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Spiral density waves in the outer galactic gaseous discs
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ABSTRACT
Deep H I observations of the outer parts of disc galaxies demonstrate the frequent presence of
extended, well-developed spiral arms far beyond the optical radius. To understand the nature
and the origin of such outer spiral structure, we investigate the propagation in the outer gaseous
disc of large-scale spiral waves excited in the bright optical disc. Using hydrodynamical
simulations, we show that non-axisymmetric density waves, penetrating in the gas through
the outer Lindblad resonance, can exhibit relatively regular spiral structures outside the bright
optical stellar disc. For low-amplitude structures, the results of numerical simulations match
the predictions of a simple WKB linear theory. The amplitude of spiral structure increases
rapidly with radius. Beyond ≈2 optical radii, spirals become non-linear (the linear theory
becomes quantitatively and qualitatively inadequate) and unstable. In numerical simulations,
in models for which gas is available very far out, spiral arms can extend out to 25 disc
scalelengths. A comparison between the properties of the models we have investigated and
the observed properties of individual galaxies may shed light into the problem of the amount
and distribution of dark matter in the outer halo.
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1 IN T RO D U C T I O N

For several galaxies, deep H I images demonstrate the presence of
large-scale spiral arms in extended gaseous discs well outside the
bright stellar component (e.g. see Sancisi et al. 2008). The most
spectacular cases are NGC 1512/1510, NGC 5055, NGC 6744,
NGC 6946, and NGC 5236. Some spirals exhibit a rather complex
morphology (e.g. NGC 6946; Boomsma et al. 2008); yet, symmetric
grand-design structures are not so rare (e.g. NGC 1512; Koribalski
& López-Sánchez 2009).

UV images of the extended galactic (XUV) gaseous disc point to
ongoing star formation even in such outermost regions (Bigiel et al.
2008). In particular, GALEX data provide evidence for weak but
significant star formation in such very low gas density environments.
H II regions have been noted far away, outside the bright optical disc
(Karachentsev et al. 2011). In addition, the gaseous layer in the
disc plane is characterized by a rather high-velocity dispersion 1–
10 km s−1. An interpretation of these findings is required.

A comparison of H I and UV brightness of the extended outer disc
shows that spiral arms are a necessary, but not sufficient, require-
ment for star formation (Barnes et al. 2012). Interestingly, although
with only little attention paid to the dynamical origin of spiral struc-
ture, the simulations by Bush et al. (2008, see also Bush et al. 2010)
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show that organized compression regions and filamentary structures
should occur frequently, at least if the extended gas is characterized
by a constant surface density at the level 5–10 M� pc−2 [which is
on the high side, with respect to H I observations; note also that this
implies a much shorter depletion time-scale than expected (Bigiel
et al. 2010)]. However, in spite of the fact that there are many ex-
amples of extended UV discs, we still lack firm theoretical models
of star formation outside the optical radius in external galaxies.
This difficulty is largely related to our poor understanding of the
physical conditions in those regions, both in terms of general prop-
erties of the interstellar medium (ISM) and of the resulting stellar
populations (Koda et al. 2012; Barnes, van Zee & Dowell 2013). It
appears that, much like in some dwarf galaxies, gas metallicity and
density are low (Gil de Paz et al. 2007). On the other hand, judging
from the observed UV emission, star formation might be expected
to be supported for at least a few billion years. Yet the efficiency of
transforming gas into a young stellar population is expected to be
low (Bigiel et al. 2010), with a time-scale ≈50 times longer than
in normal discs. Note that cluster counts in the outskirts of M 83
appear to be consistent with model predictions based on a standard
initial mass function (IMF) and cluster aging effects; therefore even
low-mass newborn stellar clusters (102–3M�) occasionally have
O stars (Koda et al. 2012).

The thickness of the disc is likely to increase with radius. A proper
model of this feature and of the dynamical mechanisms involved in
star formation and spiral structure noted above would also depend
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on the characteristics (amount and spatial distribution) of the dark
matter present, which are not easy to measure and are obviously of
great astrophysical interest.

Thermal instabilities are probably less important, because of the
low metallicity of the gas. Thus, under these conditions, to produce
star-forming regions a mechanism is needed able to compress the
gas on scales of about one kiloparsec. This suggests that a hierarchy
of perturbations should be operating, allowing gas to form stars
at small scales. The perturbation on the largest scale is the one
associated with grand-design spiral patterns.

On the one hand, natural mechanisms for the generation of struc-
tures beyond the optical radius are those related to gas accretion
(Dekel, Sari & Ceverino 2009), streams from gas-rich companions
in close passages (Dobbs et al. 2010), and, in general, tidal interac-
tions with satellites or dwarf galaxies (Bullock & Johnston 2005).
In these scenarios, the role of dark matter is not clear. On the other
hand, it is generally believed that, in the presence of a triaxial (i.e.
non-axisymmetric) distribution of dark matter (Khoperskov et al.
2012; Valenzuela et al. 2014), disc–halo interactions could generate
spiral structure. However, for the majority of galaxies our knowl-
edge of the three-dimensional distribution of dark matter is quite
poor.

Hydrogen is mostly neutral in the outermost regions, so that the
relatively low photoionization level expected makes it likely that
large-scale magnetic fields should not play an important role in
structure and star formation. Although it is generally believed that
gravitational instabilities are the main driver for spiral structure
formation, the collective processes occurring in the outer gaseous
medium of galaxies remain largely unexplored.

