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Bayesian networks (BN) implement a graphical model structure known as a directed acyclic graph
(DAG) that is popular in statistics, machine learning, and artificial intelligence. They enable an e↵ective
representation and computation of a joint probability distribution (JPD) over a set of random variables.
The paper focuses on the selection of a robust network structure according to di↵erent learning algorithms
and the measure of arc strength using resampling techniques. Moreover, it shows how ‘what-if’ sensitivity
scenarios are generated with BN using hard and soft evidence in the framework of predictive inference.
Establishing a robust network structure and using it for decision support are two essential enablers for e�-
cient and e↵ective applications of BN to improvements of products and processes. A customer-satisfaction
survey example is presented and R scripts are provided.
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1. Introduction

IMPROVEMENTS are generated from ideas that are
implemented and proven e↵ective. In order to

identify such ideas, statistical analysis can be used
to assess the impact of change in specific variables
on target variables. The paper is focused on mod-
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eling data with Bayesian networks (BN), which are
both mathematically rigorous and intuitively under-
standable data analytic tools. A BN, under appro-
priate conditions, can be used to study how systems
respond to hypothetical interventions and to diag-
nose what caused a specific outcome. These e↵ects
are graphically represented in a network structure
where the nodes are joined together by a set of arcs.
Such a graphical structure is determined by the ap-
plication of one or more types of data-driven learn-
ing algorithms. Choosing the best BN, among many
di↵erent structures obtained through di↵erent algo-
rithms, can be based on various optimality criteria.
Moreover, a BN can be used as a decision-support
tool by policy makers for determining which predic-
tor variables are important on the basis of their e↵ect
on target variables. The goals of choosing an ade-
quate BN structure and of using a BN as a decision-
support tool are addressed by this paper using a new
approach. Specifically, we develop a method to eval-
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uate and characterize the properties of BN-derived
information predictions and diagnostic analysis.

A first issue treated here is the selection of a
robust-network structure for predictive and diagnos-
tic analysis.

Following the application of di↵erent learning al-
gorithms to constructing a BN structure, some arcs
in the network are recurrently present and some are
not. As a basis for designing a robust BN, we de-
termine how often an arc is present, across vari-
ous algorithms, with respect to the total number
of networks examined. The robust structure reap-
pears with specific arcs, in most learned networks.
For these variables, the link connection does not de-
pend on the learning algorithm and the derived pre-
diction and is therefore considered robust. The pre-
dictive performance of the selected network is eval-
uated through misclassification rates using Monte-
Carlo replications.

We use resampling techniques to compute arc
strength when a target node is selected. It is possible
to obtain by this approach a measure of importance
for the node.

After selection of a robust network, we consider
sensitivity scenarios with a “what-if” analysis. To
achieve this, we conduct computer experiments on a
BN by conditioning on specific variable combinations
and predicting the target variables using empirically
estimated networks. We then analyze the e↵ect of
variable combinations on target distributions in or-
der to study the e↵ect of each variable on the target.
To implement these two methods, we developed ded-
icated R functions that are available for download at
links listed at the end of the paper.

The approach outlined above provides an essential
complement to BN analysis that enhances the e�-
ciency and e↵ectiveness of quality-improvement ini-
tiatives. This type of BN assessment emphasizes the
role of graphical models in predictive and diagnostic
applications and provides a new approach for deter-
mining sensitivity and robustness of BN-derived esti-
mates. Application of these two approaches are pre-
sented in the paper. General examples of applications
of BNs in various areas such as healthcare, biotech-
nology, and management are presented in Kenett
(2016).

The paper is organized as follows: Section 2 in-
troduces BN and Section 3 presents the proposed
method. Section 4 is an application example. Sec-

tion 5 presents conclusions and directions for future
work. Supplementary material, with R code software,
is provided separately. The proposed methods are
new contributions to applications of BN in quality-
improvement initiatives. The provided R code sup-
ports a concrete implementation path.

