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Abstract. Smooth projective surfaces fibered in conics over a smooth
curve are investigated with respect to their k-th osculatory behavior.
Due to the bound for the dimension of their osculating spaces they do
not differ at all from a general surface for k = 2, while their structure
plays a significant role for k ≥ 3. The dimension of the osculating space
at any point is studied taking into account the possible existence of
curves of low degree transverse to the fibers, and several examples are
discussed to illustrate concretely the various situations arising in this
analysis. As an application, a complete description of the osculatory
behavior of Castelnuovo surfaces is given. The case k = 3 for del Pezzo
surfaces is also discussed, completing the analysis done for k = 2 in
a previous paper of the authors (2001). Moreover, for conic fibrations
X ⊂ PN , whose k-th inflectional locus has the expected codimension a
precise description of this locus is provided in terms of Chern classes.
In particular, for N = 8, it turns out that either X is hypo-osculating
for k = 3, or its third inflectional locus is 1-dimensional.
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1. Introduction

Let X ⊂ PN be any smooth surface. The osculatory behavior of X is
determined by the rank of the k-th jet map at every point of X. Clearly,
it cannot exceed min{

(
k+2
2

)
, N + 1}, the former being the rank of the k-th

principal part bundle of X. If X has some special structure, the maximum
rank for x ∈ X, sk, can be even smaller (as it happens e.g., for scrolls). In
particular, if X is a conic fibration, it follows from [12, Corollary 14] that
sk ≤ min{3k,N + 1}. For k = 2 the two bounds above are the same: s2 ≤ 6
if N ≥ 5. This means that if we confine to study osculation for k = 2,
conic fibrations over curves do not play any special role among surfaces.
This is not the case however for k ≥ 3. Actually, for N ≥ 9 we have that
s3 ≤ 10 for a general surface, while s3 ≤ 9 for any conic fibration. This is the
basic remark which stimulated our interest for the subject of this paper. In
particular, though this paper can be regarded as a continuation of [11] and
[12], we stress that this is the first contribution to the study of osculation
for surfaces, except for scrolls, for k > 2.
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Let us insist on case k = 3. As is well know, every surface can be embed-
ded in P5. On the other hand, every conic fibration in PN (N ≥ 8) can be
projected isomorphically to P8 without affecting the value of s3. This sug-
gests a parallel between the study of osculation for any surface for k = 2 [15]
and that of conic fibrations in P8 for k = 3. An unexpected result we obtain
in this context is that any conic fibration in P8 is either hypo-osculating,
or it has a 1-dimensional third inflectional locus Φ3(X) (Corollary 15). We
face this situation in Section 6 addressing the more general framework of
conic fibrations whose k-th inflectional locus Φk(X) has the expected codi-
mension (k being the largest integer such that 3k ≤ N + 1). In this setting
we generalize some result of [12], providing explicit expressions for the coho-
mology classes of Φk(X), by means of the Porteous formula (Theorem 11).
In particular we compute the precise number of flexes for the two rational
conic fibrations in P4, namely the quartic del Pezzo surface and the quintic
Castelnuovo surface, and we describe them explicitly (Example b in Section
6, and Theorem 18(3)).

To determine the inflectional locus of X we need to compute the rank
of the k-th jet map at every point x ∈ X, and this in turn translates into
the computation of the codimension in |V | (the linear system of hyperplane
sections of X ⊂ PN ) of the linear subsystem |V − (k + 1)x| of hyperplane
sections of X having a singular point of multiplicity ≥ k + 1 at x. The
key point is that, if k ≥ 2, for any conic fibration X this linear system
has some fixed components and it is useful to detect all of them in order
to compute its dimension. For instance, the smooth fiber through x (or
the component passing through x if x lies on a reducible fiber) is a fixed
component of |V −3x|. This fact was already taken into account in studying
conic fibrations (e.g., see [4], [12]). However, in addition to these obvious
curves there could be further, sometimes unexpected, fixed components of
|V − (k+ 1)x|. This leads, already for k = 2, to a number of possible cases,
according to whether X contains or not smooth curves of low degree, passing
through x, not contained in the fibers.

This is in fact the core of our analysis, which takes Sections 3 and 4.
The general result is expressed by Theorem 5, in which the jumping loci of
certain linear systems enter into the description of the second inflectional
locus Φ2(X). In Section 4 it is specialized to the case of conic fibrations
containing a line or a conic transverse to the fibers (Theorem 7). Moreover,
to illustrate the range of applicability of the results we characterize these
surfaces (Propositions 8 and 9).

In Section 5 we present a library of examples illustrating various phenom-
ena occurring for k = 2, 3, and sometimes 4. In particular, many examples
we discuss (Examples 1, 2, 6, 9, 10) are conic fibrations in P8, in accordance
with the above mentioned relevance of this space for k = 3. Moreover, as in
our previous paper [11] osculation to del Pezzo surfaces X ⊂ PN was studied
for k = 2, here we take the opportunity to complete the picture for these
surfaces also for k = 3 (Examples 1–5), at least when N is large enough to
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make the discussion reasonably meaningful. Other conic fibrations, rational
and irrational, are also discussed (Examples 6, 7, 9, 10).

Section 7 is dedicated to Castelnuovo surfaces, namely rational surfaces
whose plane model is given by a linear system of nodal quartics. They
are rational conic fibrations of sectional genus 2, and the geometry of their
linearly normal models is even richer than that of del Pezzo’s. By applying
our results, we provide a complete description of the osculatory behavior
of these surfaces for k = 2 (Theorem 18), k = 3 (Theorem 22) and k = 4
(final comment in Section 7). We point out that for the Castelnuovo surface
X ⊂ P4 of degree 5, which is isomorphic to the plane blown-up at 8 points,
the notion of points in general position we use is wider than that implying the
ampleness of the anticanonical bundle. In particular, the result we obtain
for this surface for k = 2 extends the description of Φ2(X) given at the end
of [12].

2. Background material

Varieties considered in this paper are defined over the field C of complex
numbers. We use the standard notation and terminology from algebraic
geometry. Let X ⊂ PN = P(V ) be a non-degenerate smooth projective
variety of dimension n, let L := OPN (1)|X be the hyperplane bundle and
identify V with the subspace of H0(X,L) providing the embedding. Let
PkX(L) be the kth principal parts bundle of L and let jXk : VX = V ⊗OX →
PkX(L) be the sheaf homomorphism associating to every section σ ∈ V its
kth jet evaluated at x, for every x ∈ X. We simply write jk instead of jXk
when there is no ambiguity for the variety X we are dealing with.

We recall that the k-th osculating space toX at x is defined as Osckx(X) :=
P(Imjk,x). Then the k-th osculating hyperplanes to X at x can be regarded
as the elements of the linear system |V − (k + 1)x| (hyperplane sections of
X having a singular point of multiplicity ≥ k + 1 at x). So we have the
obvious equality

(1) N = dim(|V − (k + 1)x|) + dim(Osckx(X)) + 1.

First of all we stress the equivalence of the following facts for a point x ∈ X:

a) |V − (k + 1)x| = ∅;
b) Osckx(X) = PN ;
c) rk(jk,x) = N + 1.

Moreover, if a) holds for some point, then it holds for the general point
x ∈ X. On the other hand, if |V − (k + 1)x| 6= ∅ at the general point, then
the same fact holds at every point x ∈ X. An immediate consequence of (1)
is that

(2) rk(jk,x) = codim|V |(|V − (k + 1)x|),
at every point x ∈ X. Let

sk := maxx∈X{rk(jk,x)}
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be the maximum rank of jk,x on X. Clearly, sk ≤ N + 1, and by what we
said equality occurs if and only if |V − (k+ 1)x| = ∅ at the general point of
X. According to the definition of sk, we can now define the kth inflectional
locus of X as follows:

Φk(X) = {x ∈ X | rk(jk,x) < sk}.

We say that X ⊂ PN , or (X,L), is a quadric fibration (a conic fibration
if n = 2) over a smooth curve C if there exists a surjective morphism π :
X → C, such that any general fiber F of π is a smooth quadric hypersurface
Qn−1 ⊂ Pn and L|F = OQn−1(1). We know that every fiber of π is reduced,
and also irreducible if n ≥ 3; moreover, singular fibers, if any, are quadric
cones with an isolated singular point and L induces the hyperplane bundle
on each of them [8, Lemma 0.6]. In particular, for n = 2 this is equivalent
to saying that X is a birationally ruled surface over C, whose smooth fibers
F are conics with respect to L (i.e. F ∼= P1 and F ·L = 2); in this case every
singular fiber has the form e1 + e2, where e1, e2 are two distinct (−1)-curves
in X with ei · L = e1 · e2 = 1. Note that this makes sense also when L
is simply an ample line bundle, so, sometimes, we use the expression conic
fibration also in the more general context of polarized surfaces. By conic
bundle we mean any conic fibration with no singular fiber.

Let X ⊂ PN be a quadric fibration over a smooth curve. In [12, Corollary
14] it is proved that

(3) sk ≤ min{k(n+ 1), N + 1}
and if X is general we have in fact the equality sk = k(n + 1). X is said
to be k-hypo-osculating if (3) is a strict inequality. For examples of hypo-
osculating conic fibrations see Section 5, Examples 10 for k = 3, and 7 for
k = 4. According to (3), for a conic fibration X ⊂ PN it is significant to
investigate k-osculation for

3k − 1 ≤ N.
In studying case k = 3, however, we will also deviate from this bound in
some instances, in order to include some special interesting surfaces in our
discussion.

Let X ⊂ PN be a conic fibration. We will denote by Σ the union of
all singular fibers of X and by S the finite set consisting of their singular
points. As shown in [12] (see also Theorem 5), Σ ⊆ Φ2(X) if N ≥ 5;
moreover, rk(j2,x) is even smaller than 5 (namely 4 or even 3, see Example 5
in Section 5) at every point x ∈ S. As a consequence, Σ ⊆ Φk(X) for every
k ≥ 3, provided that N ≥ 3k − 1. However, if N is small it might be that
Φ2(X) 6⊆ Φ3(X) if, e.g., X ⊂ PN is hypo-osculating for k = 3 (see Examples
3, 10 in Section 5).

Here are some Chern class computations we need in the sequel.

Lemma 1. Let X ⊂ PN be any smooth projective surface, let L be the
hyperplane bundle and set L := c1(L).
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(i) c1(P2
X(L)) = 4KX + 6L and c1(P3

X(L)) = 10KX + 10L;
(ii) c2(P2

X(L)) = 5c2(X) + 5K2
X + 20KXL + 15L2 and c2(P3

X(L)) =
15c2(X) + 40K2

X + 90KXL+ 45L2.

Proof. The assertion follows from standard computations, using recursively
the following exact sequence (e. g., see [9, p. 70])

(4) 0→ Sm(ΩX ⊗ L)→ PmX (L)→ Pm−1X (L)→ 0.

�

Lemma 2. Let X ⊂ PN = P(V ) be a smooth surface, with hyperplane
bundle L, let x ∈ X and suppose that |V − (k + 1)x| 6= ∅ for some integer
k ≥ 2. Let γ ⊂ X be an irreducible curve passing through x and smooth at
x.

(1) If γ · L ≤ k, then γ is a fixed component of |V − (k + 1)x|;
(2) if k = 3 and either

a) γ · L = 2 and γ2 = 0, or
b) γ · L = 1 and γ2 = −1,

then 2γ is in the fixed part of |V − 4x|.

Proof. Consider a general element D ∈ |V −(k+1)x|. If γ were not contained
in D, then we would get

k ≥ L · γ = D · γ ≥ multx(D) ≥ k + 1,

a contradiction. This proves (1). Now let k = 3; by (1) γ is a fortiori a fixed
component of |V − 4x| and |V − 4x| = γ + |V − γ − 3x|, since γ is smooth
at x. Clearly, |V − γ − 3x| 6= ∅. Let D′ ∈ |V − γ − 3x| be a general element.
If γ were not contained in D′, then in both cases a) and b) we would get

2 = L · γ − γ2 = (L − γ) · γ = D′ · γ ≥ multx(D′) ≥ 3,

a contradiction. Therefore γ is a fixed component of |V − γ − 3x| and this
proves (2). �

For any nonnegative integer e, we denote by Fe the Segre–Hirzebruch
surface of invariant e, i.e., Fe = P(E), where E = OP1 ⊕ OP1(−e). By s
and f we will denote the (a, if e = 0) tautological section of minimal self-
intersection s2 = −e, and a fiber, respectively. We recall that the classes
of s and f generate the Picard group of Fe, hence, for any line bundle
L ∈ Pic(Fe) we can write L = [αs + βf ] for some integers α, β. According
to [7, Corollary 2.18, p. 380], L is ample, if and only if it is very ample,
if and only if α > 0 and β > αe. We will use these conditions over and
over in the paper, without any further reference. Clearly, if α = 2 (and
β > 2e), then (Fe,L) is a conic bundle. By the projection formula we have
h0(L) = h0(π∗L) = h0(S2E ⊗ OP1(β)), where π : Fe → P1 is the bundle
projection and S2 stands for the second symmetric power. Note that

S2E ⊗ OP1(β) = OP1(β)⊕OP1(β − e)⊕OP1(β − 2e).
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Moreover, all summands have positive degree, since β > 2e. Therefore,

(5) h0(L) = 3(β − e+ 1).