The study of the global large-scale spiral structure has a long
history. The commonly accepted picture is that spiral structure
is the manifestation of density waves in the galactic disc (Lin &
Shu 1964), for which gas and stars cooperate collectively (Lin &
Shu 1966). Currently, the picture that the grand-design spiral pat-
terns are associated with few self-excited global spiral modes is
the scenario that has been worked out in greatest quantitative de-
tail (see Bertin & Lin 1996, and references therein), supported by
a number of successful observational tests. Convincing tests from
realistic numerical simulations remain difficult to obtain, because
of the complexity of the physical phenomena involved, ranging
from the role of resonances in the collisionless stellar compo-
nent to the destabilizing and self-regulating role of the dissipa-
tive cold ISM (Elmegreen & Thomasson 1993; Baba et al. 2009;
Fujii et al. 2011).

In this paper, we extend the study of spiral patterns outside the
optically bright stellar disc presented by Bertin & Amorisco (2010).
We perform 3D hydrodynamical non-linear simulations in simple
galaxy models outside a central disc; we assume that in the central
disc spiral structure is dominated by one or few modes, which act
as a central ‘engine’ for what is observed in the outer parts. We
then study the properties of spiral structure in the outer gaseous
disc by varying a set of parameters that characterize the relevant
perturbations. If the conditions in the galactic disc favour the leak-
age of small-amplitude (≤10 per cent) non-axisymmetric density
waves through the outer Lindblad resonance (OLR), we find that
indeed these perturbations can give rise to large-scale prominent
spirals covering a wide radial range beyond the optical radius of the
galaxy. Note that outside OLR, the gas can support density-wave
propagation even when its effective velocity dispersion is above the
condition of marginal stability with respect to axisymmetric pertur-
bations (or, correspondingly, the column density is below the related
critical density).

Figure 1. General scheme of the computational model. A fixed area of
initial conditions inside the optical radius, defined here as ropt = 6h, is shown
as a red disc. The thin, light circular annulus (cyan line) is the site where
the perturbation is imposed, which is the inner boundary for the evolving
domain. As shown on the top-right corner, the cyan line corresponds to
the two computational grid cells where the initial conditions are designed
to mimic the presence of an outgoing density wave signal coming from
the inner regions where coherent spiral structure is present. The blue area
outside the red disc is the actual computational domain from 6h out to 24h,
where the hydrodynamical quantities evolve.

The paper is organized as follows. Section 2 describes the adopted
basic model and numerical approach. In Section 3, we present the
main results for various models. In particular, we address models in
which the inner disc is dominated by a single mode and models with
two or three important modes, incorporated as a boundary condition
at an inner annular region in the outer parts of the stellar disc. The
impact of small-scales inhomogeneities and subgrid physics are
also discussed briefly. Our non-linear simulations are compared
with the results of the linear theory. Section 4 provides discussion
and conclusions.

2 MO D EL

The pure hydrodynamical approach based on the TVD MUSCL
(Total Variation Diminishing Multi Upstream Scheme for Conser-
vation Laws) scheme is used for numerical simulations. The compu-
tational technique was described by Khoperskov et al. (2014). Here,
we present a set of 3D simulations on a uniform 2048 × 2048 × 128
Cartesian grid. For a fiducial model, the computational box is
144 × 144 × 9 kpc with a spatial resolution of about 70 pc. A
study of resolution effects has been performed with cell size of 200
and 35 pc (see Section 3.7). The general set up of the simulations
is illustrated in Fig. 1.

2.1 Basic state

Below, we deal with the evolution of a gaseous disc embedded in
the fixed external potential of an approximately isothermal dark
matter halo �h (model introduced by Burkert 1995) combined with
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Figure 2. Adopted rotation curve V(r).

Figure 3. Initial surface density distributions of gas (solid line) and stars
(dashed line).

the potential of a stellar disc �d of the Miyamoto–Nagai form
(Miyamoto & Nagai 1975). In dimensional units, we assume that
h = 3 kpc is the stellar disc exponential scalelength.

The parameters of the external potential were chosen to support
the flat rotation curve of the gaseous disc (see Fig. 2). For the major-
ity of nearby galaxies, the gas distribution follows an exponential
profile within the optical radius ropt (Bigiel & Blitz 2012). At far
away distances, gas density profiles are not so well known. Nev-
ertheless, it is natural to assume a �g ∝ 1/r profile of gas beyond
(1–2)ropt. For simplicity, we adopt as initial gas density distribution
the �g ∝ 1/r profile also for the inner part of the disc, which is kept
fixed in our simulations. The initial stellar disc surface density and
gaseous surface density profiles are shown in Fig. 3.

For the value of the gas velocity dispersion, we adopt that
obtained from the marginal-stability condition for a non-self-
gravitating layer of finite thickness, as is expected in the galactic
outskirts (see equations 15.21, 15.22, and fig. 15.4 in Bertin 2014),

Q = Qmax = 0.425 . (1)

Thus, using the epicyclic frequency κ and �g from our initial con-
ditions we have the relation for the radial velocity dispersion

c = 0.425πG�g/κ , (2)

Figure 4. The solid line is the gaseous disc scaleheight obtained from
the vertical equilibrium according to equation (3). The dashed line is the
disc thickness according to the marginal-stability condition of a fully self-
gravitating slab only (equation 6).

which, outside the circle r = 6 h, is approximately constant
c ≈ 3.4 km s−1. Such value is consistent with the observational
data, which suggest a velocity dispersion of the gas clouds in the
range 1–10 km s−1(Stark & Brand 1989; Elmegreen & Scalo 2004).

