
Indeed, the first component conveniently separates Cluster
2 peaks from the others. Moreover, levels 1 (intersections
with the considered ChIP-seq) of all variables are clustered
together in Cluster 2, indicating high similarity between
the peaks associated to this category.

Genes associated to Cluster 2 tend to be underexpressed
after knockdown of GATA-1
To examine the potential correlation between cluster
membership and gene expression, we associate each
GATA-1 peak to a known gene if it falls within the region
surrounding the transcription start site or in the gene
body. Given that a peak can be assigned to more than one
gene, and conversely each known gene can be associated
to multiple peaks, some genes can turn out to be related
to two or even all clusters (see Additional file 1: Figure
S13a). In order to inspect possible relationships between
peak shape and gene expression, we consider only the
genes that are unambiguously associated to a single clus-
ter in the next analyses. The gene expression experiments

that we study in combination with the results of peak
shape clustering consist in four publicly available RNA-
seqs (RNA sequencings) in K562 cells [27] (GEO Acces-
sion number GSM798057 and GSM798058): two control
samples and two replicates after independent knockdown
for GATA-1. Details about the employed RNA-seq ana-
lysis pipeline can be found in Methods. Gene expres-
sion boxplots (Additional file 1: Figure S14a) show that
there are small differences among the base expression
level (RNA-seq without any treatment) of the genes as-
sociated to different clusters. Indeed, RPKM in Cluster
3 is slightly higher and less variable then the other
clusters, while Cluster 1 shows lower and more vari-
able RPKM. When we focus on the genes that are dif-
ferentially expressed after knockdown of GATA-1,
Cluster 2 exhibits considerable peculiarities (Fig. 9).
Specifically, Cluster 2 genes are more differentially
expressed than genes associated to the other two clus-
ters (13 % versus 7 % for Cluster 1 and Cluster 3).
About 27 % of the differentially expressed genes that

a

b c d

Fig. 8 Combinatorial interaction analysis on the eight transcription factors selected with random forests (see Table 2), in Replicate 1 for K562 cells.
Here we consider having an overlap when GATA-1 peak intersects at least one ChIP-seq replicate for the regulatory element of interest. a Results
considering all the peaks simultaneously. b-d Results concerning the peaks that belong to three clusters separately. In all the plots, each row rep-
resents the overlap of a GATA-1 peak with the eight protein considered. The red color means that there is an intersection, while green stands for
the absence of the protein in the correspondent GATA-1 region. The proportion of GATA-1 peaks that intersect the different proteins is indicated in
brackets near the protein name. Results obtained considering the more stringent rule of having an overlap if the peak intersects all replicates can be
found in Additional file 1: Figure S10
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are associated to at least one GATA-1 peak are down-
regulated following GATA-1 knockdown. This percent-
age remains almost the same if we analyze only the
genes univocally associated to Cluster 1 or Cluster 3
(27 % and 24 %, respectively). Conversely, half of the
genes assigned to Cluster 2 (49 %) are down-regulated.
Therefore the fraction of genes associated to Cluster 2
that are down-regulated after silencing of GATA-1 is
almost double than the ones for the other two clusters
and for the whole set of differentially expressed genes
bound by GATA-1 (Bonferroni corrected p-value of
Fisher’s exact test on the percentage of overexpressed
genes in Cluster 2 is equal to 0.0015). This result sug-
gests that GATA-1 in peaks of Cluster 2 acts more
prevalently as a transcriptional activator. The reported
results are robust to the peak-gene assignment rule: we
obtain the same conclusions even considering different
definitions of promoter regions (≤10 kb or ≤2.5 from
the TSS). The detailed results can be found in
Additional file 1: Figure S13-S15.

GATA-1 in Megakaryocytes
In order to check whether our findings hold in another
biological system, we decide to redo the analysis for the
transcription factor GATA-1 in primary human mega-
karyocyte cultures. The advantage to study GATA-1
binding in primary human megakaryocytes is that they
represent an additional and more relevant biological
model of the in vivo situation. In addition, we analyze an
analogous ChIP-seq in primary mouse megakaryocytes,
to understand whether GATA-1 peak shapes are main-
tained across different organisms.