Hence |L| embeds X into PN , with N = 3(β−e)+2. In particular, consider
F0 = P1 × P1. In this case we set O(α, β) := [αs+ βf ]. If α = β = 2, then
(F0,L) has two distinct conic bundle structures.

By a del Pezzo surface we mean a smooth projective surface X, whose
anticanonical bundle −KX is ample. The degree of X is the degree of the
polarized surface (X,−KX), namely K2

X . Let X be a del Pezzo surface.
According to the classification [5], either X = P2 (degree 9), X = P1 × P1

(degree 8), or X is obtained by blowing-up P2 at no more than 8 distinct
points in general position. In accordance with the literature, r+1 ≤ 8 points
of P2, say p0, p1, . . . , pr, are said to be in general position to mean that

(6) no three of them are collinear and no six lie on a conic

if r ≤ 6, and they satisfy the further condition that

(7) not all lie on a cubic having a double point at one of them,

if r = 7. Conditions (6) and (7) insure that −KX is ample. Let σ : X → P2

be the morphism expressing X as the plane blown-up at p0, p1, . . . pr, and
let ei be the exceptional curve corresponding to pi; then −KX = σ∗OP2(3)−∑r

j=0 ej . In particular, the degree of X is K2
X = 8 − r ≤ 8, so, in degree

8 there are two distinct del Pezzo surfaces, namely P1 × P1 and F1, i.e.
the plane blown-up at a point p0, in which case −KX can be rewritten
as [2s + 3f ] identifying the (−1)-section s with the exceptional curve e0
and f with the proper transform via σ of a line through p0. For any del
Pezzo surface X, we have dim(| − KX |) = K2

X . Clearly, if X = P2, then
−KX = OP2(3) is 3-very ample and embeds X in P9. If X = P1 × P1, then
−KX = O(2, 2) is 2-very ample and embeds X in P8; moreover, each of the
projections onto the two factors makes X a conic bundle over P1. Finally,
if X is P2 blown-up at r + 1 points as above, we recall the following facts:
−KX is very ample for r ≤ 5, ample and spanned for r = 6, with | −KX |
defining a double cover of P2 branched along a smooth plane quartic, while
for r = 7, −KX is just ample, | − KX | consists of a pencil with a single
base point, say x0, all elements of |−KX | are smooth at x0, and, in general,
| − KX | contains exactly twelve singular curves, each having one singular
point. Note that X is a conic fibration with respect to −KX for any r ≥ 0,
regardless whether −KX is very ample or not. Actually the projection of
P2 \ {p0} from p0 onto a general line induces a morphism π : X → P1.
Its general fiber F is the proper transform via σ of a general line of the
pencil through p0, hence F is a smooth rational curve with −KX · F = 2.
Moreover, the exceptional curve e0 is a section of π. Note that π has exactly

µ = r singular fibers, namely Fi = ei + ˜̀
i, where ˜̀i is the proper transform

via σ of the line `i := 〈p0, pi〉 ⊂ P2 joining p0 and pi (i = 1, . . . , r). In
particular, Σ = ∪ri=1Fi. Sometimes, if r > 1 it is useful also to consider the
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lines `j,h := 〈pj , ph〉 joining pj and ph (1 ≤ j < h ≤ r), and their proper

transforms ˜̀
j,h via σ. Note that ˜̀j,h is a line of (X,−KX): actually, as

σ∗`j,h = ˜̀
j,h + ej + eh we get −KX · ˜̀j,h = 1. Moreover, each of them is a

section of π. Finally, we point out that if r > 0 then X admits r further
distinct conic fibration structures πi : X → P1 (i = 1, . . . , r), each being
induced by the projection of P2 \ {pi} from pi onto a general line: what we
said for π applies also to πi; in particular, there are r + 1 distinct smooth
conics passing though the general point x ∈ X.

For our need in Section 7, in case r = 7 we have also to consider the
surface X obtained by blowing-up P2 at p0, . . . , p7, when our points satisfy
(6) but not (7). In this case there exists an irreducible plane cubic Γ ∈
|OP2(3) − 2pi0 −

∑7
j=0;j 6=i0 pj | passing through our 8 points and having a

double point at one of them, say pi0 , (0 ≤ i0 ≤ r). Its proper transform, say
G, is a (−2)-curve on X. In this case, −KX is nef and big, but not ample,
since −KX · G = 0. The anticanonical system | − KX | is a pencil with
a single base point x0, where all its elements meet transversally; moreover,
|−KX | contains a finite number of singular elements, as before. However, as

G = σ∗OP2(3)−2ei0−
∑7

j=0;j 6=i0 ej , we see that |−KX | contains the divisor

G+ei0 . Note that G·ei0 = 2, and x0 ∈ ei0\G. In fact G∩ei0 consists either of
two distinct points or of a single point, according to whether Γ has a node or
a cusp at pi0 . Accordingly, G+ei0 has two or one singular points. Moreover,
in connection with the conic fibration structure of (X,−KX) defined by π,
it turns out that such points lie outside the singular fibers of π if and only
if i0 = 0.

A class of conic fibrations relevant for this paper is that of Castelnuovo
surfaces, namely, rational surfaces whose hyperplane sections correspond to
a linear system of plane quartics with a double point. In Section 7 we provide
a complete account of their inflectional loci. To give a precise description,
consider a finite subset P := {p0, p1, . . . , pr} of P2 consisting of r + 1 ≤ 8
points satisfying (6). We stress that in case of 8 points we do not require
the further condition (7). Actually, let θ : X → P2 be the blowing-up of P2

at P, let ei be the exceptional curve corresponding to pi (i = 0, 1, . . . , r),
and let L = θ∗OP2(4)− 2e0− e1− · · ·− er. The line bundle L is very ample,
since the points satisfy (6) [2, Section 3 and Remark 3.4.1, fifth case in
Table I], and we have L2 = 12 − r and h0(L) = 11 − r. Embedding X by
|L| provides a linearly normal surface X ⊂ PN , which we call Castelnuovo
surface. Clearly, N = d − 1 and X has degree d = 12 − r (5 ≤ d ≤ 12)
and sectional genus 2. For the classification of rational surfaces of sectional
genus 2, we refer to [8, Proposition 3.1, i)]: Castelnuovo surfaces correspond
to case e = 1 in that statement. Note that X is a conic fibration (in a unique
way) via the morphism π : X → P1 induced by the pencil of lines through
p0. Here there are µ = r = 12 − d singular fibers, all of them having the

form ˜̀
i + ei (i = 1, . . . , r), where ˜̀i is the proper transform via θ of the line

`i := 〈p0, pi〉 ⊂ P2, i = 1, . . . , r. Clearly, e0 is a section of π, and it is a
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smooth conic since e0 · L = 2. This makes the role of p0 different from that
of the remaining points pi ∈ P; hence, sometimes it is useful to consider
also the subset P := P \ {p0}. Due to condition (6), from the abstract
point of view, for r ≤ 6 our X is a del Pezzo surface, while for r = 7, we
can only claim that −KX is nef and big. In particular | −KX | is a pencil
with a single base point, say x0, where all elements meet transversally, and
containing a finite number of singular elements (see the previous paragraph).
The (−2)-curve G preventing −KX from being ample is either a line or a
conic of (X,L), according to whether i0 = 0 or i0 ≥ 1, respectively. These
facts will be useful in Section 7. As noted discussing del Pezzo surfaces, for
r > 1, sometimes we will need to consider also the lines `j,h := 〈pj , ph〉 for

1 ≤ j < h ≤ r, and their proper transforms ˜̀j,h on X via θ. Note that all
these curves are (−1)-conics on (X,L).

Finally, let us point out the following fact. We can factor θ as θ = η ◦ σ
where σ : F1 → P2 is the blowing-up at p0 and η : X → F1 is the blowing-
up of F1 at r points, each corresponding via σ to a point pi (i = 1, . . . , r).
These r points do not lie on the (−1)-section s of F1. So, the conic e0 is
simply the proper transform of s via η, and at the same time, e0 = η∗(s).
Since σ∗OP2(1) = [s + f ] we thus get L = η∗(σ∗OP2(4) − 2s) −

∑r
i=1 ei =

η∗L0−
∑r

i=1 ei, where L0 is the line bundle on F1 given by σ∗OP2(4)− 2s =
[4(s+ f)− 2s] = [2s+ 4f ].

At last let us recall few facts on the jumping sets, since they will often
occur in our discussion. LetM be an ample line bundle on a smooth surface
X and suppose that there exists a vector subspace W of sections spanning
M at every point. In this case we say that the corresponding linear system
|W | is ample and spanned. Clearly, in this situation, codim|W |(|W −x|) = 1
for every x ∈ X. Let ϕ be the morphism defined by |W |. For i = 1, 2 the
two loci

Ji(W ) = {x ∈ X | rk(dϕ)(x) ≤ 2− i}
are called the jumping sets of W [13, Section 1]. Clearly, J2(W ) ⊂ J1(W ),
moreover dim(Ji(W )) ≤ 2− i, and

Ji(W ) = {x ∈ X | codim|W−x|(|W − 2x|) ≤ 2− i}.

So, J2(W ) = {x ∈ X | |W − x| = |W − 2x|}, while J1(W ) can be identified
with the ramification locus of ϕ.

3. The osculatory behavior of conic fibrations

Specializing Lemma 2 to conic fibrations, we obtain the following two
propositions, which are very useful in the recognition of the inflectional loci
for k = 2 and k = 3, respectively. In particular, they will come up over and
over in the next Sections.

Proposition 3. Let X ⊂ PN be a conic fibration over a smooth curve C
and let x ∈ X. Suppose that |V − 3x| 6= ∅. Any line and any smooth conic
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of X passing through x are fixed components of |V − 3x|. In particular, let
F be the fiber containing x.

(i) if either F is smooth or x is the singular point of F then F is a fixed
component of |V − 3x|, and the residual part is either |V − F − 2x|
or |V − F − x| according to the two cases respectively;

(ii) let F be a singular fiber, i.e., F = e1 + e2, where e1 and e2 are two
lines, and let x be a smooth point of F , i.e., x ∈ ei \ ej. Then ei is
a fixed component of |V − 3x|, the residual part being |V − ei − 2x|.

Proof. The first assertion follows from Lemma 2, part (1). In particular, if
γ = F is a smooth fiber then we can write every element of |V − 3x| as
D = F + R where R must have a double point at x. This shows that the
residual part of |V − 3x| is |V −F − 2x|. If x ∈ S, letting γ = ei for i = 1 or
2, we have that both lines constituting F are fixed components of |V − 3x|.
Then F is in the fixed part of |V −3x| again, hence we can write D = F +R
as before. But now F has a double point at x, so the only condition R must
satisfy it that of passing through x. Therefore the residual part of |V − 3x|
is |V − F − x|. Finally, if x is a smooth point of a singular fiber, let γ be
the component of F containing x. Then γ is a fixed component of |V − 3x|
and we can write D = γ + R, where R must have a singular point at x, γ
being smooth. We thus conclude that the residual part of γ in |V − 3x| is
|V − γ − 2x|. �

Proposition 4. Let X ⊂ PN be a conic fibration over a smooth curve C
and let x ∈ X. Suppose that |V − 4x| 6= ∅. Any (−1)-line and any smooth
conic with self-intersection 0 of X, passing through x, are fixed components
of multiplicity 2 of |V − 4x|. Let F be the fiber of X containing x.

(i) if either F is smooth or x is the singular point of F , then 2F is in
the fixed part of |V −4x|, and the residual part is either |V −2F−2x|
or |V − 2F | according to the two cases respectively;

(ii) let F be a singular fiber, i.e., F = e1 + e2, where e1 and e2 are
two (−1)-lines, and let x be a smooth point of F , i.e., x ∈ ei \ ej.
Then F + ei is in the fixed part of |V − 4x|, the residual part being
|V − F − ei − 2x|.

Proof. The first assertion follows by specializing Lemma 2 part (2) to conic
fibrations. In particular, this gives (i). Now let x ∈ e1\e2 be a smooth point
of the singular fiber F = e1+e2. By Lemma 2 part (2) we already know that
2e1 is in the fixed part of |V − 4x|, the residual part being |V − 2e1 − 2x|.
Note, however, that e2 is in turn a fixed component of this linear system.
Otherwise, for a general element A ∈ |V −2e1−2x| we would get A · e2 ≥ 0,
hence

−1 = (L − 2e1) · e2 = A · e2 ≥ 0,

a contradiction. Note also that e2 63 x; thus

|V − 4x| = 2e1 + |V − 2e1 − 2x| = 2e1 + e2 + |V − 2e1 − e2 − 2x|.
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This proves (ii), since F = e1 + e2. �

Let us stress the use of the expression residual part in Propositions 3 and
4. Actually, it may happen that F is not the whole fixed part of |V − 3x|.

The above propositions lead to the following inductive general discussion.
LetX ⊂ PN be a conic fibration and suppose thatN ≥ 3k−1. Let x ∈ X and
let F be the fiber of X containing x. For a non-negative integer j, consider
the vector space V (−jF ) of sections s ∈ V vanishing along F with order
≥ j, Up to clearing the factor corresponding to jF we can regard V (−jF )
as a vector subspace of H0(X,L − jF ). Let |V − jF | be the linear system
defined by its projectivization. The fact that |V | is very ample implies that
codim|V |(|V − F |) = 3.

So, assuming that |V −jF | is very ample for all 0 ≤ j ≤ k−2 by induction
we get

codim|V |(|V − (k − 1)F |) = 3(k − 1).

