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The growing demand of maize silage for biogas production in Northern Italy has 

triggered an intense debate concerning land rents, maize prices and their possible 

negative consequences on important agri-food chains. The aim of this work is to 

quantify the extent to which the rapid spread of biogas raised the maize price at 

regional level, increasing the demand of land for energy crops. For this purpose we 

applied a partial-equilibrium framework simulating the agricultural sector and the 

biogas industry in Lombardy, under two alternative schemes of subsidization policy. 

Results show that policy measures implemented in 2013 – reducing the average 

subsidy per kWh – may contribute to enforce the complementarity of the sector with 

agri-food chains, decreasing the competition between energy and non-energy uses.  

Compared to the old scheme, maize demand for biogas would decrease , lessening the 

market clearing price (as well as feed opportunity cost for livestock sector) and 

reducing land demand for energy purposes. 
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1. Introduction 

Biogas production from energy crops has strongly grown over the last years in Italy, as a 

consequence of the subsidization policy. Despite the biogas policy scheme concerns the whole 

Country, in Italy biogas plants are mainly concentrated in regions of the Po Valley (i.e. Lombardy, 

Piedmont, Emilia-Romagna and Veneto), whose agricultural systems are highly productive and 

urban areas are densely populated. With one of the highest concentrations in Europe, Lombardy is 

the region with the highest share of biogas plants in Italy (361 at the beginning of 2013, equal to 

40% at national level, Peri et al., 2013).  

However, as many biogas plants use maize silage, such emerging activity has been accused to 

increase maize demand with two main consequences: i) pushing up (locally) land rent price and ii) 

raising its opportunity cost as livestock feed in a region where, before the proliferation of biogas 

plants, animal production represented about 60% of the value of agricultural production 

(Cavicchioli, 2009). According to such criticism, in Italy maize area devoted to biogas plants has 

grown sharply between 2007 (below 0.5% of arable crop mix) and 2012 (10% of arable crop mix), 

covering more than 18% of arable land in Lombardy (Mela and Canali, 2014). Therefore this 

competition may put under pressure agri-food supply chain, among which some important Protected 

Designation of Origin (PDO), such as Grana Padano and Parma ham.  

As pointed out by Carrosio (2013), the huge expansion in the number of biogas plants has been 

mainly driven by dedicated subsidization schemes. In particular the feed-in tariff (FIT) introduced 

in Italy in 2009,2 has boosted agricultural biogas production between 2009 and 2012 (Figure 1) 

shaping the technology adoption by farmers (Chinese et al., 2014). Under such scheme, all plants 

with an electric capacity up less than 1 Megawatt electric (MWe) were entitled to receive the all-

                                                           
2 See Law 99/23 July 2009. 
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inclusive feed-in tariff of 0.28 €/kWh for 15 years,3 leading the majority of biogas plants to build a 

capacity slightly less than 1 MWe in order to maximize subsidies (Carrosio, 2013).4 Such incentive 

system has oriented the majority of biogas plants toward the exclusive production of electric 

energy, rather than cogeneration (production of electricity and heat) even if the latter would be more 

efficient in terms of biogas utilization (CRPA, 2008; Mela and Canali, 2014). 

This consideration is in line with previous studies (e.g. Haas et al., 2011; Britz and Delzeit, 2013) 

pointing out the distortive effect of subsidization mechanism for renewable energies, like  the FITs. 

this payment scheme assures a higher profitability, associated to a diminished level of risk, charging 

taxpayers with associated additional costs (Chinese et al., 2014). As a result, the level of public 

support to renewable energy has been put under discussion (Galeotti, 2012), leading to a new biogas 

subsidization structure in 2012,5 more in line to those adopted in other European Countries (Hahn et 

al., 2010). The new support scheme applied from January 2013 and provides, with respect to 

previous policy, a payment reduction in absolute terms and new criteria more favourable for smaller 

plants (see Table 1). Moreover, in order to encourage the utilization of manure and by-products 

instead of energy crops, the subsidies have been related to the type of feedstock used in the blend 

(Gaviglio et al., 2014). In the present paper the two different incentive systems described above will 

be hereafter referred to as pre 2013 and post 2013 renewable energy policy system. 

The evolution of Italian biogas market and incentive policy has been examined in some recent 

papers.6 Carrosio (2013) proposed an analysis based on the neo-institutional lens. In particular, he 

argued that the incentive system associated to technology uncertainty led to a non-competitive 
                                                           

3 With the introduction of the Law 99/23July 2009, biogas plants up to 999 KWe, were entitled to receive a single 
payment (feed-in tariff, FIT) of 0.28 €/kWh, ensured for 15 years. The same time span of subsidization was assured to 
plants bigger than 1 MWe, under the Green Certificates system. 

4 According to the Law 99/23July 2009, FIT, more profitable than the Green Certificates incentive mechanism, was 
available only for plants below the threshold of 1 MWe. Within this category, plants that better maximize the profits 
were those with capacity slightly less than 1 MWe (999 kWe), more efficient and able to produce more energy 
compared to smaller plants (e.g. 250 kWe). 

5 Decree of the Ministry of Economic Development of 6 July 2012. 
6 More in general, many studies analyzed the agro-energy sector in Italy from different view point. For example, 

Donati et al. (2013) investigated the water requirements of energy crops production in Emilia Romagna. Bartolini and 
Viaggi (2012) and Bartolini et al. (2015) studied how different Common Agricultural Policies (i.e. CAP 2014-2020 
reform) affect the adoption of agro-energy production in Emilia Romagna and Tuscany, respectively.   

 



4 

market structure, resulting in one prevalent model of biogas production (999 kWe plants fed with a 

blend of energy crops and livestock manure), with low efficiency in energy use and environmental 

outcomes. Chinese et al. (2014), used a linear programming approach to study the effect of pre 

2013 and post 2013 Italian biogas incentive systems on plant dimension, input bend and profits. 

Such a simulation makes assumptions on maize supply, using cultivation and harvesting cost as a 

proxy for input price. Main results show that the post 2013 new regulation would make the system 

to shift toward smaller plant size, mainly fed by manure, and so reducing the pressure induced by 

energy crop-based plants.  

Building upon and extending existing literature, the aim of this paper is to analyse the impact of 

biogas production in Lombardy on maize silage demand, price and, in turn, on potential competition 

with other agri-food supply chains in terms of opportunity cost for maize silage.  To do so, we build 

up a partial equilibrium framework, by explicitly modelling and integrating demand-side biogas 

industry and supply-side agricultural sector. Using such a modelling framework we perform a 

comparative-static exercise, deriving market clearing price and quantity for maize silage under pre 

and post 2013 support scheme. This integrated model allows then to emphasize the differential 

effects7 of alternative energy policies for biogas production on maize silage equilibrium price and, 

in turn, on the related outcomes, such as energy production, biogas plant profitability and allocation 

of land devoted to biogas production.  

This paper is the first application to the Italian biogas sector of a partial equilibrium framework, 

firstly developed by Delzeit (2010) and Delzeit et al. (2012) for the German biogas sector. In 

particular, we applied this method in different areas and under different policy schemes. From this 

perspective, our contribution to the literature is twofold. Firstly, we can assess the suitability of the 

proposed methodology when applied to a specific reality. Secondly, from the modelling exercise we 

can draw important policy implications for the Italian agro-energy subsidization schemes. 

