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A B S T R A C T

Introduction: Peripheral T-cell lymphomas represent a rare, heterogeneous group of nodal and extra-
nodal mature T-cell lymphomas. Among those, the subtype of PTCL not otherwise specified (PTCL-NOS)
account for about 25% of all PTCL. While other PTCL subtypes are increasingly recognized as discrete en-
tities based on specific genotypic and phenotypic alterations, the diagnosis of PTCL-NOS is currently
performed on an “exclusion criteria” model, since PTCL-NOS lack pathognomonic features.
Methods: In this review, we describe the classical pathological features of PTCL-NOS and integrate them
with the most recent molecular findings.
Results: Thanks to gene expression profiling and next generation sequencing approaches, we have re-
cently improved our knowledge of PTCL in general and PTCL-NOS in particular. Indeed, specific patterns
of gene expression were reported to segregate PTCL into more homogeneous subtypes associated with
distinct clinical outcome. Furthermore, we describe how immunophenotypic, expression and muta-
tional data helped to better define a new subgroup of PTCL-NOS displaying a global profile close to T
Follicular Helper cell elements. Finally, we review how these new acquisitions are changing the current
diagnostic approach to PTCL-NOS, and how phenotypic features and oncogenic pathways operative in
these lymphomas are becoming targets of novel treatments.
Conclusion: Although no recurrent and specific biological aberrations have been discovered yet, novel
integrated genomic and transcriptomics approaches are significantly improving our knowledge of PTCL
biology and support the development of new powerful diagnostic and prognostic markers, as well as targets
of future therapies.

© 2016 The Authors. Published by Elsevier Ltd on behalf of The Royal College of Pathologists. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).

1. Introduction

Peripheral T-cell lymphomas (PTCL) represent a relatively rare disease that account approximately for 15% of all Non-Hodgkin lym-
phomas in Western countries [1–3].

The current WHO classification recognizes several distinct PTCL subtypes, among which the most frequent are angioimmunoblastic lym-
phoma (AITL), anaplastic large T cell lymphoma (ALCL) with or without ALK gene translocations, and PTCL-not otherwise specified (PTCL-NOS)
(Table 1 and Fig. 1). Overall, these entities encompass approximately 60% of all PTCL [2–5]. With the exception of anaplastic large cell lympho-
mas with ALK translocation, PTCLs are recognized for their aggressive clinical course and poor response to conventional chemotherapy [1,3,6–9].

For many years, the differential diagnosis between PTCL subtypes on pathological morphological, phenotypic and molecular grounds
has posed a great challenge. Aside from ALK-translocated ALCL (ALK pos), which represents to date the only PTCL entity defined by a re-
current chromosomal translocation [2], many different studies aimed at the identification of distinctive biological markers of ALK-
negative (ALK neg) ALCL, AITL and PTCL-NOS have largely failed. The diagnostic discordance rate between pathologists still accounts for
about 30% of cases, representing a big issue for the correct diagnosis and treatment of each patient [10]. Several studies have recently
described novel biological features of ALCL and AITL, providing significant contributions to the pathological characterization of these en-
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tities. High-throughput techniques such as gene expression profiling (GEP) and next generation sequencing (NGS) [11–15] have found
shared genomic and transcriptomic features that justify the existence of ALK-neg ALCL and AITL as distinct clinico-pathological entities,
whereas PTCL-NOS still remains an “orphan” disease, without any pathognomonic feature. For these reasons, a diagnosis of PTCL-NOS is
currently based on an “exclusion criteria” model not defined by specific morphologic, phenotypic or molecular features, and it is likely
that within this diagnostic group lie distinct PTCL subtypes not yet identified [4,7,16,17]. In this review, we will discuss the recent ad-
vances on the understanding of the biology of PTCL and we will specifically focus on the PTCL-NOS subtype where future findings have
the potential to improve diagnostic markers, change current classification criteria and even direct efforts for future therapeutic approaches.

2. Morphology and phenotype

PTCL-NOSs encompass cases that don’t fulfill diagnostic criteria for specific PTCL entities. Therefore, PTCL-NOSs are generally charac-
terized by very heterogeneous histological and immunistochemical (IHC) profiles. In fact, the old Working Formulation listed PTCL-NOS

Table 1
WHO 2008 classification of mature T cell and NK cell neoplasm.

Leukemic

T-cell prolymphocytic leukemia
T-cell large granular lymphocytic leukemia
Adult T cell leukemia/lymphoma
Aggressive NK cell leukemia

Cutaneous

Mycosis fungoides
Sezary Syndrome
Primary cutaneous CD30+ T-cell lymphoproliferative disorder
Lymphomatoid papulosis
Primary cutaneous anaplastic large-cell lymphoma
Primary cutaneous peripheral T-cell lymphomas rare subtypes
Primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma*
Primary cutaneous gamma-delta T-cell lymphoma
Primary cutaneous small/medium CD4+ T-cell lymphoma*

Extranodal

Hepatosplenic T-cell lymphoma
Subcutaneous panniculitic-like T cell lymphoma
Entheropathy associated T-cell lymphoma
Extra nodal NK/T-cell Lymphomas

Nodal

Peripheral T-cell lymphoma not otherwise specified
Angioimmunoblastic T-cell lymphoma
Anaplastic large cell lymphoma, ALK+
Anaplastic large cell lymphoma, ALK−*

* These represent provisional entities or provisional subtypes of other neoplasm. Disease
shown in italic are newly included in the 2008 WHO classification.

Fig. 1. Relative frequencies of non cutaneous mature T-cell lymphoma subtypes in an adult patient population.
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cases as either diffuse small cleaved, mixed, large cell or immunoblastic lymphomas [5,18]. Lymph node involvement is frequent, as only
13% of cases present with extranodal disease only [19]. The normal lymph node architecture is usually effaced by a paracortical or diffuse
proliferation of small, medium and large atypical cells in variable proportions, admixed with variable degrees of vascular proliferation
and inflammatory background of non-neoplastic cells (eosinophils, plasma cells, and histiocytes) [7,20–22]. Differential diagnosis of PTCL-
NOS can be challenging and requires extensive immunophenotyping to exclude AITL, ALK-neg ALCL or Adult T-cell Leukemia/Lymphoma
(ATLL) given the lack of characteristic histological features. Although PTCL-NOSs are usually characterized by specific aberrant T-cell phe-
notypes (i.e. loss of CD5 and CD7 and expression of CD2, CD3, CD4 and/or CD8, the T-cell receptor (TCR) beta-chain (BetaF1)), all investigated
markers have revealed a very low positive and negative predictive value, that do not help differential diagnosis of PTCL-NOS [7] (Table 2).
PTCL-NOS may show confounding features such as presence of Red-Stemberg-like cells and distinct microenvironment alterations typi-
cally associated with AITL, such as clonal restriction of infiltrating B-lymphocytes, sometimes with evidence of Epstein–Barr virus (EBV)
integration, in almost 30% of the cases [4,23–25]. Furthermore, EBV virus is usually negative in tumor cells (detectable only in 5% of cases).
Proliferation rate is usually high and Ki-67 rates exceeding 80% of the tumor cells are associated with a worse prognosis [25–27]. Prompted
by a promising anti-tumoral activity of the anti-CD52 monoclonal antibody Alemtuzumab [28], authors have investigated the prevalence
of CD52 expression among PTCL-NOS and reported it at about 40% of total [2,29]. However, the widely divergent CD52 expression by IHC
has made it quite difficult to reliably identify the CD52+ PTCL-NOS cases across laboratories. Furthermore, the availability of new treat-
ments and the high toxicity of Alemtuzumab have decreased the enthusiasm for this molecule in recent years [30].