Suppose that x ∈ X \ Σ, i.e., F is a smooth fiber of X, then

|V − (k + 1)x| = (k − 1)F + |V − (k − 1)F − 2x|,
by an iterated application of Proposition 3. Combining this with (2) and
the above relation we get

(8) rk(jk,x) = 3(k − 1) + h,

where h is the number of linearly independent linear conditions to be im-
posed on the elements of the linear system |V − (k − 1)F | in order to have
a double point at x. Clearly, 0 ≤ h ≤ 3.

1) Suppose furthermore that |V − (k − 1)F | is ample and spanned, and let
Ji = Ji

(
(V (−(k − 1)F )

)
, i = 1, 2. In this case, h ≥ 1 and its precise value

can be expressed in terms of the jumping sets Ji, as follows: h = 3 if x 6∈ J1;
h = 2 if x ∈ J1 \ J2; h = 1 if x ∈ J2. In particular, h = 3 at every point of
X if |V − (k − 1)F | is very ample.

For enlightening examples for k = 3 we refer to Section 5, Examples 6–10.

2) On the other hand, suppose that L − (k − 1)F is not ample, and let
Y ⊂ X be an irreducible curve such that (L − (k − 1)F ) · Y = 0, if any.
Then |V − (k − 1)F − x| = Y + |V − (k − 1)F − Y | for every x ∈ Y , hence
h ≤ 2; so rk(jk,x) = 3(k − 1) + 2 = 3k − 1 along Y by (8). This means
that Y ⊂ Φk(X) if N ≥ 3k − 1. An example of this situation will occur in
Section 7 when µ = 2 or 3. E. g., let k = 3; for µ = 2, we have that L− 2F
is not ample, hence the jumping sets do not enter in the picture. However,

(8) is still working and in fact rkj3,x = 6 +h = 8 for a general x ∈ ˜̀1,2. Here˜̀
1,2 is the only curve on which L− 2F fails to be ample; thus ˜̀1,2 ⊂ Φ3(X).

Similarly, for µ = 3 we get that
⋃

1≤i<j≤3
˜̀
i,j ⊂ Φ3(X), see Theorem 22.

In particular, let us specialize the above discussion to analyze case k = 2
more in detail. We suppose that |V − 3x| 6= ∅ for the general (hence for
every) point x ∈ X.
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We know that dim(|V −F |) = N − 3 for any fiber F of X, since its linear
span in PN is 〈F 〉 = P2; on the other hand, dim(|V − `|) = N − 2 if ` ⊂ X is
a line through x. This, combined with (2) leads to the following conclusions.

a) Suppose that x 6∈ Σ; then |V −3x| = F + |V −F −2x|, hence rk(j2,x) =
3 + h, where h is the number of linearly independent linear conditions to
be imposed on the elements in |V − F | in order to have a double point
at x; in particular, 3 ≤ rk(j2,x) ≤ 6 (since 0 ≤ h ≤ 3). Moreover, if
L − F is ample and spanned by V (−F ), then rk(j2,x) ≤ 5 if and only if
x ∈ J1(V (−F )).

b) If x ∈ Σ \ S, then |V − 3x| = ei + |V − ei − 2x|, ei being the unique
component of F containing x. So, rk(j2,x) = 2 + h, where h is the number
of linearly independent linear conditions to be imposed on the elements in
|V − ei| in order to have a double point at x; in particular, 3 ≤ rk(j2,x) ≤ 5
(since j1,x has rank 3 everywhere and h ≤ 3). A comment analogous to that
in a) can be repeated referring to the vector subspace V (−ei).

c) Let x ∈ S; then |V − 3x| = F + |V − F − x|; on the other hand,
codim|V |(|V − F |) = 3. So rk(j2,x) = 3 + h, h being the number of linearly
independent linear conditions to be imposed on the elements in |V − F | in
order to contain x. Hence 3 ≤ rk(j2,x) ≤ 4, with equality on the left if and
only if x is a base point of |V − F |.

This leads to the part of [12, Theorem 11] concerning surfaces, which we
restate here for the convenience of the reader.

Theorem 5. Let X ⊂ PN = P(V ) be a conic fibration over a smooth curve
C, and let L, Σ, S, and V (−F ) for every fiber F be as above. Suppose that
N ≥ s2 (or equivalently that |V − 3x| 6= ∅ for every x ∈ X).

(1) We have 3 ≤ rk(j2,x) ≤ 6 for every x ∈ X, and rk(j2,x) ≤ 4 for
every x ∈ S.

(2) Furthermore, rk(j2,x) ≤ 5 at any point x lying on a line of X; in
particular, Φ2(X) contains the union of all lines of X, hence Σ.

(3) If V (−F ) spans L − F for a singular fiber F , then rk(j2,x) = 4 for
x ∈ F ∩ S.

(4) If L−F is ample and spanned by V (−F ) for a given smooth fiber F ,
then rk(j2,x) = 6 for all x ∈ F \ J1(V (−F )). In particular, if L−F
is ample and V (−F ) defines an immersion for any smooth fiber F ,
then rk(j2,x) = 6 at all points x 6∈ Σ.

For explicit examples see Section 5, Examples 4–6. In particular, Exam-
ples 4 and 5 show that the rank of j2,x at a point x ∈ S can in fact be either
4 or 3.

4. More on case k = 2 in the presence of lines or conics
transverse to the fibers

As a further progress with respect to Theorem 5 we can refine our analysis
of case k = 2, looking more closely at the points x lying on a line ` or on a
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smooth conic γ non contained in a fiber. Note that in this case the base curve
of our conic fibration is C = P1, as a consequence of the Riemann–Hurwitz
theorem. Let us recall a relevant object associated to any conic fibration
X ⊂ PN over a smooth curve C. Let M := P(π∗L) be the P2-bundle over

C defined by X, in which X fits as a divisor, and let L̃ be the tautological
line bundle on M . As shown in [12, Section 3], V can be regarded also as a

vector subspace of H0(M, L̃), and, in this perspective, it defines a morphism
ϕ : M → PN , whose image R := ϕ(M) is the three-dimensional variety ruled
by the planes 〈F 〉, which are the linear spans of the fibers F of X. Note
that R ⊂ PN is non-degenerate. As shown in [12, Proposition 5], R is a
scroll over C if and only if ϕ is an embedding. This is not always the case,
however. For, instance, if X ⊂ P3 is a cubic surface, regarded as a rational
conic fibration, clearly R is the whole ambient space. By the way, let us
note the following fact.
Remark. Let X ⊂ P3 be a conic fibration. Then X is a cubic surface.
Actually, KX = (d − 4)L, where d is the degree of X. On the other hand,
for every fibre F of X we have L · F = 2. Hence the genus formula gives
−2 = KX · F = 2(d− 4), i.e., d = 3.

The following easy lemma will be very useful.

Lemma 6. Let X ⊂ PN be a conic fibration, and let F be any fiber.

(1) Let ` ⊂ X be a line transverse to the fibers. Then either ` · F = 1,
or N = 3 and R = P3;

(2) Let γ ⊂ X be a smooth conic transverse to the fibers. Then 1 ≤
γ · F ≤ 2.

Proof. 1) Clearly 1 ≤ ` · F ≤ 2: suppose that ` · F = 2. Since this happens
for every fiber we have that the ruled variety R ⊂ PN consists of a pencil of
planes containing `. Therefore R = P3 = PN (since it is non-degenerate).

2) Clearly γ ·F ≥ 1. Suppose that γ ·F0 ≥ 3 for some fiber F0. Then the
two conics γ and F0 are coplanar, i.e., 〈γ〉 = 〈F0〉. But since γ ·F = γ ·F0 ≥ 3
for every fiber F , we conclude that 〈F 〉 = 〈F0〉 for every other fiber F . Thus
F ∩ F0 6= ∅, the two fibers being coplanar, but this is impossible �

The fact that the intersection index of ` or γ with any fiber of X is very
low, makes the range of the possible values for rk(j2,x) very restricted at
their points (see also Examples 4–6 in Section 5). Of course we have to
consider various possibilities, in accordance with points a), b), c) of the
discussion in Section 3.

Theorem 7. Let X ⊂ PN = P(V ) be a conic fibration over P1 with N ≥ s2,
let L, Σ, S be as in Section 3. Let x ∈ X, and let F be the fiber through x.
1) Suppose that there exists a line ` ⊂ X, passing through x and transverse
to the fibers. Then:

1a) 4 ≤ rk(j2,x) ≤ 5 if x ∈ X \ Σ, with equality on the left if and only if
x is in the base locus of |V − F − `|;
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1b) 3 ≤ rk(j2,x) ≤ 4 if x ∈ Σ \ S, with equality on the left if and only
if x is in the base locus of |V − e − `|, where e is the irreducible
component of F containing x;

1c) it cannot be that x ∈ S.

2) Suppose that there exists a smooth conic γ ⊂ X, passing through x and
transverse to the fibers. Then:

2a) 5 ≤ rk(j2,x) ≤ 6 if x ∈ X \ Σ, with equality on the left if and only if
x is in the base locus of |V − F − γ|;

2b) 3 ≤ rk(j2,x) ≤ 4 or 4 ≤ rk(j2,x) ≤ 5 if x ∈ Σ\S, according to whether
γ · e = 1 or 2, e being the irreducible component of F containing x;
moreover, equality holds on the left if and only if x is in the base
locus of |V − e− γ|;

2c) rk(j2,x) = 4 if x ∈ S.

Proof. 1a) Let x ∈ X \ Σ. We know that ` · F = 1, by Lemma 6(1) (since
N > 3). Hence ` is a section of X. According to Proposition 3 we know
that |V − 3x| = F + `+ |V −F − `−x|, since both F and ` are smooth. We
have codim|V |(|V − F − `|) = 4. In conclusion, 4 ≤ rk(j2,x) ≤ 5. Moreover
equality holds on the left if and only if x is in the base locus of |V −F − `|.

2a) We know that 1 ≤ γ ·F ≤ 2 by Lemma 6(2). According to Proposition
3 we have |V −3x| = F +γ+ |V −F −γ−x| since both F and γ are smooth.
Then codim|V |(|V − F − γ|) = 5. In conclusion, rk(j2,x) = 6 unless x is in
the base locus of |V − F − γ|.

1b) Let x ∈ Σ \ S and let e be the component of F containing x. Clearly
` · e = 1, since ` 3 x, hence 1 ≤ ` · F ≤ 2. However, equality on the right
would imply N = 3 by Lemma 6(1), which is not the case. Therefore `·F = 1
and then ` is a section of X. We know that |V −3x| = e+`+|V −e−`−x|, by
Proposition 3, since both e and ` are smooth. We have codim|V |(|V −e−`|) =
3. In conclusion, 3 ≤ rk(j2,x) ≤ 4, and equality holds on the left if and only
if x is in the base locus of |V − e− `|.

2b) Clearly, 1 ≤ γ ·e ≤ 2, since e is a line and γ is a conic, both containing
x. So we have two possibilities. First assume that γ · e = 1. We know that
|V − 3x| = e+ γ + |V − e− γ − x|, by Proposition 3, since both e and γ are
smooth, We have codim|V |(|V − e− γ|) = 4. In conclusion, 4 ≤ rk(j2,x) ≤ 5,
and equality holds on the left if and only if x is in the base locus of |V −e−γ|.
Next, assume that γ ·e = 2. In this case, |V −3x| = e+γ+ |V −e−γ−x|, as
before. However, codim|V |(|V − e− γ|) = 3. In conclusion, 3 ≤ rk(j2,x) ≤ 4,
and equality holds on the left if and only if x is in the base locus of |V −e−γ|.

1c) If x ∈ S we can write F = e1 + e2, the two lines e1, e2 meeting at
x. Then ` · (e1 + e2) = 2, which implies N = 3 by Lemma 6(1). But this is
impossible.

2c) As before, F = e1 + e2, the two lines e1, e2 meeting at x. By Proposi-
tion 3, e1, e2 and the smooth conic γ are fixed components of |V − 3x|, and
|V − 3x| = F + γ + |V − F − γ|. Thus rk(j2,x) = codim|V |(|V − F − γ|).
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To impose on the elements of |V | to contain F requires three conditions.
Clearly, γ · ei ≥ 1 for i = 1, 2; on the other hand, γ · F ≤ 2 by Lemma 6(2),
hence γ · ei = 1 for i = 1, 2. Thus x is a ramification point of the double
cover π|γ : γ → P1, hence, to impose on the elements of |V − F | to contain
γ simply requires a single condition. Therefore rk(j2,x) = 4. �

Remarks. i) The argument used in proving 2a) shows, in particular, that a
point at which two smooth conics on X meet is not an inflectional point for
k = 2, in general. For an illustration of this case see Section 5, Example 4.

ii) Consider 1b): for an example in which equality on the right holds at
some points, see Example 4 in Section 5. In fact we have rk(j2,x) = 4 at

four points: namely, the points of Fj (j = 1, 2) lying on e0 or on ˜̀1,2.
iii) A point x where equality rk(j2,x) = 3 holds in 1b) and 2b) represents

a very rare circumstance. Actually, at such a point x, Osc2x(X) is just the
projective tangent plane to X. Note that the same four points mentioned
in ii), when regarded as points on the projected surface Y (see Example 5
in Section 5), satisfy equality on the left in 1b). Unfortunately we have no
examples where rk(j2,x) = 3 for 2b).

iv) In Theorem 7 we assumed that N is large enough. Note however that
1c) can occur allowing N = 3. For instance, with the same notation as in
Section 2, let X be the cubic surface obtained by blowing-up P2 at points
p0, . . . , p5, in general position but such that the line `1 = 〈p0, p1〉 is tangent
to the conic c passing through p1, . . . , p5 at p1, and let x ∈ X be the point
corresponding to the direction of `1 at p1. Then x is an Eckardt point of
X and |L − 3x| consists of the following three coplanar lines meeting at x:

e1, ˜̀1 and c̃, the proper transform of the conic c.
v) In the previous analysis all fixed components arising in |V −3x| contain

x. We want to stress that in |V − 4x| there can be fixed components not
containing x, as Proposition 4 (ii) shows. See also Example 10 in Section 5.