                                                           
7 Such simulated differential effects are not free of potential distortions due to assumptions made to render the 

modelling exercise tractable, as explained in Section 2.2.2. 
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Moreover, we add to the existing literature on similar topics in Italy (i.e. Chinese et al., 2014) 

contributions in terms of equilibrium displacement effects under different renewable energy policy 

options, through: i) the comparison of market clearing price for maize before (actual) and after 

(simulated) the introduction of biogas sector, and under pre and post 2013 biogas energy policies; 

ii) the estimation of differential biogas energy production and profitability; iii) the related 

differential demand of land for maize silage. 

The structure of the paper is the following. Section 2 briefly reviews the relevant literature on 

bioenergy modelling, describes models used to build up our partial equilibrium framework, and 

motivates our methodology. Additionally, data and models parameters are described. In Section 3 

we illustrate and explain the model results under alternative policy scenarios. Section 4 summarizes 

the main findings and draw policy implications. 

 

2. Methods 

2.1 Modelling framework for biogas production 

Agricultural biogas production uses bulky biomass inputs (energy crops, manure and/or by-

products), with localized demand and high transportation costs (Delzeit et al., 2010). This demand, 

in turn, influence regional markets for bioenergy feedstock (Mertens et al. 2014) and will interact 

with the market for crops devoted to non-biogas uses. Such “side-effects” call for a comprehensive 

assessment of all these inter-linked markets. The impact of alternative agricultural and bioenergy 

policies has been assessed using different approaches like micro-economic and multi-criteria 

methodology (Rozakis et al., 2013), partial-equilibrium framework  (Delzeit et al., 2012), mixed 

integer linear programming (Chinese 2014), nonlinear programming (Stürmer et al. 2011), survey 

information and farm-household mathematical programming (Bartolini and Viaggi, 2012), Positive 

Mathematical Programming integrated models (Donati et. al, 2013), dynamic mathematical 
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programming (Bartolini et al., 2015), multi-agent modelling approach (Mertens et al. 2014) or using 

approaches based on geographical information systems (Delzeit et al., 2009a; Fiorese and Guariso, 

2010; Sorda et al., 2013).  

In the present study, we apply a partial equilibrium model on two areas of Lombardy Region in 

order to assess the impact of Italian subsidies for biogas production on energy and agricultural 

markets, using a demand-side biogas industry model and a supply-side agricultural model.  

Following the approach proposed by Delzeit (2010) and Delzeit et al. (2012), we firstly applied at 

the Lombardy context a location model based on linear programming that estimates regional 

demand for maize silage from biogas production as a function of prices and further explanatory 

factors such as transport costs and economic profitability of biogas plants (see Section 2.1.1). 

Secondly, in order to assess the impact of biogas production to the agricultural sector, an arable 

agricultural supply model is developed. Using the bottom-up approach proposed by Sourie and 

Rozakis (2001) to investigate the energy crop sector in France, we built an agricultural model in 

which farmers maximize their welfare under resource and agronomic constraints (see Section 

2.1.2). By matching the industrial location model (demand function of maize silage by biogas 

plants) to the agricultural model (supply of maize silage for biogas plants) we built a partial 

equilibrium model of maize silage for biogas industry; such a model delivers the market-clearing 

prices and quantities under different energy policy scenarios, allowing also to estimate the 

differential demand of land for maize silage in the agricultural sector (see Section 2.2.3). 

 

2.1.1 The industrial model (ReSI-M)  

The starting point of our analysis is the ReSI-M (Regionalised Location Information System – 

Maize) model, developed by Delzeit (Delzeit et al., 2009a,b, 2012 and Delzeit, 2010) simulating, 

through an iterative maximization of the Return on investment (ROI), the optimum number of 

plants established in German regions. 
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Operational profits 	��,� for each plant typology s established in the location region c are computed 

by subtracting the costs for input procurement (biomass) and other costs oc (fixed and variable 

costs), from plant revenue (ysps). The former costs are the sum of transport costs tc and feedstock 

price w multiplied by the variable input demand x. Formally, 

	��,� =	���� −	
���,� + 	����,� −	���                                                                                             (1) 

Input availability (feedstock) in the region affects transport cost tc, and it depends on specific 

features of nearby agricultural systems like the amount and the distribution of arable land, its 

biomass yield and the extent of biomass already allocated to biogas production. We compute tc 

following Delzeit (2010) and Delzeit et al. (2012):  

		����,��,� = 	�� +	���,�� 	�� +	� ������	���, !�	 ��																																																																																													"2$      
where 	�� 	represents per unit transport costs of maize within a ray of 1 km around the plant, 

including maize loading; �� is per unit cost for each additional kilometer around the plant; ���,�� is 

inter regional distance between the region where the plant is located (r2) and the region where 

feedstock is taken (r1). The last term as a whole represents intra-regional transport costs, where �� 
is maize demand to feed the plant; '��	 and (��	are, respectively, maize yield and arable land share in 

the region where the plant is located. After each iteration of the model, the share of arable land is 

diminished ((��, !�	$	according to the area devoted to feed each additional plant, raising feedstock 

transportation costs.  

Plant density, typology s and location c is driven by each plant’s profitability at input price w, with 

profitability expressed in terms of ROI:  

)*+�,�	",$ =	 	� ,-.-                                                                                                                                 (3) 

where 	��,� is the yearly operational profit and Is is the total investment cost. 
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The plant type-location with the highest ROI is chosen iteratively by the model: in the region with 

lower transportation costs (and then a higher availability and density of feedstock) is located the 

first simulated plant.  After each model iteration, available biomass input diminishes and additional 

simulated plants incur in higher transportation costs. The increase of transport costs affect plant 

operational profits (1) and consequently plant ROI (3), who progressively decrease. The iteration 

process continues until ROI falls below a predefined interest rate threshold or the input biomass is 

out of stock. 

Given exogenous input prices w, the model yields the optimal input demand d in each region c as an 

aggregation of each plant demand: 

/�"�$ = 	∑ 1�,�� "�$	��                                                                                                                    (4) 

where 1�,� is the number of plants in region c and �� is the input demand of each plant. 

The model specifications (key objective function and side conditions, indices, parameters and 

decision variables) and the ReSI-M flowchart are explained in details in Delzeit et al. (2009b), 

Delzeit (2010) and Delzeit et al. (2012). 

 

2.1.2 The agricultural model (MAORIE) 

This model is an adaptation of the MAORIE model (Modele Agricole de l’Offre Regionale INRA 

Economie, see Carles et al. 1997) in which the arable crop sector is represented by a sub-model for 

each farm in the sample and the sub-models are than assembled in a block angular structure with no 

common constraints.8 Each farmer f optimizes a profit function (5) that equals the total gross margin 

from non-energy crops and from energy crops. The gross margin of energy crops is expressed as a 

function of the crops' price (�23 ) which is parametrically imposed in multiple runs of the model. 

                                                           
8 Farms are considered separately: do not share resources among them, so there are no common variables and 

constraints. 
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Various type of constraints are included, like land availability (6), sugar beet quota (7), agronomic 

constraints (8) and non-negativity constraints (9). The model therefore simulates farmer choices in 

terms of crop mix and land allocation (Rozakis et al., 2001; Kazakçi et al., 2007), following a 

normative perspective where a sub-group of agronomic constraints, namely flexibility constraints, is 

the means to approach the actual crop mix.9 Decision variables, indices and parameters are 

explained more thoroughly in Figure 2. 

 

Objective function: 

max 7 7 89,:�;9,:39	∈	=
+	 7 7"�232	∈	>

?2,:3 −	�2,:
:	∈	@	:	∈	@	

$�'2,:3 																																																																	"5$ 

S.t. 

