10.1182/blood-2016-01-690743

 Copyright © 2016 American Society of Hematology

For personal use only.on July 26, 2016. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


2 
 

 
Ovidio Bussolati, MD, PhD 
Unit of General Pathology, Dept. of Biomedical, Biotechnological and Translational Sciences 
University of Parma 
Via Volturno 39, 43125, Parma, Italy 
Tel: +390521033783; Fax: +390521033742 
Email: ovidio.bussolati@unipr.it 

For personal use only.on July 26, 2016. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


3 
 

Key points 

• Myeloma cells produce ammonium in the presence of glutamine, showing high Glutaminase 

and low Glutamine Synthetase expression. 

• Myeloma cells show high expression of glutamine transporters and inhibition of ASCT2 

transporter hinders myeloma growth. 

 

Abstract 

The importance of glutamine (Gln) metabolism in multiple myeloma (MM) cells and its potential role 

as a therapeutic target are still unknown, although it has been reported that human myeloma cell 

lines (HMCLs) are highly sensitive to Gln depletion. In this study, we found that both HMCLs and 

primary bone marrow (BM) CD138+ cells produced large amounts of ammonium in the presence of 

Gln. MM patients have lower BM plasma Gln with higher ammonium and glutamate than patients 

with indolent monoclonal gammopathies. Interestingly, HMCLs expressed Glutaminase (GLS1) 

and were sensitive to its inhibition, while exhibited negligible expression of Glutamine Synthetase 

(GS). High GLS1 and low GS expression were also observed in primary CD138+ cells. Gln-free 

incubation or treatment with the glutaminolytic enzyme L-Asparaginase depleted the cell contents 

of Gln, glutamate and the anaplerotic substrate 2-oxoglutarate, inhibiting MM cell growth. 

Consistent with the dependence of MM cells on extracellular Gln, a gene expression profile 

analysis, on both proprietary and published datasets, showed an increased expression of the Gln 

transporters SNAT1, ASCT2, and LAT1 by CD138+ cells across the progression of monoclonal 

gammopathies. Among these transporters, only ASCT2 inhibition in HMCLs caused a marked 

decrease in Gln uptake and a significant fall in cell growth. Consistently, stable ASCT2 down-

regulation by a lentiviral approach inhibited HMCL growth in vitro and in a murine model. In 

conclusion, MM cells strictly depend upon extracellular Gln and show features of Gln addiction. 

Therefore, the inhibition of Gln uptake is a new attractive therapeutic strategy for MM.
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INTRODUCTION 

Multiple Myeloma (MM) is characterized by the accumulation of malignant plasma cells (PCs) into 

the bone marrow (BM).1,2 It is a historical notion that the growth of MM cells was limited by 

depletion of L-glutamine (Gln)3 and that MM cells may produce an excess of ammonium (NH4
+).4,5 

Hyperammonemia with or without the related encephalopathy has been reported as a possible rare 

clinical manifestation in relapsed/refractory MM patients with high mortality rate.6-12 Recently, 

multivariate analysis based on 1H-NMR spectroscopy analysis of serum samples has shown that a 

specific metabolic profile characterized MM patients versus healthy controls, including Gln levels 

significantly lower in the MM group.13 Overall, these data suggest that Gln is highly metabolized in 

MM cells. To satisfy metabolic requirements of Gln, mammalian cells rely on Glutamine Synthetase 

(GS), the enzyme that obtains Gln from glutamate (Glu) and NH4
+.14,15 Moreover, a variety of 

carriers, operate Gln influx, such as the Na+-dependent transporters SNAT1-2 and ASCT2, and the 

Na+-independent transporter LAT1.16 Gln is a substrate of several enzymes, playing an important 

role in various processes, such as the synthesis of nucleotides, other amino acids, or 

glucosamine.17,18 Moreover, through the activity of Glutaminases (GLS1 and GLS2), which 

hydrolyze the amide group obtaining NH4
+ and Glu, Gln may fuel the intracellular pool of the Krebs 

cycle intermediate and anaplerotic substrate 2-oxoglutarate (2-OG, α-ketoglutarate).17,18 Some 

types of human tumor cells exhibit an high requirement for Gln (“glutamine addiction”)15 and use 

large amounts of the amino acid as an anaplerotic substrate.19-21 A number of metabolic features 

have been described in Gln addicted cancer cells, such as high GS expression22 or high 

expression and/or activity of Gln transporters, such as ASCT2.23 In Gln-addicted cancers, GLS1 

inhibition, Gln transporter silencing, inhibitors of Gln uptake or Gln-depleting treatments lead to 

delayed or arrested tumor growth.24-26 Gln depletion produces a severe metabolic stress and cell 

death in some types of acute myeloid leukemia (AML)27,28 and in Gln-addicted lymphoid cells.29 

Moreover, L-Asparaginase (ASNase), the mainstay in the treatment of acute lymphoblastic 

leukemia (ALL),30,31 hydrolyzes not only asparagine but also Gln, and Gln depletion is the main 

biochemical mechanism underlying the growth inhibition by ASNase in asparagine synthetase-
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positive ALL cells.32 Actually, the relationship between NH4
+ production and Gln-addiction in MM 

cells, as well as the mechanisms involved therein, are unknown, and were investigated in this 

study. 

 

 

 

 

PATIENTS, MATERIALS AND METHODS 

Patients 

A total cohort of 65 patients (30 males and 35 females) with PC disorders were included in the 

study: 6 patients with monoclonal gammopathy of undetermined significance (MGUS) (median 

age: 68 years; range: 44-80), 12 with smoldering myeloma (SMM) (median age: 68 years; range: 

41-83), and 46 with active MM (median age: 75 years; range: 43-90) including 28 newly diagnosed 

MM (ND-MM) and 18 relapsed MM (R-MM). The main clinical characteristics of all the patients 

enrolled in the study are summarized in Table S1. Adverse cytogenetic/fluorescence in situ 

hybridization (FISH) refers to unfavorable IgH translocations (t(4;14) or t(14;16) or t(14;20)), 17p13 

del and/or 1q21 gain.33,34 A total cohort of 9 controls (patients without monoclonal gammopathy 

with cardiac disease; median age: 58 years; range: 42-72) underwent cardiac surgery and were 

included in the study to obtain normal PCs.  