To give a precise idea of the range of applicability of Theorem 7, here we
characterize conic fibrations containing a line (a smooth conic, respectively)
transverse to the fibers. Let Fe, e, s and f be as in Section 2. We denote by
[D] the line bundle corresponding to a divisor D on Fe. We start with lines.

Proposition 8. Let X ⊂ PN be a conic fibration, let L be the hyperplane
bundle, and let µ be the number of reducible fibers. Suppose that there exists a
line ` ⊂ X, not contained in a fiber. Then there exist a birational morphism
η : X → Fe contracting a component ei of each reducible fiber Fi to a
point pi (i = 1, . . . µ) and an ample line bundle L0 on Fe such that L =
η∗L0 −

∑µ
i=1 ei. Moreover, the image `0 := η(`) is a smooth rational curve

and one of the following holds:

(1) e ≤ 1, µ is odd and ≥ 3+2e, `0 is linearly equivalent to 2s+(e+1)f ,

pi ∈ `0 for every i = 1, . . . , µ, and L0 = [2s+ (e+ µ−1
2 )f ];

(2) no conditions on e, `0 = s, pi 6∈ `0 for every i = 1, . . . , µ, and
L0 = [2s+ (2e+ 1)f ];
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Proof. As observed, X is a rational conic fibration; Let π : X → P1 be the
fibration map. Every singular fiber Fi (i = 1, . . . , µ) of X is reducible, so
we can write Fi = ei + e′i, where both ei and e′i are (−1)-curves, ei · e′i = 1
and L · ei = L · e′i = 1. Since ei and e′i are lines, like `, we have ` · ei ≤ 1 and
` · e′i ≤ 1. Let F be a general fiber of X; since ` is not in a fiber, we have
0 < ` ·F = ` ·Fi = ` · ei + ` · e′i for every i. Hence there are two possibilities:
either

a) ` · ei = ` · e′i = 1 for every i (in which case ` · F = 2), or
b) up to exchanging ei with e′i for some index i, we can suppose that

` · ei = 0 and ` · e′i = 1 for every i (in which case ` · F = 1).

Let η : X → X0 be the birational morphism contracting the µ exceptional
curves ei. Then the smooth surface X0 has a P1-bundle structure induced
by π, hence X0 = Fe for some e, since X is rational. Let pi = η(ei);
then F = η∗(f) if no pi belongs to the fiber f of Fe. Note that the curve
`0 := η(`) is a smooth rational curve, since ` is a line and ` · ei ≤ 1 for every
i. Moreover, `0 contains either all pi’s or no one of them according to cases
a) and b). So, we have η∗`0 = `+

∑µ
i=1 ei in case a) while η∗`0 = ` in case

b). Now consider on Fe the line bundle L0 := (η∗L)∨∨ (double dual). Then
L = η∗L0 −

∑µ
i=1 ei and the Nakai–Moishezon criterion shows that L0 is

ample. Furthermore, the condition

2 = L · F = (η∗L0 −
µ∑
i=1

ei) · η∗f = L0 · f

says that (Fe,L0) is a conic bundle. Therefore, L0 = [2s + βf ], where β is
an integer satisfying the inequality β > 2e, due to the ampleness. On the
other hand, from the condition 1 = L · ` = (η∗L0 −

∑µ
i=1 ei) · ` we obtain

that

L0 · `0 =

{
µ+ 1 in case a)
1 in case b).

Moreover, since F · ` is 2 or 1 according to cases a) and b), we argue that
`0 is a bisection of Fe in case a) and a section in case b). So, in case a),
`0 ∼ 2s + yf (linearly equivalent), for some integer y ≥ 2e, with strict
inequality if e = 0 (e. g., see [7, Corollary 2.18 (b), p. 380]). Recalling that
KFe = −2s− (2 + e)f , the genus formula gives

−2 = 2g(`0)− 2 = `0 · (`0 +KFe) = (2s+ yf) · (y − 2− e)f = 2(y − 2− e).

Therefore, 2e ≤ y = e+ 1, which implies e ≤ 1 and `0 ∼ 2s+ (e+ 1)f . On
the other hand,

µ+ 1 = L0 · `0 = (2s+ βf) · (2s+ (e+ 1)f) = 2β − 2e+ 2.

In conclusion, µ = 1 + 2(β− e) ≥ 1 + 2(e+ 1) = 3 + 2e and β = e+ 1
2(µ−1),

where e = 0 or 1. This gives (1) in the statement. Now consider case b).
Here `0 is a section, hence either b1) `0 = s or b2) `0 ∼ s + yf , for some
integer y ≥ e, with strict inequality if e = 0. Recall that L0 · `0 = 1. In
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subcase b1) this gives β = 2e + 1, which leads to (2) in the statement. In
subcase b2) we get

1 = L0 · `0 = (2s+ βf) · (s+ yf) = 2(y − e) + β ≥ β > 0.

Therefore, β = 1 and y = e, hence e > 0. On the other hand, 1 = β > 2e,
due to the ampleness condition, which implies e = 0, a contradiction �

In the same vein we can prove an analogue of Proposition 8 for conic
fibrations containing a smooth conic not in the fibers.

Proposition 9. Let X ⊂ PN be a conic fibration, let L be the hyperplane
bundle, and let µ be the number of reducible fibers. Suppose that there exists
a smooth conic γ ⊂ X, not contained in a fiber. Then there exist a birational
morphism η : X → Fe contracting a component ei of each reducible fiber Fi
to a point pi (i = 1, . . . µ) and an ample line bundle L0 on Fe such that
L = η∗L0 −

∑µ
i=1 ei. Moreover, the image γ0 := η(γ) is a smooth rational

curve containing pi only for i = 1, . . . , ν up to renaming, where 0 ≤ ν ≤ µ,
and one of the following holds:

(1) e ≤ 1, ν is even and ≥ 2+2e, γ0 is linearly equivalent to 2s+(e+1)f ,
and L0 = [2s+ (e+ ν

2 )f ];
(2) no conditions on e, γ0 = s, ν = 0, and L0 = [2s+ (2e+ 2)f ].

Proof. As we already said, X is a rational conic fibration. Moreover, 1 ≤
γ ·F ≤ 2 by Lemma 6(2). Now we can proceed as in the proof of Proposition
8, and we have to consider two possibilities according to whether γ · F = 2
or 1: either

a) up to reordering the reducible fibers and up to exchanging the com-
ponents of some of them, γ · ei = γ · e′i = 1 for i = 1, . . . , ν while
γ · ej = 0 and γ · e′j = 2 for j = ν + 1, . . . , µ; or

b) up to exchanging the components of some reducible fibers, γ · ei = 0
and γ · e′i = 1 for every i = 1, . . . , µ (in this case set ν = 0).

As in the proof of Proposition 8, consider the contraction η : X → X0 of
e1, . . . , eµ. Then, X0 = Fe for some e, there exists an ample line bundle L0 on
Fe such that L = η∗L0−

∑µ
i=1 ei, and γ0 := η(γ) is a smooth rational curve,

since γ is a smooth conic and γ ·ei ≤ 1 for every i. Moreover, γ0 contains only
p1, . . . , pν in case a) and no pi in case b). Therefore, η∗(γ0) = γ +

∑ν
i=1 ei

in case a) while η∗(γ0) = γ in case b). We have γ · L = 2, since γ is a conic,
and this gives

L0 · γ0 =

{
ν + 2 in case a)
2 in case b).

Moreover, as before, condition 2 = L · F = L0 · f allow us to write L0 =
[2s+βf ], with β > 2e due to the ampleness. Finally, note that γ ·F = γ0 ·f .
Now consider case a). Here γ0 is a bisection, hence it is linearly equivalent
to 2s + yf , for some integer y ≥ 2e (strict inequality if e = 0). The genus
formula shows that y = e+ 1, which implies e ≤ 1. On the other hand,

ν + 2 = L0 · γ0 = (2s+ βf) ·
(
2s+ (e+ 1)f

)
= 2(β − e) + 2.
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This shows that ν has to be even, β = e+ ν
2 , and thus the inequality β > 2e

implies ν ≥ 2e+ 2, due to the parity. This gives (1) in the statement. Next
consider case b). Here γ0 is a section, hence either γ0 = s or γ0 ∼ s+yf , for
some integer y ≥ e (strict inequality if e = 0). Using condition L0 · γ0 = 2
we thus see that the former possibility leads to (2) in the statement, while
the latter gives a contradiction. �

Castelnuovo surfaces introduced in Section 2 fit into case (2) of Propo-
sition 9. Actually, factoring θ : X → P2 as θ = η ◦ σ where σ : F1 → P2

is the blowing-up at p0 and η : X → F1 is the blowing-up at the µ points
corresponding via σ to p1, . . . , pµ, we have seen that L = η∗L0 −

∑µ
i=1 ei,

where L0 is the line bundle on F1 given by [2s+4f ], namely, the line bundle
which appears in Proposition 9, case (2), since e = 1.

5. Examples

Here we collect several examples to illustrate the various situations we
met in the previous discussion. In general, to evaluate rk(jk,x) we identify
a suitable linear system, say S (= Sk,x), such that: 1) S is projectively
equivalent to the residual part of |V − (k + 1)x| with respect to the largest
fixed part we are able to recognize, and 2) dim(S) can be easily computed.
Then, (2) implies

rk(jk,x) = dim(|V |)− dim(S).

Let us just note that S is not necessarily a linear system on X itself; some-
times it is convenient to look at it as a linear system on another surface
related to X.

Example 1. Let X be F1 embedded in P8 by L = −KX = [2s + 3f ]. Let
x ∈ X be any point and let F be the fiber through x. By Proposition 3 we
have |L − 3x| = F + |L − F − 2x|. Note that M := L − F = [2s + 2f ] is
spanned, M2 = 4, and h0(M) = 6, by (5). Moreover, the only irreducible
curve in X having intersection zero with M is s. Therefore, M defines a
morphism φ : X → P5, contracting s, whose image is the Veronese surface,
as one can easily see; moreover, φ is birational. Suppose that x 6∈ s. Then
letting S = |M − 2x| we get rk(j2,x) = 8 − 2 = 6. On the other hand,
let x ∈ s; then |L − F − x| = s + |L − F − s|, because s · M = 0, and so
|L − F − 2x| = s + |L − F − s − x|. But L − F − s =M− s = [s + 2f ] is
very ample and dim(|s + 2f |) = 4. Hence letting S = |s + 2f − x|, we get
rk(j2,x) = 8−3 = 5 if x ∈ s. In conclusion, Φ2(X) = s. This agrees with [11,
Theorem 2.1], since (X,L) is the non-minimal del Pezzo surface of degree
8. Now let us determine Φ3(X). Fix x ∈ X and let F be the fiber through
x, as before. Then |L − 4x| = 2F + |L − 2F − 2x| = 2F + |2s+ f − 2x| by
Proposition 4. Note that |2s+ f | = s+ |s+ f |. Thus

|L − 4x| = 2F + s+ |L − 2F − s− rx| = 2F + s+ |s+ f − rx|,
where r = 1 or 2 according to whether x ∈ s or x 6∈ s. The linear system
|s + f | is a base-point-free net, (s + f) · s = 0 and (s + f)2 = 1. In other
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words, |s + f | defines a morphism ψ : X → P2, which is birational and
contracts s to a point. So, dim(|s + f − rx|) = dim(|OP2(1) − rx′|), where
x′ = ψ(x). Call S this last linear system: S is either empty or a pencil
according to whether r = 2 or 1, respectively. So, if x 6∈ s then r = 2, hence
rk(j3,x) = 8−(−1) = 9, while if x ∈ s then r = 1, hence rk(j3,x) = 8−1 = 7.
In conclusion, s3 = 9, and Φ3(X) = s.

Example 2. Let X ⊂ P8 be the del Pezzo surface of degree 8 isomorphic to
F0, namely, (X,L) = (P1 × P1,O(2, 2)). Here |V | = |L|. Let x ∈ X and let
F and E be the fibers through x of the two projections of X. Both E and F
are fibers of two distinct conic bundle structures of X. Thus, according to
Propositions 3 and 4 we have |L−3x| = E+F+|O(1, 1)−x|, while |L−4x| =
{2E+2F}, respectively. Hence dim(|L−3x|) = dim(|O(1, 1)|)−1 = 2, while
dim(|L − 4x|) = 0. Therefore, for every point x ∈ X, rk(j2,x) = 8 − 2 = 6
(in accordance with the fact that (X,L) is 2-regular [10, Remark 2.2]), and
rk(j3,x) = 8. In other words, s3 = 8, and our X ⊂ P8 is perfectly hypo-
osculating for k = 3.