Land availability: 

7 �;9,:3 +	 7 �'2,:3 	≤ 	�:
2	∈	>9	∈	=

C:			∀	; ∈ E																																																																																													"6$ 

Sugar-beet quota: 

�G,:3 ≤ �:	CG,:							∀	; ∈ E																																																																																																																											"7$ 
Agronomic constraints: 

7 I9,J�;9,:3 	+ 7 I2,J�'2,:3 	
2	∈	>

	≤ 	�J�:C:
9	∈	=

					∀	; ∈ E									∀K ∈ L																																																		"8$			 

Non-negativity constraints: 

                                                           
9
 Individual crops or classes of crops, i.e. oilseed crops, respect average historic percentages observed at the regional 

level. For instance if a highly profitable crop's land share never exceeds 30%, we assume that farmers are bound by soil 
characteristics or they follow agronomic rules specific to the region. 
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�;9,:3 , 	�'2,:3 ≥ 0				∀	� ∈ P					∀	/ ∈ Q					∀	; ∈ E																																																																																			"9$				 
The model outputs the optimal crop mix distributions supplied by farms at each level of the 

predefined vector of exogenous prices �23 . Consequently the produced quantity qj
d of energy crops 

for each �23  is calculated and a corresponding supply curve can be estimated. 

 

2.2 Case study for the Lombardy region: data and model characterization 

Lombardy is a NUTS 2 region (Nomenclature of Territorial Units for Statistics)10 with the largest 

number of biogas plants in Italy. At the beginning of 2013 there were 361 plants, particularly 

concentrated in two NUTS 3 regions: Brescia (68 biogas plants, with 50 MWe of installed power) 

and Cremona (137 biogas plants, with 101 MWe of installed power). 73% of Lombardy plants had 

an installed capacity from 500 kWe to 1000 kWe, 4% above 1000 kWe, 10% between 250 and 500 

kWe, and 13% less than 250 kWe. To feed them it is estimated that each year about 3,000,000 tons 

of maize silage, 800,000 tons of other energy crops, and 5,000,000 tons of manure coming from 

livestock are used (Peri et al., 2013). The sharp increase of biogas plants in Lombardy began in 

2009 (Figure1), when maize grain covered 253,741 hectares with a production of 2,944,814 tons 

and the area for maize silage was 113,090 hectares, producing 6,411,200 tons. In 2009 maize (grain 

and silage) covered 35% of Utilised Agricultural Area (UAA hereafter), mainly used as feed for 

livestock that represent the main production of Lombardy agriculture, both in terms of heads, 

compared to national values (48% of swine, 26% of cattle and 24% of poultry heads) and in value: 

animal productions represented 60% of Lombardy agricultural production value (Cavicchioli, 

2009). 

                                                           
10

 NUTS classification can be found at: http://ec.europa.eu/eurostat/ramon/nuts/basicnuts_regions_en.html. 
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Below we describe the data set and assumptions that have been introduced in order to model the 

biogas industry (feedstock demand) and the agricultural sector (feedstock supply) in Brescia and 

Cremona, which together hold the 52% of the installed power of Lombardy (Figure 3). 

 

2.2.1 Demand-side biogas industry model 

We set five possible size classes of biogas plants (130, 250, 530, 999 and 2000 kWe) operating in 

cogeneration (i.e. the combined production of heat and power – CHP) and with different maize and 

manure shares (see Table 2). Size class segmentation reflects differences in output prices (energy 

sold by biogas plants) according to the two different subsidization policies compared, i.e. pre 2013 

and post 2013 policies (see Table 1). While under pre 2013 policy the only plant size threshold was 

1MWe (all plants below that size were more subsidized, see Section 1, footnote 3 and 4), under post 

2013 policy the incentive structure is more segmented, according to plant size. Furthermore, also 

planning horizon used to calculate yearly operational profit in Equation (1) and (3) has been set 

according to the duration of plant subsidization, as established by each policy (15 years for pre 

2013 and 20 years for post 2013). We apply ReSI-M modelling framework described in 2.1.2. to 

Brescia (BS) and Cremona (CR) provinces, assuming a vector of exogenous input (maize) prices 

(�2∈{maize}3  = {30…70 €/ton}). ROI for each combination of type-location plant is computed in both 

NUTS 3 regions according to their size and feedstock density.  

Concerning the energy crop mix we consider only maize silage, so we have converted the remaining 

energy crops (approximately 1/4 on the total) in maize equivalent units, based on their energy 

efficiency (Frascarelli, 2012). Such a simplification has been necessary for a matter of model 

tractability and may induce a slight overestimation in maize silage demand.11 

                                                           
11 This conversion has been necessary as the version of ReSI-M employed, kindly provided to us from the Authors 
(Delzeit, 2010 and Delzeit et al., 2012), considers exclusively maize silage as energy crop in the blend. See Britz and 
Delzeit (2013) for an extended version of ReSI-M (ReSI-M2012), in which additional inputs are taken into account by 
the model. 
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Regarding the demand for maize silage from biogas plants we set 2012 as reference year, the last 

one before the beginning of the new incentive system and for which detailed data are available 

mainly as an outcome of a research project funded by Lombardy Region to assess the economic and 

environmental impact of biogas on agri-food supply chains, hereafter referred as Eco-biogas project 

(Regione Lombardia, 2013: Fabbri et al., 2013).  

As in Delzeit (2010), biogas plants are charged of transportation costs for maize silage. Moreover, 

even though Brescia and Cremona have high livestock densities, to account for the effects of new 

policies on plants profitability, also transportation costs for manure are assumed to be paid by 

biogas plants. Mountain and urbanized areas (as classified by the Italian National Institute of 

Statistics, ISTAT) have been considered not suitable for biogas production, as a consequence of 

both landscape planning laws and low agricultural input availability. Transportation costs for maize 

have been calculated according to equation (2). Parameters of equation (2) have been computed 

using Lombardy data, with the only exception of per unit transportation costs per km for maize and 

manure (�� and ��	in equation (2)) that are instead taken from Delzeit (2010), assuming that a 

similar technology is used in Lombardy to transport maize and manure.12 As regard the share of 

arable land on total land ((��, !�	) we calculated these values using Italian National Institute of 

Statistics (ISTAT) data, that provides land use information  at municipal, provincial and regional 

level.  Maize need per plant size (��), maize yield ('��	) and inter-provincial distance (���,��) 
between the province where the plant is located and the province where feedstock is taken are 

computed using the information and data  collected within the Eco-Biogas project (Regione 

Lombardia, 2013) and the Geographical Information System .  

 Exogenous data used to determine profits (operating and production costs) for biogas plants are 

drawn from the literature (Frascarelli, 2012;  Ragazzoni, 2011);  revenues are computed using plant-

                                                                                                                                                                                                 
 
12 We found similar technological assumptions and average values compatible with those adopted in our case study 

(Ragazzoni, 2011). Moreover, we have tested the sensitivity of our results, against a +/- 10% change in per unit 
transportation costs per km for maize and manure without finding any significant variation in model results. 
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gate withdrawal prices for electricity as established by past and the current legislation (pre and post 

2013 polices, see Table 1). Further assumptions on plant efficiency and operating hours per year are 

also taken from Frascarelli (2012). Data on the amount of manure available for biogas production 

have been taken from the Decision Support System ValorE13 (Acutis et al., 2014) and from Regione 

Lombardia (2013).  

 

2.2.2 Supply-side agricultural model 

We apply to Lombardy Region the model described in Section 2.1.2. Only maize silage is 

considered as energy crop for biogas and its selling price is parametrically imposed within the same 

vector mentioned in Section 2.2.1 for the industrial model, i.e. �2∈{maize}3  = {30…70 €/ton}. For all 

other crops the price is considered constant and in line with the market price observed in Lombardy 

during 2008.14   

The model extends the optimal sample quantities and land allocation to the universe of represented 

farms using appropriate weights (wf in equations 6-8) taken from RICA weighting system (see 

below for the description of RICA). Aggregating the outputs of the model we obtain the agricultural 

supply function for maize silage in Brescia and Cremona.  