2. Introduction to Bayesian Networks

Bayesian networks (BN) implement a graphical
model structure known as a directed acyclic graph
(DAG) that enables an e↵ective representation and
computation of joint probability distributions (JPD)
over a set of random variables (Pearl (2000)). The
structure of a DAG is defined by the set of nodes and
the set of directed arcs (arrows). The nodes represent
random variables and are drawn as circles labeled by
variable names. The arcs represent direct dependen-
cies among the variables and are represented by ar-
rows between nodes. In particular, an arc from node
Xi to node Xj represents a statistical dependence be-
tween the corresponding variables. Thus, the arrow
indicates that a value taken by variable Xj depends
on the value taken by variable Xi. Node Xi is then
referred to as a ’parent’ of Xj and, similarly, Xj is
referred to as the ‘child’ of Xi. An extension of these
genealogical terms is often used to define the sets of
‘descendants’, i.e., the set of nodes from which the
node can be reached on a direct path.

The DAG guarantees that there is no node that
can be its own ancestor (parent) or its own descen-
dent. Such a condition is of vital importance to the
factorization of the joint probability of a collection of
nodes. Although the arrows represent direct causal
connection between the variables, the reasoning pro-
cess can operate on a BN by propagating information
in any direction. A BN reflects a simple conditional-
independence statement, namely that each variable,
given the state of its parents, is independent of its
nondescendants in the graph. This property is used
to reduce, sometimes significantly, the number of pa-
rameters that are required to characterize the JPD
of the variables. This reduction provides an e�cient
way to compute the posterior probabilities given the
evidence present in the data (Lauritzen and Spiegel-
halter (1988), Pearl (2000)). In addition to the DAG
structure, which is often considered to be the qual-
itative part of the model, one needs to estimate
the quantitative parameters of the model. These pa-
rameters are derived by applying the Markov prop-
erty, where the conditional probability distribution
at each node depends only on its parents. For discrete
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random variables, this conditional probability is rep-
resented by a table, listing the local probability that
a child node takes on each of the feasible values—for
each combination of values of its parents. The joint
distribution of a collection of variables can be deter-
mined uniquely by these local conditional probabil-
ity tables. Formally, a BN, B, is an annotated graph
that represents a joint-probability distribution over a
set of random variables, V, (Ben-Gal (2007)). A net-
work is defined by a pair B = hG,⇥i, where G is the
DAG whose nodes X1,X2, . . . ,Xn represent random
variables and whose arcs represent the direct depen-
dencies between these variables. The graph G en-
codes independence assumptions, where variable Xi

is independent of its nondescendents given its par-
ents in G. This set of parents is denoted generically
as ⇡i. The second component, ⇥, denotes the set of
parameters of the network. This set contains the pa-
rameter ✓xi|⇡i

= PB(xi | ⇡i) for each realization xi

of Xi conditioned on ⇡i, the set of parents of Xi in
G. Accordingly, B defines a unique joint-probability
distribution over V, namely,

PB(X1,X2, . . . ,Xn) =
nY

i=1

PB(Xi | ⇡i) =
nY

i=1

✓Xi|⇡i
.

For simplicity of representation, we omit the sub-
script B. If Xi has no parents, its local probability
distribution is said to be unconditional; otherwise, it
is conditional. If the variable represented by a node
is observed, then the node is said to be an evidence
node; otherwise, the node is said to be hidden or la-
tent. The complexity of a domain may be reduced
by models and algorithms that describe an approx-
imated reality. When variable interactions are too
intricate to apply in an analytic model, we can still
represent current knowledge about the problem, such
as including a cause generating at least one e↵ect
where the final e↵ect is the target of the analysis
(Pearl (2000)).

In order to fully specify a BN, and thus fully rep-
resent the joint-probability distribution it represents,
it is necessary to specify for each node X the proba-
bility distribution for X conditional on X’s parents.
The distribution of X, conditional on its parents,
may have any form. Sometimes only constraints on a
distribution are known. One can then use the princi-
ple of maximum entropy to determine a single distri-
bution, i.e., the one with the greatest entropy given
the constraints (Gruber and Ben-Gal (2012)).

Often these conditional distributions include pa-
rameters that are unknown and must be esti-

mated from data, for example, using the maximum-
likelihood approach. Direct maximization of the like-
lihood (or of the posterior probability) is often com-
plex when there are unobserved variables. An ap-
proach to this problem in the context of BN is the
expectation-maximization (E-M) algorithm, which
alternates computing expected values of the unob-
served variables, conditional on observed data, with
maximizing the complete likelihood assuming that
previously computed expected values are correct.
Under mild regularity conditions, this process con-
verges on maximum-likelihood (or maximum poste-
rior) values for the parameters (Heckerman (1995)).

