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Abstract

Background: ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as
transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is
currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the
genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown
by ChIP-seq for different proteins, as well as by distinct regions in a single experiment.

Results: We hypothesize that statistically significant differences in peak shape might have a functional role
and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ
multivariate clustering techniques to divide peaks into groups according to both their complexity and the
intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and
bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets,
including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of
peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell
line and in megakaryocytes.

Conclusions: Our study demonstrates that ChIP-seq profiles include information regarding the binding of
other proteins beside the one used for precipitation. In particular, peak shape provides new insights into
cooperative transcriptional regulation and is correlated to gene expression.
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Background
Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) is a widely used technique essential to study
transcription factor binding and chromatin modifications.
This technique has been largely used to characterize many
biological processes, enabling the creation of valuable
public resources of epigenomic data (i.e. ENCODE, Road-
map Epigenomics). Due to the importance of interpreting
these datasets, a large number of algorithms for down-
stream processing of ChIP-seq experiments have been de-
veloped [1, 2]. All these methods are usually based on the
evaluation of signal intensities to detect local enrichment
of uniquely aligned reads on the reference genome (we
refer to them as ‘ChIP-seq peaks’). Peak shape shows high

variability among the ChIP-seq experiments that in-
vestigate different proteins as well as among different
genomic regions in a single ChIP-seq. This variability
is not only related to peak intensity [3]. Indeed, the
shapes of a transcription factor (TF) usually appear con-
centrated narrowly, while peaks that characterize histone
marks can sometimes spread over a large region [4, 5].
Recently, peak shape properties different from signal

intensity have been used in peak calling [6–8], peak
ranking [9] and ChIP-seq differential analysis [10]. While
the developed methods show that additional features of
peak shape can improve peak detection, here we want to
understand whether peak shape includes additional
biological properties that have not been explored yet.
Our hypothesis is that peak shape is influenced by the
organization and interactions of the proteins bound to
the DNA, hence we want to understand if the detection
of differences in peak shape in a single ChIP-seq
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experiment can shed light on the binding of coopera-
tive transcription factors. We are also interested in
assessing whether the organization and interactions of
these transcription factors is correlated to the gen-
omic context and to gene expression. In order to
address these questions, we propose an innovative
analysis pipeline that distinguishes different shapes in
a set of ChIP-seq peaks and relates the obtained pro-
files to several independent genomic datasets (other
ChIP-seq experiments for different transcription fac-
tors and for histone marks, DNase-seq and RNA-Seq
data). In our method, we use cluster analysis to
evaluate whether the peaks of a ChIP-seq can be di-
vided into groups, according to both the complexity
and the intensity of the coverage function that defines
them. To achieve this goal we select five shape indi-
ces, embedding the problem into the framework of
multivariate statistical analysis. We also employ a wide
range of statistical techniques to correlate the shape with
a functional role. The software SIC-ChIP (Shape Index
Clustering for ChIP-seq peaks), which computes the shape
indices and clusters the peaks, is available online [11] as a
command line R script.
To clarify the meaning of peak shape, we decide to

study the erythroid transcription factor GATA-1 (GATA
binding protein 1) in K562 cell line and in megakaryo-
cytes. In this particular setting, we show that peak
shapes contain information that can be used to shed
light on cooperative binding and to identify up-regulated
genes. Moreover, we apply the proposed methodology to
a set of ChIP-seq experiments in K562 and we discover
that peak shape can vary depending on the different
binding proteins under investigation. Here we mainly
concentrate our attention on the study of peak shape of
transcription factors, but the same ideas can be general-
ized to other types of protein-DNA interactions.