Data on farm structure, costs and yields come from the RICA dataset. RICA (Rete Italiana di 

Contabilità Agraria) is the Italian network, managed by INEA (Istituto Nazionale di Economia 

Agraria, National Institute of Agricultural Economics) that gathers data on structure, production and 

                                                           
13

 The Decision Support System ValorE is the outcome of a research project funded by Regione Lombardia. It is 
accessible, upon registration, at the following website (in Italian):  
http://www.sistemaespertonitratilombardia.it/Default.aspx 

14 Average values obtained from data of Camere di Commercio, Industria, Artigianato e Agricoltura della Lombardia 
(Lombardy Chambers of Commerce, Industry, Agriculture and Handicraft). 
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accountancy from a representative sample of farms in each Italian NUTS 2 region. RICA is the 

Italian version of the FADN (Farm Accountancy Data Network).15 

As the sharp growth of biogas plants installation began in 2009 (Figure 1), we simulated farm 

supply of maize in the previous year (2008), in order to estimate maize supply function before the 

increase of silage maize demand from biogas sector. For this reason we have used farm data from 

2008, considering such year as a baseline to simulate a reference scenario (see Section 2.3).  

Data on farms specialized in Cereals, Oilseeds and Protein crops (Type of Farming 13 according to 

FADN classification, 29% of the regional sample) and farms specialized in other field crops (Type 

of Farming 14, 12% of the regional sample) have been extracted from RICA Lombardy sample. The 

sample is therefore composed by 36 farms for Brescia and 21 for Cremona. Accordingly, the model 

contains 570 variables (57 farms having, overall, 10 crop processes) and 300 constraints. 

The more representative crops included in the farm sample are: maize grain, soft wheat, soya bean, 

durum wheat, maize silage and alfalfa.  

Following Rozakis et al. (2013), parameters used at farm and crop level are: utilized agricultural 

area (hectares), prices (€/ton), yield (ton/hectare) and variable costs (€/hectare). The latter includes 

all costs directly attributable to each specific crop. 

On the basis of data from Regione Lombardia (2013) we estimated that livestock farms provides 

one third of maize silage necessary to feed biogas plants existing in 2012.16 Maize silage produced 

in livestock farms is intended exclusively for the livestock feeding17 and to feed no more than 1/3 of 

the biogas plants in 2012. This implies that, even if we consider the possibility to build biogas 

plants also in livestock farms (Type of Faming 41 according to FADN), in our model only farms 

without livestock can sell maize silage to the biogas plants simulated by ReSI-M. This 

simplification has been made for a matter of model tractability and implies that the simulated 

                                                           
15 Further information on FADN are available at: http://ec.europa.eu/agriculture/rica/  
16

 Such assumption is based on survey results from Eco-biogas project (Regione Lombardia, 2013).  
17 Such assumption is supported by actual data (Pieri and Pretolani, 2009;2013), according to which livestock heads 

did not change between 2008 and 2012, in spite of changes in maize silage price. 
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agricultural supply function may be potentially distorted by taking out the livestock sector from the 

modelling exercise. In so doing we do not allow for direct competition between livestock and 

biogas activity for maize silage, that, in turn, may led to underestimation or overestimation of 

supply functions, depending on the relative profitability of these activities. However, on one hand, 

we cannot quantify the extent of such potential distortion and, on the other hand (as better clarified 

in sections 2.3 and 3), the impact of such limitation may be mitigated considering that the main 

interest of our simulation is in the differential effect of alternative subsidization polices.  

 

2.2.3 The integrated model  

Maize silage market for biogas production is simulated integrating the two model described in 

Sections 2.2.1 and 2.2.2 with a partial equilibrium approach. 

Assuming a vector of all possible maize prices (pmaize = {30…70 €/ton}) we derive, from the 

industrial model, the maize demand curve originating from biogas production and, from the 

agricultural model, the corresponding maize supply curve. Intersecting the two curves the 

equilibrium and the relative market clearing prices and quantities are obtained. An overview on the 

underlying logic of this partial equilibrium approach is provided in Figure 4. 

 

2.3 Policy scenarios 

As mentioned at the end of the introduction, the multiple impacts of biogas sector are estimated 

using a partial equilibrium displacement approach simulating the maize silage market for biogas. In 

this framework, changes in biogas energy policy (pre and post 2013) have a direct impact on the 

demand-side biogas industry model, that is transmitted forward (changing the amount of energy 

supplied) and backward, shifting the demand for maize silage. Such shift displaces the market 

equilibrium, changing market-clearing quantity and price of maize silage for biogas production. 
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Any change in market clearing price of maize silage has a double impact on the agricultural sector: 

firstly it changes, backward, the optimal land allocation in the supply-side agricultural model, and 

secondly, it rises or decreases the opportunity cost of maize silage for livestock farms. The 

differential price of maize silage (driven by the change in biogas policies) may indeed translate into 

a change of opportunity cost for livestock feed. Hence, although our model is not capable to assess 

the impact of biogas policies on livestock sector, it may however highlight possible effects in terms 

of opportunity cost for livestock feed, still useful for a qualitative analysis of these (not modelled) 

effects.  

We introduced three scenarios to better explain such multiple impacts of biogas production under 

different policy incentive schemes (pre and post 2013 policies): 

• Scenario_0: reference scenario. It simulates the crop supply (and land allocation) in 2008, 

thus before the biogas industry take off. In Scenario_0 crop supply is simulated by ignoring 

the effect of regional maize demand for biogas and assuming average (2008) market prices 

for maize silage (30 €/ton) and for other crops as an exogenous variable. The agricultural 

supply model is then calibrated and validated under the conditions of this Scenario, while 

the demand-side biogas sector is not introduced. The iteration process produces the optimum 

allocation of land in each farm modelled in the agricultural model. From such optimal crop 

mix, the area allocated to maize silage is extended to the universe of farms represented in 

the sample (Type of Farming 13 and 14) using appropriate weights (see section 2.2.2). Such 

reporting to the universe yields the simulated hectares of maize silage potentially available 

for biogas production in each area under investigation and, in turn, the simulated amount 

(tons) of maize silage potentially available for biogas production. This scenario is the 

baseline used to measure the change in demand for land for maize silage induced by the 

biogas industry. 
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• Scenario_1: in this scenario we simulate maize silage market, from 2013 onward, under the 

old incentive system (pre 2013 policy) accounting for the maize demand from plants 

surveyed at the end of 2012. Such amount represents the intercept at the upper side on the 

quantity axis (see “unavailable maize” in Figure 6) in the estimated demand function. This 

makes the demand function to shift on the right, incorporating the effect of existing (at the 

end of 2012) plants on market clearing price. Plants are constructed with a planning horizon 

of 15 years (see Table 1). Farm supply and biogas industry demand are derived assuming 

different exogenous prices (from 30 € to 70 €) for maize silage.  

• Scenario_2: in this scenario we simulate silage maize market, from 2013 onward, under the 

new incentive system (post 2013 policy), still accounting for the maize demand from plants 

surveyed at the end of 2012 (and therefore incorporating this effect on market clearing price 

estimation as in Scenario_1), but, assuming that biogas plants receive FITs according to the 

new post 2013 policy framework. Plants are constructed with a planning horizon of 20 years 

(see Table 1). Farm supply and biogas industry demand are derived assuming different 

exogenous prices (from 30 € to 70 €) for maize silage.  