A more fully Bayesian approach to parameter in-
ference is to treat parameters as additional unob-
served variables and to compute a full posterior dis-
tribution, over all nodes, conditional on observed
data, and then to integrate out the parameters.
This approach can be computationally expensive and
leads to large-dimension models, so in practice, clas-
sical parameter-estimation approaches are more com-
mon (Neapolitan (2003)).

BN can be specified by expert knowledge indicat-
ing arcs that are imposed due to prior knowledge and
first principles and arcs that should not be included
(white lists and black lists, respectively). The BN
can also be partially determined by expert knowledge
with network structure learned from data account-
ing for the white and black lists. The parameters
of the local distributions can be learned from data,
priors elicited from experts, or both. Learning the
graph structure of a BN requires a scoring function
and a search strategy. Common scoring functions in-
clude the posterior probability of the structure given
the training data, the Bayesian information criteria
(BIC), or Akaike information criteria (AIC) (Scutari
(2010)). When fitting models, adding parameters in-
creases the likelihood, which may result in over fit-
ting. Both BIC and AIC address this problem by in-
troducing a penalty term for the number of param-
eters in the model, the penalty term being usually
larger in BIC than in AIC. An exhaustive search, re-
turning back a structure that maximizes the score,
produces a very large number of variables. A local
search strategy makes incremental changes aimed at
improving the score of the structure. A global search
algorithm, like Markov chain Monte Carlo, can avoid
being trapped in local minima. For more on BN-
structure learning, see (Gruber and Ben-Gal (2012)).

BN, like other statistical models, can be used to
answer questions about the nature of the data that go
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beyond the mere description of the observed sample.
Techniques used to obtain answers based on new evi-
dence are known in general as inference. For BN, the
process of answering these questions is also known
as probabilistic reasoning or belief updating, while the
questions themselves are called queries.

In practice, probabilistic reasoning on a BN has
its roots embedded in Bayesian statistics and focuses
on the computation of posterior probabilities or den-
sities. In terms of Bayesian inference, an evidence
function that assigns a zero probability to all but
one state is often said to provide hard evidence; oth-
erwise, it is said to provide soft, sometimes also called
“virtual,” evidence.

The domain knowledge allows experts to draw an
arc to a variable from each of its direct causes (i.e.
“visiting Africa” may cause “tuberculosis”). Given a
BN that specifies the JPD in a factored form, one can
evaluate all possible inference queries by marginal-
ization, i.e., summing out over ’irrelevant’ variables.
Two types of inference support are often considered:
predictive support for node Xi, based on evidence
nodes connected to Xi through its parent nodes (also
called top-down reasoning), and diagnostic support
for node Xi, based on evidence nodes connected to
Xi through its children nodes (also called bottom-up
reasoning).

When a BN is given a causal interpretation, the
interpretation of queries and evidence changes as
well. Just as the arcs in the network describe causal
relationships instead of probabilistic dependencies,
queries evaluate the probability of known causes
given their e↵ects or vice versa.

In this setting, posterior probabilities are not in-
terpreted in terms of beliefs changing according to
some observed evidence but rather as measures of
the e↵ects of interventions on the causal structure.
For more on this, see Buhlmann (2013) and Maathuis
et al. (2009).

The next section discusses a proposed approach
for choosing the BN structure and a related sensitiv-
ity analysis methodology.

3. Selection and Sensitivity Analysis
of Bayesian Networks

3.1. Selection of a Robust Bayesian Network

In practical applications, one is faced with choos-
ing which network to use after deriving di↵erent net-
work structures by applying di↵erent learning al-

gorithms. In particular, it is important to check
whether the chosen structure and, therefore, its arcs
are influenced by the presence of outliers or groups
of observations. The choice of a robust BN is a com-
plex problem with no easily derived analytic solution.
For a similar analysis in the context of CART and
random forests, see Bar Hen et al. (2015).