The gaseous disc thickness is set by the condition of vertical
hydrostatic equilibrium:

1

ρ

∂p

∂z
+ ∂�

∂z
= 0 , (3)

where the gas volume density ρ and pressure p are connected by
the equation of state p = ρc2 and the total gravitational potential
� = �h + �d + �g takes into account the potential of the gas �g,
which is the solution of the Poisson equation

1

r

∂

∂r

(
r
∂�g

∂r

)
+ ∂2�g

∂z2
= 4πGρ . (4)

Equations (3)–(4) determine the equilibrium vertical distribution of
the gas. We define its vertical scaleheight z0(r) by minimizing the
difference F(z0)

F (z0) = |ρ0 cosh−2(z/z0) − ρ(r, z)| . (5)

As the vertical gravity decreases with radius then the equilibrium
disc thickness increases. Fig. 4 shows such disc flaring from the
solution of equations (3)–(4) for our initial parameters. We also
compare our solution with the gas thickness profile supported by
the gas self-gravity alone (see equation 14.12 in Bertin 2014),

z0

r
= 0.18

πG�g

rκ2
, (6)

where the coefficient 0.18 is obtained from the marginal-stability
condition (see fig. 2 in Bertin & Amorisco 2010).

2.2 The imposed perturbations

We now introduce the properties of the perturbation imposed at the
inner boundary (see Fig. 1). Basically, we consider the perturbations
of the hydrodynamical quantities X̂ at the inner boundary (cyan thin
circular annulus in Fig. 1) to be proportional to cos(mθ − ωt) , where
m is the mode azimuthal number, 
p = ω/m is the angular speed
of the spiral density perturbation, t is the time, θ is the angular
coordinate. We assume that the relative amplitude of the density
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Table 1. Parameters of different runs, where m is the perturbation number of arms, A0 is the relative amplitude of the
adopted density perturbation, 
p is the pattern speed, rco is the corotation radius, rOLR is the OLR position, h = 3 kpc is
the exponential scalelength of the stellar disc. When several parameters are present in a given column, the inner boundary
is perturbed with more than one mode. B1 is the reference model.

Run m A0 
p rco rOLR Additional
(km s−1 kpc−1) (h) (h) feature

E1 1 0.05 30 2.4 5.6 –
B1 2 0.1 40 1.8 3 –
B2 2 0.1 40 1.8 3 Clumpy gas distribution
B4 2 0.1 40 1.8 3 Potential perturbation
B5 2 0.1 40 1.8 3 Subgrid cooling
B7 2 0.1 40 1.8 3 Higher velocity dispersion c = 5 km s−1

K1 3 0.15 50 1.4 2.1 –
H1 1/2 0.05/0.1 30/40 2.4/1.8 5.6/3 –
F1 2/2 0.07/0.1 35/40 2/1.8 3.4/3 –
J1 1/2/3 0.05/0.1/0.15 30/40/50 2.4/1.8/1.4 5.6/3/2.1 –

wave is equal to A0 (mean values are shown in Table 1) and then
relative amplitudes of the perturbation for all other quantities can
be found straightforwardly from equations (7), (8), (9), and (13)
for the short-trailing wave-branch in Bertin & Amorisco (2010). In
the calculation, the perturbation at the inner boundary is applied
only for the hydrodynamical evolution of the outer disc. Thus, the
gas distribution is kept ‘frozen’ and axisymmetric inside the disc
defined by the circle ropt = 6 h. For any given mode considered in
our study, the value of 
p sets an OLR inside the inner boundary
at ropt = 6 h. Thus the perturbations that we consider propagate
outwards (see Fig. 5).

It is believed that several spiral modes generally coexist in a given
disc model (Bertin et al. 1977; Korchagin et al. 2000). Then, we
consider not only a model where a single dominant mode is present,
but also models that include a superposition of more than one mode.

Figure 5. Kinematics of the gaseous disc. The thick solid line is the angular
velocity 
 = V (r)/r , the thin solid lines represent 
 ± κ/3, the dashed
lines 
 ± κ/2 and the dash–dotted line is 
 + κ . The horizontal thin
solid lines correspond to the pattern speeds of the modes considered in
our simulations: from top to bottom, 50 km s−1 kpc−1(for the m = 3 mode),
40 km s−1 kpc−1(for one m = 2 mode), 35 km s−1 kpc−1(for a second m = 2
mode), 30 km s−1 kpc−1(for the m = 1 mode). The mode parameters are
summarized in Table 1. All the selected modes have OLR inside the inner
boundary of the computational domain (see also Fig. 1).

In this case, the density perturbations can be written in the following
form:

�1 =
∑

i

A0,i cos (miθ − ωit + δi) , (7)

where A0, i are the relative amplitudes of the density perturbation
at the inner boundary, δi are the initial phases of perturbations
and ωi = 
p, i/mi. For the simplicity, in the following we take
δi = 0. Much like for the case of a single-mode perturbation model,
amplitudes for pressure and velocities are calculated according to
the expressions provided by Bertin & Amorisco (2010). We consider
three models with multimode boundary conditions (see detailed
parameters in Table 1). In particular, we take a case that includes
the superposition of a one-armed and a two-armed perturbation
(model H1), a case with a pair of two-armed patterns (model F1),
and the case made of three modes, each with a different number
of arms (model J1). The amplitudes and the corresponding pattern
speeds of the perturbations for these models are chosen so as to
be in qualitative agreement with the linear theory of global spiral
modes. Of course, other combinations of perturbation parameters
could be reasonable; our models should only be considered as a
simple representation of typical cases broadly consistent with the
modal density wave theory (see Bertin et al. 1977; Bertin & Lin
1996).