Example 3. Let X be the del Pezzo surface of degree 7, linearly normally
embedded in P7. Here L = −KX = σ∗OP2(3) − e0 − e1, e0 is a section

of π and there is a single singular fiber, namely F1 = e1 + ˜̀
1. By [11,

Theorem 2.1], rk(j2,x) = 6 if x 6∈ F1 ∪ e0, while rk(j2,x) = 5 for x ∈ F1 ∪ e0,
except at the two points xi := ei ∩ ˜̀1, i = 0, 1, where rk(j2,x) = 4. In
particular, Φ2(X) = F1 ∪ e0. The same results can be obtained by looking
at |L − 3x| and taking into account Proposition 3. Now look at |L − 4x|.
Obviously, |L − 4x| = ∅ if x 6∈ F1 ∪ e0, since there are no plane cubics
with a point of multiplicity 4. In fact X is hypo-osculating for k = 3.
Let x ∈ e0 \ F1 and let F be the fiber through x. By Proposition 4 and
Lemma 2 we see that |L − 4x| = 2F + e0 + |L − 2F − e0 − x|. On the other
hand, L − 2F − e0 = σ∗OP2(1) − e1, hence letting S = |OP2(1) − p1 − x′|,
where x′ = σ(x), we get rk(j3,x) = 7 for x ∈ e0 \ F1. Next suppose that

x ∈ ˜̀1 \ {e0 ∪ e1}. In this case, by Proposition 4 and Lemma 2 again, we

have |L−4x| = F1 + ˜̀1 +e0 + |L−2 ˜̀1−e0−e1−2x|, since x is only a double

point for the fixed part. Moreover, L − 2 ˜̀1 − e0 − e1 = σ∗OP2(1), hence
dim(|L− 4x|) = dim(|OP2(1)− 2x′|). So, |L− 4x| = ∅ and then rk(j3,x) = 8

at these points. Finally, consider the point x = e0 ∩ ˜̀1. Then |L − 4x| =

F1 + ˜̀1 +e0 + |L−2 ˜̀1−e0−e1−x|. Moreover, L−2 ˜̀1−e0−e1 = σ∗OP2(1),
hence letting S = |OP2(1) − x′|, we get rk(j3,x) = 6. Up to replacing π
with the conic fibration structure given by the projection from p1 we get
the same conclusions for points lying on e1. Thus, Φ3(X) = e0 ∪ e1. The
fact that Φ2(X) 6⊂ Φ3(X) is not surprising, since our surface X ⊂ P7 is
hypo-osculating for k = 3.

Example 4. Let X be the del Pezzo surface of degree 6 linearly normally
embedded in P6. Here L = −KX = σ∗OP2(3)− e0− e1− e2 and the singular

fibers of π are F1 = e1 + ˜̀
1 and F2 = e2 + ˜̀

2. So Σ = F1 ∪F2 and, clearly, S
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consists of the two points xj := ej ∩ ˜̀j , j = 1, 2. Let x be a point of X \ Σ
and set x′ := σ(x). Then the smooth fiber F containing x is the proper
transform of the line 〈p0, x′〉 via σ. Recall that the only lines of (X,L) are
the six edges of the hexagon H on X arising from the trilateral determined

by p0, p1, p2, namely e0, ˜̀1, e1,˜̀1,2, e2, ˜̀2. On the other hand, it is easy to
see that any smooth conic γ of (X,L) which is not a fiber of π necessarily
must be a fiber of one of the two other conic fibrations πj : X → P1 induced
by the projection of P2 \ {pj} onto a general line, for j = 1, 2 respectively.
So, if x ∈ X is general, then there are no lines of (X,L) passing through x,
but there are exactly three smooth conics: the proper transforms of the lines
〈pi, x′〉, i = 0, 1, 2. In particular, if x ∈ X\Σ and x ∈ F , then taking as γ the
proper transform of 〈p1, x′〉 via σ we get |V − 3x| = F +γ+ |V −F −γ−x|.
But the linear system |V − F − γ| corresponds to the pencil of lines in P2

passing through p2. Therefore dim(|V −3x|) = 0, i. e., rk(j2,x) = 6. Clearly,
this holds for every x ∈ X whose corresponding point x′ = σ(x) is not on
the trilateral of vertices p0, p1, p2. This is in accordance with [11, Theorem
2.1], where we showed that Φ2(X) is the hexagon H. Now let x ∈ Σ; for
instance, x ∈ F1. Then [11, Theorem 2.1] tells us that rk(j2,x) = 5 if x is

general, whilst rk(j2,x) = 4 at the three points x1, e0 ∩ ˜̀1, and e1 ∩ ˜̀1,2.
This is obvious for x1, since it lies on S. The reason why rk(j2,x) = 4 at

x = e0 ∩ ˜̀1. is that e0 is a line transverse to the fibers, hence it is a further

fixed component of |L − 3x|. Thus |L − 3x| = ˜̀
1 + e0 + |L − ˜̀1 − e0 − x|.

We thus see that rk(j2,x) = 6 − dim(S), S being the net of conics tangent
to `1 at p0 and passing through p2. Of course, what we said for F1 can be
repeated verbatim for F2. Clearly X is hypo-osculating for k = 3.

Example 5. Let X and L be as in Example 4. A discovery of Togliatti
[16] (see also [11, Section 4]) is that there exists a codimension 1 vector
subspace W of H0(X,L) such that the projection P6 − − → P5 = P(W )
maps X isomorphically to a smooth surface Y ⊂ P5 which is hypo-osculating
for k = 2. Clearly we can identify the conic fibration induced on Y by
π : X → P1 with that of X and use the same letters as before to denote
curves on Y obtained via the isomorphic projection from those on X. Then,
according to [11, Proposition 4.3] we have that rk(j2,y) = 5 at all points
of Y except at the six vertices of the hexagon H, where rk(j2,y) = 3. In
particular, on the singular fiber Fj (j = 1, 2) rk(j2,y) = 3 only at three
points, namely xj (i.e., the point in S), and the two points lying on lines of

(X,L) not contained in a fiber of π, i.e., e0 and ˜̀1,2.
For the del Pezzo surfaces of degree 5 and 4, linearly normally embedded

in P5 and P4, we refer to examples a and b in Section 6.

Example 6. Let X be the del Pezzo surface with K2
X = 2. Consider the

conic fibration π : X → P1 and recall that −KX = σ∗OP2(3) −
∑6

i=0 ei is
ample and spanned but not very ample; here µ = 6. Let F be a general
fiber of π, and set Lm := −KX + mF for every integer m ≥ 0. By using
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Reider’s theorem [14] one can easily prove that Lm is very ample for m ≥ 1.
Note that Lm|F = (−KX)|F = OP1(2). So, from the exact sequence

0→ Lm−1 → Lm → Lm|F = OP1(2)→ 0

for m ≥ 1, computing cohomology inductively, we get h1(Lm) = 0 and
h0(Lm) = h0(L0) + 3m = h0(−KX) + 3m = 3(1 + m). On the other hand,
L2m = K2

X + 2m(−KX) · F = 2 + 4m. For instance, let m = 2. Then
L := L2 embeds X in P8 as a conic fibration of degree d = 10. As to the
plane model of (X,L), it is immediate to see that |L| corresponds to a linear
system of plane quintics having a triple point and six further base points.
Then (X,L) has sectional genus 3. Take x ∈ F on a smooth fiber. Since
X ⊂ P8 and 8 ≥ 3k − 1 all the assumptions of the general discussion in
Section 3 are satisfied for k ≤ 3, with V = H0(X,L), since L and L − F
are both very ample and L − 2F is ample and spanned. Recall that here
J1 is the ramification divisor R of the double cover X → P2 defined by
| − KX | = |L − 2F |, while J2 = ∅. In conclusion, rk(j2,x) = 6 for every
x 6∈ Σ. So, Φ2(X) = Σ. On the other hand, rk(j3,x) = 8 or 9 according to
whether x is or is not on R. Thus s3 = 9 and Φ3(X) = Σ ∪R.

Example 7. Let X be the del Pezzo surface with K2
X = 1. The morphism π :

X → P1 makes X a conic fibration with respect to −KX , which here is only
ample, and spanned just outside a single point x0 (see Section 2); moreover,
µ = 7. Let F be a general fiber of π. We claim that Lm := −KX+mF is very
ample for every m ≥ 1. This follows from Reider’s theorem for m ≥ 2, while
for m = 1, −KX +F = σ∗OP2(4)−2e0−

∑7
j=1 ej , hence the very ampleness

follows from [2, Remark 3.4.1, fifth case in Table I], since the points pi’s are
in general position. Arguing as in Example 6, we get h0(Lm) = 2 + 3m. On
the other hand, L2m = K2

X+2m(−KX)F = 1+4m. Set m = 3; then L := L3
embeds X in P10 as a conic fibration of degree d = 13. As to the plane model
of (X,L), since L = −KX +3F = σ∗OP2(6)−4e0−

∑7
j=1 ej , |L| corresponds

to a linear system of plane sextics having a 4-tuple point and seven further
base points, and then (X,L) has sectional genus 4. Take x ∈ F on a smooth
fiber. The general discussion in Section 3 applies with V = H0(X,L), since
L, L − F and L − 2F are all very ample, and 3k − 1 ≤ 10 for k = 3. Thus
rk(j2,x) = 6 for every x 6∈ Σ and then Φ2(X) = Σ. On the other hand, by
Proposition 4, |L − 4x| = 2F + |L − 2F − 2x| = 2F + |L1 − 2x|. Since L1 =
−KX + F is very ample (8) applies and then rk(j3,x) = 9 for every x 6∈ Σ.
Therefore Φ3(X) = Σ. Let k = 4. Since the inequality 3k ≤ N + 1 = 11
is not satisfied, X is hypo-osculating. Clearly, Σ ∪ x0 ⊆ Φ4(X); moreover,
pushing the discussion in Section 3 one step further, for x 6∈ (Σ∪ x0) we see
that |L − 5x| = ∅, i.e., rk(j3,x) = 11, except at the singular point x of any
singular element of | −KX |, where, obviously, dim(| −KX − 2x|) = 0. So
Φ4(X) \ (Σ ∪ x0) is a finite set, and rk(j4,x) = 10 at each of its points.

Example 8. Let X = Fe and let L = [2s+ βf ], for some integer β ≥ 2e+ 3.
This condition ensures that L, L − f , and L − 2f are very ample, for any
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fiber f . Consider the rational conic bundle X ⊂ PN embedded by |L|. Since
h0(L) = 3(β−e+1) by (5), we have N ≥ 3(e+3)+2 = 11+3e ≥ 11. So, the
simplest case is that of (X,L) = (P1 × P1,O(2, 3)), in which, X ⊂ P11. In
particular, for k ≤ 3 the general discussion in Section 3 applies. Fix x ∈ X
and let F be the fiber through x. Since |L − 3x| = F + |L − F − 2x| by
Proposition 3 and L − F is very ample we get rk(j2,x) = 6 at every point
x ∈ X by (8). Moreover, |L − 4x| = 2F + |L − 2F − 2x|, by Proposition
4, and then rk(j3,x) = 9 at every point x ∈ X, since L − 2F is very ample.
In conclusion, X is uninflected for both k = 2 and 3. Since N ≥ 11,
there is room enough to consider also case k = 4. We have |L − 5x| =
3F + |L − 3F − 2x|. Note that L − 3F = [2s + (β − 3)f ] is very ample
as well, provided that β > 2e + 3, hence rk(j4,x) = 12 for every x ∈ X
by (8). Therefore Φ4(X) = ∅. Now let β = 2e + 3. To exhibit different
behaviors, let us consider cases, e = 0 and e = 1. First, suppose that e = 0.
Then X = P1 × P1 embedded in P11 by |O(2, 3)|. In this case, L − 3F =
[2s] = O(2, 0), hence dim(|L − 5x|) = dim(|2s − 2x|) = 0 for every x ∈ X.
This is equivalent to rk(j4,x) = 11, which means that X ⊂ P11 is perfectly
hypo-osculating. Next suppose that e = 1; then (X,L) = (F1, [2s + 5f ])
and |L| embeds X in P14. We have |L − 5x| = 3F + |L − 3F − 2x| even
in this case, but now, L − 3F = [2s + 2f ] is the line bundle we denoted
by M in Example 1. Thus |L − 5x| = 3F + |M − 2x|, and by what we
proved there, dim(|M− 2x|) = 3 or 2 according to whether x ∈ s or x 6∈ s,
respectively. Then rk(j4,x) = 14 − dim(|M − 2x|), since dim(|L|) = 14.
Therefore, s4 = 12, and Φ4(X) = s, with rk(j4,x) = 11 for every x ∈ s.

Finally let us discuss some irrational conic bundles.