Three clusters for GATA-1 peaks in human megakaryocytes
We consider a publicly available ChIP-seq experiment by
Tijssen et al. [24] (GEO accession number GSE24674), on
which we apply part of the analysis pipeline described in
Methods (data are not enough for robustness analysis, and
validation is done directly by using the experiments and
results reported in the paper by Tijssen and coauthors).
The sequenced reads are preprocessed as detailed in

Fig. 9 Gene expression analysis. Expression level fold change for differential expressed genes after knockdown of GATA-1 in K562 cells. The
proportion of differential expressed genes in the different clusters is shown above each bar, where purple indicates overexpression, while
cyan displays underexpressed genes. Only the known genes that are univocally associated to a single cluster are shown. Bonferroni corrected
p-values of Fisher’s exact test on the percentage of overexpressed genes (as explained in Method) are shown with asterisks (with codes: <0.001 ‘***’,
<0.01 ‘**’, <0.05 ‘*’). Gene expression analysis results obtained with less and more restrictive definition of promoter regions can be found in Additional
file 1: Figure S15
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Methods. Briefly, BWA is used to map high quality reads
to the human reference genome hg19. Afterward, MACS
is employed to call peaks, obtaining 3399 GATA-1 peaks
(after blacklisted regions filtering). The estimated frag-
ments length of 57 nucleotides is then used to compute
the coverage function for each peak.
Similarly to what we obtained with GATA-1 in K562,

also in megakaryocytes the multivariate analysis on
shape indices leads to three clusters (see the total
within-clusters sum of squares plot in Additional file 1:
Figure 16a). Notably, examining the nature of the result-
ing clusters, we conclude that the selected shapes have
the same characteristics of the ones selected within
K562 peaks, with the only difference being the propor-
tions of peaks in the different clusters. Clustering results
are shown in Additional file 1: Figures S16b-S17 and
Fig. 10 (that report the scatterplot of indices, their distri-
butions and the coverage function in the different
groups), where for the sake of clarity the clusters are
named and colored as their matching pair in K562. In
summary, Cluster 1 includes the majority of the peaks
(~66 %), that are bell-shaped and quite low. Cluster 2 is
the smallest group (~13 % of the peaks) and is composed

by high, bell-shaped peaks. Finally, Cluster 3 comprises
the most complex and wide peaks (~21 % of GATA-1
regions).

Key hematopoietic transcription factors simultaneously
bind regions of Cluster 2
To study the genome-wide binding of multiple transcrip-
tion factors and identify regulatory complexes, Tijssen et
al. generated ChIP-seqs for the hematopoietic transcrip-
tion factors GATA-1, FLI1, GATA-2, RUNX1 and TAL-1.
By analyzing all the regions bound by at least one of these
proteins, the authors showed that the five transcription
factors in megakaryocytes bind the DNA together more
frequently than expected at random [24]. To examine the
potential relationship between the three peak shape clus-
ters and the binding of GATA-1 with different sets of pro-
teins, we pre-process the four ChIP-seq experiments
available (GEO accession number GSE24674) and we use
MACS to identify the binding sites of each transcrip-
tion factor (see Methods). Afterwards, we perform
combinatorial interaction analysis on the whole set of
GATA-1 peaks, as well as on the three clusters separ-
ately. We observe (see Fig. 11) that only Cluster 2 is

