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Abstract

We present a methodology for the construction of parton distribution functions (PDFs) designed
to provide an accurate representation of PDF uncertainties for specific processes or classes of
processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs.
We construct these SM-PDFs in such a way that sets corresponding to different input processes
can be combined without losing information, specifically on their correlations, and that they
are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards
information, so that the SM-PDF sets can be enlarged by the addition of new processes, until
the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the
method by producing SM-PDFs tailored to Higgs, top quark pair, and electroweak gauge boson
physics, and determine that, when the PDF4LHC15 combined set is used as the prior, around
11, 4 and 11 Hessian eigenvectors respectively are enough to fully describe the corresponding
processes.

1



Contents

1 Introduction 2

2 Methodology 3
2.1 The SVD+PCA method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The SM-PDF method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 SM-PDF usage and optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Results and validation 11
3.1 Input PDFs and cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Choice of settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Results and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 A posteriori combination of SM-PDFs 23
4.1 General method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Delivery 25

A PDF correlations 26

B Basic usage of the SM-PDF code 29

1 Introduction

Modern sets of parton distributions (PDFs) [1–6] provide a representation of their associated un-
certainties based on either the Hessian [7] or the Monte Carlo (MC) [8] methods, supplementing
their central PDF member with additional error members (eigenvectors or MC replicas). The
number of PDF members required for an accurate representation of PDF uncertainty can be
as large as several hundreds, especially when constructing PDF sets based on the combination
of several underlying PDFs fitted to data: for example, the recent PDF4LHC 2015 sets [9] are
based on a combined sample of 900 MC PDF replicas.

The usage of such large PDF samples can be computationally unwieldy, and this motivated
the development of strategies for reducing the number of PDF members while minimizing accu-
racy loss. A number of such reduction strategies have been made available recently. Two of these
methods provide a Hessian representation of the prior PDF set in terms of a smaller number
of eigenvectors: META-PDFs [10], and MCH-PDFs [11]. A third method uses a compression
algorithm to reduce the number of replicas of a underlying MC PDF prior: CMC-PDFs [12].

These three methods have been extensively benchmarked in the context of the 2015 PDF4LHC
recommendations [9], where it was found that generally a set of about a hundred PDFs is re-
quired in order to represent PDF uncertainties with percentage accuracy for all PDFs in the
complete range of (x,Q) relevant for LHC phenomenology. However, it is well known [13] that,
if one is interested only in the description of a specific set of cross-sections, the number of PDF
error members can be greatly reduced without significant accuracy loss.

In this work we propose a new strategy to achieve this goal. Our methodology, which we
denote by Specialized Minimal PDFs (SM-PDFs), is based on the Singular Value Decomposition
version of the mc2hessian algorithm, as presented in the Appendix of Ref. [11]. Starting from a
either a Hessian or a Monte Carlo prior set and a list of collider processes, the SM-PDF algorithm
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leads to a set of eigenvectors optimized for the description of the input processes within some
given tolerance.

In comparison to existing methods, such as data set diagonalization [13], our methodology
has the advantage that no information is lost in the process of the construction of the specialized
set. This is because the specialized set is constructed through a suitable linear transformation,
whereby the starting space is separated into a subspace spanned by the optimized SM-PDF set,
and its orthogonal subspace. This then implies that any given SM-PDF set can be iteratively
expanded in order to maintain a given accuracy for an increasingly large set of processes, and
also, that SM-PDF sets optimized for different sets of processes can be combined into a single
set, either a priori, at the level of PDFs, or a posteriori, at the level of cross-sections. This,
for example, enables the a-posteriori combination of previous independent studies for a signal
process and its corresponding backgrounds, with all correlations properly accounted for.

This paper is organized as follows: In Sect. 2 we describe our general strategy and methodo-
logy in detail. Then, in Sect. 3 we apply our method to the most important Higgs production
channels (ggh, htt̄ and hV , VBF h) as well as for other standard candles at the LHC, i.e. tt̄,
Z and W production. We compute one specific reduced sets for each of them, as well as as
single set for all the processes combined. We validate the results by comparing the predictions
of these reduced sets to the prior input set. We also show that our method provides an adequate
generalization by showing that the predictions are stable when computing similar processes but
with different kinematical cuts than those used as input. In Sect. 4 we show how experimental
analyses done with different SM-PDFs can be combined together. In Sect. 5 we provide an
overview of the deliverables of this work, in particular the code itself which allows to easily
generate reduced sets with personalized configuration and the LHAPDF6 [14] sets of SM-PDFs for
the processes described in Sect. 5. Finally, Appendix A presents a graphical illustration of the
regions in PDF space which give the dominant contribution to various physical processes, and
Appendix B provides some basic instructions for the execution of the SM-PDF code.