Results and discussion
Peak shape varies among different experiments
We observe that peak shape is quite reproducible as
technical and biological replicates obtained with the
same library preparation protocols (see Additional file 1:
Table S1 and Additional file 2) give rise to the same sig-
nal in the same genomic region (Fig. 1a). This is true
even if ChIP-seq efficiencies for independent experi-
ments can vary [12] as in Fig. 1a. In addition, if two
antibodies are used to perform chromatin immunopre-
cipitation for the same transcription factor, a subset of
peaks might have different peak shapes (Fig. 1b). The
antibodies may recognize different epitopes of the same
transcription factor and this fact can lead to differences
in shapes. Moreover, transcription factor interactions
can be cell-type specific, and we observe that ChIP-seq
peaks obtained using the same antibody in different cell
types can show a subset of diverse shapes (Fig. 1c).
These observations suggest that the analysis of peak
shape may reveal insights regarding cooperation and as-
sociation of transcription factors.
It is important to point out that different library

preparation protocols might affect peak shape. While
the read length of a ChIP-seq experiment does not
have any effect on peak shape, fragment length influ-
ences peak shape as differences in fragment lengths
result in different signal resolutions (larger fragments
generate smoother, less resolved and bigger peak).
However, the methodology we propose is not affected
by differences in library preparation and sequencing,
since it considers a single ChIP-Seq at a time and
clusters peaks belonging to the same experiment.

Overview of the analysis pipeline proposed
The analysis pipeline that we propose is summarized in
Fig. 2. First, we perform a pre-processing step to produce

Fig. 1 Peaks shapes. a Random peaks in two ChIP-seq replicates - in magenta and cyan, respectively - for the transcription factor GATA-1
in K562 cells. Despite the different efficiency of the two replicates, peak shape is highly maintained. b Peaks in two ChIP-seq experiments
in K562 cells, performed with two different antibodies for the same transcription factor GATA-1. In this situation some peaks can show
different shapes. c Peaks in two ChIP-seq experiments for the transcription factor GATA1 in K562 and peripheral blood-derived erythroblasts - in purple
and orange, respectively. Also in this case peak shape can vary. Some relevant parameters of the ChIP-Seq plotted here can be found in Additional file
1: Table S1 and in Additional file 2
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coverage function and to identify enriched peaks. In this
first step, we also estimate the average size of the DNA
fragments obtained during sonication. We then use this
estimate to extend each tag in order to get the original
fragments and to compute the coverage function, count-
ing the number of fragments that fall over each nucleo-
tide. The correct estimation of the fragment length is
essential since, as we have previously observed, peak shape
can vary based on this estimation. Next, we calculate five
indices of shape: the maximum height, the area, the full
width at half maximum, the number of local peaks, and
the shape index M divided by the maximum height (Fig. 3).
Afterwards, we cluster peaks in the space of these result-
ing shape indices. We name this central part of our
method Shape Index Clustering [11]. Finally, the obtained
clusters are validated and characterized using four steps:
1) we perform Gene Ontology analysis and motif analysis;
2) we investigate the genomic locations of the peaks; 3) we
study the overlap of the peaks in each cluster with peaks
of other available transcription factors and histone modifi-
cations, as well as with open chromatin regions; 4) we
evaluate gene expression changes in association with the
shape clustering. A detailed description of each step in the
pipeline proposed is given in Methods.

GATA-1 in K562 cells
We apply the proposed analysis pipeline to ChIP-seqs
for the erythroid transcription factor GATA-1 in human

erythroleukemic K562 cells. The purpose of this study is
to assess whether GATA-1 peak shape is associated with
specific regulatory complexes and functions. GATA-1 is
a transcription factor essential for erythroid and mega-
karyocytic development, and mutations in GATA-1 are
associated with a form of leukemia found in newborns
affected by Down syndrome. We select K562 cells
because GATA-1 binding has been extensively character-
ized in this cell line [13–15] and also because K562 cell
line has been widely described by several Next Gener-
ation Sequencing experiments from the Encyclopedia of
DNA Elements (ENCODE) Consortium [16, 17] and
from many independent investigators.