The University of Parma institutional review board (Parma, Italy) approved all the study protocols. 

All of the patients and controls included in the study gave their written informed consent as laid 

down in the Declaration of Helsinki.  

BM aspirates (5+5 mL, treated with EDTA to prevent clotting) were obtained from the iliac crest of 

MM, SMM and MGUS patients or from the sternum of controls. BM plasma was collected from 17 

MM patients (9 ND-MM and 8 R-MM; ISS: 18% stage I, 35% II and 47% III; adverse FISH: 64%) 

and 13 patients with indolent monoclonal gammopathies (MGUS and/or SMM) after centrifugation, 

and stored at -20°C until the analysis. Peripheral blood (PB) was obtained from 21 of 46 MM 

patients (13 ND-MM and 8 R-MM; ISS: 23% I, 28% II and 48% III; adverse FISH: 29%).  
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BM cell purification 

Both CD138+ PCs and CD138- cell fractions were isolated from BM mononuclear cells (MNCs) by 

an immunomagnetic method with anti-CD138 mAb conjugated with microbeads (Miltenyi Biotech; 

Bergisch-Gladbach, Germany) from 38 patients (2 MGUS, 7 SMM, 29 MM, including 17 ND-MM 

and 12 R-MM) and 4 out of 9 controls as previously described.35 FISH analysis was performed on 

CD138+ PCs as previously described.36 

Cell lines, reagents and cell treatments 

Cell lines and reagents were described in Supplementary Materials and Methods. 

Treatment under Gln-free conditions was performed incubating cells in Gln-free RPMI-1640 

medium supplemented with 10% FBS dialyzed against a 40x volume of 0.154 M NaCl.  

Treatment with E. chrysanthemi ASNase (L-asparagine amido hydrolase, E.C. 3.5.1.1, (Jazz 

Pharmaceuticals Ltd, Oxford, UK)) or with the E. coli ASNase (Sigma-Aldrich, Milan, Italy) at 

concentrations ranging from 0.0001 to 1 U/mL was performed for 48h in RPMI-1640 medium plus 

10% FBS and Gln at 4 mM. Bortezomib (Janssen-Cilag, Milan, Italy) dose response (concentration 

range: 1.77-10 nM) was performed in standard growth medium in the presence or in the absence 

of 0.1 U/mL of E. chrysanthemi ASNase for 48 h. Moreover HMCLs were treated with bortezomib 

(1-16 nM) or E. chrysanthemi ASNase (0.0625-1 U/mL) or the combination of the two drugs (16:1) 

or vehicle for 48 h.  

Cell viability 

Cell viability was assessed by adding resazurin (44 μM) to the incubation media.38 After 1 h, 

fluorescence was measured at 572 nm with a fluorimeter (EnSpire® Multimode Plate Readers, 

Perkin Elmer, Boston, MA, USA). Synergy between E. chrysanthemi ASNase and Bortezomib was 

quantified by combination index analysis using CompuSyn software version 1 

(http://combosyn.com/). 

NH4
+ quantification 

The quantification of NH4
+ was detailed in Supplementary Materials and Methods. 
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Amino acid determination 

BM plasma samples were de-proteinized with 10% (w/v) 5-sulfosalicylic acid and centrifuged at 

12000g for 10 min at 4 °C. Supernatants were mixed with 1 volume of LiOH-citrate buffer (pH 2.2), 

and the intracellular content of amino acids was determined by HPLC analysis with a Biochrom 20 

amino acid analyzer (Amersham Pharmacia Biotech, GE Healthcare Europe GmbH, Milan, Italy), 

as previously described.39 

Analysis of the transcriptional profile of glutamine transporters 

The analysis of the transcriptional profile of glutamine transporters was described in 

Supplementary Materials and Methods. 

Real time-PCR analysis 

Total cell RNA (1 μg), isolated with GenElute™ total RNA Miniprep Kit (Sigma-Aldrich), was 

reverse transcribed as described.25 Gln-related enzyme and transporter mRNA expression was 

analyzed by real-time PCR with the primers reported in Table S2. Data analysis was made 

according to the Relative Standard Curve Method.42 The mRNA expression of GAC and KGA was 

evaluated by taqman gene assay (Life Technologies, Thermo Fisher Scientific, Waltham, MA, 

USA) by the probes hs01022166_m1 and hs01014019_m1, respectively. 

Glutamine uptake 

The influx of Gln was measured in RPMI 8226 cells following the method for amino acid transport 

determination previously described.43  

Liquid chromatography tandem mass spectrometry (LC-MS/MS) 

Cells were seeded in a 6-well plate. After 24 h, growth medium was substituted with fresh medium 

with or without Gln (4 mM). After 19 h cells were washed with ice-cold Phosphate Buffered Saline, 

and metabolites were extracted with 1 mL ethanol. LC analyses were carried out with an Agilent 

HP 1100 pump coupled with a API4000 triple-quadrupole mass spectrometer (AB SCIEX, 

Framingham, MA, USA) equipped with a TurboIonSprayTM interface and configured in Selected 

Reaction Monitoring (SRM) mode adapting a previously published method.44  
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Immunoblotting 

Immunoblotting analysis was performed as previously described.35 Blots were incubated at 4 °C 

overnight with the following antibodies: anti-β-actin (mouse, monoclonal, 1:5000, Sigma-Aldrich) 

anti-ASCT2 (rabbit, monoclonal, 1:4000, Cell Signaling Technology, Danvers, MA), anti-β-tubulin 

(mouse, polyclonal, 1:1000, Santa-Cruz Biotechnology, Santa Cruz, CA), anti-caspase 3 (mouse, 

monoclonal, 1:167, Active Motif, La Hulpe, Belgium), anti-GAPDH (rabbit, polyclonal, 1:4000, 

Sigma-Aldrich), anti-GLS1 (rabbit, monoclonal, 1:1000, Abcam, Cambridge, UK), anti-GLS2 

(rabbit, polyclonal, 1:1000, Abcam), anti-GS (mouse, monoclonal, 1:1500, BD Transduction 

Laboratories, Franklin Lakes, NJ), anti-LAT1 (rabbit, polyclonal, 1:1000, Cell Signaling 

Technology), anti-p70S6K, p-T389 (rabbit, monoclonal, 1:1000, Cell Signaling), anti-SNAT1 (rabbit, 

polyclonal, 1:500, Abcam).  