Example 9 (an indecomposable elliptic conic bundle in P8). Let C be a
smooth curve of genus 1 and let U be the rank-2 vector bundle on C arising
as a non split extension

(9) 0→ OC → U → OC(z)→ 0,

for some z ∈ C. Recall that U is ample. Consider the P1-bundle over C,
X := P(U), with projection π, denote by σ the tautological section and set
Fy = π−1(y) for any y ∈ C. The line bundle L := 2σ + Fy + Fy′ is very
ample for any y, y′ ∈ C, by [3, Theorem 6.3]. Moreover, as h0(L) = h0(S2U⊗
OC(y+y′)) = 3 + 3 deg(y+y′) = 9, |L| embeds X in P8 as a conic bundle of
degree L2 = (2σ + 2Fy)

2 = 12. Fix any point x ∈ X and let F be the fiber
containing x. We have |L−3x| = F+|L−F−2x|, by Proposition 3. Take x′ ∈
C such that x′+π(x) ∼ y+y′. Then L−F = 2σ+Fx′ and this line bundle is
very ample, as Reider’s theorem shows. Thus S = |L−F−2x| has dimension
2 and then rk(j2,x) = 6. Therefore Φ2(X) = ∅. Now let us determine Φ3(X).
By using Proposition 4 and arguing as before, we are reduced to consider
S = |L − 2F − 2x|. Note that L − 2F is numerically equivalent to 2σ,
hence it is ample and spanned, as Reider’s theorem immediately shows. As
h0(L − 2F ) = h0(S2U ⊗ OC(y + y′ − 2π(x))) = deg(S2U) = 3, it defines a
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finite morphism ϕ : X → P2 of degree (L − 2F )2 = 4. Let Ji denote the
i-th jumping set of L−2F for i = 1, 2. Thus (8) implies that rk(j3,x) = 9, 8,
or 7, according to whether x 6∈ J1, x ∈ J1 \ J2, or x ∈ J2, respectively. In
conclusion, s3 = 9 and Φ3(X) ∩ F = J1 ∩ F , for every fiber F .

Example 10 (Segre product in P8). Let X ⊂ P8 be the Segre product of a
smooth plane cubic C ⊂ P2, with hyperplane bundle H = OC(y1 + y2 + y3),
(yi ∈ C), and of a smooth conic, namely the image of P1 embedded in P2

via OP1(2). Here L = π∗H ⊗ ρ∗OP1(2), where π and ρ are the projections
of X onto the factors. Clearly, X is a conic bundle via π, and it is linearly
normally embedded in P8 by L. Let x ∈ X and let F be the fiber of π
through x. As to Φ2(X) we can prove the following: rk(j2,x) = 6 or 5,
according to whether x ∈ X \ J1, or x ∈ J1 respectively, where J1 is the
first jumping set of L − F . In particular Φ2(X) = J1. As to 3-osculation,
we get that rk(j3,x) = 7 or 8, according to whether π(x) is a flex of C or
not, as expected. In conclusion, X is hypo-osculating for k = 3, and Φ3(X)
consists of the nine fibers π−1(y) such that 3y ∈ |H|. We omit details for
brevity.

6. conic fibrations with inflectional locus of expected
codimension

Let X ⊂ PN = P(V ) be a conic fibration over a smooth curve C. Here we
focus on the inflectional locus Φk(X), k being the largest integer such that
3k ≤ N + 1, except for k = 2, in which case, for sake of completeness, we
allow the possibility N = 4. Consider the sheaf homomorphism jk : VX →
PkX(L) and recall that VX and PkX(L) are locally free sheaves with ranks

dim(V ) = N + 1 and
(
k+2
2

)
, respectively. We set

(10) ` :=
(
N + 1− (sk − 1)

)((k + 2

2

)
− (sk − 1)

)
.

Clearly Φk(X) has codimension ≤ `: as usual, if equality holds, we say that
Φk(X) has the expected codimension. It is natural to ask when ` coincides
with the true codimension of Φk(X). Clearly, this can happen very rarely,
since X has dimension 2. In fact we have the following answer.

Proposition 10. Let X ⊂ PN be a conic fibration and suppose that Φk(X)
has the expected codimension. Then k ≤ 3. Moreover, (k, sk, N, `) can only
be one of the following 4-tuples:

(a) (2, 6, 5, 1);
(b) (2, 5, 4, 2);
(c) (2, 6, 6, 2);
(d) (3, 9, 8, 2).
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Proof. By assumption Φk(X) has codimension `, given by (10). Since ` ≤
dim(X) = 2 we get

N ≤ sk − 2 +
2(

k+2
2

)
− (sk − 1)

.

On the other hand, N ≥ sk − 1, since X ⊂ PN . Hence

(11) sk − 1 ≤ N ≤ sk − 2 +
2(

k+2
2

)
− (sk − 1)

.

In particular, this says that
(
k+2
2

)
− (sk − 1) ≥ 2. Equivalently,(

k + 2

2

)
− 1 ≤ sk,

and recalling (3) we conclude that k ≤ 3. Now, letting k = 3 and going over
the above inequalities we see that s3 ≥ 9, hence s3 = 9 by (3), and then
N = 8 by (11). Similarly, letting k = 2 we get s2 ≥ 5. On the other hand,
s2 ≤ 6 by (3). Thus (11) shows that 5 ≤ N ≤ 6 if s2 = 6 (the maximum),
while N = 4 if s2 = 5. The corresponding values of ` are given by (10). �

The following result generalizes [12, Theorem 17].

Theorem 11. Let X ⊂ PN = P(V ) be a conic fibration over a smooth curve,
and let sk be the generic rank of jk. Suppose that Φk(X) has the expected
codimension ` expressed by (10) (or, possibly, is empty). Then the following
holds according to the cases listed in Proposition 10: in case (a) Φ2(X) is a
1-dimensional cycle with class

(12) 4KX + 6L.

In cases (b) and (c) Φ2(X) is a 0-dimensional cycle of degree ι, and

(13) ι = 5K2
X + 5c2(X) + 20KXL+ 15L2

in case (b), while

(14) ι = 11K2
X − 5c2(X) + 28KXL+ 21L2

in case (c). Finally, in case (d), Φ3(X) is a 0-dimensional cycle of degree

(15) ι = 40K2
X + 15c2(X) + 90KXL+ 45L2.

Proof. Since sk is the generic rank of the vector bundle map jk : VX →
PkX(L), the inflectional locus Φk(X) can be regarded as the degeneracy lo-
cus Dsk−1(jk) of jk. By assumption, it has the expected codimension (or,
possibly, is empty), hence its cohomology class is given by the Porteous
formula [6, Thm. 14.4, p. 254]:

det
[
c(k+2

2 )−(sk−1)−i+j
(
PkX(L)⊗ V ∨X

)]
, 1 ≤ i, j ≤ dim(V )− (sk − 1).

Therefore, since VX is the trivial bundle we get: [Φ2(X)] = c1
(
P2
X(L)

)
in

case (a), c2
(
P2
X(L)

)
in case (b), and c1

(
P2
X(L)

)2 − c2(P2
X(L)

)
in case (c);
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[Φ3(X)] = c2
(
P3
X(L)), in case (d). Then the expressions in the statement

follow taking into account Lemma 1. �

Not all cases in Proposition 10 are “a priori” effective.

Example a. (12) is the expression found by Shifrin [15, Proposition 0.3] for
the class of Φ2(X) for any not hypo-osculating smooth surface X ⊂ P5.
In particular, if X ⊂ P5 is the del Pezzo surface of degree 5, then by [11,
Theorem 2.1], Φ2(X) consists of the proper transforms via σ : X → P2 of the
lines joining the points p0, . . . , p3 in pairs plus the four exceptional curves ei,
(i = 0, . . . , 3). An immediate check shows that the sum of all these curves
belongs to | − 2KX | = |4KX + 6L|, in accordance with (12).

Example b. Recall that there are just three types of conic fibrations in P4 (see
[12, Section 8] and references therein). One of them is a conic fibration over
a smooth curve of genus 1 [1]; it has 8 singular fibers, degree 8 and sectional
genus 5, hence formula (13) gives ι = 120. The remaining types are both
rational: they are the del Pezzo surface of degree 4 and the Castelnuovo
surface of degree 5. Formula (13) gives ι = 40 and ι = 75 in these two
cases, respectively. For the explicit description of Φ2(X) in the latter case
we refer to Section 7. Here we describe Φ2(X) for the quartic del Pezzo
surface X ⊂ P4, taking this opportunity to amend a wrong assertion in [11,
beginning of p. 351] (where five inflectional points are missed). Notation
as in Section 2. First consider points x ∈ X \ (∪4i=0ei) and let x′ = σ(x).
Then |L − 3x| = ∅ unless x′ = `i,j ∩ `h,k, with i, j 6∈ {h, k}. In this case,
let pm be the fifth point, i. e., {p0, . . . , p4} \ (`i,j ∪ `h,k) = {pm}. Then

|L − 3x| consists of the single divisor ˜̀i,j + ˜̀
h,k + ˜̀, where ˜̀ is the proper

transform via σ of the line 〈x′, pm〉, hence rk(j2,x) = 4. Since for any m ∈
{0, . . . , 4} there are three pairs of lines `i,j , `h,k as above, we get a finite
subset T ⊂ X \ (∪4i=0ei) consisting of 15 inflectional points of this type.
Next, consider points x ∈ ei for some i = 0, . . . , 4, and, for simplicity,
suppose that i = 0. Let C be the unique conic through p0, . . . , p4, let `j
be the line 〈p0, pj〉 if j ≥ 1 and the tangent line to C at p0 if j = 0, and

consider their proper transforms C̃ and ˜̀j , respectively. Let j ≥ 1. We have

σ∗C+σ∗`j = C̃+
∑4

h=0 eh+ ˜̀j +e0 +ej , hence C̃+ ˜̀j +e0 +ej is an element

of |L| = |σ∗OP2(3) −
∑4

h=0 eh|, endowed with a triple point at xj ∈ e0, the
point corresponding to the direction of `j at p0 (j = 1, . . . , 4). Now let j = 0;

then σ∗C+σ∗`0 = C̃+
∑4

h=0 eh + ˜̀
0 + e0, hence C̃+ ˜̀

0 + e0 ∈ |L| and has a
triple point at x0 ∈ e0, the point corresponding to the direction of `0 at p0.
Moreover, we can see that |L − 3x| = ∅ for any other point x ∈ e0. It thus
follows that Φ2(X)∩e0 consists of the five points x0, . . . , x4 described above.
This discussion can be repeated verbatim for every ei, i = 0, . . . , 4, and this
leads to 25 inflectional points lying on ∪4i=0ei. So we get 40 inflectional
points in total, the number predicted by (13).

A conic fibration X ⊂ P6 as in case (c) must be a conic bundle. Otherwise
Φ2(X) ⊇ Σ, which is impossible. For an example see [12, p. 393].
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As to case (d), note that conic fibrations as in Examples 1, 6, 7, 9 in
Section 5 are in P8 and satisfy s3 = 9; however, Φ3(X) has not the expected
codimension. In fact we have

Theorem 12. Case (d) of Proposition 10 does not occur.

This will be proved in three steps.

Step 1. Suppose that X ⊂ P8 is a conic fibration as in case (d) of Propo-
sition 10. Then X must be a conic bundle; otherwise Σ would be contained
in Φ3(X), contradicting ` = 2. Thus µ = 0. Let d and g be the degree and
the sectional genus of X and let q be the genus of the base curve C of X.
Then, recalling Theorem 11, (15) can be rewritten as

ι = 180(g − 1)− 45d− 380(q − 1).

Since X is a P1-bundle over C, expressing the numerical classes of L and
KX in terms of the tautological line bundle and a fiber, genus formula im-
mediately leads to the relation d = 4(g − 1)− 8(q − 1). Substituting in the
previous formula, we thus get:

ι = 20(1− q).
In particular, for the time being, this leads to the following conclusion.

Corollary 13. Let X ⊂ P8 be a conic bundle over a smooth curve C of
genus q, with s3 = 9.

(1) If q ≥ 2 then Φ3(X) is 1-dimensional;
(2) If q = 1 and ` = 2 then X is uninflected (i.e., Φ3(X) = ∅).

So, in case (d) of Proposition 10 X is a conic bundle and q = 0 or 1.

Step 2. Suppose that X is linearly normally embedded in P8.

Proposition 14. Let X be either a rational or an elliptic conic bundle,
linearly normally embedded in PN , with 8 ≤ N ≤ 10; then N = 8. Moreover,
if s3 = 9, then Φ3(X) is 1-dimensional.

Proof. We have h0(L) = N + 1, due to the linear normality. In both cases
q = 0 or 1, set X = P(E), where E is a vector bundle of rank 2 on C,
normalized as in [7, p. 373]; then L = [2s+ π∗b] for some divisor b on C of
degree β. Here s stands for the tautological section of E , hence s2 = deg E .
Set e = −deg E , then s2 = −e and the degree of X is d = L2 = 4(β − e). In
particular, this says that β−e > 0. Let π : X → C be the bundle projection.
By the projection formula we have h0(L) = h0(π∗L) = h0

(
S2E ⊗ OC(b)

)
.

Let q = 0; then X = Fe, and E = OP1 ⊕OP1(−e). Moreover, β > 2e, due
to the (very) ampleness of L. Thus, N + 1 = h0(L) = 3(β − e+ 1), by (5).
Since 8 ≤ N ≤ 10, this shows that N = 8, hence β = e + 2. So, recalling
that β > 2e, we obtain only two possibilities: (X,L) = (F0, [2s + 2f ]) or
(F1, [2s + 3f ]). Examples 1 and 6 in Section 5 show that X is perfectly
hypo-osculating for k = 3, i.e. s3 < 9, in the former case, while X has a
1-dimensional Φ3(X) in the latter.
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Next, let q = 1; then E can be either decomposable or indecomposable.
In the former case, E = OC ⊕ OC(−e), where e is a divisor on C of degree
e ≥ 0 [7, Theorem 2.12 p. 376]. On the other hand, if E is indecomposable,
then either deg E = 0 and E is a non-split extension of OC by OC , or
deg E = 1 and E = U is as in (9) [7, Theorem 2.15 p. 377]. In every
case, degS2E = 3 deg E = −3e and then deg

(
S2E ⊗ OC(b)

)
= 3(β − e),

which is positive. Therefore, S2E ⊗ OC(b) is non-special, hence N + 1 =
h0(L) = h0

(
S2E⊗OC(b)

)
= 3(β−e), by the Riemann–Roch theorem. Since

8 ≤ N ≤ 10, this shows that N = 8, hence β = e + 3. The minimum value
of β for L being very ample is 2e+ 3 by [3, Sections 5 and 6], hence e ≤ 0.
In conclusion we get only the following possibilities: (e, β) = (0, 3), with
E being either decomposable or indecomposable, and (e, β) = (−1, 2) (E
indecomposable).