a b c

d e f

Fig. 10 The three clusters obtained on shape indices in megakaryocytes. Results of k-mean algorithm with Euclidean distance on the standardized
shape indices, in megakaryocytes. a-c Pointwise boxplots of the coverage function in the three clusters. For each abscissa, black indicates the median
value, dark colors highlight the central 50 % of the distribution, while light colors correspond to the boxplot whiskers. d-f A random sample of 200
peaks (for visualization reason), with colors highlighting the cluster membership. In both images, peaks are registered using as landmark the location
of their maximum height
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characterized by the simultaneous presence of all the
five proteins. Notably, about 15 % of the peaks belonging
to Cluster 2 overlap all five transcription factors together,
while this co-binding is present in only ~1 % and ~3 % of
peaks from Cluster 1 and Cluster 3, respectively. More-
over, at least three proteins among FLI1, GATA-2, RUNX1
and TAL-1 simultaneously bind only ~15 % of GATA-1
sites, but this combination is present in ~44 % of peaks in
Cluster 2. These findings suggest that we can actually use
GATA-1 peak shape to highlight the co-localization pref-
erence of the five hematopoietic transcription factors in
megakaryocytes. Furthermore, 5 of the 6 genes whose de-
pletion resulted in a severe hematological phenotype in
zebrafish (i.e. MARCH2, MAX SMOX, EMILIN1 and
SUFU), that were identified by the co-localization of the
five TFs in [24], are part of Cluster 2. Thus, peak shape
conveys biologically relevant findings.

GATA-1 peaks in mouse and human megakaryocytes
have similar shapes
We apply our analysis pipeline to an ENCODE ChIP-seq
for GATA-1 in mouse megakaryocytes (GEO Accession
number GSM923586 Replicate 1, antibody used: sc-265,

Santa Cruz Biotech) [16]. We start our preprocessing on
the reads already aligned to mm9 reference genome,
then we call peaks using MACS as detailed in Methods.
After filtering our blacklisted regions we obtain 2586
peaks and an estimated fragments length of 52 nucleo-
tides, comparable with the length obtained in human
megakaryocytes. The clustering of shape indices pro-
duces four clusters in this case. However, one cluster is
made of only 13 peaks, and 10 out of 13 lie in repetitive
regions (they have more than 80 % overlap with Repeat-
Masker track), thus they are false positive peaks.
Importantly, these 13 peaks show extreme shapes (they
are quite high, wide, multimodal and really complex
peaks) and our clustering methodology is able to
recognize and group them together. After excluding
this artifact cluster from further analyses, GATA-1 in
mouse and human megakaryocytes have the same num-
ber of clusters, with very similar shapes and indices dis-
tributions. The sole difference we can spot is that
mouse Cluster 2 peaks are a bit more complex than hu-
man Cluster 2 peaks. This result suggests that peak
shape might be the highly similar in the same cell types
of different organisms.

a

b c d

Fig. 11 Combinatorial interaction analysis on the five hematopoietic transcription factors studied in human megakaryocytes. a Results
considering all the peaks simultaneously. b-d Results concerning the peaks that belong to three clusters separately. In all the plots, each row
represents the overlap of a GATA-1 peak with the eight protein considered. The red color means that there is an intersection, while green stands
for the absence of the protein in the correspondent GATA-1 region
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Clustering of shape indices for other ChIP-seq experiments
We examine a set of ChIP-seqs for nine different pro-
teins in K562 cells (see Additional file 4 for details), to
understand whether the clustering of shape indices al-
ways give rise to the same number of clusters and to the
same shapes that are found in GATA-1. All the analyses
are performed using the same methodology described in
Methods. Interestingly, we observe that the number of
clusters varies depending on the protein under consider-
ation. In particular, we obtain four clusters for TRIM28,
CCNT2, Z-MIZ1 and PML, and three clusters for GATA-
2, TAL-1, c-Fos, SP1 and NF-YA. Differences in the num-
ber of clusters depend on the complexity of the data under
analysis. Indeed, in all the experiments that give rise to
four clusters, one of them is quite small (less than 6 % of
peaks belong to it) and contains broad and complex peaks;
we exclude that these peaks are alignment artifacts (as we
observe for GATA-1 in mouse megakaryocytes) because
they are not located in repetitive regions and they show a
central stronger signal. In these cases the peak shapes
appear to be generally more complex than the shapes we
obtained in GATA-1 (Additional file 1: Figures S18-S20
show the representative example of CCNT2 peak shape
clustering). Moreover, different TFs have various rates of
peaks in the different clusters. Among the TFs with three
clusters, we observe that some proteins (such as GATA-2,
c-Fos and SP1) produce almost the same clustering of
GATA-1, while other TFs (TAL-1 and NF-YA) have
slightly more complex shapes, with characteristic rates
(see Additional file 4).

