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Abstract. In this paper, we consider a new method for representing
complex images, e.g., hyperspectral images and video sequences, in terms
of function-valued mappings (FVMs), also known as Banach-valued func-
tions. At each (pixel) location x, the FVM image u(x) is a function, as
opposed to the traditional vector approach. We define the Fourier trans-
form of an FVM as well as Euler-Lagrange conditions for functionals
involving FVMs and then show how these results can be used to devise
some FVM-based methods of denoising. We consider a very simple func-
tional and present some numerical results.

1 Introduction

Vector-valued functions provide a quite natural representation for some types of
images, for example, colour and hyperspectral (HS) images [4,11]. Furthermore,
many efficient vector-based imaging tools have been introduced [2–4,7]. That
being said, the vector-valued approach has some limitations when it comes to
model the internal structure of certain complex data sets. For instance, let us
consider a video sequence, which can be represented as a vector-valued function

u : Ω → R
N . (1)

Here, Ω ⊂ R
2 or R

3 is the spatial domain, and each component ui of the range
of u, 1 ≤ i ≤ N , is a time frame. Proposing a suitable space of functions as
a suitable model for the temporal functions defined at each pixel of the video
is not possible due to the finite dimensionality of the range of u. A similar
situation exists in the case of HS images—here it is important to recall that the
entries ui(x) comprising an HS image represent a discretization or sampling of
the continuously-defined spectral function at x.

In this paper, to overcome the difficulty of modelling the internal structure
of complex data sets using vector-valued functions, we propose to “unvectorize”
c© Springer International Publishing Switzerland 2016
A. Campilho and F. Karray (Eds.): ICIAR 2016, LNCS 9730, pp. 110–119, 2016.
DOI: 10.1007/978-3-319-41501-7 13



Image Denoising Using Euler-Lagrange Equations for FVMs 111

them, i.e., consider the variable y in temporal or spectral space to be continuous
as opposed to discrete. As a result, an image u is represented by a function-valued
mapping (FVM). Briefly, an FVM is a mapping of the form:

u : X → F(Y ), (2)

where X is the support of the FVM (for digital images, the “pixel space”) and
F(Y ) is a Banach space of either real- or complex-valued images supported on
the set Y . In other words, at each x ∈ X, the “value” of the image function
u(x) is a function which belongs to a space F(Y ) that is appropriate to the
application. For example, an HS image could be represented as a FVM of the
form,

u : X ⊂ R
2 → L2(R), (3)

where L2(R) is the space of square-integrable functions supported on the real
line, i.e., spectral functions with finite energy.

Of course, it remains to develop appropriate methods and tools which can
operate on FVMs. In this paper, we define Fourier transforms and an Euler-
Lagrange equation for FVMs which are then employed to denoise HS images.

It is important to mention that the FVM approach is not a novelty in other
fields such as partial differential equations [20], harmonic analysis [15,17], statis-
tics [1], and others [8]. Indeed, FVMs are known in the mathematical community
as Banach-valued functions, the latter being studied mainly by analysts who have
been interested in seeing if the classical results of real-valued functions still hold
in the Banach-valued setting [6,8].

In imaging science, however, this methodology has been barely explored.
Nevertheless, some contributions can be found which employ the concept of
a function which assumes values in an infinite-dimensional Banach space. For
example, in an effort to close the gap between the mathematical formalism of
Banach-valued functions and practical applications in imaging, the authors in
[14] use the FVM approach to provide a solid mathematical platform to describe
and treat diffusion magnetic resonance images. Also, in [13], an analogue of
FVMs is introduced, namely, measure-valued images, which are well suited for
non-local image processing. As a matter of fact, non-local means denoising [5]
and fractal image coding [12] are the two applications that are addressed in [13]
using this measure-valued methodology.

Rather than introducing state-of-the-art algorithms for image denoising, the
main purpose of this paper is to present the FVM approach as a mathematical
framework that may offer interesting possibilities for the image processing com-
munity. That being said, we do present a couple of computational examples that
illustrate both the novelty and the potential of FVMs.