The approach in this paper is based on the selec-
tion of a robust-network structure using computer-
intensive methods. The proposed approach selects
a network that contains the most common number
of arcs in the networks produced by di↵erent algo-
rithms. Software programs for calculating BN struc-
ture typically include about a dozen such algorithms;
see, for example, Scutari (2010). The second step
in the approach consists of changing the network
learning-algorithm parameters (for example, by ap-
plying di↵erent scoring functions) and again selecting
the network that presents the largest number of re-
peated arcs. The third step is based on a bootstrap
resampling procedure of the initial dataset. A net-
work is estimated from each bootstrap sample and
the arcs that are absent in a preset proportion of
cases are removed.

The development of techniques for assessing the
statistical robustness of network structures learned
from data has been limited (Scutari and Nagara-
jan (2011)). Structural learning algorithms are com-
monly studied by measuring di↵erences from the true
(known) structure of a small number of reference
data sets. Because the true structure of their proba-
bility distribution is unknown, the usefulness of such
an approach in investigating networks learned from
real-world data sets is limited. It is possible to inter-
pret the proportion of arcs present in each network
as “arc strength”. A more systematic approach to
model sensitivity and, in particular to the problem of
identifying statistically significant features in a net-
work, has been developed by Friedman et al. (1999)
using bootstrap resampling and model averaging. In
the proposed methodology, the “arc strength” ob-
tained with bootstrap resampling is used to derive
the importance of the dimensions on a target node.

3.2. Distance-Weighted Influence

In the framework of importance-performance
analysis in customer surveys (Martilla and James
(1977), Kenett and Salini (2011)), the objective is to
identify and understand the dimensions considered
of high importance by customers with low perceived
quality or satisfaction. These dimensions are primary
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candidates for focused improvement initiatives. The
level of importance can be assessed directly by ask-
ing the customers to rate the level of importance of
individual items, for example, on a three-point scale
with “1” (low importance), “2” (neutral) and “3”
(high importance). For a sample questionnaire with
such a scale, see Kenett and Salini (2011). If a di-
rect assessment of importance is not included in a
questionnaire, implicit or indirect assessment of im-
portance can be assessed using statistical models.

Albrecht et al. (2014) proposed a metric called
distance-weighted influence that ranks the influence
of query nodes based on the structure of the network.
This ranking tends to reflect the structural properties
in the network: the longer the path from a node to
the target node, the lower the influence of that node,
while the influence increases with the number of such
paths.

Following Albrecht et al. (2014) the distance-
weighted influence of X on Y , DWI(X, Y ;w), is de-
fined as

DWI(X,Y ;w) =
X

s2S(X,Y )

w|s|, (1)

where S(X,Y ) is the set of simple paths in the
Bayesian network that join the nodes X and Y , |s|
is the length of the simple path s, and w is the path
weight, and this measure is interpretable as node im-
portance with respect to a fixed target node.

A node x is an ancestor of the target node if there
is a path from x to the target node. For nodes that
are not ancestors of the target, the index of impor-
tance is equal to zero. The path weight w is defined
as the product of the strengths of all arcs of the path.

3.3. “What If” Sensitivity Scenario in
Bayesian Networks

Determining causality has been traditionally
based on applications of randomized trials, where
the design of the trial aims at identifying the e↵ect
of an intervention, such as the application of a spe-
cific treatment, versus a placebo treatment. In gen-
eral, causality has been studied from two main di↵er-
ent points of view, the “probabilistic” view and the
“mechanistic” view. Under the probabilistic view, the
causal e↵ect of an intervention is judged by compar-
ing the evolution of the system when the interven-
tion is and when it is not present. The mechanistic
view focuses on understanding the mechanisms, de-
termining how specific e↵ects come about. The inter-
ventionist and mechanistic viewpoints are not mutu-