Two ChIP-seq replicates for GATA-1 in K562 human cells
The experiments under consideration consist of two
ChIP-seq replicates for GATA-1 from ENCODE [16]
(GEO Accession number GSM1003608, antibody used:
sc-266, Santa Cruz Biotech). The signal from a nor-
mal Mouse IgG ChIP-seq (GEO Accession number
GSM935631) is used as control for peak calling. Peaks
are called using MACS [18]. While the number of reads
after filtering is comparable and the estimated fragment
length is exactly the same in the two replicates, the num-
ber of identified peaks is different: we identify 13159 peaks
in Replicate 1 and 5509 peaks in Replicate 2, with 5334
overlapping peaks (Additional file 1: Table S1). Almost all
the regions selected in Replicate 2 are enriched in

Fig. 2 A schematic overview of the analysis pipeline proposed. After a ChIP-seq pre-processing, that involves the calculation of the cover-
age function for each peak found by the peak caller, multivariate clustering on five indices of intensity and shape is employed to find
groups of similar peaks. Afterwards, the characterization of these clusters is studied by using GO analysis and motif analysis. Moreover,
clusters are related with the presence of other proteins and with gene expression
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Replicate 1, meaning that the second replicate is much
less efficient than the first one [12]. In Fig. 1a, we show
the coverage function of two random overlapping peaks -
in cyan and magenta for the two replicates, respectively.
Despite the different degree of efficiency of the two repli-
cates, pairs of peaks exhibit the same shape. Notably, the
whole coverage function has a similar shape in the two
replicates, carrying a correlation of ~0.77 on the entire
genome and a correlation of 0.95 on the common peaks
(Additional file 1: Figure S1).

Clustering of shape indices leads to three clusters
We use the statistical analysis described in Methods
to assess whether there are groups of peaks inside a
single ChIP-seq that can be separated according to
the shape, as summarized by the five selected indices.
Here, we present the results obtained by running the
analysis on Replicate 1. Results concerning Replicate 2
are highly similar, despite the remarkable differences of
the two ChIP-seqs, and can be found in Additional file 1:
Figures S4-S6. Notably, if we merge the reads of the two
replicates and then we perform the analysis, we obtain
highly similar results too. From the scatterplot of the
shape indices (Additional file 1: Figure S2b), from princi-
pal component analysis (Additional file 1: Figure S3) and
independent component analysis (Fig. 4f-g), it is clear that
the five indices are not mutually independent. Actually,
the two indices related to the intensity of the signal,

namely the maximum height and the area are highly cor-
related (correlation coefficient of 0.92); the same applies
to the three indices associated with peak complexity, i.e.
the full width at half maximum, the number of local peaks
and the shape index M with correlation coefficients of
0.68, 0.74 and 0.84, respectively. However, we choose not
to reduce the dimensionality of the problem in order to
keep all the shape variability that we can catch with the
selected indices.
Running the k-mean algorithm on the standardized in-

dices for several numbers of clusters k, we obtain the
total within-clusters sum of squares plot of Additional
file 1: Figure S2a: k = 3 seems a sensible trade-off, since
the choice of a higher k is not paid off by a significant
gain in the total within-clusters sum of squares. This
choice leads to identify a big cluster, that comprises
~75 % of peaks (Cluster 1), and two smaller clusters in-
cluding ~15 % (Cluster 2) and ~10 % (Cluster 3) of the
data, respectively. According to the scatterplot of
Additional file 1: Figure S2b, wherein colors indicate clus-
ter membership, and to the boxplots of Fig. 4a-e, that
display the distribution of the indices in the three clus-
ters, Cluster 1 and Cluster 2 differ in the intensity of
the peaks they contains, while Cluster 3 includes the
most complex peaks. Similarly, independent component
analysis (Fig. 4f-g) shows that the three clusters are well
divided in the plane defined by the first two compo-
nents. In particular, the component that corresponds to