2 Function-Valued Mappings

An FVM is a particular case of a mapping defined between two Banach spaces.
Many definitions and properties that are valid in the real case can be extended
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without difficulties to this setting (see [1,6,8,16,20] for more details). In this
section, we present a definition of the Fourier transform for FVMs, as well as
an Euler-Lagrange equation for a certain type of functionals whose argument
involve these kind of mappings.

2.1 Fourier Transform

In [17], Peetre provides perhaps one of the first generalizations of the Fourier
transform for Banach-valued functions. In fact, for p ∈ (1, 2], Peetre proves
that the Fourier transform is a bounded operator from Lp(R;Z) to Lq(R;Z),
where q is the Hölder conjugate of p and Z is a Banach space. This result was
extended further by Milman in [15]. Along these lines, in [18], as an application
of the Bochner integral [1], the following definition of the Fourier transform is
provided for Banach-valued functions that belong to L1(Rn;H), where H is a
separable Hilbert space:

U(ω) :=
∫
Rn

eiω·x u(x)dx, (4)

Note that in [18], the exponent of the complex exponential has a positive sign.
Moreover, it is shown that U(ω) is well defined and that it is a bounded operator
from L1(Rn;H) to L∞(Rn;H). However, no definition of the inverse Fourier
transform is presented.

The existing definitions of the Fourier transforms for Banach-valued functions
provide the foundation for defining the Fourier transform of FVMs. In particular,
we focus our attention on the elements of the space L1(Rn;F(Y )); that is, the
space of integrable FVMs.

Definition 1. Let u ∈ L1(Rn;F(Y )), where F(Y ) is a complex-valued space.
We define the Fourier transform of u as the integral

F(u)(ω) :=
∫
Rn

e−iω·x u(x)dx, (5)

where ω ∈ R
n. In some cases, we will denote F(u)(ω) as U(ω) as well.

Theorem 1 [18]. F is a bounded operator of the form

F : L1(Rn;F(Y )) → L∞(Rn;F(Y )). (6)

Regarding the inverse transform, this operator is not well defined for all the
elements that belong to L∞(Rn;F(Y )) since not all the FVMs of this space are
in L1(Rn;F(Y )). Given this, as is customary in harmonic analysis [9], we define
this transform under the assumption that both u and U belong to L1(Rn;F(Y )).

Definition 2. If both u and U are elements of L1(Rn;F(Y )), we define the
inverse Fourier transform of U as

F−1(U)(x) :=
1

(2π)n

∫
Rn

eiω·x U(ω)dω. (7)
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Theorem 2 [16]. If both u and U belong to L1(Rn;F(Y )), then

u(x) =
1

(2π)n

∫
Rn

eiω·x U(ω)dω. (8)

It is clear that the operator F is linear, which is, of course, a consequence of
the linearity of the integral of the Fourier transform. Let α, β ∈ C and u, v ∈
L1(Rn;F(Y )). We claim, without proof, that the following equality holds:

F(αu + βv) = αF(u) + βF(v). (9)

As expected, linearity also holds for the inverse operator F−1. Let α, β ∈ C and
U, V ∈ L1(Rn;F(Y )). Then,

F−1(αU + βV ) = αF−1(U) + βF−1(V ). (10)

As with the classical Fourier transform, in the FVM setting, we also have
properties such as translation, scaling, modulation, differentiation with respect
to x and integration. These are presented in the following theorems.

Theorem 3 [16]. Let both u ∈ L1(Rn;F(Y )). Also, let ω0, x0 ∈ R
n and a ∈ R,

a �= 0. Then, the following assertions hold:

1. Translation: F(u(x − x0))(ω) = e−iω·x0U(ω).
2. Modulation: F(e−iω0·xu(x))(ω) = U(ω − ω0).
3. Scaling: F(u(ax))(ω) = 1

|a|n U(ω
a ).