ally exclusive. For example, when studying biological
systems, scientists carry out experiments where they
intervene on the system, for instance, by adding a
substance or by knocking out a gene. However, the
e↵ect of a drug product on the human body can-
not be decided only in the laboratory. A mechanistic
understanding, based on pharmacometric models, is
needed in order to determine if a certain medication
ought to work. The concept of potential outcomes is
present in the work on randomized experiments by
Fisher and Neyman in the 1920s and was extended by
Rubin in the 1970s to nonrandomized studies and dif-
ferent modes of inference (Rubin (2008), Meali et al.
(2011)). In Rubin’s work, causal e↵ects are viewed as
comparisons of potential outcomes, each correspond-
ing to a level of the treatment and each observable,
had the treatment taken on the corresponding level
with at most one outcome actually observed, the one
corresponding to the treatment level realized. In ad-
dition, the assignment mechanism needs to be ex-
plicitly defined as a probability model for how units
receive the di↵erent treatment levels. With this per-
spective, a causal inference problem is viewed as a
problem of missing data, where the assignment mech-
anism is explicitly modeled as a process for reveal-
ing the observed data. The assumptions on the as-
signment mechanism are crucial for identifying and
deriving methods to estimate causal e↵ects; see, for
example, Frosini (2006). The term ‘causal inference’
denotes di↵erent ways to approach causal aspects of
statistical analysis. Causal Bayesian networks are BN
where the e↵ect of any intervention can be defined
by a ‘do’ operator that separates intervention from
conditioning. The basic idea is that an intervention
breaks the influence of a confounder so that one can
make a true causal assessment. The established coun-
terfactual definitions of direct and indirect e↵ects de-
pend on the ability to manipulate mediators.

Following Pearl (2015), the mathematical oper-
ator called ‘do’ simulates physical interventions by
deleting certain functions from the model, replacing
them with a constant X = x, while keeping the rest
of the model unchanged. For example, to emulate an
intervention do(x) that holds X constant (at X = x)
in the network N1 in Figure 1 (left), we replace X
with x = x0, and obtain a new network N2 repre-
sented in Figure 1 (right).

The joint distribution associated with the modi-
fied network, denoted by P (zy | do(x)) , describes
the post-intervention distribution of variables Y and
Z (also called “controlled” or “experimental” distri-
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FIGURE 1. Network Pre and Post Intervention.

bution), to be distinguished from the preinterven-
tion distribution, P (xyz), associated with the orig-
inal network estimated from observed data. For ex-
ample, if X represents a treatment variable, Y a re-
sponse variable, and Z some covariate that a↵ects
the amount of treatment received, then the distribu-
tion P (zy | do(x)) gives the proportion of individuals
that would attain response level Y = y and covari-
ate level Z = z under the hypothetical situation in
which treatment X = x0 is administered uniformly
to the population. In words, the post-intervention
distribution of outcome Y is defined as the proba-
bility that N2 assigns to each outcome level Y = y.
From this distribution, which is readily computed
from any fully specified combination, we are able to
assess treatment e�cacy by comparing aspects of this
distribution at di↵erent levels of x0.

The ‘do’ operator makes it possible to conduct
‘what-if’ scenarios even if counterfactuals cannot be
directly tested, such as in the presence of nonex-
perimental data. The intervention can correspond to
‘hard’ or ‘soft’ new evidence according to Bayesian
inference; in the BN framework, the questions them-
selves are called queries.

Two type of queries can be considered:

1. Conditional-probability query, where conditions
are on the distribution of one or more variables,
but the probabilistic dependencies are left in-
tact. The phenomenon is investigated as it was
observed from the data and, therefore, the con-
ditioning propagates to all other variables.

2. Counterfactual query, where the distribution of
one or more variables is completely controlled,
so the probabilistic dependencies of those nodes
(e.g., incoming arcs) are removed from the
BN. This is because an alternate scenario than
that observed from the data is considered and
the conditioning propagates only to variables
downstream (the “e↵ects”, not the “causes”).

The next section presents an application in the
context of a customer-survey data. An early attempt
to apply BN for the analysis of survey data was pre-

sented in Kenett and Salini (2009) and Salini and
Kenett (2009); see also Gasparini et al. (2012). A sur-
vey with n questions produces responses that can be
considered as random variables, X1, . . . , Xn. Some of
these variables, q of them, are considered target vari-
ables. Responses to the other questions, X1, . . . ,Xk,
k = n � q, are analyzed under the hypotheses that
they are potentially a↵ecting the target variables.

Below is a summary of the procedure followed in
customer survey the application:

Step (1) Estimate di↵erent network structures and
select the more robust one.