2 Methodology

The SM-PDF methodology is built upon the strategy based on Singular-Value Decomposition
(SVD) followed by Principal Component Analysis (PCA) described in the Appendix of Ref. [11],
in which the MCH method was presented. This SVD+PCA strategy achieves the twofold goal
of obtaining a multigaussian representation of a starting (prior) Monte Carlo PDF set, and of
allowing for an optimization of this representation for a specific set of input cross-sections, which
uses the minimal number of eigenvectors required in order to reach a desired accuracy goal. We
will now review the SVD+PCA method, and describe how it can be used for the construction
of specialized minimal PDF sets, optimized for the description of a specific set of cross sections.

2.1 The SVD+PCA method

The main problem we are addressing is the faithful representation of PDF uncertainties, which
typically requires a large number of PDF error or Monte Carlo sets. Here we will assume the
central value to be the same as in the prior PDF set, from which, if the prior is given as a Monte
Carlo, it is typically determined as a mean (though different choices, such as the median, are
possible and might be advisable in particular circumstances).

Hence, we are interested in the construction of a multigaussian representation in PDF space:
the only information we need is then the corresponding covariance matrix. This is constructed
starting with a matrix X which samples over a grid of points the difference between each PDF
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replica, f
(k)
α (xi, Q), and the central set, f

(0)
α (xi, Q), namely

Xlk(Q) ≡ f (k)
α (xi, Q)− f (0)

α (xi, Q) , (1)

where α runs over the Nf independent PDF flavors at the factorization scale µF = Q, i runs
over the Nx points in the x grid where the PDFs are sampled, l = Nx(α − 1) + i runs over all
NxNf grid points, and k runs over the Nrep replicas. The sampling is chosen to be fine-grained
enough that results will not depend on it.

The desired covariance matrix in PDF space is then constructed as

cov(Q) =
1

Nrep − 1
XXt . (2)

The key idea which underlies the SVD method is to represent the (NxNf )× (NxNf ) covariance
matrix Eq. (2) over the Nrep dimensional linear space spanned by the replicas (assuming Nrep >
NxNf ), by viewing its NxNf eigenvectors as orthonormal basis vectors in this space, which can
thus be represented as linear combinations of replicas. The subsequent PCA optimization then
simply consists of picking the subspace spanned by the dominant eigenvectors, i.e., those with
largest eigenvalues.

The first step is the SVD of the sampling matrix X, namely

X = USV t , (3)

where U and V t are orthogonal matrices, with dimensions respectively NxNf ×N
(0)
eig and Nrep×

Nrep, S is a diagonal N
(0)
eig ×Nrep positive semi-definite matrix, whose elements are the so-called

singular values of X, and the initial number of singular values is given by N
(0)
eig = NxNf . Note

that, because S is diagonal, it can be equivalently viewed as a N
(0)
eig ×N

(0)
eig matrix, since (with

N
(0)
eig > Nrep) all its further entries vanish. This point of view was taken in the Appendix of [11].

In this case, only the N
(0)
eig ×Nrep submatrix which actually contributes to the SVD of the matrix

V is included. However, for the procedure to be described below, it is more convenient to view
V as Nrep ×Nrep orthogonal matrix.

The matrix Z = US then has the important property that

ZZt = XXt, (4)

but also that it can be expressed as
Z = XV, (5)

and thus it provides the sought-for representation of the multigaussian covariance matrix in
terms of the original PDF replicas: specifically, Vkj is the expansion coefficient of the j-th
eigenvector over the k-th replica. We assume henceforth that the singular values are ordered, so
that the first diagonal entry of S correspond to the largest value, the second to the second-largest
and so forth.