Different studies have described potential IHC markers related with overexpression of proteins within PTCL-NOS oncogenic pathways.
One of the most important is the PDGFRA protein that was recently reported to be aberrantly expressed in more than 90% of PTCL-NOS
[31]. Interestingly, PDGFRA is activated by the PDGF-AA ligand secreted by the tumor cells themselves, creating an autocrine stimulation
loop that involved STAT1 and STAT5 activation, resulting in tumor proliferation. Another study has described a high NOTCH1 expression
and activation in more than 50% of PTCL-NOS by IHC, suggesting an involvement of this pathway in mature T-lymphoproliferative disor-
ders [32]. While the role of these aberrantly expressed proteins in the differential diagnosis of PTCL spectrum diseases remains to be established,
they may also represent potential targets for known drug classes such tyrosine kinase inhibitors and NOTCH-inhibitors.

The PTCL-NOS heterogeneity was further refined by the introduction, in the last WHO classification, of specific and distinct morpho-
logical variants such as the lymphoepitelioid (Lennert) Lymphoma, the T-zone and the T Follicular Helper (TFH) variants [2]. The latter
was particularly important accounting to approximately 20–41% of PTCL-NOS and encompasses all cases expressing TFH cell markers and
exhibiting some, but not all, of the morphological features of AITL [33–36]. Morphologically, this variant is usually characterized by atyp-
ical clear cells forming intrafollicular aggregates, small nodular aggregates in a background of progressively transformed germinal centers
or enlarged perifollicular zone nodular aggregates surrounding hyperplastic follicles [2,33]. Despite a TFH phenotype, early stage disease,
partial lymph node involvement, lack of enlarged follicular dendritic cell meshworks and lack of prominent high endothelial venules helps
the distinction from typical AITL. In the past, this variant was described by different terms including: perifollicular. intrafollicular, paracortical
nodular and expanded mantle zone [2].

3. CD30+ PTCL-NOS

A hot topic in the field of PTCL is currently represented by CD30 expression. It is well known that CD30 is highly expressed in all ALCL
and in a significant fraction of PTCL-NOS [2,7,37,38]. Although CD30 staining in PTCL-NOS is typically focal and more variable than that
observed in ALCL, CD30 positivity may make the distinction of PTCL-NOS from ALK-neg ALCL problematic. Furthermore, among a large
series of 376 non-cutaneous PTCLs, CD30 was reported to be expressed in 58% and 63% of PTCL-NOS and AITL, respectively [22]. However
a strong CD30 positivity (>50% of tumor cells) was detected only in 23% and 5% of PTCL-NOS and AITL, respectively (Table 3). Interest-
ingly, gene expression and IHC data suggested that all CD30+ PTCL share distinct biological profile across WHO subgroups [38–41]. In fact,
CD30+ PTCL-NOS and ALK-neg ALCL shared an expression signature that was not present in CD30- PTCL-NOS, and consisted in downregulated
expression of T-cell receptor-associated proximal tyrosine kinases (Lck, Fyn, Itk) and of proteins involved in T-cell differentiation/
activation (CD69, ICOS, CD52, NFATc2), and upregulation of JunB and IRF4 [39]. Interestingly, CD30 has been recently reported to promote

Table 2
Differential diagnosis of nodal peripheral T-cell lymphoma, not otherwise specified, adapted from WHO 2008 classification.

Disease Immunophenotypic features

PTCL-NOS CD4>CD8, Antigen loss frequent (CD7, CD5, CD4/CD8, CD52), CD30+/−, CD56−/+, CD10−, BCL6−, CXCL13−, PD1−
PTCL-NOS TFH CD10+, BCL6+, PD1+ and CXCL13+
AITL CD4+ or mixed CD4/CD8, CD10+/−, BCL6+/−, CXCL13+, PD1+, Hyperplasia of FDC, EBV+, CD20+ B blasts
ATLL CD4+, CD25+, CD7−, CD30−/+, CD15−/+, FoxoP3+/−
ALCL CD30+, ALK+/−, EMA+. CD25+, cytotoxic granules+, CD4+/−, CD3−/+, CD43+
T zone Hyperplasia Mixed CD4/CD8, intact architecture, variable CD25 and CD30, scattered CD20+B cell

Table 3
CD30 ICH expression among PTCLs.

Score 0 (0%) Score 1 (1–25%) Score 2 (25–50%) Score 3 (50–75%) Score 4 (75–100%) Score > 2

ALCL ALK pos [37] 0 0 5% 2% 93% 95%
ALCL ALK neg [38] 0 0 0 0 100% 100%
AITL [37] 37% 47% 10% 5% 0 5%
AITL [38] 51.14% 21.42% 11.9% 9.52% - 9.52%
PTCL-NOS [37] 42% 26% 9% 10% 13% 23%
PTCL-NOS [38] 35.63% 12.64% 20.69% 12.64% 18.39% 31.03%
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IRF4 expression through activation of the NF-kB subunits p52 and RelB [40]. In turn, IRF4 activates MYC in a positive feedback loop that
was also described among ALCLs, suggesting a shared oncogenic pathway [27]. In line with heterogeneity of its expression pattern, the
prognostic value of CD30 expression in PTCL-NOS has raised controversy as well. While reported as a favorable prognostic marker by some
[39], Savage et al. [42] have shown that the survival of patients with high expression of CD30+ (≥80% of tumor cells) was extremely poor
with 5-year overall survival of 19%. Therefore, the clinical relevance of the expression of CD30+ should be investigated in larger cohorts
of patients, stratified for expression levels.