Flow cytometry analysis of apoptosis 

1x106 HMCLs were treated for 24 h under the conditions detailed in the legends to Figures 3 and 4. 

After the experimental treatments, cells were incubated in the dark with anti-human Apo 2.7-PE 

(clone 2.7A6A3, Beckman Coulter, Milan, Italy) for 30 min, washed, and then analyzed using 

FACSCalibur (Becton Dickinson Biosciences (BD) Italia, Milan, Italy). 

Lentiviral infection and ASCT2 knockdown 

Lentivirus short hairpin RNA (shRNA) anti-SLC1A5 (Origene, Rockville, MD) was used for ASCT2 

stable knockdown in RPMI 8226 and JJN3 cell lines, whereas the scramble lentiviral vector was 

used as control. Recombinant lentivirus was produced by transient transfection of 293T cells 

following a standard protocol. HMCLs were infected as previously described,35 and the efficiency of 

the infection was evaluated as % of positive cells for green fluorescence protein (GFP) signal by 

flow cytometry. 

In vivo experiments 

Severe combined immunodeficiency/non obese diabetic (SCID-NOD) mice (Harlan Laboratories, 

Udine, Italy) were housed under specific pathogen-free conditions. All procedures involving 

animals were performed in accordance with the National and International current regulations. 8 
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mice for group were injected subcutaneously with 5x106 JJN3 cells stably transfected with anti-

SLC1A5 containing plasmid vectors (ΔASCT2) or with the empty vector (Scramble). Tumor growth 

was monitored at different time points, and 21 days after inoculation mice were sacrificed and 

autopsies performed. Tumor mass was measured as previously described.45 Plasmacytomas 

obtained from tumors removed from mice injected with JJN3 anti-SLC1A5 or JJN3 scramble were 

either fixed in 10% neutral buffered formalin, embedded in paraffin, and stained with hematoxylin 

and eosin, or lysed for protein extraction and western blot analysis. 
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RESULTS 

Myeloma cells produce NH4
+ from glutamine 

Firstly, we assessed the NH4
+ production by several HMCLs (RPMI 8226, OPM2, JJN3, KMS-12-

BM, and XG1) and found that all these lines markedly increased NH4
+ output in the presence of 

Gln (Figure 1A). Conversely, the ALL 697 cell line did not (Figure 1A). Primary BM CD138+ PCs 

from MM patients produced higher NH4
+ than BM CD138- cell fraction from the same patients, as 

shown for 10 representative MM patients (Mann-Whitney test, P=.0002 in the presence of Gln, 

Figure 1B). NH4
+ production was Gln-dependent (P<.0001 for CD138+ fraction, Figure 1B). 

Comparing NH4
+ production between HMCLs and primary CD138+ PCs, we found that the Gln-

dependent NH4
+ production was higher in HMCLs (P=.0027, Figure 1B). Interestingly, we found 

that normal PCs obtained from 2 controls produced NH4
+ in the presence of Gln at lower levels 

than MM cells, although the difference did not reach statistical significance (normal PCs: median 

level: 129.1 μmol/L; primary MM cells: 292.6 μmol/L; P=0.09).  

Higher NH4
+ levels characterized MM patients as compared to SMM and MGUS 

We screened both PB and BM NH4+ levels in subgroups of MM patients and controls. Among 21 

MM out of the total cohort of patients enrolled in the study, we showed that 38% of them had high 

PB NH4
+ levels (standard limits 10-50 µmol/L) and 14% showed neurological symptoms of 

encephalopathy without signs of liver dysfunction. In the BM plasma, NH4
+ levels were significantly 

higher in patients with active MM as compared with MGUS and SMM (P=.042) (Figure 1C). 

Patients with adverse FISH showed significantly higher BM NH4
+ levels than the others (median 

levels 163 µmol/L versus 93.5 μmol/L; P=.006). Interestingly, BM plasma of MM patients had lower 

Gln and higher Glu as compared with that of MGUS and SMM patients (Figure 1D and 1E), 

pointing to glutaminase activity as the responsible of NH4
+ production. Amino acid profile in BM 

plasma is reported in Table S3. 

On the other hand, no significant correlation between the NH4
+ levels and % of BM PCs was found 

(Pearson r2=0.1588, P=NS) (data not shown). This observation was further confirmed in another 
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retrospective cohort of 35 patients with monoclonal gammopathy (Pearson r2=0.0817, P=NS) (data 

not shown). 

MM cells express high levels of Glutaminase but not of Glutamine Synthetase 

The expression of the two main enzymes responsible for Gln metabolism, Glutaminase-1 (GLS1) 

and Glutamine Synthetase (GS), was evaluated in five HMCLs and in the ALL 697 cells (Figure 

2A). Among the five HMCLs, XG1 had the highest expression of GLS1 (total, KGA, GAC), while 

the other four cell lines expressed GLS1 mRNAs at levels comparable with those exhibited by ALL 

cells. Total GLS1 expression and that of the two isoforms GAC and KGA were also detected in 

primary BM CD138+ cells purified from patients with different monoclonal gammopathies, without 

any significant difference among the groups (Figure 2B). Comparable levels of GLS1 mRNA were 

found in normal PCs (data not shown). On the contrary, GLS2 is expressed at very low levels in 

both HMCLs and primary MM cells (Figure S1). The mRNA of GLUL, the gene that encodes for 

GS, was much less expressed in the five HMCLs than in 697 cells (Figure 2A). HMCLs, with the 

exception of JJN3 cells, expressed ASNS, the gene for Asparagine Synthetase, at higher levels 

than 697 ALL cells (Figure 2A). 