First suppose that (e, β) = (−1, 2); then we can write b = y+ y′ for some
y, y′ ∈ C. So, L = [2s + Fy + Fy′ ] and then (X,L) is as in Example 9 in
Section 5 (up to renaming σ with s). According to what we proved there,
s3 = 9 and Φ3(X) is 1-dimensional, since for every fiber F of X, Φ3(X)∩F
consists of the (four) points cut out on F by the ramification divisor of the
4-tuple cover ϕ : X → P2 defined by |L − 2F |.

Suppose now that (e, β) = (0, 3). First note that if E is trivial, then
X is as in Example 10 in Section 5. As we have seen, this X is hypo-
osculating for k = 3, but this contradicts condition s3 = 9. So we can
suppose that E is nontrivial. Regardless whether E is decomposable or not,
write b = y1 + y2 + y3 for some points yi ∈ C. We can find points y0, y

′ ∈ C
such that 2y0 + y′ ∈ |b|. So, letting F0 and F ′ denote the corresponding
fibers, we have that L = [2s + 2F0 + F ′]. Let x be a point on F0. Then,
|L − 4x| = 2F0 + |L − 2F0 − 2x|, by Proposition 4. Moreover, L − 2F0 =
[2s+F ′]. Hence, (L−2F0)·s = 1. So, if we choose x = s∩F0, then s must be
a fixed component of |L−2F0−2x|, i. e., |L−2F0−2x| = s+|L−2F0−s−x|.
Note that s+F ′ is a divisor in the linear system |L−2F0−s−x|. Therefore
dim(|L − 4x|) ≥ 0, i.e., rk(j3,x) ≤ 8 at x = s ∩ F0. This means that either
our X ⊂ P8 is hypo-osculating for k = 3, or s3 = 9 and x ∈ Φ3(X), which
contradicts Corollary 13,(2). This concludes the proof. �

Step 3. The linearly normal case being settled, we can suppose that
X ⊂ P8 is not linearly normal. Then our X arises from a rational or elliptic
conic bundle Y ⊂ P9 via an isomorphic projection πc : P9 − − → P8 from
a point c ∈ P9 \ Y (and not even Y is linearly normal, by Proposition 14).
Since s3 = 9 for X, we have that s3 = 9 also for Y . Hence there is a dense
Zariski open subset U ⊆ Y , where rk(j3,y) = 9, and then the 3-osculating
spaces to Y at these points y ∈ U are hyperplanes. Set Hy := Osc3y(Y ) for

y ∈ U ; then Hy = P8. Via the projection πc we have πc(Hy) = Osc3x(X)
where x = πc(y): clearly, this is the whole P8 if c 6∈ Hy, while it is a P7 if
Hy 3 c, and in this case, x ∈ Φ3(X). Note that it cannot be c ∈ Hy for all
y ∈ U ; otherwise, s3 could not be 9 for our X. Therefore, imposing to Hy
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the condition of containing c defines a divisor D in U . Thus, for every y ∈ D
we have that Osc3x(X) is a P7, hence x = πc(y) ∈ Φ3(X). Identifying Y with
X via πc, this shows that Φ3(X) ∩ U is 1-dimensional. This concludes the
proof of Theorem 12.

As a consequence of Theorem 12 we have the following result.

Corollary 15. Let X ⊂ P8 be any conic fibration. If X is not hypo-
osculating for k = 3, then dim(Φ3(X)) = 1.

7. The osculatory behavior of Castelnuovo surfaces

Here we discuss the osculatory behavior of Castelnuovo surfaces for k = 2
and 3. Thanks to the plane model of such surfaces, our approach is similar
to that used in [11] for del Pezzo surfaces, but taking into account the conic
fibration structure, the results in Section 3 enhance the efficiency of our
computations both for k = 2 and 3.

Let X ⊂ PN be a Castelnuovo surface. Referring to Section 2 we can write
L = θ∗OP2(4)−2e0−e1−· · ·−eµ, since r = µ (the number of singular fibers of
the conic fibration π : X → P1). Everywhere in this Section we assume that
X is linearly normally embedded. This is equivalent to N = d− 1 = 11−µ,
where d is the degree. All results will be stated in terms of µ: the conversion
in terms of d is immediate, since d+ µ = 12.

7.1. The second inflectional locus of Castelnuovo surfaces. First of
all, since µ + 1 ≤ 8 and P satisfies condition (6), X is a del Pezzo surface
for µ ≤ 6, but not necessarily if µ = 7. In this subsection we consider case
k = 2. So we have to look at |L − 3x| for every x ∈ X.

Lemma 16. Let x ∈ X and let F be the fiber of X containing x. Then

|L − 3x| =


F + | −KX − 2x| if F is smooth,˜̀
i + | −KX + ei − 2x| if F = ˜̀

i + ei and x ∈ ˜̀i \ ei,
ei + | −KX + ˜̀

i − 2x| if F = ˜̀
i + ei and x ∈ ei \ ˜̀i,

F + | −KX − x| if F = ˜̀
i + ei and x = ˜̀

i ∩ ei.

Proof. If F is smooth, then F = θ∗OP2(1) − e0, while, if F is singular, i.e.,

F = ˜̀
i + ei for some i = 1, . . . , µ, then ˜̀

i = θ∗OP2(1) − e0 − ei, hence
F = θ∗OP2(1)− e0, again. Therefore L−F = −KX for every fiber F . This,
combined with Proposition 3, proves the assertion in all cases: for instance,

if x ∈ ˜̀i + ei, we have L − ˜̀i = L − F + ei = −KX + ei. �

Lemma 16 allows us to evaluate rank(j2,x) at every point x ∈ X. First
suppose that x ∈ X \ Σ.

Proposition 17. Let X ⊂ PN be a Castelnuovo surface, let Σ, µ be as
before, and let x ∈ X \ Σ.

(1) If µ ≤ 5, then rk(j2,x) = 6;
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(2) if µ = 6, then rk(j2,x) = 6 or 5 according to whether x is general or
x ∈ J1(−KX);

(3) if µ = 7, then rk(j2,x) = 5 or 4 according to whether x is general or
a singular point of any singular element of the pencil | −KX |.

Proof. Let F be the smooth fiber of X containing x. By Lemma 16, if
| −KX − 2x| = ∅ then rk(j2,x) = N + 1 = 12− µ by (2). Since s2 ≤ 6, this
can occur only for µ ≥ 6. On the other hand, if | −KX − 2x| 6= ∅ then

rk(j2,x) = N −
(

dim(| −KX |)− h
)
,(16)

by (2), where h is the number of linearly independent linear conditions to
be imposed on an element of | − KX | in order to have a double point at
x. Hence rk(j2,x) = 11 − µ − (8 − µ) + h = 3 + h. Clearly, h = 3 when
−KX is very ample, and this proves (1). If µ = 6, then h = 3 except for the
points x ∈ J1(−KX), where h = 2. Recall that J2(−KX) = ∅ for the del
Pezzo surface of degree 2; so there are no points where h = 1. This gives
(2). Finally, let µ = 7. According to what we said in Section 2, | −KX | is a
pencil, hence | −KX − 2x| = ∅ for the general point x, including x0, which
implies that rk(j2,x) = N + 1 = 5. On the other hand, h = 1 tautologically,
at any singular point of every singular element of |−KX |, hence rk(j2,x) = 4
at those special points. Clearly, if −KX is not ample, these points include
those constituting G∩ ei0 , where G is the (−2)-curve preventing −KX from
being ample. As we said, they cannot be in X \ Σ unless i0 = 0. This
completes the proof. �

Remarks. i) Case (2) provides an example for point (4) of Theorem 5.
ii) In case µ = 6, J1(−KX) is the ramification divisor of the double plane

ϕ : X → P2 defined by | −KX |. By the ramification formula, J1(−KX) ∈
|KX + 3ϕ∗OP2(1)| = | − 2KX |. Therefore, J1(−KX) · F = −2KX · F = 4.
This means that Φ2(X) is a 4-section of X, outside of Σ.

iii) Clearly Proposition 17 includes the case of x ∈ e0 \ Σ. So, if µ = 0
then Σ = ∅ and the discussion is concluded: X ⊂ P11 is uninflected. On the
other hand, if x ∈ e0 ∩ Σ then x ∈ ˜̀i for some i = 1, . . . , µ, and this case
will be settled by the subsequent discussion.

Now consider points x ∈ Σ. We have to analyze the following three

possibilities: 1) x ∈ ˜̀i \ ei for some i = 1, . . . , µ (including the case x =

e0 ∩ ˜̀i); 2) x ∈ ei \ ˜̀i for some i = 1, . . . , µ; 3) x ∈ S.

1) Let x ∈ ˜̀i \ ei, and for simplicity set i = 1. Lemma 16 implies that
dim(|L − 3x|) = dim(| − KX + e1 − 2x|). Moreover, dim(| − KX + e1|) =
dim(| −KX |) + 1. Note that this is the dimension of | −KX1 |, the surface
X1 being obtained by blowing up P2 at P \ {p1}. Clearly, X1 is a del Pezzo
surface with K2

X1
= K2

X + 1 = 9−µ, and dim(|−KX1 |) = 9−µ. Due to the

fact that P consists of distinct points, we can factor θ : X → P2 as θ = β ◦α,
where α : X1 → P2 is the blowing up of P2 at P \ {p1} and β : X → X1 is
the blowing up of X1 at α−1(p1). Since KX = β∗KX1 + e1, we thus see that
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| −KX + e1 − 2x|) = β∗| −KX1 − 2x1|, where x1 = β(x). Arguing as in the
proof of Proposition 17, we get the following. If | −KX1 − 2x1| = ∅, then
rk(j2,x) = N + 1 = 12− µ (which can happen only for µ ≥ 6). On the other
hand, if | −KX1 − 2x1| 6= ∅ then

rk(j2,x) = N −
(

dim(| −KX1 |)− h
)

(17)

where h is the number of linearly independent linear conditions to be im-
posed on an element of |−KX1 | in order to have a double point at x1. Hence
rk(j2,x) = 11− µ− (9− µ) + h = 2 + h. Now, let µ ≤ 6; then −KX1 is very

ample, hence rk(j2,x) = 5 for every x ∈ ˜̀1. On the other hand, if µ = 7, then

rk(j2,x) = 5 except at points x ∈ ˜̀1 ∩ β∗(J1(−KX1)), where rk(j2,x) = 4.
Recall that J2(−KX1) = ∅, X1 being a del Pezzo surface of degree 2, so
there are no points where h = 1. Clearly what we obtained holds for any
i = 1, . . . , µ.

Remark. We stress the following fact concerning case µ = 7. Let F1 = β( ˜̀1).
Then F1 is a smooth fiber of X1, and ˜̀1 = β∗F1− e1. As KX = β∗KX1 + e1
this gives ˜̀1 · β∗(J1(−KX1)) = β∗F1 · β∗(−2KX1) = −2F1 · KX1 = 4. So,

there are four points x on ˜̀1 \ e1 where rk(j2,x) = 4. Clearly the same holds
for every i = 1, . . . , µ.

2) Points x ∈ ei \ ˜̀i for some i = 1, . . . , µ can be discussed in a symmetric

way, considering the surface X ′ obtained by contracting the (−1)-curve ˜̀1
and we get rk(j2,x) = N +1 = 5 at the general point of ei, while rk(j2,x) = 4
at four points. We omit details for brevity.

3) Finally, let x ∈ S, i. e., x = ˜̀
i∩ei for some i = 1 . . . , µ; let i = 1. Lemma

16 says that dim(|L − 3x|) = dim(| −KX − x|). Note that | −KX − x| 6= ∅,
since | − KX | has dimension 8 − µ. So, (2) gives (16) again, where, now,
h is the number of linearly independent linear conditions to be imposed on
an element of | − KX | in order to contain x. By what we said on −KX ,
h = 1 except when µ = 7 and x = x0, the unique base point of the pencil
| − KX |. Clearly, what we said holds for any i = 1, . . . , µ. Therefore,
rk(j2,x) = 11 − µ − (8 − µ) + 1 = 4 at every point of S, unless µ = 7 and
x = x0 in which case rk(j2,x) = 3. This last circumstance is equivalent to
saying that the unassigned base point of the pencil of plane cubics defined
by P is the infinitely near point to pi corresponding to the line `i, for some
i ∈ 1, . . . , µ, which makes the configuration P rather special.

The above conclusions are summarized as follows.

Theorem 18. Let X ⊂ PN be a Castelnuovo surface, let Σ, S, µ be as
before, and let x ∈ X.