Conclusions
We have developed a novel analysis method that studies
ChIP-seq enriched regions focusing both on the com-
plexity and the signal intensity of peaks. Shape Index
Clustering for ChIP-seq peaks has the ability to identify
different groups of peaks in a single ChIP-seq, based on
differences in peak shape. These differences could not be
identified using either tag counts or peak enrichment
alone. In addition, the proposed pipeline involves several
downstream analyses able to investigate possible rela-
tionships between the peak shape clusters identified by
SIC-ChIP and biological properties.
By applying the proposed analysis pipeline to ChIP-seq

experiments for the transcription factor GATA-1 in
K562 cells and in primary human megakaryocytes, we
have demonstrated that statistically significant different
peak shapes are correlated with several cooperative tran-
scriptional regulators. We have shown that GATA-1
peak shape is associated with characteristic regulatory
complexes and changes in gene expression profiles.
Moreover, peak shape can shed light on previously de-
scribed GATA-1 occupancy profiles. Specifically, consid-
ering GATA-1 ChIP-seqs in K562 cells, peaks belonging

to Cluster 2 emerge as part of a putative protein com-
plex that comprises well known GATA-1 interactors
such as GATA-2 and TAL-1. The target genes of these
peaks appear to be mostly down-regulated after knock-
down of GATA-1, suggesting that GATA-1 in Cluster 2
behaves primarily as a transcriptional activator. This
result is in agreement with previous studies that reported
the ability of GATA-1 to act both as an activator and as a
repressor, and that also highlighted a positive correlation
between activated GATA-1 target genes and binding of
TAL-1 [28, 29]. In conclusion, our study demonstrates
that ChIP-seq shapes include information regarding the
binding of other proteins beside the one used for precipi-
tation and it is correlated with gene expression. Moreover,
studying other ChIP-seq experiments with the same
methodology, we showed that peak shape clustering
depends on the protein under investigation. Thus, ChIP-
seq profiles carry much more information than previously
suspected.
Although we presented our methodology applied mainly

to ChIP-seq experiments for transcription factors, the
same principles can be applied to the investigation of
other ChIP-seq data, e.g. histone modification peaks. Fur-
thermore, a generalization of these methods may be
employed to analyze ChIP-exo data [30]. We expect that
applying the “peak shape concept” to ChIP-exo peaks can
lead to even more interesting and clear correlations
between shape and biological properties, thanks to the
high resolution reached by this technique.

Methods
ChIP-seq pre-processing
Reads alignment and filtering
Mapping reads back on a reference genome is the first
pre-processing step that must be done when analyzing
ChIP-seq data. We perform it by using Burrows-Wheeler
Aligner (BWA) [31], unless we are dealing with ENCODE
ChIP-seqs. In this case, ENCODE mapping is taken as the
starting point of the analysis pipeline. In all cases the
experiments are made up of single-end reads and only
high quality tags that maps uniquely to the genome are
retained for further analysis. Moreover, only autosomes
and X chromosome are considered. Reads duplicates are
discarded too.

Peak calling
The peak caller MACS [18], which is one of the best
ChIP-seq callers [32] and optimally estimates the spatial
resolutions of binding events [2], is run with the aim of
detecting significantly enriched regions in the genome
(namely the peaks) with respect to a control signal.
Peaks represent the areas where the protein of interest
interacts with the DNA. We use MACS default options
except for the p-value cutoff for peak detection, that we
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set to 1e-8 (more stringent than the default 1e-5). In this
step the average length of the initial fragments from
which tags are sequenced is estimated from reads posi-
tions in the two DNA strands.