All the HMCLs tested showed similar levels of GLS1 protein, with two clearly detectable enzyme 

bands (the higher for native KGA and the lower for the cleaved form GAC) (Figure 2C). On the 

contrary, GS was not detectable in HMCLs but was readily found expressed in 697 cells (Figure 

2C). Consistent with mRNA data, ASNS was present in the lysates of all the HMCLs tested at 

levels comparable (JJN3) or higher than those expressed by ALL 697 cells (Figure 2C). In several 

cell models, the abundance of GS (protein) is inversely correlated with Gln availability;46-48 

therefore, it is expected that GS will increase when cells are incubated under conditions of Gln 

shortage. However, even upon incubation in the absence of Gln, GS remained undetectable in 

HMCLs, while it was much more expressed in Gln-starved ALL cells compared with Gln–fed 

counterparts (Figure 2D). 

GLS1 expression (both KGA and GAC) was also clearly evident in all but one lysates of CD138+ 

cells from SMM, ND-MM and R-MM patients (Figure 2E). Conversely, GS expression was barely or 

not detectable at all in the same samples (Figure 2E). 
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MM cells are dependent on extracellular glutamine and use glutamine for anaplerosis 

The high expression detected in MM cells prompted us to evaluate the effects of GLS1 inhibition 

on cell viability. The GLS1 inhibitor BPTES49 significantly lowered cell viability in all the HMCLs 

tested (Figure 3A), with an effect ranging from 30% for JJN3 to 70% for XG1 cells at the highest 

dose tested (40 µM). Another GLS1 inhibitor, CB-839 (0.125-1 µM), markedly suppressed viability 

in RPMI 8226 cultures, while it had only small effects in OPM2, KMS-12-BM and XG1 cells and 

was ineffective in JJN3 cells (Figure 3B).  

The low levels of GS expression detected in MM cells support the hypothesis that MM Gln 

metabolism depends on the availability of the extracellular amino acid. Indeed, when incubated in 

media at decreasing levels of Gln, HMCLs exhibited a progressive loss of viability; in the absence 

of the amino acid, viability suppression was complete for RPMI 8226, OPM2 and XG1 lines and 

>90% for JJN3 and KMS-12-BM cells (Figure 3C). Methionine-sulfoximine (MSO), an irreversible 

inhibitor of GS, had no effect, thus excluding a protective role of GS in MM cells (Figure 3C).  

In order to understand the mechanism involved in the loss of viability of MM cells upon Gln 

depletion, we tested if Gln had an anaplerotic role in MM cells. To this aim, the intracellular levels 

of Gln, Glu, and 2-oxoglutarate (2-OG) were measured with mass spectrometry (Figure 3D), 

demonstrating that Gln-free incubation caused a substantial decrease of the three metabolites. A 

marked depletion of intracellular Glu and 2-OG, along with an increase of intracellular Gln, was 

also observed upon cell treatment with the GLS1 inhibitors BPTES and CB-839 (Figure S2). As 

shown in Figure 3E, Gln depletion caused a significant increase in the percentage of apoptotic 

cells (P=.014) which was partially mitigated in the presence of a membrane-permeant form of 2-

OG  (Figure 3E). The anaplerotic role of Gln in MM cells and the related protection by 2-OG were 

confirmed incubating RPMI 8226, OPM2, JJN3, KMS-12-BM and XG1 cells under conditions of Gln 

repletion or depletion in the absence or in the presence of 2-OG (Figure 3F). In all the HMCLs, the 

anaplerotic substrate partially rescued cell viability from the effects of Gln depletion (Figure 3F). 
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A significant dose-response inhibitory effect on HMCLs proliferation was also observed in the 

presence of ASNase (Figure 4A). Interestingly, for the five HMCLs tested the IC50 values obtained 

were about ten-fold higher for the E. coli than for the E. chrysanthemi enzyme (Figure 4A), which is 

known to have a glutaminolytic activity approximately ten-fold higher compared to the E. coli form. 

Treatment with ASNase caused a massive decrease of cell Gln, but not of intracellular leucine 

(Figure S3), and led to a marked inhibition of mTOR activity (Figure S4). 

Moreover, Erwinia ASNase effect on HMCLs viability was increased in the presence of bortezomib 

(Figure 4B). A synergistic effect was obtained for concentrations of bortezomib lower than 9.3 nM 

and of ASNase lower that 0.35 U/mL, as shown for RPMI 8226 in Figure 4C. Erwinia ASNase 

significantly reduced cell viability also in bortezomib-resistant RPMI-R5 cells without restoring 

sensitivity to bortezomib (data not shown).  

Finally, the effect on HMCL apoptosis of GLS1 inhibitors, ASNase and bortezomib was 

investigated in RPMI 8226 and JJN3 cells. In line with the effects on viability, a significant increase 

in the percentage of apoptotic cells was found in cells treated with BPTES, CB-839 (only for RPMI 

8226 cells), Erwinia ASNase (alone or in combination with bortezomib) (Figure 4D). The induction 

of apoptosis in treated cells was also confirmed by the increase of the cleaved Caspase 3 forms 

(Figure 4E). 

MM cells and HMCLs overexpressed glutamine transporters  

The dramatic effect of extracellular Gln depletion and ASNase on MM cell viability suggests that 

the transport of Gln from the extracellular compartment is essential for MM cells. Gln uptake is due 

to several transporters in human cells.23 Therefore, the gene expression profiles of some selected 

Gln transporters were evaluated in two independent PC dyscrasia datasets, both obtained either 

from proprietary or publicly available databases, including highly purified PC samples throughout 

the different MM disease phases from the pre-malignant monoclonal gammopathy up to PCL 

patients, besides healthy donors and HMCLs. 

Among the Gln transporters, three carriers known to mediate Gln influx, the Na+-independent 

transporter LAT1 and the Na+-dependent transporters SNAT1 and ASCT2, coded by SLC7A5, 

SLC38A1 and SLC1A5, respectively, showed a significantly increasing trend in expression levels 
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from normal PCs to HMCLs across the different PC dyscrasias, in both the datasets (Figures 5A 

and 5B, Tables S4 and S5). Interestingly, the expression of SNAT1 was also positively correlated 

with that of MYC (P=3.965e-12, r=.373; P=1.835e-4, r=.22, respectively). ATB0,+, another 

transporter involved in Gln transport in other cell models, coded by SLC6A14, did not present 

consistent changes in expression. SN1 and SN2 (coded by, respectively, SLC38A3 and 

SLC38A5), two sodium-dependent, lithium-tolerant systems able to mediate bi-directional fluxes of 

Gln, exhibited a different behavior. SN1 showed lower expression in SPCL and HMCL groups 

(Figures 5A and 5B, Tables S3 and S4), while SN2, assessed only in one of the datasets, did not 

show significant changes in MM compared with the other groups. 