From market clearing quantities obtained in Scenario 1 and 2, we derive backward the optimal 

amount of land required for maize and downward the future installable power (see Tables 5 and 6). 

Note moreover that : i) the demand function change, in Scenario 1 and 2, as a consequence of 

different biogas subsidization policies; ii) the missing inclusion of livestock sector described in 

Section 2.2.2 affects only the supply function, which does not change across the two Scenarios.  

Since the estimated maize silage price in each scenario derives from the match between supply and 

demand functions, its value may be distorted in absolute terms. However, the change in estimated 

maize silage price (that mediates the differential effect of biogas policies) may be considered non-

distorted. Therefore the comparison between outcomes from Scenario_1 and Scenario_2 allows to 
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quantify the various differential effects of alternative subsidization policies, so that potential supply 

distortions mentioned in Section 2.2.2 appear mitigated. 

Finally, the difference in the reference year between the agricultural and the industrial model can be 

matched inside both scenarios considering  that the phenomenon we wish to investigate (the 

differential impact of biogas policy) has a direct effect only on the demand side, leaving unchanged 

the supply side. As a result, the market clearing price changes as a consequence of demand change, 

while the supply function is unchanged under the two scenarios (see Figures 6 and 7).  

 

2.4 Models validation 

To verify whether and to what extent the industrial model fits the biogas production in Lombardy, 

we set the same policy framework under which plants existing in 2012 were built, namely the pre 

2013 policy framework, and we fixed the maximum amount of available maize equal to the share of 

maize silage already used by these plants. Since 2012 biogas plants consumed about 800,000 

tons/year of maize silage in Brescia and 1,870,000 tons/year in Cremona (Regione Lombardia, 

2013), this is therefore the maximum amount of maize silage that we made available to the model in 

this first simulation. Figure 5 compares the reported shares of installed power in Brescia and 

Cremona with the simulated shares from the modelling exercise. As we can see, the model fits quite 

well the actual situation. The difference of - 7MW observed in Brescia is due to the exclusion from 

the simulation of some medium and small plants, using mainly manure and then not affecting silage 

maize market. 

Acting as a profit maximization model, ReSI-M chooses the plant typology that maximizes ROI 

(999 kWe, more efficient but using more maize). Consequently, with the same quantity of maize 

silage, the simulation yields 43 MWe of installed power, against 50 MWe actually installed. 

Differences between the two scenarios are smaller in Cremona than in Brescia as the former area 

shows less plant heterogeneity, with an average power closer to the plant class simulated by the 
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model. It should be noted that the class of plants simulated by the model reflects well the real 

observed trend resulting from the pre 2013 policy (73% of Lombardy plants had an energy capacity 

between 500 kWe and 1000 kWe). 

To test the agricultural model’s ability to reproduce farmers’ behaviour, we compare simulated and 

observed crops pattern. As explained above, for a matter of model calibration, we have chosen 2008 

as reference year. Model validation has then been carried out by comparing optimal crop mix from 

Linear Programming (LP) supply model with the observed ones (2008). The LP supply model 

allocates, for each crop (k	= � ∪ /) the level of arable land (hectares) that maximize farm gross 

margin �YZ[�	to be compared with the observed land allocation level �YZ�� for the same crop. Such 

values are compared computing the Absolute Deviations (AD)18 of the predicted values from the 

observed values and then calculating Total Weighted Absolute Deviation (TWD)19 in order to have 

a global index of the representativeness of the model.  

Absolute deviations between observed and predicted land allocation shown in Table 3, fit well the 

most representative crops and, consequently, the total weighted deviation is limited (below 22%) 

and in line with the values found in the literature for MAORIE type models  (Kazakçi et al. 2007; 

Rozakis et al., 2012). 

The high level of AD for maize silage is due to under-representation of such crop in the sample as 

sample farms are specialized mainly in cereals and other arable crops to be sold on the market. 

However, if we consider the summation of grain ad silage maize areas simulated by the model, we 

observe lower AD values since the model fits better the total maize area. Such summation it is 

appropriate as, at farm level, silage and grain maize surfaces are interchangeable: farmers are free to 

decide during the year whether to produce silage or grain maize according to the time of harvest and 

                                                           

18 \Q
�YZ��, �YZ[�� = 	 ]�_̂`�a�_̂b-	�_̂b- c 
 
 

19
 deQ	"�Z[�$ = 	∑ fgh_̂`�ih_̂b-	h_̂b- j∗	 h_̂b-

∑ h_̂b-^ l^
∑ m h_̂b-

∑ h_̂b-^ n^
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the expected market prices of the two products. Therefore the agriculture supply model fits farmers’ 

behaviour concerning land allocation for crops of interest for the present analysis. Optimal land 

allocation presented in Table 3 is referred to the sample; the model extends such results to the 

universe of farms represented in such sample (see Section 2.2.2) in Brescia e Cremona, yielding the 

maize silage production from which are computed the hectares potentially available for biogas 

production (see Table 4). 

 

3. Results and discussion 

The three above mentioned scenarios allow to estimate, with a partial equilibrium approach, maize 

silage demand and supply for biogas production without biogas subsidization policies and under 

two different energy policy schemes. Scenario_1 and _2 yield, for Brescia and Cremona, market 

clearing quantities and prices, energy production and the amount of land allocated for maize silage 

production. Consequently, a comparison between the two scenarios allows to quantify the impact of 

changing energy policy on the above mentioned outcome variables (installed power, prices, 

quantities and land allocation for maize silage). The impact on agricultural sector and agri-food 

supply chains is measured in terms of change in maize silage price, affecting the opportunity cost of 

maize silage for livestock farms, and in terms of changing demand of land for its cultivation. 

In Scenario_0, the simulated hectares of maize silage potentially available for biogas production 

(assuming an exogenous price of 30 €/ton equal to the average market price for the maize silage in 

2008) is equal to zero in Brescia and quite low (1,738 ha, 1.29% of total UAA) in Cremona (Table 

4).  

In estimating maize silage demand in Scenario_1 and _2 we have accounted for the amount of 

maize unavailable as already used by plants built till 2012 (529,952 tons in Brescia and 1,248,266 
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tons in Cremona,20 see tables 5 and 6). Furthermore we have bounded the demand of maize silage to 

the maximum amount that can be produced in each area (equal to total UAA for farms with Type of 

Farming 13 and 14) corresponding to 2,726,141 tons in Brescia and 1,870,549 tons in Cremona (see 

Tables 5 and 6). Maize silage demand is therefore estimated under such upper and lower bounds 

(see Figures 6 and 7).  

Figure 6 shows the market equilibrium between estimated supply (MAORIE) and demand (ReSI-

M) in Scenario_1 that yields market clearing prices and quantities, along with consequent relevant 

outcomes shown in Table 5. Up to 55 - 60 €/ton, the demand is totally inelastic in both provinces, 

this means that, for prices lower than 55 €/ton, the model is limited by maize silage unavailability, 

rather than by loss of plants profitability due to increase in maize silage price and transportation 

costs. Indeed, the maximum amount available is used as feedstock for biogas production. As 

compared to actual maize silage price in 2012 (36.9 €/ton),21 pre 2013 policies would make it to rise 

to 57 €/ton in Brescia (+56%) and 60 €/ton in Cremona (+64%). As silage and grain maize prices 

are strongly interlinked, such sharp increase would raise feed costs in livestock farms (in particular 

those specialized in cows and pigs). The amounts of land required to produce market clearing 

quantities of maize silage are 44,793 ha (25.6% of UAA) in Brescia and 30,421 ha of maize (22.6% 

of UAA) in Cremona, inducing a strong change in demand for maize silage as compared to 

Scenario_0. The same effects of this subsidization policy scheme is observed by Carrosio (2013), 

who argue that on local agricultural market the price for land and row materials can be significantly 

affected by biogas production.  