Filtering of blacklisted regions
The ENCODE Data Analysis Consortium Blacklisted re-
gions [16] (a set of artifact regions in the genome), is used
to filter the resultant peaks, in order to obtain a purified
collection of peaks.

Coverage function computation
Short reads are extended in 3' direction to the average
fragment length estimated before. The coverage function,
defined as the base by base count of the elongated reads,
is then computed.

Multivariate analysis on shape indices
Index computation
Consider the genomic region R = {x1,…,xL} of L contiguous
nucleotide positions found by the peak caller. We define
the corresponding peak as the function f that associates to
each nucleotide xi the coverage function, i.e. the count of
elongated tags, calculated at that position f(xi). We
summarize the shape of each peak with five indices: the
first two are related to the intensity of the signal, while the
others are connected with the complexity of the peak
(Fig. 3). In particular, for each peak we calculate:

1. The maximum height of the peak, i.e. h =maxxi ∈ R

f(xi);
2. The area subtended by the function, i.e. A = ∑xi ∈ R

f(xi);
3. The full width at half maximum, that is the width of

the peak (the projection on genome positions) at
half of its maximum height, i.e. wh/2 =max G - min
G, where G = {xi ∈ R : f(xi) ≥ h/2};

4. The number of local peaks plocal of the smoothed
function, as detailed below;

5. The shape index M (computed as explained below),
divided by the maximum height of the peak.

To calculate the number of local peaks plocal we need,
first of all, to smooth the function f in order to filter out
noise (Fig. 3a). A cubic B-splines basis with knots every
20 nucleotides is fitted by using ordinary least squares
(see, e.g., [33]). The index is the number of local maxima
of the resulting smoothed function, provided that they
are at least 50 nucleotides apart and their difference in
height from the two nearest local minima is more than
the 20 % of the maximum height of the peak.
The shape index M is a measure of the complexity of

the peak that is robust to noise, computed as suggested
in [6, 34]. Each peak is associated with a rooted tree,

built by following the profile of its function f. In particu-
lar, we start with constructing the root of the tree. Then
we look at the value of f at the first nucleotide x1 and we
create a new node of depth f(x1). At this point, for i ∈
2,…,L, the nucleotide xi is considered. A new node is
created in correspondence to an increase of the function
(when f(xi) > f(xi-1)). When the function decreases (that
is f(xi) < f(xi-1)), we move toward the root to the parent
of the current node. Finally, if the function keeps con-
stant (we have f(xi) = f(xi-1)), nothing is done. An
example of a peak and the corresponding tree resulting
from this procedure is shown in Fig. 3b. The index M is
the number of edges in a maximal matching for the con-
structed tree, that is the highest number of edges of the
tree without common nodes. It is clearly extremely
dependent on the height of the tree, that turns out to be
the maximum height of the peak. Consequently, we con-
sider the index M divided by the maximum height h.
The resulting index is related to the complexity of the
peak meaning that, height being equal, it is bigger when
the peak is multimodal so that the tree has multiple
branches. In addition, note that noise in the peak con-
verts to high degree nodes, hence it does not affect the
maximal matching for the tree.

Clustering
We use the k-mean algorithm with Euclidean distance
on the five standardized indices to cluster the peaks (see,
e.g., [35, 36] for details on k-means as well as other
multivariate clustering techniques). In this step, each
replicate is considered separately, with the aim of finding
statistically significant differences in peak shape inside a
single ChIP-seq. The “correct” number of clusters k is
estimated through the analysis of total within-clusters
sum of squares plot. Each resulting cluster is character-
ized by a specific distribution of the five indices, repre-
senting its typical shape. This characterization is
illustrated by the scatterplot of the indices and by the
scatterplots on the first components obtained with PCA
and ICA, all colored according to the clustering obtained
with k-means. Moreover, the different peak shapes in the
resulting clusters are shown by boxplots of the shape in-
dices and pointwise boxplots of the coverage function in
the different clusters, besides the plots of a random sam-
ple of peaks.