To avoid an initial exaggerated kick on the disc, we let the per-
turbation amplitudes grow from vanishingly small to finite values
according to a linear law during one typical rotation period T1 until
they reach the chosen value A0. From Fig. 2, our time-scale is the
rotation period T1 ≈ 0.5 Gyr at 6 h = 18 kpc.

Initially, we set up the dynamical equilibrium of the gaseous disc
within the entire computational domain, that is, in both the red
and the blue areas of Fig. 1. Then, we ignore the complex self-
consistent evolution of the stellar-gaseous disc within the optical
radius. Namely, we keep the central part of the computational do-
main r < ropt = 6 h as ‘frozen’ (see Fig. 1). This defines an inner
boundary layer at ropt = 6 h for the live gaseous disc outside.

It is believed that the rotation of the galaxy outside the bright
optical disc is mainly supported by the gravitational potential of
the dark matter, which in turn is expected to have significant sub-
structures (Moore et al. 1999). In fact, numerical simulations of
galaxy and structure formation in the cosmological context pre-
dict that galactic dark matter haloes should contain a population
of so-called subhaloes (Giocoli, Tormen & van den Bosch 2008;
Gao et al. 2004). The relative motions of these substructures should
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induce local time-dependent variations of the gravitational field.
This feature might have a strong impact at the periphery, where
the baryonic matter density is small. To consider these effects, we
performed also simulations with a time-dependent inhomogeneous
gravitational field.

The simulation of the dark matter dynamics at the outskirts would
require high spatial and mass resolution. To avoid the related tech-
nical problems, in our numerical model we add to the initial condi-
tions adopted for B1 a random perturbation of the halo gravitational
potential. This defines model B4. That is, in the B4 model we re-
calculate the potential according to the rule,

�h(r, z, t) = �h(r, z, 0) [1 + α(t)] , (8)

where α(t) is a random number in the range [−0.1; 0.1] which varies
at each time step and is unique for cells with size 2003 pc3. Thus the
total mass of the halo is conserved but a 10 per cent time-dependent
perturbation of the gravitational potential is introduced.

The galactic gaseous component is a cloudy medium. Within the
optical disc a significant fraction of the gas mass is concentrated in
giant molecular clouds. Outside the optical disc the cold gaseous
phase is likely to be concentrated in neutral hydrogen clouds (but
see the picture explored by Pfenniger, Combes & Martinet 1994);
apparently, these clouds are not forming stars in large amounts.
These arguments suggest that we should consider an inhomoge-
neous gas distribution in our simulations. We designed model B2
so as to include a random perturbation of the gas density distribu-
tion with relative amplitude of 10 per cent. The velocity field of the
clouds was perturbed according to the mean velocity dispersion of
about 3.4 km s−1. As was mentioned earlier, this value appears to
be realistic.

It is generally thought that the gas cloudy medium is collisional.
To take into account this fact, we calculate an effective ‘cooling
rate’ of the cloudy medium associated with inelastic collisions. We

assume that in each computational cell there is a subgrid population
of clouds that can lose energy as a result of collisions. Obviously
the cooling rate depends on the gas density n and cloud velocity
dispersion at the cell. In calculations, we applied the cloud collision
rate based on the model by Ricotti & Ferrara (2002). In the numeri-
cal scheme, the cooling rate was used as a source term in the energy
conservation equation. It is implemented with the standard tech-
nique used for the radiative cooling approximations widely adopted
in simulations of galaxies and ISM.

In the next sections, we consider the results of the dynamical
simulations. First, we discuss the reference case of a model with a
single m = 2 mode. We pay attention to the spiral morphology, its
time-dependent evolution, and we check to what extent its behaviour
agrees with the linear theory (Sections 3.1, 3.3). Next, we consider
a more complex and realistic situation by studying the case of
a clumpy gas distribution and of an inhomogeneous gravitational
potential. A model with subgrid energy dissipation resulting from
inelastic H I cloud collisions is also described in Section 3.5. Finally,
we study cases with multimode perturbations (Section 3.6).

3 R ESULTS

3.1 Single-mode perturbation

We now describe the results of hydrodynamical simulations of the
gaseous disc evolution with a single-mode m = 2 perturbation im-
posed at the inner (ropt) boundary. The values of the adopted pa-
rameters are shown in Table 1. In the following, the total density of
the gas is denoted by �g = 〈�g〉 + �1, where 〈�g〉 is the azimuth-
averaged (radius-dependent) profile of �g and �1 represents the
spiral density wave. In general, we will refer to �g in units of M�
pc−2; on other occasions, such as in Fig. 6, we will refer to the
(dimensionless) relative density perturbation defined as �1/〈�g〉.

Figure 6. Evolution of the relative surface density perturbation (�1/〈�g〉) in model B1 at times t = 1; 1.1; 1.2; 2; 2.7; 3 in units of ≈500 Myr. The plots are
drawn in the inertial, non-rotating frame of reference. Black circles are drawn at radii 6 h, 12h, 18h, and 24h. The bottom-right panel shows the evolution of
the amplitude of the m = 2 Fourier component of the relative surface density perturbation at different radii, marked by lines with thickness decreasing with
increasing radius.
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Figure 7. Total surface density profiles for the gas (�g), in units of M�
pc−2, are shown along the azimuthal coordinate at given radii for model B1
at t = 2.5T1. The line thickness decreases with increasing radius.