Step (2) Measure the arch strength using bootstrap.

Step (3) Define a target node.

Step (4) Calculate DWI.

Step (5) Use soft and hard evidence and do calculus
to obtain “what-if” sensitivity scenario.

4. Application

The example consists of a typical customer-
satisfaction questionnaire filled out by passengers
of airline companies to evaluate their experience on
specific flights. The questionnaire contains questions
on the passengers’ satisfaction from their overall
experience and from six specific dimensions of the
service (departure, booking, check-in, cabin environ-
ment, cabin crew, meal). The evaluation of each item
is based on a four-point scale (from 1= extremely
dissatisfied to 4 = extremely satisfied). Additional
information on passengers was also collected, such as
gender, age, nationality, and the purpose of the trip.
Results analyzed are based on responses in n = 9,720
valid questionnaires. The goal of the empirical appli-
cation is to evaluate the importance of these six di-
mensions on satisfaction from the overall experience,
taking into account the interdependencies between
the degree of satisfaction from di↵erent aspects of
the service. Clearly, these cannot be assumed to be
independent of each other and, therefore, a BN anal-
ysis presents a particularly well-suited tool for this
kind of analysis.
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TABLE 1. BN with Proportion of Occurrence of Each Arc in the Bootstrap Replicates

hc-bic hc-aic tabu-bic tabu-aic gs iamb fiamb intamb mmhc-bic mmhc-aic rsmax tot

o booking o checkin 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 1.0 1.0 1.0 9.5
o cabin o crew 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 6.0
o cabin o departure 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 9.0
o cabin o experience 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 9.0
o cabin o meal 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 11.0
o crew o booking 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 6.0
o crew o departure 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 7.0
o crew o experience 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 9.0
o departure o booking 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 6.0
o departure o checkin 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 7.0
o departure o experience 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 9.0
o meal o crew 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 7.0
o cabin o booking 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 3.0
o crew o checkin 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 4.0
o meal o departure 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 3.0
o meal o experience 0.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 0.0 6.0
o booking o departure 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 5.0
o crew o meal 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 4.0
o departure o meal 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0
o checkin o booking 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0 1.5
o checkin o departure 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 4.0
o booking o experience 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.0
o checkin o experience 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.0
o checkin o crew 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
o departure o cabin 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0

The analysis shown below was performed using
the R statistical language. Several R packages im-
plement algorithms and models for constructing BN.
We use here the bnlearn library of Scutari (2010)
and Nagarajan et al. (2013) and the gRain library
of Højsgaard (2012). We developed R functions to
select the robust network, to obtain an measure of
importance, and to analyze graphically the ‘what-
if’ sensitivity scenarios. Algorithms for belief updat-
ing can be characterized either as exact or approx-
imate. The bnlearn library implements approximate
inference via rejection sampling (called in this setting
logic sampling).

The first step of the analysis is the choice of
the network. The data is analyzed with 11 algo-
rithms implemented in the R package bnlearn: two
scored-based learning algorithms (hill-climbing with
score functions BIC and AIC and TABU with score
functions BIC and AIC), five constraint-based learn-
ing algorithms (grow-shrink, incremental associa-
tion, fast incremental association, interleaved incre-
mental association, max-min parents and children),
and two hybrid algorithms (max-min hill-climbing

[MMHC] with score functions BIC and AIC, phase-
restricted maximization). Table 1, based on Kenett et
al. (2011), reports the occurrence of an arc between
two nodes in implementation of each algorithm. A
value of 1 indicates that the two nodes are linked
by a directed arc, a value of 0.5 indicates that the
two nodes are linked by an undirected arc. The last
column reports the total score of each arc; this can
be interpreted also as arc strength. We choose the
BN that has the most arcs with scores equal to or
higher than seven. This threshold is arbitrarily se-
lected for this example; ideally it corresponds to more
than 70% of the occurrences. The values of 1 and 0.5
represent a qualitative weight that, together with the
cut-o↵ criteria of 7, was tested empirically. Optimiz-
ing these weights and the-cut o↵ value was beyond
the scope of this paper.