                                                           
20 These values derive from the assumption that livestock farms provide 1/3 of maize silage required to feed plants 

built until 2012 (overall 794.928 tons in Brescia and 1.872.400 in Cremona). Such amounts have been consequently 
reduced by 1/3 according to the above mentioned assumption.  

21 Average values obtained from data of Camere di Commercio, Industria, Artigianato e Agricoltura della Lombardia 
(Lombardy Chambers of Commerce, Industry, Agriculture and Handicraft). 
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In line with the trend observed until 2012, simulated plants are big sized (999 kWe)22. In addition to 

the already installed (2012) power (101 MWe in Cremona and 50 MWe in Brescia), the new 

installable capacity amounts to 32 MWe in Cremona and to 120 MWe in Brescia (see Table 5).  

In Scenario_2 we introduced the new renewable energy policy system (policy post 2013). Thus we 

repeat the Scenario_1, replacing the old policy framework with the new one. Table 6 reports main 

outcomes under Scenario_2 assumptions. 

By assigning a higher premium per kWh produced, the new incentive system is intended to reward 

smaller plants (lower than 300 kWe), whose input has an energy crops/manure ratio significantly 

lower, with respect to bigger plants (see Table 2). Accordingly, the equilibrium price of maize 

silage decreases significantly in both areas in comparison with Scenario_1: 38 €/tons in Brescia and 

42 €/tons in Cremona (see Figure 7), to levels closer to actual price in 2012 (36.9 €/ton) and in line 

with the actual maize silage market price in Lombardy (ca. 40 €/ton in 2014).23  As show in Table 6, 

land required to produce market clearing quantities of maize silage amounts to 14,299 ha (8.18% of 

UAA) in Brescia and 26,500 ha (19.67% of UAA) in Cremona, far lower with respect to Scenario_1 

(see Table 7). The impact of biogas production on land allocated to maize silage is therefore 

mitigated under the new incentive system with respect to the old one.   

The simulated (new) plants are smaller (130 kWe) and the demand for maize silage (used maize24) 

decreases, compared to Scenario_1, from 2,157,623 to 327,963 tons (‒1,829,660 tons, -85%) in 

Brescia and from 577,017 to 341,739 tons (‒235,278 tons, -41%) in Cremona.25 The smaller 

quantity decrease in Cremona is due to the large amount of maize silage already used to feed plants 

built until 2012 that is made unavailable for new plants; such constraint is far smaller in Brescia. 

                                                           
22 Also in this case a similar result can be found in Carrosio (2013), who identified the correlation between the past 

biogas incentive system and the establishment of a dominant (unsustainable) biogas organizational model. 
23

 Average values obtained from data of Camere di Commercio, Industria, Artigianato e Agricoltura della Lombardia 
(Lombardy Chambers of Commerce, Industry, Agriculture and Handicraft). 

24
 As explained above, used maize is computed by subtracting unavailable maize for plants built until 2012 from 

market clearing quantities. 
25 A similar result of the application of the new incentive system is also confirmed in the case study of Friuli-

Venezia-Giulia Region (see Chinese et al. 2014). 
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Moreover, under Scenario_2, the increase of biogas plants is not limited by maize availability but 

by the loss of profitability due to incentives reduction. This is due to the lower quantity of maize 

silage needed for small plants to operate (1,000 tons/years rather than 18,000 of 999 kWe) given 

their lower ratio between used maize and installable power (Tables 5-6). Consequently, 43 MWe in 

Brescia (compared to 120 MWe of Scenario_1) and 44 MWe in Cremona (compared to 32 MWe of 

Scenario_1). The new incentive system would consequently decrease the pressure on agri-food 

supply chains by diminishing both the demand of land for energy crops, along with a substitution of 

maize silage with other crops in the supply model, and reducing the (opportunity) feed costs for 

livestock farms (by lowering maize silage prices). At first glance these results seem divergent with 

respect those of Delzeit (2010) and Britz and Delzeit (2013), who found higher competition for 

maize in regions with high availability of manure. These Authors explained such outcomes 

correlating availability of manure and maize. On one hand, the lack of manure can limit biogas 

production, but, on the other hand, in regions with a large amount of manure, maize can became 

scarce and consequently its market clearing price increases. Manure availability is therefore an 

important factor, to take carefully into account. In the present analysis, we can explain the 

decreasing maize demand under Scenario_2 focusing on tree different parameters: i) regional 

manure density and availability; ii) the related regional transportation cost for manure;26  and, iii) 

the manure demand of simulated plants. Considering the higher amount of manure necessary to feed 

130 kWe plants, during the iteration process manure transportation costs increase rapidly, causing 

loss of profitability for further plants. This effect, combined with subsidies reduction due to the new 

policy system, shortly pushes the plants’ profitability towards zero, limiting the number of 

simulated plants.  This explains the lower maize demand in comparison with Scenario_1.  

Notwithstanding, also if we do not consider transportation costs for manure, the high amount of 

manure needed to feed 130 kWe plants, runs out quickly the available manure during the iteration 

process in both regions, limiting in any case the effects on maize demand and on its market clearing 
                                                           

26 As explained in Section 2.2.1, we consider also transportation cost for manure in order to emphasize the effects of 
new policy on plants’ profitability. 
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price.  The above observation along with the comparison between the different shape of each 

demand function between Scenario_1 and Scenario_2, makes plausible that market clearing prices 

and quantities would be ever higher in the former than in the latter. This difference would be 

reflected in terms of opportunity cost for maize silage, highlighting, therefore, lower potential 

competition (in Scenario_2 than in Scenario_1) between biogas and livestock sector for maize 

silage allocation. To conclude the analysis regarding the shift in feedstock mix between simulated 

plants under pre and post 2013 policy framework, it is also useful distinguish between the energy 

content and the mass content of maize and manure present in the blend of simulated plants. As show 

in Table 2, the 999 kWe plants simulated under the pre 2013 policy framework, have a maize 

manure ratio 2 : 1 (18,000 tons/years of maize vs 9,000 tons/years of manure). In mass terms maize 

is the 66.6%, but its contribution as feedstock energy is 95%, reflecting the higher energy content of 

maize. This pattern is still present under Scenario_2, in which 130 kWe plants are fostered. Despite 

a 1:10 maize manure ratio (1,000 tons/years of maize vs 10,000 tons/years of manure) and a mass 

content in manure raised to more than 90%, the share of energy from maize silage stands close to 

50%, highlighting the strong link between this crop and biogas production. 

Finally, we can compare the effect of pre and post 2013 energy policies on the Return on 

Investments (ROI) of simulated plants, under different e maize silage prices (Figure 8). In 

particular, we report the ROI of the first plant simulated by the model (under old and new policy) 

for each level of maize price exogenously imposed (pmaize = {30…70 €/ton}). The trend shown in 

Cremona is similar to those in Brescia. Note that, all simulated plants after the first, have decreasing 

ROI because of increasing transportation costs (see Section 2.1.1).  

Plant size having the greater ROI under Scenario_1 is 999 kWe, while under Scenario_2 is 130 

kWe. As shown in Figure 8, with the pre 2013 policy regime the plants simulated by the model 

have significantly higher ROI than those simulated under the post 2013 policy regime. Such 

difference in ROI decrease as maize prices increase. Under the old incentive system the maize price 
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threshold that sets at zero the ROI is 63 €/ton; the introduction of the new incentive system fosters 

small plants (130 kWe), which, despite using less maize, shutdown when the price of maize exceeds 

55 €/ton. 