The PCA optimization then consists of only retaining the principal components, i.e. the
largest singular values. In this case, U and S are replaced by their sub-matrices, denoted by u

and s respectively, with dimension NxNf ×Neig and Neig ×Nrep, with Neig < N
(0)
eig the number

of eigenvectors which have been retained. Due to the ordering, these are the upper left sub-
matrices. Because s has only Neig non-vanishing diagonal entries, only the Nrep×Neig submatrix
of V contributes. We call this the principal submatrix P of V :

Pkj = Vkj k = 1 , . . . , Nrep , j = 1, . . . , Neig . (6)
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The optimized representation of the original covariance matrix, Eq. (2), is then found by
replacing V with its principal submatrix P in Eq. (5). This principal matrix P is thus the
output of the SVD+PCA method: it contains the coefficients of the linear combination of the
original replicas or error sets which correspond to the principal components, which can be used
to compute PDF uncertainties using the Hessian method.

Indeed, given a certain observable σi (which could be a cross-section, the value of a structure
function, a bin of a differential distribution, etc.) its PDF uncertainty can be computed in terms
of the original Monte Carlo replicas by

sσi =

 1

Nrep − 1

Nrep∑
k=1

(
σ

(k)
i − σ

(0)
i

)2

 1
2

=
1√

Nrep − 1
‖d(σi)‖ , (7)

where σ
(k)
i is the prediction obtained using the k-th Monte Carlo PDF replica, σ

(0)
i is the central

prediction, and in the last step we have defined the vector of differences

dk(σi) ≡ σ
(k)
i − σ

(0)
i , k = 1, . . . , Nrep , (8)

with norm

‖d(σi)‖ ≡

Nrep∑
k=1

d2
k(σi)

 1
2

. (9)

Assuming linear error propagation and using Eq. (5), the norm of the vector {dk(σi)}, Eq. (8),
can be represented on the eigenvector basis:

‖d(σ1)‖ =
∥∥dV (σ1)

∥∥ (10)

where the rotated vector

dV j(σi) =

Nrep∑
k=1

dk(σi)Vkj , j = 1, . . . , N
(0)
eig , (11)

has the same norm as the original one because of Eq. (4).

Replacing V by the principal matrix P in Eq. (11), i.e., letting j only run up to Neig < N
(0)
eig

we get

s̃σi =
1√

Nrep − 1

∥∥dP (σi)
∥∥ , (12)

where now the vector is both rotated and projected

dP j(σi) =

Nrep∑
k=1

dk(σi)Pkj , j = 1, . . . , Neig . (13)

The norm of dP is only approximately equal to that of the starting vector of differences d:∥∥dP (σ1)
∥∥ ≈ ‖d(σ1)‖. However, it is easy to see that this provides the linear combination of

replicas which minimizes the difference in absolute value between the prior and final covariance
matrix for given number of eigenvectors. As the difference decreases monotonically as Neig in-
creases, the value of Neig can be tuned to any desired accuracy goal, with the exact equality

Eq. (10) achieved when Neig = N
(0)
eig . Note that, of course, the optimization step can be per-

formed also starting with a symmetric Hessian, rather than Monte Carlo, prior. In such case,
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the index k runs over Hessian eigenvectors, Eq. (2) is replaced by cov(Q) = XXt, and the rest
of the procedure is unchanged.

An interesting feature of this SVD+PCA method is that the matrix V (and thus also the
principal matrix P ) in Eq. (11) does not depend on the value of the PDF factorization scale
Q: the scale dependence is thus entirely given by the DGLAP evolution equation satisfied by
the original Monte Carlo replicas. The result of the SVD thus does not depend on the scale
at which it is performed. Of course, the subsequent PCA projection may depend on scale if
there are level crossings, but this is clearly a minor effect if a large enough number of principal
components is retained. Because of this property, the SVD+PCA methodology can be used for
the efficient construction [9] of a Hessian representation of combined PDF sets, even when the
sets which enter the combination satisfy somewhat different evolution equations, e.g., because
of different choices in parameters such as the heavy quark masses, or in the specific solution of
the DGLAP equations.

2.2 The SM-PDF method

In the SM-PDF method, this same SVD+PCA optimization is performed, but now with the
goal of achieving a given accuracy goal not for the full prior PDF set in the complete range of
x and Q2, but rather for the aspects of it which are relevant for the determination of a given
input set of cross-sections, and in such a way that all the information which is not immediately
used is stored and can be a posteriori recovered either in part or fully, e.g. if one wishes to add
further observables to the input list.

This requires supplementing the SVD+PCA methodology of Ref. [11] with three additional
features: a measure of the accuracy goal; a way of singling out the relevant part of the covariance
matrix; and a way of keeping the information on the rest of the covariance matrix in such a way
that if needed the full covariance matrix can be recovered at a later stage.