Two other amino acid transporters, not directly responsible for Gln uptake, also showed significant 

changes in both the datasets. In particular, xCT (SLC7A11) increased from normal PCs to HMCLs. 

Conversely, y+LAT1 (SLC7A7), the low expression of which has been recently described as 

associated to favorable outcome,50 had an opposite trend (Figures 5A and 5B, Tables S3 and S4). 

MM cells mainly depend on ASCT2 for glutamine transport 

On the basis of the gene expression profiling data, we focused our attention on the transporters 

potentially involved in Gln transport in HMCLs. Preliminarily, we excluded that SN1 or SN2 played 

a significant role in Gln influx in HMCLs. Although SN2 seems more expressed than SN1 in 

HMCLs, the overall contribution of the two systems to Gln influx was at best marginal, since lithium 

did not appreciably stimulate the uptake of Gln in the absence of sodium (Figure S5). Also ATB0,+ 

did not seem to contribute to Gln uptake in HMCLs, since the expression of SLC6A14 was 

exceedingly low compared to human airway Calu-3 cells used as a positive control, and, 

consistently, the preferential substrate D-Ser did not affect significantly Gln influx in MM cells. 

(Figure S5).  

On the contrary, SNAT1, ASCT2 and LAT1 were clearly expressed in all the HMCLs tested at both 

mRNA (Figure 6A) and protein levels (Figure 6B). The contribution of these transporters to Gln 

uptake was estimated in RPMI 8226 cells assessing the effects of amino acid analogues (MeAIB, 

GPNA and BCH), which work as preferential inhibitors of Gln uptake through, respectively, SNAT1, 

ASCT2 and LAT1 (Figure 6C). Only GPNA caused a marked inhibition of Gln uptake (-60%) 
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(Figure 6C). The possibility that ASCT2 inhibition could be due to the products of GPNA hydrolysis 

glutamate and p-nitrophenol has been excluded, demonstrating that, at concentrations markedly 

larger than those expected during the assay period, the two compounds are without significant 

effects on Gln uptake (Figure S6). ASCT2 expression was also examined in lysates from CD138+ 

cells of SMM and MM patients (Figure 6D). The transporter was detected in all the samples, and a 

trend of higher transporter expression was found in R-MM (Figure 6D). ASCT2 mRNA was also 

expressed by normal PCs at similar level of CD138+ cells obtained from patients with monoclonal 

gammopathies (data not shown). 

The activity of ASCT2 is needed for MM growth 

To evaluate the effects of Gln transporters on MM cell growth, the transport inhibitors were added 

to the culture medium of MM cells at the same concentrations used for the inhibition of Gln uptake 

(Figure 7A). GPNA had the largest growth inhibitory effect, roughly corresponding to a 70%-loss of 

cell viability compared with untreated control. Also BCH produced a marked decrease in MM cell 

viability (>50%), while the SNAT1 inhibitor MeAIB produced only a minimal effect.  

To assess the effects of ASCT2 silencing on MM cell viability, a lentiviral vector was employed to 

transfect RPMI 8226 and JJN3 cells with an anti-SLC1A5 shRNA. A marked repression (>80%) of 

the transporter expression was obtained at both mRNA and protein level in silenced cells 

compared with cells transfected with the scramble control (Figures 7B and 7C). Gln influx was 

substantially lower in ASCT2-silenced than in scramble-transfected cells (Figure 7D). Moreover, 

the portion of Gln transport inhibited by GPNA was markedly smaller in ASCT2-silenced than in 

control cells, indicating that the different transport rates were effectively due to ASCT2 silencing. 

Compared with the scramble-transfected control, both ASCT2-silenced (ΔASCT2) RPMI 8226 and 

JJN3 cells exhibited a lower growth (two-tailed t test, RPMI 8226 ΔASCT2 versus RPMI 8226 

Scramble P=3.9x10-9; JJN3 ΔASCT2 versus JJN3 Scramble P=.0002) (Figure 7E). Either by flow 

cytometry (Apo 2.7 staining) and western blotting (Caspase 3 activation), we did not obtain clear 

cut signs of cell death/apoptosis induced by ASCT2 silencing (data not shown). Although statistical 

significance was not reached, ASCT2-silenced cells exhibited a trend to consume less Gln than 

control cells (Figure S7). 
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Stable ASCT2 silencing inhibited MM growth in vivo 

Finally, to confirm in vivo our in vitro evidence, we investigated whether the silencing of ASCT2 

influences MM cell tumor growth in a murine xenograft model. To this purpose, JJN3 cells, 

transfected with the anti-ASCT2 shRNA (ΔASCT2) or with the scramble control (Scramble), were 

injected subcutaneously into SCID-NOD animals. As shown in Figure 7F, mice inoculated with the 

ASCT2-silenced cells developed significantly smaller tumors than animals injected with the 

scramble-transfected cells. A significant reduction of the tumor size was confirmed after 

plasmacytoma explant and hematoxylin-eosin staining, as shown for two representative mice 

(Figure 7G). At the sacrifice, the expression of ASCT2 was markedly lower in ΔASCT2 than in 

scramble-transfected tumors, as confirmed by western blot (Figure 7H).  
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DISCUSSION 

Hyperammonemia has been reported as a possible feature of MM patients.7-12 Single cases have 

been described in the literature and retrospective screening of the database of MM patients. Otsuki 

et al. found that 60% of 20 patients died for MM had high serum NH4
+ levels, although data on liver 

function and the presence of encephalopathy were not reported.4 On the other hand, Matsuzaki et 

al. reported that 7% of 85 patients had hyperammonemia associated with neurological signs.7 

Similarly, the Arkansas group found 3.8% of 209 patients with hyperammonemia and 

encephalopathy, without liver dysfunction.10 In our prospective cohort of MM patients, we show that 

about 38% of 21 patients analyzed, without liver dysfunction, had high peripheral NH4
+ levels, but 

only 14% with signs of encephalopathy. Despite of the differences observed in the prevalence of 

hyperammonemia, attributable to the different series of patients analyzed or, as recently reported, 

by the high technical variability in testing serum NH4
+ levels,51 overall, these observations support 

the hypothesis that MM cells may produce NH4
+. In fact, while excess NH4

+ production by HMCLs 

has been demonstrated in vitro,5,4 the mechanisms involved, and the possible relationship with the 

dependence of their growth on Gln,3 have not been investigated. 