Clearly, the great interest on CD30 expression is due to the high clinical efficacy of the conjugated monoclonal antibody anti-CD30
Brentuximab Vedotin (BV) in naïve and relapsed PTCL patients [28,32–35]. Interestingly, some reports have suggested that BV may even
be active in IHC negative CD30 cases of DLBCL and PTCL [6,43,44]. The disease-specific variability in such an effect could be explained by
the specifics of the inflammatory background of each neoplasm, or by the poorly reproducible evaluation of CD30 expression by IHC [6,7,43,45].
While there is an obvious need for biomarkers and standardized techniques that can help predict response to BV, this molecule presently
represents one of the most attractive novel therapeutic opportunities in the field.

4. Cytogenetic aberrations

The karyotype of PTCL was first evaluated in the 90s by conventional cytogenetic approaches. At the time data were limited by the
rarity of these malignancies in Western countries and interpretation was hampered by issues related to histological classification [7]. These
studies have reported the frequent presence of complex karyotypes [20], with distinct recurrent cytogenetic aberrations such as losses in
chromosomes 6q, 13 or 13q, and gains in 7q. Overall, abnormal clones were identified in 71% of PTCL cases, and 1p36 breakpoints were
observed in almost half of the cases [46–48]. More recently, the spectrum of copy-number abnormalities in PTCL-NOS has been investi-
gated by means of microarray-based comparative genomic hybridization (aCGH) and by genome-wide human single nucleotide polymorphism
(SNP) arrays resulting in a much larger and more detailed catalogue of abnormalities, some of which shared by different studies [49–52].
Among these were deletion of the 9p21 region, containing the tumor suppressor locus CDKN2A/B, deletions in 10p11 (ZEB-1) and 17p13
(TP53). Conversely, chromosome regions with recurrent gain were: 1q32–43, 2p15–16 (REL), 7q22, 8q24, 11q14–25, 17q11–21 and 21q11–
21 (NRIP). However, the three main studies showed important differences in prevalence of specific copy number aberrations suggesting
the low reproducibility of this approach (Table 4).

Table 4
PTCL-NOS copy number aberrations data according with the main next studies.

[52] [50] [49]

Series size 36 51 47
Imbalanced Cases 97% 57% 47%
LOSS
1p31 – 10% –
2q37 – 12% –
5q21 25% – 2%
6q14/6q23 19% 10% –
6q21 31% 10% 8%
6q22 25% – 8%
6q24-qte/6q15-q16 22% – 2%
6q14/6q23 19% –
7p14 – – 36%
8p21 19% – 10%
9p21 31% 31% 13%
10cen-p12 17% 12% 19%
10q23-24 28% 10% –
12q21-q22 28% – –
13q14 – 10% 8%
13q21 36% 21% –
14q11 – 74%
Del17p13 17% 21% 10%
GAIN
1p36 5% – –
1p31 – 10%
1q32-qter 17% – 10%
2p15-16 – – 10%
2q37 – 12% –
3p21, 17% – –
4q21-28 – 14% –
6p25 5% – –
7q22-qter 31% 31% 15%
8q24 19% – 10%
9q33-qter 19% 12% –
11cen-q13 17% – –
11q14.1 – 13.7% 10%
11q23 – – 13%
12p13 8% – –
12q21-q22 – – –
17cen-q21; 25% – 13%
16p 22% 14% –
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Few recurrent translocations have been described in PTCL-NOS. One of the most important and well characterized is the t(5;9)(q33;q22),
causing the overexpression of a chimeric protein where the N-terminus of ITK, a tyrosine kinase required for T-cell development, is fused
to the C-terminus portion of SYK, a non-receptor protein kinase [53]. The resulting ITK-SYK protein retains the N-terminal pleckstrin ho-
mology and proline-rich domains of ITK and the C-terminal kinase domain of SYK. This translocation was found to be associated mainly
with TFH PTCL-NOS, and was not detected in AITL or ALK-neg ALCL, so that it was even proposed as a molecular diagnostic marker de-
fining a distinct PTCL-NOS subgroup [53,54]. Interestingly, further observations have shown high SYK levels by IHC in 133 (94%) PTCL cases,
regardless of the presence of the ITK/SYK translocation, but not in normal T cells [54]. Specifically, this study revealed SYK overexpression
in 35/35 (100%) AITLs, 62/66 (94%) PTCL-NOS, 6/6 (100%) ALCL ALK-pos, 11/12 (92%) ALCL ALK-neg and 19/22 (86%) of other subtypes,
making it one of the most widely expressed oncogenes in PTCLs. In fact, transgenic expression of the ITK/SYK translocation in mice was
able to recapitulate a disease resembling human PTCL, thus underscoring the relevance of this event for disease pathogenesis [55]. This
evidence, combined with the availability of orally available SYK inhibitors [56,57], suggests that SYK merits further evaluation as a can-
didate target for pharmacologic inhibition in patients with PTCL.

Another translocation associated with PTCL-NOS is the t(6;14) (p25;q11.2), resulting in overexpression of the transcription factor IRF4
under the control of the T-cell receptor-alpha (TCRA) locus [58]. This translocation was detected in 12/169 (7%) PTCL-NOS cases that where
all characterized by distinct clinical features with skin and bone marrow involvement at diagnosis.

A recent paper applying next generation sequencing (NGS) to the detection of gross structural changes in 16 PTCL (including 4 PTCL-NOS)
highlighted recurrent abnormalities involving p53-related genes, including inversions and translocations of the TP63 locus and deletions
of CDKN2A, WWOX, and ANKRD11. In particular, TP63 rearrangements were further validated by FISH in a larger series and were found in
9.4% of PTCL-NOS cases (5/53), characterized by higher CD30 and Ki-67 expression, and inferior survival [59]. Thus suggest that, while
TP53 mutations and/or deletions are quite rare in PTCL and PTCL-NOS compared to other lymphoid malignancies [60,61], disruption of
its pathway is a frequent oncogenic event that may contribute to the frequent treatment failures in this class of lymphomas.

Cytogenetic aberrations in general are therefore frequently involved in PTCL-NOS pathogenesis, and play a pivotal role in their bio-
logical complexities. However, the heterogeneity of the neoplastic infiltrate and the inconsistencies in histological PTCL classification could
clearly hamper the discovery of recurrent aberration with significant prevalence. The use of novel methodologies could provide insights
into the genetic complexity of PTCL-NOS, as recently shown in CTCL and ATLL where whole genome sequencing has highlighted a number
of previously unreported recurrent micro-deletions with clear implications for disease pathogenesis [62,63].