a

b

Fig. 3 Shape indices. a Schema of the first four shape indices. b A peak and its corresponding tree, constructed as suggested in [35] and in [6];
the highlighted edges represent a maximal matching for the tree, that defines the index M
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peak intensity (component 2) separates Cluster 2 from
the others, while the component related to the com-
plexity of the peaks (component 1) distinguishes Clus-
ter 3. In order to better understand the shapes selected
through clustering, Fig. 5 displays the pointwise box-
plots of the peak coverage function in the different
clusters (top panels) and the plot of a random sample
of 200 peaks (bottom panels, for visualization reasons

we do not draw all the peaks simultaneously). Cluster 1
is mainly composed of unimodal and not very high
peaks, while Cluster 2 comprises high, bell-shaped peaks;
multimodal and wider peaks belong to Cluster 3. Interest-
ingly, peaks of Cluster 3 are not those selected with low
score (less enriched peaks) by MACS: if we further reduce
the threshold in peak detection, we keep on picking a con-
siderable subset of these peaks. Hence, the groups of peaks

Fig. 4 Distribution of shape indices in the three clusters. Results of k-mean algorithm with Euclidean distance on the standardized shape indices, in
Replicate 1 for K562 cells. a-e Boxplots of shape indices in the three clusters. f The first two components obtained with independent component
analysis, in term of the initial shape indices. g Scatterplot of the data in the plane defined by the first two independent components, with each
point representing a peak and colored according to the cluster it belongs to
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obtained by our clustering of shape indices cannot be de-
duced by MACS output.
The comparison of the resulting classification for the

two replicates, done on the common peaks, supports the
robustness of the considered method. Indeed, nearly
90 % of peak pairs fall in the correspondent cluster of
the two replicates. Moreover, only 18 pairs are misclassi-
fied between the two extreme shapes, namely between
Cluster 2 and Cluster 3. In Additional file 1: Figure S7,
we show the correspondences between cluster member-
ships of peaks in the two replicates. This cross-replicate
robustness analysis and the relationship between the two
replicates indicate that it is sufficient to consider the most
efficient replicate for the evaluation and characterization
of the clusters. Thus, in the following analyses, we show
only results concerning Replicate 1.

Only Cluster 2 is directly associated with the typical
biological processes of GATA-1
We use the genomic regions enrichment of annotations
tool (GREAT) to perform Gene Ontology (GO) analysis
of the three clusters. GO analysis reveals that the terms

related to the typical biological processes of GATA-1
(such as erythrocyte differentiation, erythrocyte homeo-
stasis and myeloid cell differentiation) are enriched
exclusively in Cluster 2 (Additional file 1: Table S2; see
Additional file 1: Table S3 for the entire list of signifi-
cantly enriched GO Biological Process terms in the dif-
ferent groups, and Additional file 3 for the complete
list of terms). Considering the complete list of terms
given by GREAT, it is evident that Cluster 2 is made up
of few genes and many of these genes are key
hematopoietic transcription factors: GATA1, FOG, and
TAL1. On the other hand, Cluster 1 also contains genes
that are typically regulated by GATA-1 (i.e. GATA1,
GATA-2, FOG, and RUNX1), but contains also other
genes associated with secondary functions of GATA-1.
Indeed we can identify many genes (e.g. BAX, BAD,
CASP10, BCL10, MADD, LTA, BMF) that are related
to apoptosis. Interestingly, these genes are nearly absent
in Cluster 2 and present at a lower extent in Cluster 3
(e.g. BAX, CASP9, BCL2L1). GATA-1 is known to in-
hibit apoptosis while promoting differentiation in
erythroid and megakaryocytic cells [19, 20].