The main input to the algorithm is the set of Nσ observables which we want to reproduce,
{σi}, with i = 1, . . . Nσ. Theoretical predictions for the cross-sections {σi} are computed using
a prior PDF set, which we assume for definiteness to be given as a Monte Carlo, though the
method works with obvious modifications also if the starting PDFs are given in Hessian form.
The goal of the SM-PDF methodology is to evaluate the PDF uncertainties sσi , Eq. (7), in terms
of a reduced number of Hessian eigenvectors,

s̃σi =

Neig∑
n=1

(
σ̃

(n)
i − σ̃(0)

i

)2

 1
2

, (14)

with the number Neig being as small as possible within a given accuracy. We thus define a
measure TR of the accuracy goal (tolerance) by the condition

T < TR; T ≡ max
i∈(1,Nσ)

∣∣∣∣∣1− s̃σi
sσi

∣∣∣∣∣ (15)

in other words, TR is the maximum relative difference which is allowed between the original and
reduced PDF uncertainties, s̃σi and sσi respectively, for all the observables {σi}.

In order to determine the part of the covariance matrix relevant for the description of the
input observables {σi}, we define the correlation function

ρ (xi, Q, α, σi) ≡
Nrep

Nrep − 1

(
〈X(Q)lkdk(σi)〉rep − 〈X(Qσi)lk〉rep 〈dk(σi)〉rep

sPDF
α (xi, Q)sσi

)
, (16)

6



  

The SM-PDFs strategy

Custom observables

Theoretical
predictions

Kinematic sampling

SM-PDFs

Input PDF set

APPLgrid

Plain files

LHAPDF

LHAPDF grid
Reached

Tolerance?

SM-PDF algorithm:

Eigenvector collection

Compute uncertainties
Validation plots

Data output

  No
Yes

Check non-linear 
effects

Next observable

Orthogonal projection

Figure 1: Schematic representation of the SM-PDF strategy.

where the matrix of PDF differences X(Q) and the grid index l = Nx(α − 1) + i have been
defined in Eq. (1); sPDF

α (xi, Q) is the standard deviation of the PDFs in the prior Monte Carlo
representation, given by the usual expression

sPDF
α (xi, Q) =

 1

Nrep − 1

Nrep∑
k=1

[
f (k)
α (xi, Q)− 〈fα(xi, Q)〉

] 1
2

, (17)

and sσi , the standard deviation of the i-th observable σi, is given by Eq. (7). The function
Eq. (16) measures the correlation between the observables σi and the l-th PDF value (i.e.
fα(xi, Q), with l = Nx(α− 1) + i).

The basic idea of the SM-PDF construction is to apply the SVD to the subset of the covari-
ance matrix which is most correlated to the specific observables that one wishes to reproduce,
through a procedure such that information is never discarded, so observables can be added one
at a time, or at a later stage. This goal is achieved through an iterative procedure schematically
represented in Fig. 1, which we now describe in detail.

The iteration loop (contained in the dashed box in Figure 1) is labeled by an iteration index
j, such that at each iteration an extra eigenvector is added, thereby increasing the accuracy. If
the accuracy goal is achieved for all observables after j iterations, then the final reduced Hessian
set contains Neig = j eigenvectors as error sets. These are delivered as a new principal matrix
P , which provides the expansion coefficients of the eigenvectors over the replica basis: namely,
Pkj is the component of the j-th eigenvector in terms of the k-th replica. They thus replace the
principal matrix of the previous PCA procedure as a final output of the procedure, and can be
used in exactly the same way.

To set off the iterative procedure, we select one of the observables we wish to reproduce from
the list, σ1, and compute the correlation coefficient ρ (xi, Q, α, σ1) for all grid points (xi, α) and
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for a suitable choice of scale Q. We then identify the subset Ξ of grid points for which ρ exceeds
some threshold value:

Ξ = {(xi, α) : ρ (xi, Qσ1 , α, σ1) ≥ tρmax} . (18)

The threshold value is expressed as a fraction 0 < t < 1 times the maximum value ρmax that
the correlation coefficient takes over the whole grid, thereby making the criterion independent
of the absolute scale of the correlation. The choice of scale Q and threshold parameter t should
be taken as tunable settings of the procedure, and will be discussed in Sect. 3 below. For the
time being it suffices to say that Q should be of the order of the typical scale of the observable
(for example, the average value of the factorization scale).