Figure 2 (left panel) shows the BN obtained with
the hill-climbing algorithm with score functions AIC.
The total score on all 11 algorithms is reported for
each arc. The red (light) arcs have a score equal to or
higher than seven. To analyze the robustness of the
chosen network, we also perform a bootstrap resam
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FIGURE 2. (left) BN Structure with Most Robust Arcs According to Di↵erent Structure Learning Algorithms; (right) BN
with Proportion of Occurrence of Each Arc in the Bootstrap Replicates.

pling procedure on the initial dataset. We generate
1,000 random subsets, each of them with 1,000 ob-
servations. Then, the BN parameters are estimated
for each bootstrapped sample. Figure 2 (right panel)
shows the proportion of occurrence of each arc in the
bootstrap replicates.

On the basis of the network, we evaluate the
importance of the six dimensions on the overall
experience-satisfaction target node. The index of im-
portance DWI is based on all the paths from the
considered nodes to the target node. The importance
depends on the weight of each path and the length
of the path from specific nodes to the target node,
according to Equation (1). The weight of each path
is equal to the product of the strengths of the arcs
in the path.

Figure 3 shows a heatmap based on the DWI mea-
sure, with red denoting the target node (experience)
and the intensity of the green (shade of grey) on the
remaining nodes being proportional to the impor-
tance, i.e., paler means less influence. Booking and
Check in aren’t ancestors of the overall experience
and their importance is therefore set to zero.

Figure 4 (left panel) shows the importance-per-
formance analysis action grid. Each dimension is rep-
resented by its index of importance (x-axis) and its
proportion of ‘4’ ratings (very satisfied respondents),
labeled TOP4 (y-axis). Cabin environment is the di-
mension with highest importance but lowest satis-

faction. This dimension represents a key area that
needs to be improved with top priority. For more
on such an analysis, see (Kenett and Salini (2011)).
In order to have a benchmark, we report in Fig-
ure 4 (right panel) the action grids obtained on the
same data with other statistical models, in particu-
lar the performance indicator is obtained through the
Rasch model (RM) and the importance indicator is
obtained through the nonlinear principal-component

o_booking

o_checkin

o_departure

o_cabin

o_meal

o_crew

o_experience

FIGURE 3. Heatmap Based on the DWI Measure, Target
Node Overall Experience.
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FIGURE 4. Importance-Performance Analysis: (left) BN Action Grid; (right) NLPCA-RM Action Grid.

analysis (NLPCA) (Cugnata and Salini (2013)). The
results shown in the two figures are reasonably con-
sistent. This provides additional evidence for the ro-
bustness of the findings. In the supplementary mate-
rial, tables with the importance-performance values
plotted in Figure 4 are reported.

The choice of the most robust network does not
guarantee that the selected network is also the most
e�cient predictor. Between networks with the largest
number of arcs, we choose the one with the low-
est misclassification rate. To study the generaliza-

tion aspect of the network, we train the net on a
training sample and test it on a test sample. Fig-
ure 5 shows the misclassification rate resulting from
1,0000 Monte-Carlo replications of the procedure in
the training and in the test set. The two paths repre-
sent di↵erent splitting percentage. The performance
of the BN is in line with the classical model for or-
dinal data. As a benchmark, we consider an ordered
logit model as in Pearl (2016) and the resulting mis-
classification rate is around 30% of cases as in the
BN. The misclassification rate is similar in the test
and in the training set, so there is no overfitting.

0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34
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FIGURE 5. Misclassification Rate for the BN for Training Sets and Test Sets. Ten thousand Monte-Carlo replications.
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FIGURE 6. “What-If” Sensitivity Scenarios with Hard Evidence.

The network performance obviously increases when
the training set is larger. There is more variability
with new data (right panel) but the mean is a little
smaller.

In the supplementary material, we provide the R
script used to analyze the data with the algorithms
implemented in the R package bnlearn and identify
the BN with the most robust arcs and the lowest
misclassification rate. It is also possible to get the R
script that produces the index of importance.