5. Gene expression profiling

Gene expression profiling (GEP) has been widely used to improve PTCL diagnosis accuracy and to better understand its pathogenesis.
Specific and robust signatures have been identified for AITL and ALCL, and this has proven so far to be the best approach to distinguish
those entitles from PTCL-NOS [12,33,39,64–68]. In the largest cohort to date, Iqbal et al. have recently confirmed the power of GEP-
derived expression signatures in assigning each PTCL case to the correct subtype, confirming previous reports [12]. This approach proved
to be superior to standard histology/immunohistochemistry, leading to reclassification of a number of patients. As expected, the group
with most reclassified patients was represented by PTCL-NOS, where 55/150 (37%) were classified as either AITL (21), ALK-neg ALCL (17),
γδ-PTCL (13) or ATLL (4) (Fig. 2). Conversely, 26/117 (22%) AITL cases were reclassified as PTCL-NOS based on GEP.

By gene expression profiling many groups described a common PTCL-NOS expression profile, more evident in supervised analysis com-
paring PTCL-NOS with other entities (i.e. AITL and ALCL) [34,68–71]. Conversely, when PTCL-NOSs were considered alone, GEP revealed a

Fig. 2. Percentage of reclassified patients according to gene expression signatures by Iqbal et al. [12]. A total 37% of PTCL-NOS were classified thought other WHO entities:
(i) AITL (n = 21, 14%); (ii) ALCL ALK-neg (n = 17, 11%); (iii) ATLL (n = 4, 3%); (iv) γδ-PTCL (n = 13, 9%). Twenty-six (22%) AITL cases were not molecularly classifiable and changed
to PTCL-NOS.
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significant heterogeneity, again reinforcing the notion that discrete entities are still grouped in this category [12,34]. For example, the
existence of a distinct PTCL-NOS sub-group has been postulated that has a poor prognosis and expresses a unique repertoire of tran-
scripts enriched for pathways associated with T-CD8+ cell differentiation [34]. Among these, transcripts encoding cytotoxic molecules and
the transcription factor TBX21, which has a pivotal role in Th1 cell differentiation at the expenses of Th2 cells, and in the development of
CD8+ effector cells (Fig. 3) [72]. A more recent and larger study on reclassified PTCL-NOS cases confirmed that GEP analysis identified a
TBX21-overexpressing subgroup (49% of patients), but also reported the presence of a second group (33%) characterized by overexpression
of GATA3 [12]. Although GATA3 and TBX21 gene expression levels showed a significant inverse correlation, more than 20% of PTCL-NOS
did not meet criteria for either group and were defined as “unclassified.” Biological and phenotypic features of these “unclassified” PTCL-NOS
patients are still unknown. Conversely, the TBX21 group confirmed a cytotoxic profile and significant enrichment of IFN- and NFkB-related
gene expression signatures, while samples characterized by overexpression of GATA3 and of its known target genes (CCR4, IL18RA, CXCR7,
IK) were enriched for PI3K-, mTOR- and MYC-related signatures. Furthermore, these patients showed a profile compatible with a T-CD4+
cell origin, where GATA3 is known to have a critical role in differentiation and maturation [64,73]. Contrary to the early study [34], sub-
sequent analyses [12,71] showed that TBX21 overexpression by GEP or IHC was associated with a much better prognosis than GATA3
overexpressing cases.

MicroRNA expression profiles have also recently been investigated and highlighted the enrichment of different sets of microRNA in
the various PTCL subtypes when compared to normal mature T-cells [74]. A microRNA-based classifier was then developed that was able
to assign each PTCL case to its correct subgroup with 97.5% concordance when compared with other molecular classifiers, suggesting that
the use of microRNA profiling may improve the diagnosis and classification of PTCL.

6. Mutational spectrum

Different groups have recently investigated the mutational landscape of PTCL by NGS approaches, mainly whole exome sequencing
(WES). Among ALCL and AITL, different genes were reported to be recurrently mutated [7,11,13–15,75]. In ALK-neg ALCL, Crescenzo et al.
recently published a comprehensive characterization of driver genetic alterations converging to STAT3 activation, providing evidence that
inhibition of STAT3 has therapeutic efficacy in vivo [11]. Specifically, STAT3 could be activated by direct mutations and/or JAK1 mutations
in ~20% ALK-neg ALCL. In JAK1/STAT3 WT cases, RNAseq analysis identified novel recurrent oncogenic translocations where the 3’ end of
the tyrosine kinases ROS1 or TYK2 was fused to the 5’ portion of NFkB2, NCOR2 or PABPC4 (all genes with high expression levels in T-cells),
resulting in oncogenic STAT3 activation. Interestingly, these recurring alterations were not found in PTCL NOS with overexpression CD30+
that shared morphological and phenotypic features with ALK-neg ALCL.

Among AITL patients, recent studies surprisingly described mutations in genes previously involved in myeloid malignancies: TET2 (70%),
a methylcytosine dioxygenase that catalyzes the conversion of methylcytosine to 5-hydroxymethylcytosine, DNMT3A (26%), a DNA
methyltransferase, and IDH2 (30%), an enzyme of the Krebs cycle that produces a TET2-inactivating oncometabolite when mutated [13–15,75].
While this suggests a common theme of DNA methylation as a recurrently affected pathway across hematological malignancies, these
mutations tended to frequently co-occur in the same patient in PTCL, differently from what previously reported for example in myelodisplastic
syndromes [76,77]. In addition, mutations in RHOA, a member of the Rho family of small GTPases that control the cytoskeleton actin, were
identified in 50–70% of patients affected by AITL (Table 5). Interestingly, RHOA and IDH2 mutations where found at lower allelic frequen-
cies and in tumor cells only, while co-occurring TET2 and DNMT3A mutations were also found in white cells not belonging to the lymphoma
clone [14]. This suggests an intriguing multi-step tumorigenesis process where first TET2 and/or DNMT3A mutations at the progenitor level/
stem cell level drive the expansion of a hematopoietic clone, likely of the same nature as those recently described in age-related clonal
hematopoiesis [78–80]. This would create a favorable genetic background in mature clonal T-lymphocytes for the development of

Fig. 3. Hypothetical cell-of-origin model for PTCL-NOS based on gene expression data.
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subsequent RHOA mutations that can then divert the phenotype toward a PTCL, similar to what happens in AML where NPM1 mutations
are thought act at in a similar way downstream of pre-existing, non-clinically apparent mutations (Fig. 4) [81].