a b c

d e f

Fig. 5 The three clusters obtained on shape indices. Results of k-mean algorithm with Euclidean distance on the standardized shape indices, in
Replicate 1 for K562 cells. a-c Pointwise boxplots of the coverage function in the three clusters. For each abscissa, black indicates the median
value, dark colors highlight the central 50 % of the distribution, while light colors correspond to the boxplot whiskers. d-f A random sample
of 200 peaks (for visualization reason not all peaks are plotted), with colors highlighting the cluster membership. In both images, peaks are
registered using as landmark the location of their maximum height
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Peaks of Cluster 3 contain less GATA-1 motifs
GATA-1 has been shown to recognize the consensus se-
quence [AT]GATAA [21, 22], so we might anticipate to
find this binding motif under the vast majority of peaks,
whatever cluster they belong to. This expectation is only
partly fulfilled. Although GATA-1 motif is found in all
cases, the significance of the enrichment is different in
the three clusters (see Table 1 and Additional file 1:
Table S4). Surprisingly, E-values obtained with Cluster 1
and 2 are comparable to the global one. On the contrary,
GATA-1 motif is less present in the peaks of Cluster 3.
Only 79 % of regions belonging to Cluster 3 contain the
consensus sequence [AT]GATAA, while the motif is
found in almost all peaks of Cluster 2 and in 91 % of
Cluster 1 peaks (see Table 1). Furthermore, peaks in
Cluster 2 tend to be associated with multiple GATA-1
motifs (see Fig. 6a). Since other members of the GATA
family zinc finger proteins, namely GATA-2 and GATA-3,
can bind with high affinity the same motif of GATA-1
[23], the presence of more than one motif under a peak
can indicate both a multiple GATA-1 binding and the
simultaneous presence of several transcription factors of
the GATA family. In Fig. 6b, we show the distribution of
motif distance from the peak maximum. In addition of be-
ing less associated with GATA-1 motif, Cluster 3 regions
exhibit a higher distance of the found motifs from peak
maxima: when the motif is present, it is usually not cen-
tered near the maximum.
Apart from GATA-1 consensus sequence, many other

motifs are enriched in the three clusters (see Additional
file 1: Table S4). Interestingly, these additional motifs are
peculiar to the different clusters, suggesting distinctive
types of gene regulation. All the three clusters are
enriched for Ets motifs, including PU.1, GABPA, and

FLI1 motifs, in accordance with what is shown by previ-
ous data on GATA-1 [24, 25]. Cluster 1 and 2, in con-
trast to Cluster 3, are enriched for TAL-1 and KLF1
motifs. Interestingly, TAL1 motif is usually enriched at
GATA-1 activated genes [26]. In addition, Cluster 1 is
also enriched by motifs corresponding to FOXO3, SOX7
and SRF and TEAD1, genes that are involved in regula-
tion of apoptosis, in accordance with the functional en-
richment of genes present in this cluster.

Peaks of Cluster 3 frequently lie in promoter regions
Studying the association of GATA-1 peaks with known
genes, we discover that about 55 % of peaks (7271 regions)
are assigned to at least one gene and this percentage is
similar in the three clusters (54 % in Cluster 1, 57 % in
Cluster 2 and 59 % in Cluster 3). The clusters behave in
the same way even considering the proportion of peaks
associated to non-coding genes, as it is the same in all
clusters (around 2 %). Interestingly, when we examine
more deeply the genomic locations of the peaks, Cluster 3
stands out from the others because of its significantly
higher association with promoters (~30 % of Cluster 3
compared to ~15 % of Cluster 1 and 2), defined as the re-
gions within 5 kb upstream and downstream transcription
start sites (Fig. 7). Testing the hypothesis that the propor-
tion of peaks from Cluster 3 located in promoters is
greater than the same proportion for peaks from Cluster 1
gives p-value = 0; we get the same p-value = 0 also consid-
ering Cluster 2, hence the association of Cluster 3 with
promoter regions is statistically significant. Less and more
restrictive definitions of promotor regions show the same
association for Cluster 3 (Additional file 1: Figure S8).