We then construct a reduced sampling matrix XΞ, defined as in Eq. (1), but now only
including points in the {xi, α} space which are in the subset Ξ. We perform the SVD of the
reduced matrix

XΞ = USV t , (19)

and we only keep the largest principal component, i.e. one single largest eigenvector, which is
specified by the coefficients of its expansion over the replica basis, namely, assuming that the
singular values are ordered, by the first row of the V matrix. We thus start filling our output
principal matrix P by letting

Pkj = V
(j)
k1 , j = 1 , k = 1, . . . , Nrep . (20)

Note that j on the left-hand side labels the eigenvector (Pkj provides expansion coefficients for

the j-the eigenvector) and on the right-hand side it labels the iteration (V
(j)
k1 is the first row

of the V -matrix at the j-th iteration), which we can identify because, as mentioned, at each
iteration we will add an eigenvector. The remaining eigenvectors of the principal matrix span
the linear subspace orthogonal to P , and we assign them to a residual matrix R:

R
(j)
km = V

(j)
k(m+1) j = 1 , m = 1, . . . , Nrep − 1 , k = 1, . . . , Nrep . (21)

At the first iteration, when there is only one eigenvector, the principal matrix P has just one
row, and it coincides with the principal component of V . So far, the procedure is identical to
that of the SVD+PCA method, and we can thus use again Eq.(12) to compute uncertainties on
observables, check whether the condition Eq. (15) is met, and if it is not add more eigenvectors.
The procedure works in such a way that each time a new eigenvector is selected, exactly the same
steps are repeated in the subspace orthogonal to that of the previously selected eigenvectors,
thereby ensuring that information is never discarded. This is achieved by a projection method.

Specifically, we project the matrix X and the vector of observable differences {dk(σi)} on
the orthogonal subspace of P , namely, the space orthogonal to that spanned by the eigenvectors
which have already been selected (as many as the number of previous iterations). The projections
are performed by respectively replacing d(σi) and X by

dR(σi) = d(σi)R
(j−1) , (22)

XR = XR(j−1) , (23)

where the first iteration of the residual matrix R(1) has been defined in Eq. (21).
After the projection, we proceed as in the first iteration. We first determine again the subset

Ξ, Eq. (18), of the projected sampling matrix XR, thereby obtaining a new sampling matrix XR
Ξ :

this is possible because everything is expressed as a linear combination of replicas anyway. Once
the new matrix XR

Ξ has been constructed, the procedure is restarted from Eq. (19), leading to
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a new matrix V R. The number of columns of the projected matrix XR
Ξ (and therefore of V R) is

Nrep− (j−1), which is the dimension of the subspace of the linear combinations not yet selected
by the algorithm (that is, Nrep − 1 for j = 2, and so on). We can now go back to Eq. (20) and
proceed as in the previous case, but with the projected matrices: we add another row to the
matrix of coefficients to the principal matrix by picking the largest eigenvector of the projected
matrix, and determining again the orthogonal subspace.

At the j-th iteration, this procedure gives

PR
(j)
k = V R(j)

k1 , k = 1, . . . , Nrep − (j − 1) , (24)

RR
(j)
km = V R(j)

k(m+1) , m = 1, . . . , Nrep − j , k = 1, . . . , Nrep − (j − 1) . (25)

which respectively generalize Eqs. (20) and (21) for j ≥ 1. The projected row of coefficients
PR Eq. (24) can be used to determine the corresponding unprojected row of coefficients of the
principal matrix and of the residual matrix by using the projection R matrix in reverse, i.e., at
the j-th iteration

P
(j)
kh =

∑
k′

R
(j−1)
kk′ PR

(j)
k′h , (26)

R
(j)
kh =

∑
k′

R
(j−1)
kk′ RR

(j)
k′h . (27)

We thus end up with a principal matrix which has been filled with a further eigenvector, and a
new residual matrix and thus a new projection.