A similar mutational profile to AITL was also detected in the small number of PTCL-NOSs analyzed by WES (n = 6), and in subsequent
extension cohorts (n = 44) by candidate targeted sequencing [13]. Specifically, 48.5%, 17.2% and 27.3% of PTCL-NOS samples harbored TET2,
RHOA and DNMT3A mutations, respectively, and similar to AITL, all these mutations frequently co-occurred in the same patients. On the
contrary, no IDH2 mutations were initially described among PTCL-NOSs [13]. A comparable mutational spectrum was found in GATA3 and
TBX21 GEP subgroups, thus not providing any insight on the causal relation between the tumor genotype and its expression profile [82].
Interestingly, 13 of 15 PTCL-NOS cases harboring RHOA mutations were characterized by an AITL-like phenotype and had a T-follicular
helper gene expression profile [83]. Furthermore, IDH2 mutational analysis of the large PTCL cohort annotated by GEP [12] showed that
IDH2 mutations were frequent in PTCL-NOS reclassified as AITL (4/11) but almost absent in AITL reclassified as PTCL-NOS (1/14). In ret-
rospect, it is likely that the presence of PTCL NOS cases with TFH profile, which are now known to share more biological and pathological
features with AITL than with PTCL-NOS, was responsible for the asymmetric exchange of IDH2 mutated patients between PTCL-NOS and
AITL prompted by gene expression profiling [33,39,70]. Together, these data suggest that the TFH PTCL-NOS subgroup shares genomic as
well as phenotypic features with AITL more than it does with PTCL-NOS, and stresses the challenges of the current PTCL histologic clas-
sification (Fig. 3).

In light of the above, no specific and recurrent mutations have been found in PTCL-NOS by WES so far. This was recently challenged
by a targeted deep sequencing approach for candidate driver gene mutations in a series of 28 PTCL-NOS samples that excluded cases with
AITL features [84]. With the limitations of a gene-discovery analysis based on a prespecified list of candidate drivers without matched
germline DNA, the report highlighted frequent mutations in genes related to epigenetics. Regulators of histone methylation were mutated
in 25% of cases, including mutations in KMT2D (4/28 cases), KDM6A (3/28) and KMT2A (2/28), and were associated with a poorer survival.
Regulators of DNA methylation were also affected in 25% of cases, including TET2 (3 cases) and DNMT3A (2 cases). Moreover, genes related
to chromatin remodeling mediated by the SWI/SNF complex activity were mutated in 18% of cases and 46% of the cases, respectively. (Table 5).

Table 5
Mutational landscape of AITL and PTCL-NOS according with recent next generation sequencing data.

Ref RHOA TET2 DNMT3A IDH2

AITL PTCL-NOS AITL PTCL-NOS AITL PTCL-NOS AITL PTCL-NOS

[15] 53.3% 7.7% nd nd nd nd nd nd
(24/45) (1/13)

[13] 67% 18% 73% 29% 23% 12% 13% 0%
(22/35) (8/44) (22/30) (5/17) (7/30) (2/17) (4/30) (0/17)

[14] 71% 17% 82.6% 48.5% 26% 27.3% 30.5% 0%
(51/72) (15/87) (38/46) (16/33) (12/46) (9/33) (14/46) (0/33)

[82] 71.8% 27% 59% 46% 38.5% 36.6% 33% 4%
(28/39) (11/41) (23/39) (19/41) (15/39) (15/41) (19/58) (1/24)

Fig. 4. Hypothetical model of T-cell lymphomagenesis based on recent mutational discoveries.
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7. Conclusions and future perspectives

Thanks to the availability of novel, often high-throughput analysis techniques, in the last decades we moved from a purely morpho-
logical description of PTCL cases to a much deeper understanding of their intrinsic biology. This has revealed that AITL and ALK-neg ALCL
have a fairly homogeneous set of genotypic and phenotypic features, justifying their existence as distinct clinico-pathological entities [11–15].
However, PTCL-NOSs are still regarded to as a heterogeneous category encompassing every PTCL case that does not fit into other specific
subtypes. As such, the group of PTCL-NOS is an interesting field of research either to find unifying features of its cases, or to resolve its
heterogeneity into several distinct and more homogeneous subgroups. On this note, it is encouraging to observe how the existence of a
subset of PTCL-NOS that have a follicular appearance and share morphologic and phenotypic features with AITL [85] has more recently
been substantiated by the finding that such cases, grouped into the term TFH PTCL-NOS, are characterized by distinct cytogenetic, transcriptomic
and genomic features that suggest they should be assigned to a distinct entity. We therefore believe that, given the similarities between
TFH PTCL-NOS and AITL, the former subgroup should be excluded from future PTCL-NOS studies, as its inclusion could introduce a con-
founding factor and hamper the correct interpretation of the results. While we are gaining insight into those groups that show the most
distinctive features, it will be harder to find relevant information on the residual cases that still lack unifying features. In the future, an
integrated approach looking at the whole constellation of genomic features (mutations, structural variants, and mutational signatures),
expression profiles and clinical outcomes of PTCL-NOS will hold the promise of shedding some light into this subgroup of PTCLs. Only
such large-scale efforts have the potential to inform on the complex biology of such cases, providing rationale bases for a novel classifi-
cation of PTCL based on real clinico-pathological entities, and possibly to provide novel prognostic markers and therapeutic targets.

While the recent advances described here have not yet translated into advances in clinical practice, it is likely that in the near future,
specific gene mutation or expression patterns will be harnessed as novel diagnostic tests to overcome diagnosis issues related to cases
not univocally classified on morphological grounds. As an example, the search for RHOA and IDH2 mutations is already performed in some
laboratories to distinguish AITL from PTCL-NOS. Furthermore, as increased GATA3 mRNA expression correlates with a poor prognosis, efforts
are underway to validate standardized IHC methods to predict outcome of PTCL-NOS from routine trephines based on the expression of
the GATA3 protein.

PTCL-NOS remains an aggressive disease with a poor survival [1]. Conventional chemotherapy approaches explored so far, including
upfront autologous stem cell transplant, resulted in an unsatisfactory improvement of survival [3,86,87]. The use of novel, targeted treat-
ments in PTCL has shown mixed results (Table 6) [30,88–96]. Nevertheless, biological evidence supporting the use of these novel therapeutic
agents is lacking, and promising responses are admixed with complete failures. The future identification of recurrent genomic aberra-
tions and aberrantly activated oncogenic pathways will thus help the clinician to prioritize novel targeted approaches to be validated in
prospective trials, and provide markers of response that could inform on the best treatment approach in individual patients.

Acknowledgements

NB is supported by MFAG n. 17658 from “Associazione Italiana Ricerca sul Cancro”. AD and CC are supported by “Associazione Italiana
Ricerca sul Cancro” IG 2013.

Conflict of interest

There are no conflicts of interest to report.

References

[1] Ellin F, Landstrom J, Jerkeman M, Relander T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma
Registry. Blood 2014;124:1570–7.

[2] Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumous of haematopoietic and lymphoid tissues. Lyon: International
Agency for Research on Cancer; 2008. p. 185e7.

[3] Vose J, Armitage J, Weisenburger D. International TCLP. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes.
J Clin Oncol 2008;26:4124–30.