In this study, firstly, we show that not only HMCLs but also CD138+ PCs from MM patients produce 

NH4
+ from Gln. Indeed, analyzing BM plasma NH4

+ levels in different cohorts of patients with 

monoclonal gammopathies, we show that MM patients had significant higher levels than those with 

SMM and MGUS, without a significant relationship with the number of BM PCs. Higher NH4
+ was 

associated with higher Glu and lower Gln levels, which indicates that neoplastic PCs exert active 

glutaminolysis in vivo. Accordingly, expression of GLS1 is consistently present in HMCLs and 

detected in primary CD138+ cells from almost all MM patients. Secondly, we demonstrate that Gln 

represents an absolute nutritional requirement for neoplastic PCs, and that these cells, lacking a 

detectable expression of GS, exclusively rely on the uptake of extracellular Gln to satisfy their 

needing for the amino acid. This is consistent with high sensitivity of HMCLs to the depletion of 

extracellular Gln and to the silencing/inhibition of the Gln transporter ASCT2. 
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Although the sensitivity shown by each HMCL towards BPTES and CB389 is different, glutaminase 

inhibitors also hinder HMCL cell growth and induced apoptosis, suggesting that glutaminolysis has 

an important role in MM cell metabolism. Through glutaminolysis, Gln replenishes the intracellular 

pool of Glu and, through transaminases and Glu dehydrogenase, of the Krebs cycle intermediate 

2-OG, thus playing an anaplerotic role. As shown in several human cancer models,18,23,52,53 Gln-

dependent anaplerosis is one of the mechanisms likely underlying Gln addiction, which implies the 

needing for large amounts of the amino acid. The anaplerotic role of Gln in MM cells, and the Gln 

addiction of this cancer model, is confirmed by the fall in 2-OG levels observed in Gln-depleted 

cells and by the rescue of Gln-depleted myeloma cells observed upon medium supplementation 

with the membrane-permeant analogue dimethyl-2-OG. However, viability rescue from 2-OG is 

only partial, indicating that, besides anaplerosis, Gln plays other pro-survival roles in MM cells. 

Indeed, while 2-OG easily supplies the intracellular Glu pool, the conversion of Glu to Gln is still 

prevented in MM cells by the absence of GS. Consequently, all the pathways that exhibit an 

absolute requirement for Gln will be severely hampered if a GS-negative MM cell is incubated 

under Gln-free conditions. Thus, human MM cells present a thus far unknown association between 

signs of Gln addiction and lack of expression of GS, two features that synergistically increase the 

dependence of MM cells upon extracellular Gln. 

Consistently, HMCLs are more sensitive to E. chrysanthemi ASNase than to the E. coli enzyme. 

While the two enzymes have comparable asparaginolytic activities, they differ as far as Gln 

hydrolysis is concerned, with the Erwinia enzyme endowed with a ten-fold higher activity. 

Interestingly, the five HMCLs tested exhibited comparable IC50 values for Erwinia ASNase, 

although they express Asparagine Synthetase at different levels. Moreover, ASNase caused a 

massive depletion of intracellular Gln but not of leucine (Figure S3), while markedly inhibited 

mTOR activity (Figure S4). However, rapamycin had much smaller effects on cell viability than 

ASNase (Figure S4). Collectively, these data suggest that the hydrolysis of extracellular Gln, 

followed by the depletion of the intracellular Gln pool, is the prevalent mechanism of the anti-

myeloma activity exhibited by ASNase.  
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These considerations highlight the critical importance that Gln transport assumes for MM cells, as 

suggested by the changes in gene expression across the progression of human PC dyscrasias. 

Many transporters are potentially involved in Gln transport.16,54 However, the contribution of ATB0,+ 

(SLC6A14), SN1 (SLC38A3) and SN2 (SLC38A5), known to interact with Gln in other cell 

models,16,54 did not appear important (Figure S5). Three other transporters, LAT1, SNAT1 and 

ASCT2, showed increased expression during MM progression, suggesting that the affirmation of 

the neoplastic clone may require a growing supply of the amino acid through their operation. The 

relative contribution of each transporter to the uptake depends on several factors, the most 

important of which is the affinity towards Gln.16 For this reason, the discrimination of transporter 

contribution to Gln uptake in MM cells has been performed at a concentration of Gln comparable to 

that present in human plasma. Under these conditions, ASCT2, estimated from the portion of 

uptake inhibited by GPNA, accounts for most of Gln influx, with SNAT1 and LAT1 restricted to 

minor roles. Consistently, GPNA suppressed MM cell viability. However, growth inhibition by the 

LAT1 inhibitor BCH was much larger than its effect on Gln uptake. This apparent anomaly may be 

explained considering that LAT1 also mediates the influx of many essential amino acids. 