First, we discuss the reference model B1 with azimuthal number
m = 2, pattern speed 
p = 40 km s−1 kpc−1, and relative density
amplitude A0 = 0.1. In Fig. 6, the evolution of the surface density
perturbation is shown. The two-arm trailing spiral structure imposed
at the inner boundary moves outwards and its amplitude increases
in the outer parts. At time ≈T1 after the beginning of the simulation,
a quasi-stationary structure sets in.

In the inner regions, inside ≈2ropt, the spiral density waves are
regular and characterized by low relative amplitude ≤0.1–0.3. In
the outer parts, the wave amplitude increases rapidly; the shape
of the density perturbation departs from being sinusoidal and the
density perturbation becomes asymmetric (see Fig. 7). Beyond ≈2–
2.5ropt rather narrow shocks form. In fact, the Mach number [V (r) −
r
p]/c increases linearly with radius because c ≈ 3.4 km s−1and
V(r) ≈ 210 km s−1are approximately constant (see equation 2). Thus
the spiral structure is characterized by supersonic motion across the
disc.

In the outermost regions, where the relative amplitude of the
spiral density perturbation �1/〈�g〉 reaches the values of ≈1–2,
then the shocks become unstable and small-scale spurs appear. It
is likely that the instability of spiral shocks makes the perturbation
saturate at finite amplitudes. This instability is clearly seen in the
evolution of the amplitude of the m = 2 Fourier component in model
B1 (see Fig. 6). In general, this amplitude remains approximately
constant at all radii after the initial transient, that is, at times longer
than t = 1.8–2T1.

The origin of the shock instability is likely to be similar to that
of the wiggle instability investigated numerically by several authors
(e.g. Wada & Koda 2004; Dobbs & Bonnell 2006; Kim, Kim & Kim
2014). Kelvin–Helmholtz instability is likely to be one important
mechanism for the formation of spurs in the vicinity of the spiral
shocks (but see Kim, Kim & Kim 2014). The numerical simulations
by Wada & Koda (2004) suggest that tightly wound spiral shocks
should be relatively stable, compared with the case of open spirals.
However, in our simulations the large amplitude of the shock as-
sociated with the observed instability occurs in the outermost parts
of the disc (r > 12h ≈ 2ropt), where the pitch angle is smaller than
5◦ (the radial profile of the pitch angle i(r) is illustrated in Fig. 9).
In turn, in the inner parts of the computational domain (r < 12h)
the pitch angle is close to 10◦; but there the amplitude of the gas
perturbation is relatively small so that the density waves are in the
linear regime (see also the caption to Fig. 7) and the strong shock

instability is suppressed. It should be noted that in our simulations,
the spatial size of spurs is about 1 kpc, which is comparable to
the size of some small-scale structures inside the optical radius of
nearby galaxies.

3.2 Direct measurements of pitch angles and pattern speeds

To derive the radial profile of the pitch angle of the spiral arms
observed in our simulations, we have used the method described by
Davis et al. (2012). We consider the Fourier analysis of the surface
density distribution of the perturbation �1 as a function of azimuth
θ and the Fourier transform in the logarithmic radial coordinate
u = log r (this is often referred to as a decomposition in logarithmic
spirals). The integrations are performed over narrow annular rings
in the computational domain, that is

A(p, m, ri) = 1

G0

∫ uri+1

uri

∫ π

−π

�1(u, θ )e−i(mθ+pu)dθdu , (9)

where G0 = ∫ u24h

u6h

∫ π

−π
�1(u, θ ) dθ du is a suitable normalization

constant. Thus A(p, m, ri) represents the contribution of the m-armed
logarithmic spiral component, with pitch angle i = arctan (−m/p)
at given radius ri. By considering the value pmax at which the quantity
A(p, m, ri) attains its maximum at given m and ri, we can thus
reconstruct the pitch angle radial profile for our simulated spiral
structures. The error on the pitch angle value ii can be found from
the spatial variation of the quantity in the range [ri − 1/2; ri + 1/2].

In the narrow annuli at radius ri considered in the method just
described, we can also measure the pattern speed associated with
the spiral structure present. To make such measurement, we proceed
as follows. A phase angle for given m and p defining the orientation
of the spiral pattern at radius ri can be calculated as


 = arctan
Im(A)

Re(A)
, (10)

where Im(A) and Re(A) are the imaginary and the real part of A(pmax,
m), respectively. Then a local value of the speed of the pattern with
given m can be determined as


p = 1

m

∂


∂t
. (11)

The error on the value of the pattern speed depends on both the
spatial variation of the derivative in equation (11) and on small
time-dependent variation of the quantity that is calculated. When
a single mode is imposed at the inner boundary, the procedure
indeed gives back the value of the pattern speed of the imposed
perturbation. In Fig. 8, calculated at t ≈ 2T1 for the B1 model, the
measured pattern speed is shown to be constant with radius and
consistent with that of the single-mode perturbation imposed at the
inner boundary.

3.3 Comparison with the linear theory

From the linear theory of density waves, Bertin & Amorisco (2010)
obtained the expressions for radial velocity, surface density, and
pitch angle of short-trailing density waves in the galactic outer
regions (e.g. see equations 9 and 13 in Bertin & Amorisco 2010). In
this section, we compare the results of our dynamical simulations
with the predictions of the linear analysis.

For the frame at t = 3T1 from the reference B1 simulation (see
bottom row in Fig. 6), we calculate the radial profile of surface
density perturbation, radial velocity perturbation, and pitch angle
(see Fig. 9). The perturbation amplitudes of surface density and
radial velocity increase with radius, whereas the pitch angle of the
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Figure 8. Directly measured pattern speed at different radii for model B1.