[4] Savage KJ, Ferreri AJ, Zinzani PL, Pileri SA. Peripheral T-cell lymphoma – not otherwise specified. Crit Rev Oncol Hematol 2011;79:321–9.
[5] Rizvi MA, Evens AM, Tallman MS, Nelson BP, Rosen ST. T-cell non-Hodgkin lymphoma. Blood 2006;107:1255–64.
[6] Horwitz SM, Coiffier B, Hsi ED, Pro B. Current treatment of peripheral T-cell lymphoma. Clin Adv Hematol Oncol 2011;9:1–15.

Table 6
Clinical trial efficacy results of novel single-agent treatment in relapse/refractory PTCL-NOS patients.

Drug Drug Class PTCL NOSs number ORR CR Ref

Brenutximab Conjugated MoAb anti-CD30 21 31% 14% [91]
Alisertib Aurora Kinasi ia 13 31% 7.5% [88]
Romidepsin HDACib 38 29% 14% [90]
Belinostat HDACib 77 23% – [92]
Pralatrexate Antifolate CTc 53 32% – [93]
Mogamulizumab MoAb anti CCR4e 16 19% 6% [94]
Lenalidomide IMIDsd 14 43% 14% [95]
Bortezomib Proteosome ia 2 50% 50% [96]

a i = inhibitor
b HDACi = Histone Deacetylase Inhibitors
c CT = chemotherapy agent
d IMID = immunomodulatory drug
e MoAb = monoclonal antibody

16 F. Maura et al./Pathogenesis 3 (2016) 9–18

http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0010
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0010
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0015
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0015
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0020
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0020
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0025
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0030
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0035


[7] Inghirami G, Chan WC, Pileri S. malignancies AxcG-dtmol. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications.
Immunol Rev 2015;263:124–59.

[8] Mak V, Hamm J, Chhanabhai M, Shenkier T, Klasa R, Sehn LH, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of
disease and rare long-term survivors. J Clin Oncol 2013;31:1970–6.

[9] Perrone G, Farina L, Corradini P. Current state of art for transplantation paradigms in peripheral T-cell lymphomas. Expert Rev Hematol 2013;6:465–74.
[10] Herrera AF, Crosby-Thompson A, Friedberg JW, Abel GA, Czuczman MS, Gordon LI, et al. Comparison of referring and final pathology for patients with T-cell lymphoma

in the National Comprehensive Cancer Network. Cancer 2014;120:1993–9.
[11] Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M, Chiesa N, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large

cell lymphoma. Cancer Cell 2015;27:516–32.
[12] Iqbal J, Wright G, Wang C, Rosenwald A, Gascoyne RD, Weisenburger DD, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral

T-cell lymphoma. Blood 2014;123:2915–23.
[13] Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in

peripheral T cell lymphomas. Nat Genet 2014;46:166–70.
[14] Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 2014;46:171–5.
[15] Yoo HY, Sung MK, Lee SH, Kim S, Lee H, Park S, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 2014;46:371–5.
[16] Corradini P, Marchetti M, Barosi G, Billio A, Gallamini A, Pileri S, et al. SIE-SIES-GITMO guidelines for the management of adult peripheral T- and NK-cell lymphomas,

excluding mature T-cell leukaemias. Ann Oncol 2014;25:2339–50.
[17] Dreyling M, Thieblemont C, Gallamini A, Arcaini L, Campo E, Hermine O, et al. ESMO Consensus conferences: guidelines on malignant lymphoma. part 2: marginal

zone lymphoma, mantle cell lymphoma, peripheral T-cell lymphoma. Ann Oncol 2013;24:857–77.
[18] Medeiros LJ, Lardelli P, Stetler-Stevenson M, Longo DL, Jaffe ES. Genotypic analysis of diffuse, mixed cell lymphomas. Comparison with morphologic and immunophenotypic

findings. Am J Clin Pathol 1991;95:547–55.
[19] Weisenburger DD, Savage KJ, Harris NL, Gascoyne RD, Jaffe ES, MacLennan KA, et al. Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from

the International Peripheral T-cell Lymphoma Project. Blood 2011;117:3402–8.
[20] Aboellail TA. Pathologic and immunophenotypic characterization of 26 camelid malignant round cell tumors. J Vet Diagn Invest 2013;25:168–72.
[21] Suchi T, Lennert K, Tu LY, Kikuchi M, Sato E, Stansfeld AG, et al. Histopathology and immunohistochemistry of peripheral T cell lymphomas: a proposal for their classification.

J Clin Pathol 1987;40:995–1015.
[22] Weiss LM, Crabtree GS, Rouse RV, Warnke RA. Morphologic and immunologic characterization of 50 peripheral T-cell lymphomas. Am J Pathol 1985;118:316–24.
[23] Dupuis J, Emile JF, Mounier N, Gisselbrecht C, Martin-Garcia N, Petrella T, et al. Prognostic significance of Epstein-Barr virus in nodal peripheral T-cell lymphoma, unspecified:

a Groupe d’Etude des Lymphomes de l’Adulte (GELA) study. Blood 2006;108:4163–9.
[24] Kato S, Takahashi E, Asano N, Tanaka T, Megahed N, Kinoshita T, et al. Nodal cytotoxic molecule (CM)-positive Epstein-Barr virus (EBV)-associated peripheral T cell

lymphoma (PTCL): a clinicopathological study of 26 cases. Histopathology 2012;61:186–99.
[25] Went P, Agostinelli C, Gallamini A, Piccaluga PP, Ascani S, Sabattini E, et al. Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic

score. J Clin Oncol 2006;24:2472–9.
[26] Cuadros M, Dave SS, Jaffe ES, Honrado E, Milne R, Alves J, et al. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin

Oncol 2007;25:3321–9.
[27] Weilemann A, Grau M, Erdmann T, Merkel O, Sobhiafshar U, Anagnostopoulos I, et al. Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma.

Blood 2015;125:124–32.
[28] Gallamini A, Zaja F, Patti C, Billio A, Specchia MR, Tucci A, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma:

results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood 2007;110:2316–23.
[29] Jiang L, Yuan CM, Hubacheck J, Janik JE, Wilson W, Morris JC, et al. Variable CD52 expression in mature T cell and NK cell malignancies: implications for alemtuzumab

therapy. Br J Haematol 2009;145:173–9.
[30] O’Connor OA, Bhagat G, Ganapathi K, Pedersen MB, D’Amore F, Radeski D, et al. Changing the paradigms of treatment in peripheral T-cell lymphoma: from biology to

clinical practice. Clin Cancer Res 2014;20:5240–54.
[31] Piccaluga PP, Rossi M, Agostinelli C, Ricci F, Gazzola A, Righi S, et al. Platelet-derived growth factor alpha mediates the proliferation of peripheral T-cell lymphoma

cells via an autocrine regulatory pathway. Leukemia 2014;28:1687–97.
[32] Kamstrup MR, Gjerdrum LM, Biskup E, Lauenborg BT, Ralfkiaer E, Woetmann A, et al. Notch1 as a potential therapeutic target in cutaneous T-cell lymphoma. Blood