After showing that also ASCT2 silencing in vitro had significant inhibitory effects on MM cell growth 

in two different HMCLs, we confirmed these results with a xenograft model, although tumor growth 

inhibition was only partial. This result, comparable to data obtained with similar approaches in 

other human cancer models,15,23,27 suggests that, when faced with scarce Gln fluxes from the 

extracellular compartment, MM cells can adopt escaping strategies based on the operation of other 

transporters. A good candidate could be the SNAT1 transporter, which, although found 

overexpressed in the genome-wide expression analysis during MM progression and nicely 

expressed in HMCLs, seems to account for a very minor portion of Gln uptake under control (Gln 

repleted) conditions. SLC7A11 gene has been also found overexpressed in MM cells. This gene 

encodes for xCT, an important transporter needed for exchanging intracellular Glu and 

extracellular cystine, which is involved in the cell response to oxidative stress.55 

Finally, our data indicate that blocking Gln uptake could be, possibly in association with other 

approaches, a suitable target to inhibit MM cell growth as also reported for other haematological 
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malignancies.23,24,27 In line with this hypothesis, we show that bortezomib increased the cytotoxic 

effect of E. chrysanthemi ASNase as previously reported for acute leukemia cells.56  

Others recently showed that CB-839 blocks MM growth and synergized with pomalidomide in 

preclinical model,57 and a phase I trial with CB-839 in patients with R-MM is currently under 

investigation.58 Moreover, it has been recently reported that Gln withdrawal enhanced MM cell 

sensitivity to BH3 mimetics venetoclax (ABT-199), a new anti-myeloma drug currently under 

investigation59, and that ritonavir increases the Gln reliance of MM cells.60 Overall, these data and 

our results suggest that Gln addiction and uptake could be a potential new therapeutic strategy in 

MM patients. 
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LEGEND OF FIGURES 

Figure 1: MM cells produce ammonium in excess in the presence of Gln.  

RPMI 8226, OPM2, JJN3, KMS-12-BM, XG1, and 697 cells were seeded at 5x105 cells/mL in 

RPMI-1640 with 10% FBS in the presence (w) or absence (w/o) of Gln (4 mM) and cultured for 16 

h. CM were collected and immediately analyzed. The CM of primary BM CD138+ and CD138- 

fractions of 10 MM patients were also obtained, following the same procedure. Then NH4
+ levels 

were evaluated. (A) Bar graph represents the mean NH4
+ plus Standard Deviation (SD) secreted 

by cell lines in two independent experiments (two-tailed unpaired t test, *P<.05; **P<.01). (B) Plots 

represent the single values of NH4
+ secreted by HMCLs, BM CD138+ MM cells, and BM CD138- 

cells. (C) Plots represent the single values of BM plasma NH4
+ of patients affected by MGUS and 

SMM (n=13) and by active MM (n=17). (D) Gln and (E) glutamate (Glu) in BM plasma of patients 

with indolent monoclonal gammopathies (MGUS and SMM) (n=10) or active MM (n=13), evaluated 

by HPLC. For (B-E), lines represent median values for Mann-Whitney test. 

 

Figure 2: MM cells exhibit high expression of GLS1 but not GS. 

(A) GLS1, GAC, KGA, GLUL, and ASNS expression was analyzed by real time-PCR in HMCLs 

and 697 cells. Gene expression was normalized to the expression of RPL-15. GAC/KGA mRNA 

was also reported. Means plus SD of three experiments with two determinations each are shown. 

(B) GLS1, GAC, and KGA expression in primary CD138+ cells, purified from 3 MGUS, 5 SMM, 11 

ND-MM, and 10 R-MM patients, was evaluated with real time-PCR. Lines represent median 

values. (C) Western blot of GLS1, GS, and ASNS expression by HMCLs and 697 cells. β -tubulin 

was used for loading control. (D) GS expression in HMCLs and 697 cells incubated for 19 h in the 

presence of 4 mM Gln (+) or in the absence of the amino acid (-). (E) GLS1 and GS expression 

was evaluated by western blot in CD138+ cells purified from 4 SMM, 7 ND-MM and 4 R-MM 

patients. 697 lysate was used as positive control. GAPDH was used for loading control. 
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Figure 3: MM cells are sensitive to Gln depletion. 

(A) HMCLs were treated with increasing concentrations of BPTES or vehicle (-). After 48 h cell 

viability was assessed and data were expressed as % of the value obtained with cells treated with 

the vehicle (B) HMCLs were treated with increasing concentrations of CB-839 or vehicle (-). After 

48 h cell viability was assessed, and data were expressed as % of the value obtained with cells 

treated with the vehicle (C) HMCLs were incubated with decreasing concentrations of Gln in the 

absence or in the presence of the GS inhibitor MSO (1 mM). After 48 h cell viability was assessed, 

and data were expressed as % of the cell growth observed at 4 mM Gln. (D) Cell contents of Gln, 

Glu and oxoglutarate (2-OG) were measured by LC-MS/MS in RPMI 8226 incubated for 19 h in the 

presence (4 mM) or in the absence of Gln. Data were expressed as nmol/mg protein. (E) RPMI 

8226 were incubated in the presence (4 mM) or in the absence of Gln with or without dimethyl-2-

OG (8 mM). After 24 h, the expression of the apoptosis marker Apo 2.7 was checked by flow 

cytometry. (F) MM cells were incubated in the presence (4 mM) or in the absence of Gln with or 

without dimethyl-2-OG (8 mM). After 48 h cell viability was assessed and data were expressed as 

% of control (Gln present, 2-OG absent). For (A-F), data are means ± SD of three experiments with 

three determinations each.*P<.05, ***P<.001 versus control. 

 

Figure 4: MM cells are sensitive to E. chrysanthemi ASNase treatment.  

(A) HMCLs were treated with increasing doses of L-Asparaginase (ASNase) from E. coli or E. 

chrysanthemi (from 0.0001 to 1 U/mL). After 48 h, cell viability was assessed, and data were 

expressed as % of the value obtained with untreated cells. For each HMCL, IC50 for E. coli ASNase 

and for the E. chrysanthemi enzyme are shown. (B) HMCLs were treated with increasing doses of 

bortezomib (from 1.77 to 10 nM), or vehicle in the presence or in the absence of E. chrysanthemi 

ASNase (0.1 U/mL). After 48 h, cell viability was assessed, and data were expressed as % of the 

value obtained with the cells treated with vehicle. For (A-B), data are means ± SD of three 

experiments with three determinations each. (C) RPMI 8226 were treated with increasing doses of 

bortezomib (from 1 to 16 nM), or increasing doses of E. chrysanthemi ASNase (from 0.0625 to 1 