Cluster 2 is associated with a putative protein complex
To investigate the simultaneous binding of GATA-1 with
other proteins, we consider a set of 237 publicly available
ChIP-seq experiments for 95 different transcription fac-
tors, as well as 38 histone modification ChIP-seqs in K562
cells (from [17], see Additional file 2 for the detailed list of
used datasets). Transcription factors ChIP-seq replicates
are kept separated and MACS is used to call peaks, inde-
pendently in each sample, using as control the same signal
used with GATA-1 ChIP-seqs. In the case of histone mod-
ifications, we use peaks called by ENCODE. In addition,
we also consider DNase I hypersensitive sites in K562 cells
(GEO accession number GSM816655) in order to study
open chromatin regions.
We use random forest classification, as explained in

Methods, to select the experiments that are more corre-
lated with our clusterization. Specifically, seven different
analyses are performed, by using as response the clusters
membership and alternatively classifying: 1) all clusters; 2)
one cluster versus the union of the other two; 3) two clus-
ters one against the other. All random forest models are

Table 1 GATA-1 motif analysis

E-value Peaks with motif

Global 3e-216 (3e-158) 90 % (11874)

Cluster 1 7e-258 (3e-159) 91 % (9187)

Cluster 2 2e-250 (1e-194) 97 % (1638)

Cluster 3 7e-21 (2e-88) 79 % (1049)

GATA-1 motif enrichment and occurrences analysis in the complete set of peaks
as well as in the three clusters, in Replicate 1 for K562 cells. For the enrichment
analysis, MEME-ChIP with default options is run on samples of 1323 peaks (the
size of the smallest cluster) to get comparable E-values. In the global set and in
Cluster 1, that are large with respect to the sample size, the
median of E-values obtained by random sampling 10 times is reported. In
parenthesis we indicate the E-values obtained running MEME-ChIP changing de-
fault parameters to allow the motif search in the whole peak regions (without
trimming them). The number of peaks with the motif (occurrences analysis) is
computed on the whole sets of peaks
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able to predict a considerable portion of memberships, in-
dicating that our peak shape clustering is related to co-
located proteins. Notably, the overlaps of GATA-1 peaks
with open chromatin regions stand out as important in all
these analyses, according to Gini index (Additional file 2).
Looking more deeply to the relationship between clusters
and DNase-Seq regions, we can observe that the propor-
tion of peaks that fall in accessible regions of the genome
is typical of the different clusters. Indeed, almost all
Cluster 2 peaks intersect DNase I hypersensitive sites
(94 %), while the portion of peaks that fall in open chro-
matin regions is smaller in Cluster 3 (84 %) and it is fur-
ther reduced in Cluster 1 (70 %). Anyway, the three
proportions are much higher with respect to the random
case (see Methods), in which only the 8 % of the peaks
intersect open chromatin regions, supporting the claim
that none of the clusters is composed exclusively by arti-
facts. Interestingly, the distribution of the percentage of
intersection, conditionally to the intersection being non-
zero, is essentially the same in all groups, and it is highly
similar to the random case. Hence, the clusters are char-
acterized by the proportion of peaks that overlap
DNase I sites, rather than by the percentages of inter-
section (see Additional file 1: Table S5 and Figure S9).
Inspecting the rankings of transcription factors and his-
tone modifications ChIP-seqs, according to Gini index,
we are able to identify a small set of regulatory ele-
ments that emerge as influent in the seven random

forest classifiers we built, with all replicates in top posi-
tions (the complete rankings are reported in the Add-
itional file 2). Specifically, we retain for further analyses
all the proteins that are, simultaneously, 1) top 15 in at
least three random forests; 2) top 30 in at least five ran-
dom forests; 3) top 30 with all available replicates in at
least 2 random forests. The eight transcription factors
selected are GATA-2, CEBPD, HMGN3, TRIM28, PML,
TAL-1, ZMIZ1 and CCNT2 (see Table 2 for the full
protein names). Some of these proteins are known GATA-
1 interactors. In particular, GATA-2 and TAL-1 can associ-
ate with GATA-1 in complex to regulate erythroid tran-
scription. In addition, evidences of interaction between
GATA-1 and PML have recently been shown [14]. We
must point out that among these important regulatory ele-
ments there are no histone modifications. Indeed, if we
perform similar random forest analyses using as predictors
only the 237 ChIP-seqs for transcription factors, we get
nearly the same results and the same accuracy in cluster
membership predictions.
The combinatorial interaction analysis on the tran-