4. Integration:
∫
Rn u(x) dx = U(0).

Theorem 4 [16]. Assume all ∂lu
∂xl

j

and (iωj)lU are elements of L1(Rn;F(Y ))
whenever 0 ≤ l ≤ k. Then,

F

(
∂ku

∂xk
j

)
(ω) = (iωj)kF(u)(ω). (11)

2.2 The Euler-Lagrange Equation

We simply present the Euler-Lagrange equation of a given functional whose argu-
ment is a FVM of the form u : X ⊂ R

n → F(Y ). In particular, we focus our
attention on the following type of functionals:

I(u) =
∫

X

f(x, u(x),∇xu(x))dx, (12)

where f : X × F(Y ) × Gn(Y ) → R is a mapping that is Fréchet differentiable
with respect to all of its arguments, and Gn(Y ) is the Cartesian product of the
range of ∇xu; that is, Gn(Y ) = G(Y )×· · ·×G(Y ), where ∂u

∂xi
: X ⊂ R

n → G(Y ).
As expected, the solution of the Euler-Lagrange equation is a FVM that belongs
to the set of stationary points of I(u).
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Theorem 5 [16]. Let (X,Σ, μ) and (Y, T, ν) be finite measure spaces. Also, let
u : X ⊆ R

n → F(Y ), ∂u
∂xi

: X ⊂ R
n → G(Y ), and assume that the function

Φ(x) := f(x, u(x),∇xu(x)) (13)

is integrable over X. In addition, suppose that the Fréchet derivatives of f :
X × F(Y ) × Gn(Y ) → R with respect to all of its arguments are continuous.
Define the functional I(u) : Z(F(Y ),G(Y )) → R as follows:

I(u) :=
∫

X

f(x, u(x),∇xu(x))dx, (14)

where Z(F(Y ),G(Y )) is a Banach space of FVMs that depends on the function
spaces F(Y ) and G(Y ). If u0 : X ⊂ R

n → F(Y ) is a stationary point of I(u),
u0 is the solution of the equation

∂f

∂u
(u0) − ∇ · ∂f

∂∇xu
(∇xu0) = 0. (15)

where ∂f
∂u ∈ F(Y )∗ and ∂f

∂∇xu ∈ Gn(Y )∗ are the Fréchet derivatives of f with
respect to u and ∇xu respectively, ∇· is the classical divergence operator, and
F(Y )∗ and G(Y )∗ are the dual spaces of F(Y ) and G(Y ) respectively.

We consider Eq. (15) as the Euler-Lagrange equation of the functional I(u)
defined in (14). As its classical counterpart, it is also a necessary condition for
the solutions of the variational problem stated in the previous theorem. However,
it is not a sufficient condition for the existence of such solutions. To determine if
such solutions exist, the standard sufficient conditions from calculus of variations
can be employed to such an end [20].

3 A Simple FVM-Based Denoising Method

In this section we describe one possible denoising method which employs a very
simple functional to be minimized. Our motivation was to be able to use both
the Euler-Lagrange equations as well as Fourier transforms to solve the mini-
mization problem. We begin with the assumption that the HS images belong to
C2(X;L2(Y )), where X ⊂ R

2 and Y ⊂ R. Of course, this is a quite strong—and
“unrealistic”—requirement on the HS image in the spatial direction: piecewise
C2(X;L2(Y )) would be more “realistic.” Our assumption allows us to employ the
formulation of the Euler-Lagrange equation presented earlier, where all deriva-
tives are understood to be defined in the classical sense. Our regularity assump-
tion, however, can be weakened by using the weak formulation of the Euler-
Lagrange equation, which is beyond the scope of this conference paper.

Under this regularity assumption, we propose to recover a denoised recon-
struction ū of an HS image from a noisy observation f by minimizing the fol-
lowing functional I : C2(X;L2(Y )) → R:

min
u

{
1
2

∫
X

‖ρ(u(x) − f(x))‖22 dx +
∫

X

‖∇xu(x)‖22 dx

}
. (16)
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The squared L2 norm of the gradient—a kind of “elastic bending” term—is not
an optimal norm in terms of denoising ability: An L1 norm of the gradient (total
variation) would be more effective. The squared L2 norm was chosen because it
yields a closed-form solution in terms of Fourier transforms.