(1) If µ ≤ 5 then Φ2(X) = Σ, and there rk(j2,x) = 5 or 4 according to
whether x is general or x ∈ S;

(2) if µ = 6, then Φ2(X) = Σ ∪ J1(−KX), and there rk(j2,x) = 5 or 4
according to whether x is general or x ∈ S;
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(3) if µ = 7, then X is hypo-osculating, and Φ2(X) consists of nine
points on every singular fiber, including S, and of the singular points
of the singular elements of | − KX |. We have rk(j2,x) = 4 at each
of them unless x = x0 (the base point of | −KX |) belongs to S, in
which case rk(j2,x0) = 3.

Remarks. i) Point (3) generalizes the last assertion in [12, Section 8], since
there points p0, . . . , p7 were assumed to satisfy also (7). In particular, for
the Castelnuovo surface X ⊂ P4 of degree 5 it turns out that Φ2(X) consists
of 63 + 12 = 75 points, in accordance with (13).

ii) Condition rk(j2,x) = 3 at some point x ∈ X is equivalent to |L− 2x| =
|L − 3x|; in other words, Osc2x(X) is just the projective tangent plane to X
at x. E. g., if µ = 7 this happens at x0, provided that x0 ∈ S.

7.2. The third inflectional locus of Castelnuovo surfaces. Now let
us come to case k = 3. Here we are interested in |L − 4x| for x ∈ X.
According to the expression of L, any element of |L − 4x| is of the form
θ∗D − 2e0 −

∑µ
i=1 ei, where D is a plane quartic containing P (= P \ {p0}),

having a double point at p0, and satisfying the further conditions necessary
to produce a singular point of multiplicity 4 at x. For any x ∈ X, set
x′ = θ(x), where x′ is either a point of P2 distinct from the pj ’s, or an
infinitely near point to pj (if x ∈ ej for some j = 0, 1, . . . , µ). We denote by
`x the line 〈p0, x′〉 if x 6∈ ∪µi=1ei. Then θ∗`x = F + e0, F being the (either
smooth or singular) fiber of X containing x. By Proposition 4 we know
that F is a fixed component with multiplicity 2 of |L − 4x|, if x ∈ X \ Σ.
First suppose that x ∈ X \ (Σ ∪ e0). Let D be any plane quartic with a
double point at p0, containing P , and having a singular point of multiplicity
4 at x′, so that θ∗D − 2e0 −

∑µ
i=1 ei defines an element in |L − 4x|. The

above assertion is equivalent to claiming that D is reducible and contains
the line `x as a component of multiplicity two. Furthermore, the residual
component, which is a conic, must be in turn reducible into two lines `′, `′′

meeting at x′, in order to have a singular point at x′. Finally, the points
p1, . . . , pµ, if any, must lie on `′ ∪ `′′. So, letting S := |OP2(2) − P − 2x′|
denote the linear system of conics containing P and having a singular point
at x′, what we said at the beginning of Section 5 implies

rk(j3,x) = N − dim(S).(18)

Since no three points of P are collinear, `′∪`′′ contains four of them at most.
So, if µ ≥ 5, then S = ∅, hence rk(j3,x) = N + 1 on X \ (Σ ∪ e0) by (18).
For small values of µ we have the following: if µ ≤ 2 then dim(S) = 2− µ,
unless µ = 2 and x′ ∈ `1,2, in which case, dim(S) = 1. Thus (18) gives
rk(j3,x) = 9 or 8, according to the two cases respectively. If µ = 3, then
S = |OP2(2) − p1 − p2 − p3 − 2x′| is empty in general, while dim(S) = 0 if
x′ ∈ `i,j for some 1 ≤ 1 < j ≤ 3. By (18) we thus get rk(j3,x) = N+1 = 9 or
= 8, accordingly. Finally, let µ = 4: then S = ∅ in general, while dim(S) = 0
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if x′ is an intersection point of two edges of the quadrilateral with vertices
at P . Thus rk(j3,x) = N + 1 = 8 or 7, according to cases. This proves

Lemma 19. Let X ⊂ PN be a Castelnuovo surface and let Σ, P , θ, µ be
as before. Consider any point x ∈ X \ (Σ ∪ e0) and let x′ = θ(x). Then
rk(j3,x) = N + 1 except in the following cases:

(1) µ = 4 and x′ is an intersection point of two edges of the quadrilateral
with vertices at P : there rk(j3,x) = 7;

(2) µ = 3 and x′ ∈ `i,j for some 1 ≤ i < j ≤ 3: there rk(j3,x) = 8;
(3) µ = 2, in which case rk(j3,x) = 9 or 8, according to whether x is

general or x′ ∈ `1,2;
(4) µ ≤ 1, in which case rk(j3,x) = 9.

Now consider points x ∈ e0 \ Σ. In this case even the smooth conic e0
is a fixed component of |L − 4x|, by Lemma 2, part (1), hence |L − 4x| =
2F + e0 + |L − 2F − e0 − x|. Recalling the expression of L and the fact
that θ∗`x = F + e0, we have that L− 2F − e0 = θ∗OP2(2)−

∑µ
j=0 ej , hence

dim(|L−4x|) = dim(S), where S := |OP2(2)−P−x′| is the linear system of
conics through p0, p1, . . . , pµ and tangent at p0 to the direction represented
by x′. Then S = ∅ if µ ≥ 5. If µ = 4 there is just one conic through P, so
dim(S) = 0 only for the point x of e0 representing the tangent direction to
that conic at p0. If µ ≤ 3, then |OP2(2)−P| has dimension 5−(µ+1) = 4−µ,
so that imposing the further condition about the tangency to x′ at p0 we
get dim(S) = 3− µ. Therefore, by (18) we get the following conclusion.

Lemma 20. Let X ⊂ PN be a Castelnuovo surface, let Σ, P, µ be as before,
and let x ∈ e0 \ Σ. Then rk(j3,x) = N + 1 except in the following cases:

(1) µ = 4, in which case rk(j3,x) = 8 or 7 according to whether x is
general or it is the point representing the tangent direction at p0 to
the smooth conic containing P;

(2) µ ≤ 3, in which case rk(j3,x) = 8 at every point of e0 \ Σ.

Clearly, if µ = 0 the discussion is complete: for X ⊂ P11 we have Φ3(X) =
e0, and rk(j3,x) = 8 at every inflectional point.

Now let x ∈ Σ. As we did for k = 2, we have to analyze three possibilities.

1) Suppose that x ∈ ˜̀i \ ei for some i, and let i = 1 for simplicity. So,

µ ≥ 1, and `x = `1 3 x′. Moreover, dim(|L−4x|) = dim(|L−(2 ˜̀1+e1)−2x|)
by Proposition 4. The expression of L and the fact that θ∗`1 = ˜̀

1 + e0 + e1
give L − (2 ˜̀1 + e1) = θ∗OP2(2)−

∑µ
j=2 ej . Hence, dim(|L − 4x|) = dim(S),

where S = |OP2(2) − p2 − · · · − pµ − 2x′|. Therefore what we said before
Lemma 19 when x′ 6∈ ∪µi=1`i can be repeated here by replacing µ with µ−1.
In conclusion, S = ∅ if µ ≥ 6, hence rk(j3,x) = N+1 on `1\e1 by (18). As to
the smaller values of µ, if 1 ≤ µ ≤ 3 then dim(S) = 3−µ, except when µ = 3
and x′ = `1 ∩ `2,3, in which case dim(S) = 1. Thus (18) gives rk(j3,x) = 8 or
7, according to the two cases respectively. If µ = 4 then S = ∅ in general,
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while dim(S) = 0 if x′ = `1 ∩ `i,j for some 2 ≤ i < j ≤ 4, and (18) gives
rk(j3,x) = N + 1 = 8 or 7, accordingly. Finally, let µ = 5: then S = ∅ in
general, while dim(S) = 0 if x′ is the intersection point of two edges of the
quadrilateral defined by p2, p3, p4, p5. Hence rk(j3,x) = N + 1 = 7, except
for this special point x, where rk(j3,x) = 6.

2) Let x ∈ ei \ ˜̀i for some i = 1, . . . , µ, and let i = 1 for simplicity.
Consider `1,x = 〈p1, x′〉, the line through p1 whose direction corresponds to
x and let C be its proper transform on X. Then θ∗`1,x = C + e1. Note that
`1,x 6= `1, because x 6∈ S.

Lemma 21. Let D be any plane nodal quartic such that θ∗D − 2e0 −∑µ
i=1 ei ∈ |L− 4x|. Then D = `1 + `1,x +G, where G ∈ |OP2(2)−P − x′| is

a conic through P and tangent at p1 to the direction x′, corresponding to x.

Proof. 2e1 + ˜̀
1 is in the fixed part of |L − 4x|, by Proposition 4. We have

C ·L = (θ∗OP2(1)−e1)·(OP2(4)−2e0−
∑µ

i=1 ei) = 3, hence C is another fixed
component of |L − 4x|, by Lemma 2, part (1). Note that C 3 x. Therefore,

any element of |L − 4x| can be written as ˜̀1 + 2e1 + C + R, where R is an

element of |L−( ˜̀1+2e1+C)| = |L−(θ∗OP2(2)−e0)| = |θ∗OP2(2)−
∑µ

j=0 ej |,
passing through x (since this condition is enough to guarantee a four-tuple
point at x). This concludes the proof. �

By Lemma 21 dim(|L − 4x|) = dim(S) where now S = |OP2(2)−P − x′|.
So, S = ∅ for µ ≥ 4 and then rk(j3,x) = N + 1, unless µ = 4 and x′ is
the tangent direction at p1 to the unique conic containing P: in this case,
rk(j3,x) = N = 7 at the corresponding point x, by (18). For µ ≤ 3 we have
that dim(S) = 3− µ, hence rk(j3,x) = N − dim(S) = (11− µ)− (3− µ) = 8
by (18); actually no four of the base points of S can be collinear, even if x′ is
in some special position with respect to P. Clearly, the previous discussion
applies to any i = 1, . . . µ.

3) Finally, let x ∈ S, i.e., x = ei ∩ ˜̀i for some i = 1, . . . , µ, and set i = 1

again. We have |L − 4x| = 2( ˜̀1 + e1) + |L − 2( ˜̀1 + e1)|, by Proposition 4,

and L − 2( ˜̀1 + e1) = θ∗OP2(2) −
∑µ

i=1 ei. Hence dim(|L − 4x|) = dim(S),
where now S = |OP2(2) − P | is the linear system of conics containing P .
Thus S = ∅ if µ ≥ 6, while dim(S) = 5 − µ if µ ≤ 5. What we said can
be repeated for every i = 1, . . . , µ. So, (18) gives the following. Let x ∈ S;
then rk(j3,x) = N + 1 if µ ≥ 6, while rk(j3,x) = 6 if µ ≤ 5.

The above conclusions can be summarized as follows.

Theorem 22. Let X ⊂ PN be a Castelnuovo surface, let P, θ, Σ, S, µ be

as before; set ˜̀i,k = θ−1(`i,k) for 1 ≤ i < k ≤ µ, and let x ∈ X.

(1) If µ ≤ 2, then

Φ3(X) = Σ ∪ e0 ∪ ˜̀1,2
(Σ ∪ e0 if µ = 1, and simply e0 if µ = 0), and there rk(j3,x) = 8 or
6 according to whether x is general or x ∈ S;
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(2) if µ = 3, then

Φ3(X) = Σ ∪ e0 ∪
( ⋃
1≤i<j≤3

˜̀
i,j

)
and there, rk(j3,x) = 8 except at x = ˜̀

1∩˜̀2,3, where rk(j3,x) = 7 and
on S, where rk(j3,x) = 6;

(3) if µ = 4, then X is hypo-osculating and Φ3(X) consists of the points
corresponding to the intersections of pairs of lines joining couples of
points of P, plus the five points representing the tangent direction
at pj to the conic containing P (j = 0, . . . , 4), plus S; moreover,
rk(j3,x) = 7 at each of these points except on S, where rk(j3,x) = 6;

(4) if µ = 5, then X is hypo-osculating and Φ3(X) consists of S and of
the points corresponding to the common points in P2, if any, of three
lines joining the six points of P in pairs; furthermore, rk(j3,x) = 6
at all these points.

(5) if µ ≥ 6, then X is perfectly hypo-osculating, and rk(j3,x) = N + 1
at every point.

Remark. In case µ = 5 the existence of a common point x′ to the three
lines containing the six points of P in pairs makes the configuration rather
special, though it does not contradict condition (6). Actually, referring to
the linear system of cubics through P, this simply says that x is an Eckardt
point for the cubic surface obtained by embedding X in P3 via | −KX |.

Finally, let us spend few words on k = 4. Since k must satisfy the
condition 3k ≤ N + 1, either X is hypo-osculating for k = 4, or N = 11, in
which case, (X,L) = (F1, θ

∗OP2(4)− 2e0). Let x ∈ X; elements of |L − 5x|,
if any, are of the form θ∗D − 2e0, for D a suitable plane quartic. Hence
|L − 5x| = ∅ unless x ∈ e0. So, let x ∈ e0; then the fiber F through x is a
fixed component of multiplicity 3 of |L − 5x|, hence D = 3`x + `′, `′ being
a line. Since θ∗`x = F + e0, we see that θ∗D − 2e0 has a singular point
of multiplicity ≥ 5 at x if and only if `′ 3 p0. Thus dim(|L − 5x|) = 1,
since `′ can vary in the pencil |OP2(1)− p0|. In conclusion, Φ4(X) = e0 and
rk(j4,x) = 10, according to (2), for every x ∈ e0.
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