scription factors selected by using random forests shows
that Cluster 2 is characterized by the simultaneous bind-
ing of all the eight transcription factors, in addition to
GATA-1. The most significant results are obtained con-
sidering the intersections of GATA-1 peaks with at least
one ChIP-seq replicate for the other regulatory elements
under investigation. Nevertheless, the same conclusions

Fig. 6 Occurrences analysis for GATA-1 motif, in Replicate 1 for K562 cells. a Distribution of the number of occurrences of the consensus sequence
[AT]GATAA under each GATA-1 peak: under many peaks of Cluster 2 the motif occurs multiple times. b Boxplots of motif distances from peak maxima
in the three clusters; the mean distance in Cluster 3 peaks is significantly greater than the mean distances in Cluster 1 and Cluster 2
regions (test p-values ~0)
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are drawn even if we require that GATA-1 peaks over-
lap all available ChIP-seq replicates for the other pro-
teins. Notably, the distribution of overlaps with a
combination of these eight transcription factors in
Cluster 1 and Cluster 3 is very similar to the global
one, in which no combination outnumbers the others.

On the contrary, ~61 % of the peaks belonging to Clus-
ter 2 simultaneously intersect all the eight proteins con-
sidered, while only 4 regions contain GATA-1 alone
(see Fig. 8 and Additional file 1: Figure S10).
The co-binding of these eight transcription factors

in the genomic regions of Cluster 2 emerges also by
using multiple correspondence analysis (see Methods).
The advantage of this analysis is that it permits to study all
the replicates simultaneously. In particular, by plotting the
amount of total variation explained by an increasing num-
ber of principal coordinates (Additional file 1: Figures S11
and S12), we choose to focus on the first two components.
The main effect of the first component (that explains,
alone, ~40 % of the total variation in the data) is to con-
trast between the presence and the absence of overlaps,
while the second dimension adds some variability among
the different regulatory elements considered (Additional
file 1: Figure S12). We observe that the various ChIP-seq
replicates for the same protein are close in the space of the
first two principal components, suggesting that they behave
in a very similar way. Notably, Cluster 2 appears as highly
different from the other two groups and the global case.

Fig. 7 Association between GATA-1 peaks and genes for the three clusters in K562 cells. Gray areas show the intergenic peaks, peaks found in
the promoter regions of a known gene (≤5 kb from the transcription start site) are in dark colors, and peaks located in a known gene body are in
light colors. We observe that Cluster 3 is more associated to promoters than the other clusters (the p-values of the tests with alternative hypoth-
eses that this proportion is greater than the one for Cluster 1 and 2 are 0). Results with less and more restrictive rules are shown in Additional file
1: Figure S8

Table 2 Transcription factors related to the clustering

GATA-2 GATA binding protein 2

CEBPD CCAAT/Enhancer-Binding Protein Delta

HMGN3 High Mobility Group Nucleosome-binding
domain-containing protein 3

TRIM28 TRIpartite Motif-containing 28

PML ProMyelocytic Leukemia protein

TAL-1 T-cell Acute Lymphocytic Leukemia protein 1

ZMIZ1 Zinc finger MIZ domain-containing protein 1

CCNT2 Cyclin-T2

The eight transcription factors emerged as relevant for the peak shape clustering
in Replicate 1, according to Gini index in all the random forest classifiers built
(experiments on K562 cells). Combinatorial interaction analysis reveals that
Cluster 2 is characterized by the simultaneous binding of all these eight proteins,
together with GATA-1
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