 

4. Conclusions and policy implications 

This paper studies the effects of two alternative energy policies schemes for biogas subsidization on 

the market equilibrium of the maize silage, as main energy crop in Lombardy. We adopted a partial 

equilibrium approach, simulating  agricultural supply and biogas demand of maize silage for biogas 

production under two alternative policy scenarios. In so doing we measured, on one side, the effects 

of biogas introduction and, on the other, the consequences of different biogas subsidization systems. 

Such a comparative static exercise allows indeed to compare and to evaluate the two different 

biogas subsidization policies analysed in the present article, in terms of main market outcomes. The 

change in policy option displaces simulated market equilibria, yielding different prices and 

quantities of maize silage devoted for biogas production, from which, in turn, we derive the related 

demand of land for maize silage and biogas installable power. According to the evidence of the 

present work, the old biogas subsidization system (pre 2013 policy), based on the feed-in tariff, 

would foster investments in bigger plants (e.g. 999 kWe) assuring higher profitability  that would 

lead to an increase in demand for maize silage, with consequent negative effects on its (rising) 

price. Therefore, if the incentive policies had remained unchanged, in areas where the density of 

plants is remarkably high, a significant competition could have occurred between the biogas sector 

and agri-food supply chains (cow and pork meat and milk sectors) even in the short run.  

In comparison with the above mentioned policy option, the new incentive system (post 2013 

policy), simulates different market conditions, which allow the adoption of smaller plants (e.g.130 

kWe), and a lower maize slurry ratio. As a result, the maize demand from the biogas sector should 
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significantly decrease, relaxing the pressure on the demand of land for maize silage. We observe, 

therefore, an important first effect due to the introduction of the new incentive policies: the 

distribution of biogas plants is strongly linked to the availability of manure; from a hypothetical 

situation of competition, the system moves to a situation of complementarity between the biogas 

sector and regional meat and milk sectors. 

The lower ROI of biogas plants under new policies should however contain the installed capacity in 

the future as the profit margins, achievable under the current regulatory framework, are 

significantly lower than those made with the past system of incentives. Moreover, the plants’ 

profitability is more sensitive to the increase of the maize price compared to the past incentive 

system. It is therefore an obvious choice to exploit the manure and by-products, a key condition for 

the containment of plants operating costs. The likely effects of new incentive system are twofold. 

On one hand it may discourage further investments on biogas sector, but, on the other, it would 

reduce distortive effects on the maize market related to agri-food supply chains. Such conclusion 

may indicate a possible way to use incentive systems to mitigate competition between agricultural 

sector and bioenergy production, also in areas out of the present case study.  

Results and policy implications of the present work should be considered taking into account some 

limitations of the underlying modelling framework. First of all, to make tractable the partial 

equilibrium model, we have excluded livestock farms from the supply side sample, under plausible 

assumptions (i.e. livestock farms providing 1/3 of maize silage used to feed plants built until 2012). 

Such a simplification limits all the analysis on the demand of land for biogas crops to the universe 

of farms represented in the sample (those specialized in arable crops: Type of Farming 13 and 14 

according to FADN classification). Furthermore, excluding livestock  farms from the modelling 

exercise does not allow a direct competition between biogas and animal feed for maize silage 

allocation. Therefore, the competition between biogas and livestock sector is investigated 

exclusively in terms of differential opportunity costs for maize silage under the two different energy 
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policies schemes tested in the present article. A future potential extension would require to model 

explicitly also the behaviour of livestock farms by including them in the agricultural model. This 

shortcoming may be overcome by Positive Mathematical Programming (PMP) to better represent 

unobserved preferences of farmers, as in recent papers on energy crops modelling (Donati et al., 

2013). Another interesting extension to overcome the aforementioned limitations concerns the 

improvement of the spatial accuracy of the model and its integration with an Agent Based 

Modelling approach. The spatial dimension is indeed highly relevant because of the important role 

of feedstock transportation cost on the demand side and because the establishment of one biogas 

plant might change the investment opportunities for other farmers in the surrounding area. Finally, 

further developments should also pertain the quantification of Direct Land Use Change (D-LUC) 

that occurs on crop mix distribution at the equilibrium price. For a more accurate quantification of 

such changes, the supply model should account explicitly for crop mix allocation constraints 

established by the new Common Agricultural Policy (2014-2020) in particular by the so called 

“greening” 27 that bounds first pillar payments to permanent pastures maintenance, crop 

diversification and a certain share of farmland devoted to ecological focus areas (EFA). In so doing 

we shall overcome another potential limitation of the current version of the agricultural model.   

                                                           
27 See Cavicchioli and Bertoni (2015) for a detailed explanation of greening measures 
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Table 1 – Policy changes in agricultural biogas incentive system. 

Policy intervention 

parameters 

Pre 2013 policy  (Law 

99/23 July 2009) 
Post 2013 policy  (Decree 6 July 2012) 

Incentive value 

 

Feed in tariff for plants up 

999 kWe  (280 € MWh) 

 

Green Certificate for plants 

> 1000 kWe (223 € MWh
-1 

; 

average 2011–13) 

Size class 
Energy crops             

(€ MWh) 

Animal byproducts 

based   (€ MWh) 

             1  -  300 kWe 180 236 

        301  -  600 kWe 160 206 

   601 - 1000 kWe 140 178 

   1001 - 5000 kWe 104 125             

Substrate based 

tariff differentiation 
None 

 

Different tariffs depend on the ratio between energy crops and by-

products (eg. manure or food industry residues): when lower than 

30% the plants receive the incentive for energy crops, otherwise it 

receives the incentive for energy by-products. 

 

Time horizons 15 Years 20 Years 

Source: Readapted from Chinese et al. (2014) 

 

Table 2 – Feedstock mix of biogas plants for power classes in Lombardy Region (reference year 

2012). 

Power (kWe) Maize Silage (t/year) Manure (t/year) 
 

 Reside (t/year) 

130 1,000 10,000 

 

 10,680 

250 4,000 12,000 

 

 18,162 

530 10,000 13,000 

 

 17,621 

999 18,000 9,000 

 

 29,708 

2000 33,000 24,000 

 

 44,760 

Source: Authors elaboration on Regione Lombardia (2013) data.  
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Table 3 – Comparison between actual crop mix and optimal crop mix in Cremona (CR) and Brescia 
(BS) using RICA sample data. 

  

Observed 

crop mix  in 

CR (ha) 

LP Optimal 

crop mix 

in CR (ha) 

CR             

Absolute 

deviation  

Observed 

crop mix in 

BS (ha) 

LP Optimal 

crop mix in 

BS (ha) 

BS          

Absolute 

deviation 

Maize (grain and 

silage maize) 568.41 651.14 0.146 383.84 382.66 0.003 

Grain maize 559.41 596.54 0.066 375.26 382.66 0.020 

Silage maize 9.00 54.60 5.067 8.58 0.00 1.000 

Soft wheat 171.70 189.44 0.103 51.09 51.09 0.000 

Other grain legumes 62.92 43.07 0.316 - - - 

Soybean 62.69 0.00 1.000 2.56 0.00 1.000 

Tomato 17.88 17.88 0.000 - - - 

Lettuce 17.79 17.79 0.000 - - - 

Sugar beet 15.14 7.29 0.518 - - - 

Mellon 14.29 17.15 0.200 - - - 

Durum wheat 10.71 10.51 0.019 - - - 

Watermelon 10.38 10.38 0.000 - - - 

Sunflower 7.21 0.00 1.000 - - - 

Grassland 2.97 0.00 1.000 18.42 0.00 1.000 

Alfalfa 1.96 0.00 1.000 29.48 53.10 0.801 

Savoy cabbage 1.34 1.34 0.000 - - - 

Other forage crops 1.25 1.25 0.000 - - - 

Potato 1.00 1.00 0.000 - - - 

Herbage of gramineae 0.59 0.00 1.000 35.7 55.32 0.550 

Barley - - - 21.08 0.00 1.000 

Total weighted abs. dev.   0.213   
 

    0.187 

Source: Authors elaboration on RICA data and results of agricultural model described in Section 2.2.2 

 

 

 

Table 4 – Scenario_0: simulated hectares of maize silage potentially available for biogas production 
and their incidence on Utilized Agricultural Area (UAA) under the average market price of 2008 
(before the growth of biogas plants). 