2010;116:2504–12.
[33] Ahearne MJ, Allchin RL, Fox CP, Wagner SD. Follicular helper T-cells: expanding roles in T-cell lymphoma and targets for treatment. Br J Haematol 2014;166:326–35.
[34] Iqbal J, Weisenburger DD, Greiner TC, Vose JM, McKeithan T, Kucuk C, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication

in angioimmunoblastic T-cell lymphoma. Blood 2010;115:1026–36.
[35] Lemonnier F, Couronne L, Parrens M, Jais JP, Travert M, Lamant L, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and

adverse clinical parameters. Blood 2012;120:1466–9.
[36] Rodriguez-Pinilla SM, Atienza L, Murillo C, Perez-Rodriguez A, Montes-Moreno S, Roncador G, et al. Peripheral T-cell lymphoma with follicular T-cell markers. Am J

Surg Pathol 2008;32:1787–99.
[37] Bossard C, Dobay MP, Parrens M, Lamant L, Missiaglia E, Haioun C, et al. Immunohistochemistry as a valuable tool to assess CD30 expression in peripheral T-cell lymphomas:

high correlation with mRNA levels. Blood 2014;124:2983–6.
[38] Sabattini E, Pizzi M, Tabanelli V, Baldin P, Sacchetti CS, Agostinelli C, et al. CD30 expression in peripheral T-cell lymphomas. Haematologica 2013;98:e81–2.
[39] Bisig B, de Reynies A, Bonnet C, Sujobert P, Rickman DS, Marafioti T, et al. CD30-positive peripheral T-cell lymphomas share molecular and phenotypic features.

Haematologica 2013;98:1250–8.
[40] Boddicker RL, Kip NS, Xing X, Zeng Y, Yang ZZ, Lee JH, et al. The oncogenic transcription factor IRF4 is regulated by a novel CD30/NF-kappaB positive feedback loop in

peripheral T-cell lymphoma. Blood 2015;125:3118–27.
[41] de Leval L, Rickman DS, Thielen C, Reynies A, Huang YL, Delsol G, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular

link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 2007;109:4952–63.
[42] Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both

ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 2008;111:5496–504.
[43] Blum KA. CD30: seeing is not always believing. Blood 2015;125:1358–9.
[44] Jacobsen ED, Sharman JP, Oki Y, Advani RH, Winter JN, Bello CM, et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory

DLBCL with variable CD30 expression. Blood 2015;125:1394–402.
[45] Brown MP, Staudacher AH. Could bystander killing contribute significantly to the antitumor activity of brentuximab vedotin given with standard first-line chemotherapy

for Hodgkin lymphoma? Immunotherapy 2014;6:371–5.
[46] Inwards DJ, Habermann TM, Banks PM, Colgan JP, Dewald GW. Cytogenetic findings in 21 cases of peripheral T-cell lymphoma. Am J Hematol 1990;35:88–95.
[47] Schlegelberger B, Himmler A, Bartles H, Kuse R, Sterry W, Grote W. Recurrent chromosome abnormalities in peripheral T-cell lymphomas. Cancer Genet Cytogenet

1994;78:15–22.
[48] Schlegelberger B, Weber-Matthiesen K, Sterry W, Bartels H, Sonnen R, Maschmeyer G, et al. Combined immunophenotyping and karyotyping in peripheral T cell lymphomas

demonstrating different clonal and nonclonal chromosome aberrations in T helper cells. Leuk Lymphoma 1994;15:113–25.
[49] Hartmann S, Gesk S, Scholtysik R, Kreuz M, Bug S, Vater I, et al. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified,

identifies a subgroup with chromosomal aberrations affecting the REL locus. Br J Haematol 2010;148:402–12.
[50] Nakagawa M, Nakagawa-Oshiro A, Karnan S, Tagawa H, Utsunomiya A, Nakamura S, et al. Array comparative genomic hybridization analysis of PTCL-U reveals a distinct

subgroup with genetic alterations similar to lymphoma-type adult T-cell leukemia/lymphoma. Clin Cancer Res 2009;15:30–8.
[51] Nelson M, Horsman DE, Weisenburger DD, Gascoyne RD, Dave BJ, Loberiza FR, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma.

Br J Haematol 2008;141:461–9.
[52] Zettl A, Rudiger T, Konrad MA, Chott A, Simonitsch-Klupp I, Sonnen R, et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell

lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol 2004;164:1837–48.
[53] Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 2006;20:313–18.
[54] Feldman AL, Sun DX, Law ME, Novak AJ, Attygalle AD, Thorland EC, et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia 2008;22:1139–

43.

17F. Maura et al./Pathogenesis 3 (2016) 9–18

http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0040
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0040
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0045
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0045
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0050
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0055
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0055
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0060
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0060
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0065
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0065
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0070
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0070
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0075
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0080
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0085
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0085
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0090
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0090
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0095
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0095
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0100
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0100
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0105
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0110
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0110
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0115
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0120
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0120
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0125
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0125
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0130
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0130
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0135
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0135
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0140
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0140
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0145
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0145
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0150
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0150
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0155
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0155
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0160
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0160
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0165
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0165
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0170
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0175
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0175
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0180
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0180
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0185
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0185
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr9190
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr9190
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0205
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0190
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0190
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0195
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0195
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0200
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0200
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0210
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0210
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0215
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0220
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0220
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0225
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0225
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0230
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0235
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0235
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0240
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0240
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0245
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0245
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0250
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0250
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0255
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0255
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0260
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0260
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0265
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0270
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0270


[55] Pechloff K, Holch J, Ferch U, Schweneker M, Brunner K, Kremer M, et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional
mouse models of peripheral T cell lymphoma. J Exp Med 2010;207:1031–44.

[56] Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin
lymphoma and chronic lymphocytic leukemia. Blood 2010;115:2578–85.

[57] Sharman J, Hawkins M, Kolibaba K, Boxer M, Klein L, Wu M, et al. An open-label phase 2 trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in
chronic lymphocytic leukemia. Blood 2015;125:2336–43.

[58] Feldman AL, Law M, Remstein ED, Macon WR, Erickson LA, Grogg KL, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas.
Leukemia 2009;23:574–80.

[59] Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other
p53-related genes in peripheral T-cell lymphomas. Blood 2012;120:2280–9.

[60] Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature
2015;526:519–24.

[61] Xu-Monette ZY, Wu L, Visco C, Tai YC, Tzankov A, Liu WM, et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated
with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood 2012;120:3986–96.