Also note that we allow the regularization parameter ρ = ρ(y) to be a func-
tion of the spectral parameter y ∈ Y , allowing denoising to be performed with
different intensities across the spectral domain.

From Sect. 2.2, the Euler-Lagrange equation which corresponds to the func-
tional in Eq. (16) is given by

∫
Y

(
ρ(u(x) − f(x)) − ∂2u(x)

∂x2
1

− ∂2u(x)
∂x2

2

)
(y) dy = 0, (17)

Let us recall that the Euler-Lagrange equation states a necessary optimality
condition for optimality. Among all possible solutions to Eq. (16) we consider a
particular solution ū such that

[
∂2ū(x)

∂x2
1

+
∂2ū(x)

∂x2
2

]
(y) − [ρ(ū(x) − f(x)] (y) = 0 (18)

for a.e. x ∈ X and y ∈ Y . Such a ū may be found by means of the Fourier
transform. If we let F (ω) = F{f}(ω) denote the Fourier transform of f , then

ū(y) = F−1

{[
ρ(y)

‖ω‖22 + ρ(y)

]
F (ω)

}
. (19)

In the special case that ρ(y) = ρ0, a constant, Eq. (19) becomes

ū(y) = F−1

{[
ρ0

‖ω‖22 + ρ0

]
F (ω)

}
, (20)

which is the classical low-pass filter result. Because of the simplicity of the model
in (16), i.e., no coupling between spectral components with different y-values, the
filtering in both (19) and (20) may be performed on each y-value independently.
Reversing the roles of the domains X and Y : We may also consider HS
images as mappings from the spectral domain X ⊂ R to the space L2(Y ), where
Y ⊂ R

2. That is, associated with each spectral value x ∈ X there is a 2D spatial
image function u(x). In this case, the relevant denoising functional is

min
u

{
1
2

∫
X

‖ρ(u(x) − f(x))‖22 dx +
∫

X

‖u′(x)‖22 dx

}
, (21)

where u′ is the (classical) derivative of the FVM u (see [16] for details). The
procedure described earlier also holds for this representation. In particular, if
ρ : Y ⊂ R

2 → R, a solution for the corresponding Euler-Lagrange equation has
the same form as in Eq. (19), namely,

ū(y) = F−1

{[
ρ(y)

ω2 + ρ(y)

]
F (ω)

}
. (22)
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4 Numerical Examples

In our experiments, we assume, for the sake of simplicity, that the power of the
noise is constant over the entire HS data set. Also, we assume that the noise is
Additive White Gaussian Noise (AWGN). In the discrete context, we consider
HS images as 3-D data sets of size M ×N ×P ; that is, a HS image is a collection
of P bands or channels each one of size M × N . Here we have employed two
HS images, namely, Indian Pines and Salinas-A, the latter being a subset of the
Salinas HS image—both of them can be downloaded from [10]. The sizes of the
3-D Indian Pines and Salinas-A data sets are 145 × 145 × 220 and 83 × 86 × 224,
respectively. AWGN was added to these HS data (assumed to be noiseless). In
all experiments, the Peak Signal-to-Noise Ratio (PSNR) before denoising was
30.103 dB.

As expected, we denoise HS images by means of either Eq. (19) or Eq. (22).
Clearly, these equations yield continuous FVMs u, nevertheless, discrete approx-
imations of such u can be obtained by means of the fast Fourier transform. This
can be done easily by noticing that, in a discrete setting, Eq. (19) is equivalent
to filtering each band of a noisy HS image independently, whereas Eq. (20) is
analogous to denoising each spectral function in an independent fashion. In what
follows, we refer to the filterings yielded by both Eq. (19) and Eq. (20) as the
“SPATIAL” and “SPECTRAL” methods respectively. As expected, the strength
of the denoising process for either each band or spectrum is determined by the
function ρ(y), which we obtained experimentally so that the performance of this
approach is optimal in the Mean Squared Error (MSE) sense. Also, we consider
the case in which ρ is constant across either the spatial or the spectral domains.
Once again, we determine ρ experimentally for optimal performance w.r.t. the
MSE.