Robustness analysis
We take advantage of the multiple replicates, when they
are available, to evaluate the robustness of the proposed
technique. First, only peaks that are present in all repli-
cates are selected. The overlapping regions are defined
as the contigs of the peaks in all replicates, that is the
union of the genomic areas corresponding to peaks with
non-empty intersection in different replicates. Each of
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these regions R = {x1,…,xL} is associated with its corre-
sponding peaks, i.e. the coverage functions fj for each
replicate j = 1,…,J. Intensity and shape indices are com-
puted on all peaks as explained above. Subsequently, the
peaks are clustered independently in each replicate, as il-
lustrated in the last paragraph. Finally, the robustness of
the method is evaluated by means of the correspon-
dences between cluster memberships of a peak in the
different replicates.

Validation and characterization of clusters
Gene ontology analysis
Gene Ontology and other annotation ontologies enrich-
ment analysis is done by using GREAT version 2.0.2 [37]
with default association rule, for the whole set of ChIP-
seq peaks found, as well as for the peaks in each cluster.
This study permits to correlate clusters, and conse-
quently peak shape, with an inferred biological meaning.

Motif analysis
Next step consists in different types of motif analysis. De
novo motif discovery and motif enrichment analysis are
performed with MEME-ChIP version 4.9.1 [38] (with de-
fault parameters), to provide a comprehensive view of
the sequence motifs under the peaks in each cluster.
Furthermore, we also run this tool after sampling the
same number of peaks from each cluster, in order to
compare the significance of the motifs found in the dif-
ferent groups. Afterwards, we analyze motif occurrences
in order to understand how many times the same motif
is present under each peak. We also compute, in each
cluster, the distribution of motif distance from peak
maximum (when more than one motif is found under a
single peak, we consider the lowest distance of the mo-
tifs from the maximum). This points out whether the
motif is central in the peak or it is a side motif.

Peaks localization
To investigate the genomic locations of the different clus-
ters, we annotate each ChIP-seq peak as lying in a pro-
moter, in a gene body or in a intergenic region. We define
the promoter region as the area ≤ 2.5 kb, ≤ 5 kb or ≤ 10 kb
from a transcription start site, using RefGene annotation
database and considering both coding and non-coding
genes. Plots and hypothesis tests are used to evaluate
whether any difference in the proportion of peaks associ-
ated to genes in the different clusters exists, either in
promoters or in gene bodies. Moreover, the potential asso-
ciation of the clusters with a specific gene type (coding or
non-coding) is inspected too.

Analysis of overlap with transcription factors, open
chromatin regions and histone modifications
An important characterization of a group of ChIP-seq
peaks is given by their intersection with other transcrip-
tion factors, indicating the co-occurrence of different
protein bindings in the same site and suggesting the ex-
istence of protein complexes or co-regulatory activities.
Relationships with chromatin accessibility and histone
modifications are also significant. In particular, we ob-
serve that transcription factors are more likely to bind
DNA in open chromatin regions. Therefore, DNase I
hypersensitive sites are considered and used to compute
the proportion of peaks in each cluster that overlap open
chromatin regions. The distribution of the percentage of
intersection, conditionally to be non-zero, is evaluated
too. Both are compared to the random case, obtained by
randomly shuffling the peaks among the chromosome
where they lie, after excluding repetitive elements given
by the RepeatMasker track of UCSC [39]. This allows us
to characterize the different clusters, excluding at the
same time that the procedure described in the previous
subsection selects some clusters of noisy regions with
artifact signals.
Moreover, we use random forest analysis (see [40] for