On the basis of the network structure, as men-
tioned in Section 3.3, it is possible to perform vari-
ous diagnostic checks to investigate the e↵ects of evi-
dence on the distribution of the target variable using
“what-if” sensitivity scenarios and do calculus to test
soft and hard evidence; see also Cugnata et al. (2014).
The available R libraries implement algorithms for
belief updating but do not incorporate an intuitive
graphical representation of the results. We developed
specific R functions using the Rgraphviz package to
easily produce a BN plot with highlighted evidence
and the consequent conditional probabilities of the
target (see supplementary material). Hard evidence
is an intervention of one or more variables in the
network to a specific value. Figure 6 presents the ac-
tual results on the target variable of entering di↵erent
types of hard evidence (evidence is shown as a gray
box). In all cases, the structure of the BN remains

fixed. Figure 6 (left) and Figure 6 (right) show dis-
tributions of overall experience conditioned on the
cabin crew being at its highest level and its lowest
level. The probability of being satisfied or very satis-
fied from the overall experience originally was equal
to 70%; it is now 94% if satisfaction of the cabin crew
is equal to four and it is 5% if satisfaction of the cabin
crew is equal to one.

To investigate the e↵ects of driver combinations,
it is possible to use multiple evidence. Moreover, in
case of uncertainty in setting the evidence, we can
also test a soft-evidence hypothesis related to the ex-
planatory variables.

Figure 7 shows an example of soft multiple evi-
dence on cabin crew and departure. In particular, we
assume 70% of extremely satisfied for both. Now the
target variable probability is 95% instead of 70%.

In the supplementary materials there are other ex-
amples of ‘what-if’ sensitivity scenarios with multiple
soft and hard evidence.

The airline dataset is a classic example of a
customer-satisfaction survey performed to assess
quality of a service. The dataset is composed of re-
sponse variables (overall satisfaction, repurchasing
intention, and recommendation) and dimensions that
describe the service and are evaluated separately. In
this type of application, the objective is to measure
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FIGURE 7. “What-If” Sensitivity Scenarios with Multiple
Soft Evidence.

the quality of service as a whole and understand what
dimensions are the most important in the opinion of
the users of the service. A BN provides a measure of
the importance of the dimensions on overall satisfac-
tion and helps understand how the various categories
of variables and their combinations change the JPD
of the overall customer satisfaction. The ability to
assume di↵erent interventions and to predict their
e↵ect are essential capabilities of decision-support
systems for policy makers, engineers, and managers
(Kenett and Salini (2011)). The graphical display of
the scenarios makes the instrument operationally ef-
fective and very easy to explain and communicate.

5. Discussion

In the summary of his seminal 1995 paper,
Pearl states “. . . graphical models can be used as
a mathematical language for integrating statistical
and subject-matter information . . . diagrams can
be queried to produce mathematical expressions for
causal e↵ects in terms of observed distributions”
(Pearl (1995)). The development of BN, as a non-
parametric model of causality e↵ects in nonexperi-
mental data, is providing new examples of applica-
tions in a range of domains. In Cornalba et al. (2007)
and Cugnata et al. (2014), it is proposed to investi-
gate the sensitivity of network estimates using exper-

imental design conditioning of the driving variables.
In this paper, this approach is expanded and inte-
grated in a comprehensive framework investigating
properties of both the structure of the network and
the derived estimates. More important, an R appli-
cation is provided to operationalize the proposed ap-
proach, which has been demonstrated using a case
study. In the airline survey, the objective is to de-
termine specific improvement actions. The relation-
ships between variables, determined by a BN, have
significant consequences. In-depth analysis of the ro-
bustness of these relations is therefore contributing
to the quality of information provided by them. A
similar proposal, in the context of reproducible re-
search, is presented in Djulbegovic and Hozo (2014).
Overall, this work is about increasing the quality of
information provided by a BN. A general approach
to determine information quality (InfoQ) is proposed
by Kenett and Shmueli (2014). Additional research is
needed to expand this analysis and extend the infor-
mation quality provided by BN methods. Robustify-
ing the BN analysis and identifying the importance of
specific links enhances the value of decision-support
systems based on a BN. This work provides theory,
examples, and software for achieving these goals.
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• Customer-satisfaction survey data: http://users
.unimi.it/salini/RSBN/data.zip.

• Complete R script used to derive all the tables
and figures reported in the paper and R func-
tions developed by the authors: http://users
.unimi.it/salini/RSBN/Rcodes.zip.
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