U/mL), or the combination of the two drugs (16:1), or vehicle. After 48 h, cell viability was 
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assessed, and the data were analyzed as % of the value obtained with the cells treated with 

vehicle. Combination index analysis was then performed using CompuSyn software. Isobologram 

for ED75 represents means ± SEM of three experiments with five determinations each. (D, E) RPMI 

8226 and JJN3 cells were treated for 24 h with BPTES (40 µM), or CB-839 (1 µM), or ASNase 

from E. coli (1 U/ml), or ASNase from E. chrysanthemi (0.1 U/ml), or bortezomib (10 nM), or 

ASNase from E. chrysanthemi (0.1 U/ml) and bortezomib (10 nM), or vehicles. For (D), cell 

expression of Apo 2.7 was then evaluated by flow cytometry. The graph shows the mean % plus 

SD (n = 3) of Apo 2.7 positive cells for each condition after the subtraction of the value obtained in 

control. For (E), cells expression of cleaved forms of Caspases 3 in HMCLs, evaluated by western 

blot. β-Actin was used for loading control. For (A-B, D) *P<.05, ***P<.001 versus control. 

 

Figure 5: Gene expression profiling of the main glutamine transporters by CD138+ cells. 

(A) Box plot distribution of the expression levels of SLC7A5 (LAT1), SLC1A5 (ASCT2), SLC38A1 

(SNAT1), SLC6A14 (ATB0,+) SLC7A11 (xCT), SLC38A3 (SN1) and SLC7A7 (y+LAT1) genes in a 

323-sample dataset, including 18 healthy donors (N), 28 MGUS, 19 SMM, 200 ND-MM, 26 R-MM, 

9 PCL patients, together with 23 HMCLs. This 323-sample dataset was generated using 

GSE13591, GSE6205, GSE6477 and GSE6691 dataset, profiled on GeneChip® Human Genome 

U133A Arrays. (B) Box plot distribution of the expression levels of the same Gln transporter genes 

shown in panel (A) plus SLC38A5 (SN2) in a 283-sample dataset, comprising 9 N, 20 MGUS, 33 

SMM and 170 ND-MM, 24 PPCL and 9 SPCL cases, and also including 18 HMCLs. This 283-

sample dataset was obtained using GSE66293 and GSE47552 dataset, analyzed on GeneChip® 

Human Gene 1.0 ST array. For (A-B), the significance of Kruskal-Wallis and Jonckheere-Terpstra 

tests was indicated. 

 

Figure 6: ASCT2 is the major glutamine transporter in MM cells. 

(A) SLC38A1, SLC1A5 and SLC7A5 gene expression in MM cells, incubated in standard growth 

medium ([Gln] = 4 mM), were analyzed through real time-PCR. Transporter expression in the 

human hepatocellular carcinoma cell line HepG2 was used as a positive control. Gene expression 
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was normalized to the expression of RPL-15. Means ± SD of three experiments, with two 

determinations each, are shown. (B) SNAT1, ASCT2 and LAT1 expression in HMCLs, incubated in 

standard growth medium, was analyzed by western blot. HepG2 cells were used as a positive 

control. β-tubulin was used for loading control. (C) 1-Min uptake of L-[3,4-3H(N)] Gln (0.6 mM, 20 

μCi/mL, Amersham) by RPMI 8226 was performed in serum-free culture medium in the absence (-) 

or in the presence of the transport inhibitors α-(methylamino)isobutyric acid (MeAIB, 20 mM), L-γ-

glutamyl-p-nitroanilide (GPNA, 3 mM), or 2-amino-2-norbornanecarboxylic acid (BCH, 20 mM). 

Means ± SD of three experiments, with five independent determinations each, are shown. 

***P<.001 versus control. (D) ASCT2 expression was investigated in lysates of the CD138+ 

population isolated from monoclonal gammopathies patients. The same membrane shown in 

Figure 2E was blotted with anti-ASCT2 antibody. 

 

Figure 7: ASCT2 silencing by lentiviral vector impairs MM cell growth in vitro and in vivo. 

(A) RPMI 8226 cells were incubated in growth medium ([Gln] = 0.6 mM) in the absence (control) or 

in the presence of MeAIB (20 mM), GPNA (3 mM), or BCH (20 mM). After 72 h, cell viability was 

assessed, and results were expressed as % of control. Data represent means ± SD of three 

experiments with three determinations each. **P<.01, ***P<.001 versus control as assessed with a 

two-tail Student’s t test for unpaired data. (B-C) ASCT2 expression in scramble and ΔASCT2 RPMI 

8226 (B) and JJN3 cells (C). Gene expression was evaluated with qRT-PCR and normalized to the 

expression of RPL-15. ASCT2 protein expression was evaluated with western blot and β-tubulin 

was used for loading control. (D) 1-Min uptake of Gln (0.6 mM) was performed in scramble and 

ΔASCT2 RPMI 8226 cells in culture medium in the absence (-) or in the presence of GPNA (3 

mM). ***P<.001 versus control. $$$P<.001 versus scramble, as assessed with a two-tail Student’s 

t test for unpaired data. (E) Scramble and ΔASCT2 RPMI 8226 and JJN3 cells, both at 5x105 

cells/mL, were grown for 72 h in medium at 0.6 mM Gln. Cell growth was monitored at the 

indicated times with the resazurin assay. Data represent means ± SD of two experiments with 

three determinations each. SD are shown when greater than the size of the point. (F-G-H) Two 

groups of 8 SCID/NOD animals each were injected subcutaneously with 5x106 JJN3 cells 
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transfected with a lentiviral vector containing shRNA against ASCT2 (ΔASCT2) or with the control 

vector (Scramble). Twenty-one days after cell inoculation, mice were killed, and tumors were 

removed and measured as described in the Patients, Materials and Methods section. (F) The box 

plot graph represents the median volume of the masses. (P calculated by Mann-Whitney test). (G) 

Representative picture of tumors obtained from mice injected with JJN3 Scramble and ΔASCT2 

cells stained with hematoxylin-eosin (Original magnification 1x). (H) ASCT2 expression was 

assessed in plasmacytomas removed after animal sacrifice. β-tubulin was used for loading control. 
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