Figure 9. The relative amplitude of the density wave in model B1 is shown
by squares. Circles represent the radial velocity perturbation relative to the
rotation velocity of the basic state for the same model. The radial profile of
the pitch angle in model B1 is shown by error bars; error bars are associated
with the averaging of the pitch angle in rings of finite radial size (see
equation 9). The solution from the linear theory by Bertin & Amorisco
(2010) is shown by lines.

pattern decreases. This qualitative behaviour agrees well with the
expectations of the linear theory (see fig. 5 in Bertin & Amorisco
2010). Quantitatively, the good agreement between linear theory
and simulations applies to a rather wide radial range 6 h < r < 10–
12h. At larger radii (r > 2ropt), the simulations exhibit a strongly
non-linear behaviour, because the relative perturbation amplitudes
attain very high values, up to 2–3.

3.4 Model with higher velocity dispersion

In this section, we consider a different model (B7) characterized by
a velocity dispersion higher than that adopted in the reference B1
model, well above the value required by the condition of marginal
axisymmetric stability. We thus take c = 5 km s−1. Interestingly, the
dynamical evolution of this hotter system basically follows the same
picture as described in Section 3.1. Of course some morphological
changes are expected and indeed found in the simulations.

In Fig. 10, we show the relative surface density distribution estab-
lished at time 2.5T1. Because of the higher gas velocity dispersion,

in the B7 model we observe the excitation of a significantly more
open spiral structure (with respect to the reference B1 model). In
the regions close to the inner boundary, the pitch angle is ≈20◦ (to
be compared to the value of ≈10◦ found in B1). Because a larger
pitch angle of the pattern provides better conditions for the shear
instability of the spiral shocks, a more perturbed morphology of the
pattern and the presence of prominent spurs and feathers along the
spiral arms are expected and found in the simulations.

3.5 More realistic models

Our reference model B1 demonstrates the possibility of regular and
sharp spiral patterns, of the type that is observed in some deep H I

images (e.g. in NGC 1512), but physically it is exceedingly sim-
ple. More realistic models should be devised. In particular, we have
checked how different small-scale processes, which can be imple-
mented at the subgrid level in our simulations, affect the morphology
of the observed spiral structure.

Here, we compare four types of models with the same imposed
perturbation at the inner boundary: (i) the reference B1 model,
which was described previously; (ii) the B2 model, which is based
on a clumpy gas distribution and a smooth potential; (iii) the B4
model, which is based on a smooth gas distribution and a halo
potential perturbed by clumps of dark matter; and (iv) the B5 model,
which is the same as B1, but takes subgrid cooling into account.
Results of simulations for these models are shown in Fig. 10, where
the gas surface density perturbation �1 is illustrated at t ≈ 2.5T1.
The basic conclusion is that the results shown for the B1 model are
robust.

In fact, the large-scale morphology (grand design) is similar for
all models. However, various additional features are found to char-
acterize the small-scale morphology. For the B2 and B4 models, the
new small-scale features basically cover the entire disc. In contrast,
in the B5 model, with subgrid cooling, the effects are most evident
in the denser regions at the edge of the spiral shocks, making the
arms less smooth; the intensity and spatial scales of the spurs and
feathers that are observed in the simulations suggest that the B5
model involves the wiggle instability known to affect a multiphase
inhomogeneous ISM in the presence of spiral shocks on the galactic
scale (Wada 2008).

3.6 Simulations with more than one mode imposed
at the inner boundary

So far, we have described models on which a single mode is imposed
at the inner boundary. In real grand-design spiral galaxies, it is
natural to expect that the large-scale morphology is dominated by
the superposition of few spiral modes, each characterized by its own
amplitude and pattern speed. We thus investigate the properties of
simulations in which at the inner boundary a superposition of several
non-axisymmetric modes is imposed. The H1 model is based on the
combination of an m = 1 mode rotating at 30 km s−1 kpc−1and an
m = 2 mode rotating at 40 km s−1 kpc−1. The F1 model considers the
superposition of a pair of m = 2 modes with different amplitudes
(A0, 1 = 0.05, A0, 2 = 0.1) and pattern speeds (30 km s−1 kpc−1,
40 km s−1 kpc−1). The J1 model studies the case in which three
modes with different m numbers are present (m = 1, m = 2, and
m = 3). A description of the adopted parameters is given in Table 1.
Fig. 11 illustrates the surface density perturbation maps for the
single-mode cases, that is, the standard B1 model (m = 2), the E1
model (m = 1), and the K1 model (m = 3), and for the models with
several modes (H1, F1, J1).
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Figure 10. Relative surface density perturbation (�1/〈�g〉) for different models, with a single m = 2 perturbation imposed at the inner boundary, at time
t = 2.5T1. From left to right: top row, B1 (the reference model) and B7 (with higher gas velocity dispersion); bottom row, B2 (with a clumpy initial gas
distribution), B4 (with a clumpy dark halo), B5 (with subgrid cooling). For a detailed parameter description, see Table 1. Black circles mark different radii, at
6 h, 12h, 18h, and 24h.