Regarding measures of performance, we employed the Peak Signal-to-Noise
Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) [19]. For the
latter, we computed the SSIM between the original and recovered HS images in
both the spatial and spectral domains. In the spatial case, the SSIM is computed
between bands, but in the spectral case the SSIM is computed between spectra.
In each of these cases, an overall SSIM is obtained in the usual way—by simply
averaging over all computed local SSIMs. A summary of the numerical results is
shown in Table 1.

From these results, we observe that denoising with different intensities over
either the spatial or spectral domains improves the performance of the proposed
FVM approach. This should not be surprising since, in general, the PSNR is
not constant across bands and spectra. Having a “regularizing function” ρ(y)
may therefore be deemed a good strategy for denoising purposes. Also, it is
worthwhile to mention that changing the way in which HS images are repre-
sented has also an impact on the obtained reconstructions. Considering HS as
FVMs that assign an image to each wavelength value seems to benefit the SPEC-
TRAL denoising methodology. This may be due to the greater regularity that
HS images tend to have throughout the spectral domain which, in turn, appears
to validate, at least up to a certain extent, the choice of the space C2(X;L2(Y ))
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Table 1. Numerical results w.r.t. different image distances. The PSNR prior to denois-
ing was 30.103 dB. The results presented in the second and fourth columns correspond
to the cases in which the regularizing parameter is constant. The third and fifth columns
show how the performance of the proposed methods is improved when the strength of
the denoising process is allowed to vary across either the spatial or spectral domains.

SPATIAL SPECTRAL

ρ0 ρ(y) ρ0 ρ(y)

SALINAS-A

PSNR (dB) 33.1069 36.3229 34.1434 34.3676

SPATIAL SSIM 0.9008 0.9311 0.8125 0.8254

SPECTRAL SSIM 0.9872 0.9927 0.9874 0.9877

INDIAN PINES

PSNR (dB) 31.5657 34.4031 33.1165 33.1600

SPATIAL SSIM 0.7368 0.8906 0.8035 0.8054

SPECTRAL SSIM 0.9873 0.9934 0.9906 0.9907

Fig. 1. Visual results for Band No. 23 of the Indian Pines image. Top left: Noisy band.
Bottom left: Original (noiseless) band. Bottom right: Reconstructed (denoised)
band. Top right: SSIM map between reconstructed (denoised) and original band.
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Fig. 2. Results of SPECTRAL denoising method for a particular spectral function of
the Indian Pines image. Left: Original (noiseless) spectrum (green) and reconstructed
spectrum (blue). Right: Noisy spectrum (red) and reconstructed spectrum (blue).
(Color figure online)

as a reasonable model for HS images. Lastly, it can be noticed that the SPA-
TIAL method employing the regularization function ρ! : Y ⊂ R → R yields the
best performance. This may be due to the fact that several bands of the noisy
HS images that were considered in these experiments have a high signal-to-noise
ratio, which is an advantage for this method.

Visual results are presented in Figs. 1 and 2. Figure 1 shows how the SPEC-
TRAL method carries out the denoising in the spatial domain—in this case,
ρ : R

2 → R. The SSIM map, shown at the top right of Fig. 1, illustrates the
similarity between the reconstruction (denoised) and the original (noiseless) HS
data for a particular band. The brightness in these maps is proportional to the
magnitude of the local SSIM, i.e., the brighter a given location, the greater the
similarity between the denoised and the original bands at that location [19].

Figure 2 shows an example of the denoising process performed by the afore-
mentioned method in the spectral domain. A comparison between a particular
reconstruction (blue) and the corresponding noisy spectrum (red) is shown on
the left. On the right, the original spectrum (green) along with the corresponding
reconstruction (blue) are shown for comparison.
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