details about this method) to assess which co-occurrences
are more correlated with the regions of interest and to se-
lect the most important regulatory elements in relation
with the clusters identified as explained before. Specific-
ally, for each single peak of the starting ChIP-seq, we com-
pute the percentage of intersection with the set of regions
selected by a ChIP-seq for a different transcription factor
or histone modification. Doing this calculation for all the
available proteins, we obtain a matrix P whose rows repre-
sent the different peaks, while the columns correspond to
the other considered experiments. We add also a column
with the percentage of intersection with DNase I hyper-
sensitive sites. The various ChIP-seq (and DNase-Seq)
overlaps are the predictors of a random forest classifica-
tion with response the categorical variable of clusters
membership. Priors for the classes are used to handle im-
balanced classification problems. Once the random forest
classifier is built, variable importance is estimated through
the mean decrease in Gini index [40, 41]. Briefly, for each
node within a tree of the random forest classifier, the Gini
index is computed as 1-p2(c1)-…-p2(ck) where p2(ci) is the
proportion of the samples assigned to the node belonging
to category ci. Every time a node is splitted using a certain
variable, there is a decrease in Gini index. The variable
total decrease is given by the sum of these Gini index re-
ductions over all nodes of a tree in which the variable is
used to split. Finally, the mean decrease in Gini index is
obtained averaging over all the trees. By ranking regula-
tory elements according to their importance in classifying
all the different clusters, or one cluster against the others,
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and by looking at concordance between replicates, we can
select a small number N of proteins on which to imple-
ment what we term combinatorial interaction analysis.
The combinatorial interaction analysis consists of

evaluating the number (and the percentage) of peaks of
the starting ChIP-seq that overlap each of the 2N pos-
sible combinations of the transcription factors and
histone modifications selected by using random forests.
The same count is done for the different clusters obtained
in the previous steps. Here we can say that a peak of the
starting ChIP-seq intersects a regulatory element when it
overlaps at least one ChIP-seq replicate for that protein
(less stringent request) or when it overlaps all replicates
(more stringent rule). In both cases we require a mini-
mum overlap of 1 bp. Here we are interested in differ-
ences between clusters regarding specific co-occurrences,
that can give a functional explanation to the statistically
significant different shapes found.
Lastly, after converting the matrix P of the percentage

of intersections to a boolean matrix that indicates over-
lap versus non-overlap, multiple correspondence analysis
(see, for example, [42] for a detailed explanation of this
technique) is used to study the relationships between
overlaps with different proteins, by evaluating all the
replicates simultaneously. The map showing the different
levels of each variable in principal coordinates allows us
to assess the similarity between ChIP-seq replicates for
the same protein and to detect associations in overlap-
ping elements in the different clusters obtained by using
the methodology we proposed before.

Gene differential expression analysis
To assess whether or not peak shape is related to the
regulation of gene expression, we combine the results of
previous clustering and RNA-seq experiments. We assign
each ChIP-seq peak to a known gene (using RefGene data-
base) if the peak is located less than 5 kb from the tran-
scription start site of the gene or if it falls within the gene
body. We inspect less and more restrictive association
rules too, considering peaks located less than 10 kb or
2.5 kb from the transcription start site, besides gene body.
Once the association is established, we inspect the pos-
sible correlations between clusters and gene expressions
by plotting in logarithmic scale the reads per kilobase per
million (RPMK), computed normalizing HTSeq count
results on a RNA-Seq without treatment. Moreover, we
are interested in recognizing peak shapes involved in regu-
lating some genes targeted by the protein of interest. This
goal is achieved by analyzing changes of gene expression
in a RNA-Seq after knockdown of the protein under
investigation. After running DESeq with default options to
select significantly differential expressed genes (the ones
with false discovery rate < 0.05), we analyze the percent-
ages of up and down regulated genes in the silenced cells,

for each cluster. This permits to identify shapes that are
more related to the protein acting as repressor or activa-
tor, respectively. To assess the significance of the findings,
Fisher’s exact test is performed to test the null hypothesis
of independence between this percentages and the associ-
ation of the genes with a particular cluster, versus the al-
ternative hypothesis that the odd ratio is less than one.
Resulting p-values are then corrected for multiple testing
by using Bonferroni method. To avoid mixing of different
clusters, in these analyses we contemplate only the genes
that are univocally associated to a single cluster.
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