The evolution of the disc in the case in which several modes are
imposed at the inner boundary is rather similar to that of the single-
mode case (see Fig. 12). The spiral morphology of discs where a
dominant m = 3 perturbation is applied tend to exhibit a prominent
three-armed structure during the simulation. The presence of an
m = 1 imposed perturbation is generally associated with some
lopsidedness. The models are characterized by a time-dependent
evolution of spiral structure, although the overall observed patterns
do not appear to vary very significantly in time. Of course, the
evolution is associated with the superposition of the modes, rotating
with different angular speeds. The qualitative behaviour remains
generally similar to that of the B1 model, with non-linear behaviour
setting in at large radii and some wiggle instability occurring when
subgrid cooling is incorporated.

3.7 Resolution study

All the models described so far have the same spatial resolution,
that is, a cell size of 70 pc in physical units. In order to check
whether spatial resolution affects our general results, we have per-
formed simulations with lower (200 pc) and higher (35 pc) cell lin-
ear size. Fig. 13 shows the results of these simulations. The general
grand-design spiral structure is basically unchanged, as expected.
Obviously, the narrow shock is smoother in the low-resolution sim-
ulation; higher spatial resolution let us resolve instabilities growing

on very small scales related to shear flows behind the shock (see
also Wada & Koda 2004).

In conclusion, our reference 70 pc resolution is likely to be suf-
ficient for studies of the global spiral structure and the detection of
the shock instability. However, as to issues related to local gravi-
tational instabilities and star formation processes in the outermost
gaseous discs in galaxies, more detailed simulations with higher
spatial resolution are desired.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have presented a set of 3D hydrodynamical simu-
lations that describe the establishment of large-scale regular spiral
structure in the outermost gaseous disc of spiral galaxies. The gen-
eral scenario considers a galaxy in which spiral modes are excited
inside the bright optical disc through the transfer of angular momen-
tum to the outer regions by means of short trailing density waves.
In the gas, such outgoing density waves can leak through the OLR
and propagate outwards even when the gas effective velocity dis-
persion is above the condition of marginal stability with respect to
axisymmetric perturbations (or, correspondingly, the column den-
sity is below the related critical density). In the simulations of the
outermost gaseous disc, these outgoing waves are imposed as a sta-
tionary disturbance at the inner boundary. We have investigated the
case in which galaxies and the corresponding boundary conditions
are dominated by a single mode and, separately, the case in which
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Spirals beyond the optical radius 2897

Figure 11. Relative surface density perturbation (�1/〈�g〉) for models with different conditions imposed at the inner boundary, at time t = 2.5T1. Top row:
E1 (m = 1), B1 (m = 2), K1 (m = 3). Bottom row: H1 (superposition of an m = 1 and an m = 2 mode), F1 (superposition of a pair of m = 2 modes), J1
(superposition of an m = 1, an m = 2, and an m = 3 mode, see Table 1). Black circles mark different radii, at 6 h, 12h, 18h, and 24h.

Figure 12. Evolution of the relative surface density perturbation (�1/〈�g〉) in model J1 with three modes imposed at the inner boundary, at times t = 1.1;
1.4; 1.7; 2; 2.3; 2.6; 2.9; 3.2 in units of ≈500 Myr. Black circles are drawn at radii 6 h, 12h, 18h, and 24h. The plots are drawn in the inertial, non-rotating
frame of reference.
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Figure 13. Relative surface density perturbation (�1/〈�g〉) at t = 2.5T1 for the B1 model simulated with varied spatial resolution, that is, different linear cell
size: left – 200 pc (low resolution), centre – 70 pc (reference case), right – 35 pc (high resolution). Black circles mark different radii, at 6 h, 12h, 18h, and 24h.

more than one important mode is present. The results that we have
obtained can be summarized as follows.

(i) The simulations are run as studies of a time-evolving situation
in which the inner boundary acts as a source of density waves. After
a relatively rapid initial transient, a quasi-stationary spiral structure
is established over the entire outer disc, well outside the bright
optical disc.

(ii) The simulations exhibit very good quantitative agreement
with the predictions of the linear theory by Bertin & Amorisco
(2010) out to r ≈ 1.5ropt. At larger radii, the amplitude of spi-
ral structure increases beyond the reach of the linear theory and
then saturates. In this sense, our model is reminiscent of non-linear
tsunami-like waves. Correspondingly, spiral shocks form in the out-
ermost regions, as a result of the supersonic motion of the patterns
through the gaseous medium. Spiral shocks tend to be unstable in
the post-shock regions.

(iii) The simulations suggest that the outer spiral structure may be
associated with significant star formation. As in a galactic tsunami,
small-amplitude perturbations become stronger and stronger at large
radii, so that the shocks formed might trigger star formation events;
some indications of star formation are indeed noted in UV observa-
tions. We note that the process studied in this paper might explain an
outer UV star-forming ring in isolated galaxies even in the absence
of an impact by an external object (Ilyina, Sil’chenko & Afanasiev
2014). In our simulations, we did not investigate the star formation
processes and the issue of the expected UV flux in great detail. The
main reason for this is that to carry out a proper investigation of
these processes would require a deep study of the conditions of the
gaseous medium in the galactic outskirts, which are at present not
well constrained by the observations; furthermore, we should have
dealt with issues related to the resulting IMF, which are even less
known. In this respect, we think that producing from the simula-
tions synthetic UV spectra to be compared with the observations
would be premature. In turn, in our simulations we focused on the
larger scale dynamical aspects of the processes involved during the
propagation of density waves in the outermost gas disc.