  Brescia Cremona 

Simulated hectares of maize potentially available for biogas production   0 1,738 

Simulated amount of maize potentially available for biogas production in 

TF 13-14 (tons) assuming an average yield of 60 ton/ha 
0 104,316 

Total UAA (ha) 174,784 134,660 

Share of land required for maize (% Total UAA) 0 1.29 

Source: Authors elaboration on Istat data and results of agricultural model described in Section 2.2.2 
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Table 5 – Scenario_1: Estimated market clearing prices and quantities of maize silage under pre 2013 
policy; main outcome of the model are in bold. 

 Brescia Cremona 

Average actual maize silage price in Lombardy in 2012 (€/ton) 36.9 36.9 

Market clearing price (€/ton)  57.6 60.6 

Increase in market price compared to 2012 (%) 56 64 

Market clearing quantities (tons) (A)          2,687,584            1,825,283  

Unavailable maize (tons used to feed plants at 2012) (B)             529,952            1,248,266  

Maximum amount of maize (100% UAA TF 13-14, tons)          2,726,141            1,870,549  

Used maize  (tons need to feed simulated plants) (A-B)          2,157,623                577,017  

Increase in maize demand: Used/Unavailable (%) 407 46 

Land required for maize (ha)               44,793                  30,421  

Share of land required for maize (% Total UAA) 25.62 22.59 

Installed Power until 2012 (MWe) 50 101 

Future installable Power (MWe) 120 32 

Total  Power (Current + installable Power, MWe) 170 133 

Increase in power: Installable/installed until 2012 (%) 240 32 

Used maize/Installable Power (ton/MWe)               17,980                  18,032  

Source: Authors elaboration on results of partial equilibrium model described in Section 2. 

 

 

Table 6 – Scenario_2:  Estimated market clearing prices and quantities of maize silage under post 
2013 policy; main outcome of the model are in bold. 

 Brescia Cremona 

Average actual maize silage price in Lombardy in 2012 (€/ton) 36.9 36.9 

Market clearing price (€/ton) 37.9 42.0 

Increase in market price compared to 2012 (%) 3 14 

Market clearing quantities (tons) (A)             857,915            1,590,005  

Unavailable maize (tons used to feed plants at 2012) (B)             529,952            1,248,266  

Maximum amount of maize (100% UAA TF 13-14, tons)          2,726,141            1,870,549  

Used maize  (tons need to feed simulated plants) (A-B)             327,963                341,739  

Increase in maize demand: Used/Unavailable (%) 62 27 

Land required for maize (ha)               14,299                  26,500  

Share of land required for maize (% Total UAA) 8.18 19.67 

Installed Power until 2012 (MWe) 50 101 

Future installable Power (MWe) 43 44 

Total  Power (Current + installable Power, MWe) 93 145 

Increase in power: Installable/installed until 2012 (%) 86 44 

Used maize/Installable Power (ton/MWe)                  7,627                    7,767  

Source: Authors elaboration on results of partial equilibrium model described in Section 2. 
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Table 7 – Comparison between scenarios 1-2 in terms of market clearing price, installed power and 
land use change in Brescia (BS) and Cremona (CR). 

  

BS/S1 BS/S2 
BS diff.     

(S1 -S2) 
CR/S1 CR/S2 

CR diff.          

(S1 -S2) 

Market clearing 

price (€/ton) 
57.6 37.9 -19.7 60.6 42.0 -18.6 

Market clearing 

quantities (tons) 
2,687,584 857,915 -1,829,669 1,825,283 1,590,005 -235,278 

Total Installed 

Power (MWe) 
170 93 -77 133 145 +12 

Land required for 

maize (ha) 
44,793 14,299 -30,494 30,421 26,500 -3,921 

Share of land for 

maize (% Total UAA) 
25.62 8.18 -17.44 22.59 19.67 -2.92 

Source: Authors elaboration on results of partial equilibrium model described in Section 2. 

 

 

 

 

Figure 1 – Number of biogas plants and installed Power in Italy between 2000 and 2012 years.                                 

 
Source: Readapted from Fabbri et al. (2013). 
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Figure 2 - Indices, parameters and decision variables of the agricultural model (MAORIE). 

Indices/Sets Parameters 

y ∈ Y  non-energy crop index (for sugar 
beets y = 1) 

wf   coefficient (weight) to report sample farm arable land to 
the universe of regional arable land  

d ∈ D  energy crop index (|D| = m) σf farm f total arable area (ha) 

f ∈ F  index for farms  σ1,f   maximum amount of land for sugar beet in farm f (ha) 

v ∈ V  agronomic constraints index  πv  maximum share allowed for crops under agronomic 
constraint v 

j ∈ J   index for parametrically imposed 
prices (only energy crops) 

iyv  agronomic constraints dichotomous coefficient = 0 if 
non-energy crop y is not subject to agronomic constraint 
v; =1 otherwise 

 
Parameters 

 
 
 

idv  agronomic constraints dichotomous coefficient = 0 if 
energy crop y is not subject to agronomic constraint v; 
=1 otherwise 

gy,f non-energy crop y gross margin 
in farm f (€/ha) 

  

γd,f    energy crop d yield in farm f 
(tons/ha) 

Decision variables  

cd, f   energy crop d production cost in 
farm f (€/ha) 

xf j
y,f  non-energy crop y area in farm f (ha) under a vector of j 

exogenous prices  

pj
d 

  
vector j of energy crop d selling 
price parametrically imposed (€/ton) 

xej
df energy crop d area in farm f (ha) under a vector j of 

parametrically imposed prices. 

Source: readapted from Rozakis et al., 2001 
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Figure 3 – Biogas plants in Lombardy Region and area under investigation (plain of Brescia and 
Cremona). 

Source: Geo-referenced data, readapted from Bertoni (2013). 
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Figure 4 – Multi level model flowchart*** 
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Figure 5 – Comparison between observed (installed) and simulated power (MWe) of biogas plants in 
Brescia (BS) and Cremona (CR). Reference year 2012. 

 

 

Source: Authors elaboration on results of ReSI-M model.  

 

 

Figure 6 – Scenario_1: Estimated market clearing prices and quantities in Brescia (BS) and Cremona 

(CR). 

 
Source: Authors elaboration on results of partial equilibrium model described in Section 2. 
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Figure 7 – Scenario_2: Estimated market clearing prices and quantities in Brescia (BS) and Cremona 

(CR). 

 

 
Source: Authors elaboration on results of partial equilibrium model described in Section 2. 

 

 

Figure 8 – Return on Investment for the first plant (s1 interaction) built in Cremona as a function of 
maize silage price (€/ton): comparison between pre 2013 – Scenario_1 – and post 2013 – Scenario_2 – 
policies. 

 

 
Source: Authors elaboration on results of partial equilibrium model described in Section 2. 
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