[62] Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet 2015;47:1011–19.
[63] Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 2015;47:1304–15.
[64] de Leval L, Gaulard P. Cellular origin of T-cell lymphomas. Blood 2014;123:2909–10.
[65] Iqbal J, Wilcox R, Naushad H, Rohr J, Heavican TB, Wang C, et al. Genomic signatures in T-cell lymphoma: how can these improve precision in diagnosis and inform

prognosis? Blood Rev 2015;doi:10.1016/j.blre.2015.08.003.
[66] Piccaluga PP, Agostinelli C, Califano A, Carbone A, Fantoni L, Ferrari S, et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T

follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 2007;67:10703–10.
[67] Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and

new potential therapeutic targets. J Clin Invest 2007;117:823–34.
[68] Piva R, Agnelli L, Pellegrino E, Todoerti K, Grosso V, Tamagno I, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell

lymphoma within peripheral T-cell neoplasms. J Clin Oncol 2010;28:1583–90.
[69] Agnelli L, Mereu E, Pellegrino E, Limongi T, Kwee I, Bergaggio E, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative

anaplastic large-cell lymphoma. Blood 2012;120:1274–81.
[70] Piccaluga PP, Fuligni F, De Leo A, Bertuzzi C, Rossi M, Bacci F, et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas:

results of a phase III diagnostic accuracy study. J Clin Oncol 2013;31:3019–25.
[71] Wang T, Feldman AL, Wada DA, Lu Y, Polk A, Briski R, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features.

Blood 2014;123:3007–15.
[72] Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol 2013;13:777–89.
[73] Wang Y, Misumi I, Gu AD, Curtis TA, Su L, Whitmire JK, et al. GATA-3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling.

Nat Immunol 2013;14:714–22.
[74] Laginestra MA, Piccaluga PP, Fuligni F, Rossi M, Agostinelli C, Righi S, et al. Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma

not otherwise specified. Blood Cancer J 2014;4:259.
[75] Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, Jais JP, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 2012;119:1901–3.
[76] Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia

2014;28:241–7.
[77] Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes.

Blood 2013;122:3616–27. quiz 3699.
[78] Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J

Med 2014;371:2477–87.
[79] Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med

2014;371:2488–98.
[80] McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis.

Cell Rep 2015;10:1239–45.
[81] Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature

2014;506:328–33.
[82] Wang C, McKeithan TW, Gong Q, Zhang W, Bouska A, Rosenwald A, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell

lymphoma. Blood 2015;126:1741–52.
[83] Manso R, Sanchez-Beato M, Monsalvo S, Gomez S, Cereceda L, Llamas P, et al. The RHOA G17V gene mutation occurs frequently in peripheral T-cell lymphoma and is

associated with a characteristic molecular signature. Blood 2014;123:2893–4.
[84] Schatz JH, Horwitz SM, Teruya-Feldstein J, Lunning MA, Viale A, Huberman K, et al. Targeted mutational profiling of peripheral T-cell lymphoma not otherwise specified

highlights new mechanisms in a heterogeneous pathogenesis. Leukemia 2015;29:237–41.
[85] Rudiger T, Ichinohasama R, Ott MM, Muller-Deubert S, Miura I, Ott G, et al. Peripheral T-cell lymphoma with distinct perifollicular growth pattern: a distinct subtype

of T-cell lymphoma? Am J Surg Pathol 2000;24:117–22.
[86] Corradini P, Vitolo U, Rambaldi A, Miceli R, Patriarca F, Gallamini A, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed

patients with peripheral T-cell lymphoma. Leukemia 2014;28:1885–91.
[87] d’Amore F, Relander T, Lauritzsen GF, Jantunen E, Hagberg H, Anderson H, et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01.

J Clin Oncol 2012;30:3093–9.
[88] Barr PM, Li H, Spier C, Mahadevan D, LeBlanc M, Ul Haq M, et al. Phase II Intergroup Trial of Alisertib in Relapsed and Refractory Peripheral T-Cell Lymphoma and

Transformed Mycosis Fungoides: SWOG 1108. J Clin Oncol 2015;33:2399–404.
[89] Coiffier B, Federico M, Caballero D, Dearden C, Morschhauser F, Jager U, et al. Therapeutic options in relapsed or refractory peripheral T-cell lymphoma. Cancer Treat

Rev 2014;40:1080–8.
[90] Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral

T-cell lymphoma after prior systemic therapy. J Clin Oncol 2012;30:631–6.
[91] Horwitz SM, Advani RH, Bartlett NL, Jacobsen ED, Sharman JP, O’Connor OA, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab

vedotin. Blood 2014;123:3095–100.
[92] O’Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the

pivotal phase II BELIEF (CLN-19) study. J Clin Oncol 2015;33:2492–9.
[93] O’Connor OA, Pro B, Pinter-Brown L, Bartlett N, Popplewell L, Coiffier B, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results

from the pivotal PROPEL study. J Clin Oncol 2011;29:1182–9.
[94] Ogura M, Ishida T, Hatake K, Taniwaki M, Ando K, Tobinai K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor

4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol 2014;32:1157–63.
[95] Toumishey E, Prasad A, Dueck G, Chua N, Finch D, Johnston J, et al. Final report of a phase 2 clinical trial of lenalidomide monotherapy for patients with T-cell lymphoma.

Cancer 2015;121:716–23.
[96] Zinzani PL, Musuraca G, Tani M, Stefoni V, Marchi E, Fina M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous

T-cell lymphoma. J Clin Oncol 2007;25:4293–7.

18 F. Maura et al./Pathogenesis 3 (2016) 9–18

http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0275
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0275
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0280
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0280
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0285
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0285
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0290
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0290
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0295
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0295
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0300
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0300
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0305
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0305
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0310
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0315
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0320
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0325
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0325
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0330
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0330
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0335
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0335
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0340
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0340
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0345
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0345
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0350
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0350
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0355
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0355
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0360
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0365
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0365
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0370
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0370
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0375
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0380
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0380
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0385
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0385
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0390
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0390
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0395
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0395
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0400
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0400
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0405
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0405
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0410
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0410
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0415
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0415
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0420
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0420
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0425
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0425
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0430
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0430
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0435
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0435
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0440
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0440
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0445
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0445
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0450
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0450
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0455
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0455
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0460
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0460
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0465
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0465
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0470
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0470
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0475
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0475
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0480
http://refhub.elsevier.com/S2214-6636(16)00003-1/sr0480

	 Biology of peripheral T cell lymphomas – Not otherwise specified: Is something finally happening?
	 Introduction
	 Morphology and phenotype
	 CD30+ PTCL-NOS
	 Cytogenetic aberrations
	 Gene expression profiling
	 Mutational spectrum
	 Conclusions and future perspectives
	 Acknowledgements
	 Conflict of interest
	 new references order was updated in new manuscript version attached. All text correction were reported in the new version as wellReferences