(iv) The simulations of more realistic models, including a variety
of physical factors, exhibit a generally similar behaviour in relation
to the large-scale spiral structure. This suggests that the results ob-
tained are rather robust and that indeed prominent large-scale spiral
patterns should be a natural feature of galaxies with a gaseous disc
extending beyond the optical radius. The simulations by Bush et al.
(2008, see also Bush et al. 2010) are interesting and exhibit some

features in common with the results of our paper (in particular, the
frequent finding of organized compression regions and filamentary
structures). However, we wish to note that the study by Bush et al.
(2008): (1) focuses on a ‘fiducial star formation law’; (2) pays little
attention to the relation between spiral structure in the bright optical
disc and spiral structure in the outer gaseous disc; (3) appears to
support the picture that star formation is expected only if the gas
layer is close to conditions of local Jeans instability; (4) appears to
depend on the addition of an extended outer disc with a constant
density; (5) does not discuss the role of the thickness of the gaseous
layer (which is a crucial factor in determining its stability).

(v) In the picture proposed in this paper, the level of structuring
of star formation regions in the outermost disc should reflect the
level of regularity of the spiral structure in the bright optical disc.
In other words, the spiral structure observed in the gas outside
the bright optical disc should be characterized by well-organized,
structured spiral patterns and filamentary structures if the bright
optical disc is dominated by a grand-design structure. In contrast,
the outermost spiral arms are expected to be less structured if the
bright inner disc is dominated by many modes. This is a prediction
that could be tested by studying a sufficiently large sample of spiral
galaxies with extended gaseous discs. Of course, such a study would
go well beyond the scope of this paper. In addition, we note that our
simulations suggest clearly the possibility of ring-like star formation
regions, because we showed that the pitch angle of spiral patterns
tend to decrease with radius; evidence of the relation between these
morphological aspects and the underlying flows is likely to show
up as brighter H I and, possibly, UV emission.

Of course, there are a few other interesting issues that are beyond
the scope of this paper and await further investigations. One of
these issues is the possible use of the observed spiral structure in
the context of this paper to diagnose the amount and distribution of
dark matter in the outer regions. To this purpose, this study should
be further validated by detailed comparisons with observations in
individual objects.
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Barnes K. L., van Zee L., Côté S., Schade D., 2012, ApJ, 757, 64
Barnes K. L., van Zee L., Dowell J. D., 2013, ApJ, 775, 40
Bertin G., 2014, Dynamics of Galaxies, 2nd edn. Cambridge Univ. Press,

Cambridge
Bertin G., Amorisco N. C., 2010, A&A, 512, A17
Bertin G., Lin C. C., 1996, Spiral Structure in Galaxies: A Density Wave

Theory. The MIT Press, Cambridge, MA
Bertin G., Lau Y. Y., Lin C. C., Mark J. W.-K., Sugiyama L., 1977, Proc.

Natl. Acad. Sci. USA, 74, 4726
Bigiel F., Blitz L., 2012, ApJ, 756, 183
Bigiel F., Leroy A., Walter F., Brinks E., de Blok W. J. G., Madore B.,

Thornley M. D., 2008, AJ, 136, 2846
Bigiel F., Leroy A., Walter F., Blitz L., Brinks E., de Blok W. J. G., Madore

B., 2010, AJ, 140, 1194
Boomsma R., Oosterloo T. A., Fraternali F., van der Hulst J. M., Sancisi R.,

2008, A&A, 490, 555
Bullock J. S., Johnston K. V., 2005, ApJ, 635, 931
Burkert A., 1995, ApJ, 447, L25
Bush S. J., Cox T. J., Hernquist L., Thilker D., Younger J. D., 2008, ApJ,

683, L13
Bush S. J., Cox T. J., Hayward C. C., Thilker D., Hernquist L., Besla G.,

2010, ApJ, 713, 780
Davis B. L., Berrier J. C., Shields D. W., Kennefick J., Kennefick D., Seigar

M. S., Lacy C. H. S., Puerari I., 2012, ApJS, 199, 33
Dekel A., Sari R., Ceverino D., 2009, ApJ, 703, 785
Dobbs C. L., Bonnell I. A., 2006, MNRAS, 367, 873
Dobbs C. L., Theis C., Pringle J. E., Bate M. R., 2010, MNRAS, 403, 625
Elmegreen B. G., Scalo J., 2004, ARA&A, 42, 211
Elmegreen B. G., Thomasson M., 1993, A&A, 272, 37

Fujii M. S., Baba J., Saitoh T. R., Makino J., Kokubo E., Wada K., 2011,
ApJ, 730, 109

Gao L., White S. D. M., Jenkins A., Stoehr F., Springel V., 2004, MNRAS,
355, 819

Gil de Paz A. et al., 2007, ApJ, 661, 115
Giocoli C., Tormen G., van den Bosch F. C., 2008, MNRAS, 386, 2135
Ilyina M. A., Sil’chenko O. K., Afanasiev V. L., 2014, MNRAS, 439, 334
Karachentsev I., Kaisina E., Kaisin S., Makarova L., 2011, MNRAS, 415,

L31
Khoperskov A. V., Eremin M. A., Khoperskov S. A., Butenko M. A., Mo-

rozov A. G., 2012, Astron. Rep., 56, 16
Khoperskov S. A., Vasiliev E. O., Khoperskov A. V., Lubimov V. N., 2014,

J. Phys. Conf. Ser., 510, 012011
Kim W.-T., Kim Y., Kim J.-G., 2014, ApJ, 789, 68
Koda J., Yagi M., Boissier S., Gil de Paz A., Imanishi M., Donovan Meyer

J., Madore B. F., Thilker D. A., 2012, ApJ, 749, 20
Korchagin V., Kikuchi N., Miyama S. M., Orlova N., Peterson B. A., 2000,

ApJ, 541, 565
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