In summary, at each iteration we first project onto the residual subspace, Eq. (22), then pick
the largest eigenvector in the subspace, Eq. (24), then re-express results in the starting space of
replicas, Eq. (26), so P is always the first row of V in each subspace, and Eqs. (13-12) remain
valid as the P matrix is gradually filled. Determining the correlation and thus Ξ after projection
ensures that only the correlations with previously unselected linear combinations are kept. The
fact that we are always working in the orthogonal subspace implies that the agreement for the
observables σi which had already been included can only be improved and not deteriorated by
subsequent iterations. It follows that we can always just check the tolerance condition on one
observable at a time. The procedure is thus unchanged regardless of whether we are adding
a new observable or not. In any case, the subset Ξ Eq. (18) is always determined by only
one observable, namely, the one that failed to satisfy the tolerance condition at the previous
iteration. The procedure is iterated until the condition is satisfied for all observables {σi} in the
input list. The number of iterations j until convergence defines the final number of eigenvectors
Neig.

The output of the algorithm is the final Nrep ×Neig principal matrix P , which can be used
to compute uncertainties on observables using Eqs. (12-13). However, for the final delivery we
wish to obtain a set of Hessian eigenvectors. These can be obtained by performing the linear
transformation given by P (a rotation and a projection) in the space of PDFs. The X matrix
Eq. (1) then becomes

X̃ ≡

√
1

Nrep − 1
XP , (28)

so, substituting in Eq. (1), the final Neig eigenvectors are found to be given by

f̃ (k)
α (xi, Q) = f (0)

α (xi, Q) + X̃lk(Q) , k = 1, . . . , Neig . (29)
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This is the same result as with the SVD+PCA algorithm of Sect. 2.1, but now generally with a
smaller number of eigenvectors, namely, those which are necessary to describe the subset of the
covariance matrix which is correlated to the input set of observables.

2.3 SM-PDF usage and optimization

Upon delivery of the final PDF set, any observable is computed in terms of the resulting Hessian
representation Eq. (29). As in the case of the original SVD+PCA methodology, the final result
Eq. (29) determines the PDFs for all x and Q. Indeed, Eq. (29) determines the SM-PDF Hessian
eigenvectors as linear combinations of replicas, and thus for all values of x and Q for which the
original replicas were defined.

Note however that in the procedure of Sect. 2.2, in order to test for the tolerance criterion ob-
servables have been computed using Eqs. (12-13). This is equivalent to using the PDFs Eq. (28)
by standard linear error propagation, but it differs from it by nonlinear terms, specifically for
hadron collider processes in which observables are quadratic in the PDFs. Even though nonlin-
ear corrections are expected to be small, in principle it could be that the tolerance criterion is
no longer satisfied if Eq. (28) is used instead.

We explicitly check for this, and if it is the case for all observables σi such that the recomputed
tolerance criterion is not satisfied, we restart the iteration but now replacing the tolerance with

a new value T
(new)
R,i given by

T
(new)
R,i ≡ TR −

(
Ti − T (lin)

i

)
, (30)

where T
(lin)
i is the value of the tolerance that is obtained within the linear approximation, by

computing Eq. (15) with Eq. (12). Iterating until the criterion with the new tolerances Eq. (30)
is met will be sufficient to ensure that the tolerance criterion is satisfied when using the new
PDFs, provided the difference between the linear and exact estimate of Ti is mostly due to the
larger eigenvectors that were selected first, and remains approximately constant upon addition
of smaller eigenvectors in order to correct for this.

In practice, the difference between the linear estimation of the PDF uncertainty and the
exact result is generally small, and does not a change the result for target tolerances TR of
5% or bigger. This effect can be more important for observables affected by substantial PDF
uncertainties, or for processes which depend on a large number of partonic channels (especially
when new channels open up at NLO or NNLO). It is however not an issue for most practical
applications.

Note that this final optimization step may become extremely time consuming if fast grid tools
are not available. In view of this, it is possible to disable this check. However, fast interfaces can
be obtained for any NLO QCD cross-section with arbitrary final-state cuts using the aMCfast

interface [15] to Madgraph5 aMC@NLO [16].
The SM-PDF construction can be generally performed at any perturbative order, and specif-

ically starting with an NLO or an NNLO PDF set. The perturbative order enters both in the
choice of starting PDF set, and in the computation of the list of observables {σi}, specifically
used for the determination of the correlation function ρ Eq. (16). Because the NNLO-NLO K
factors are usually moderate, for most applications it may be sufficient to compute ρ using NLO
theory even when using NNLO PDFs throughout. An obvious exception is the case in which the
user is explicitly interested in studying the changes in PDFs when going from NLO to NNLO.

A final issue is whether results depend on the order in which the observables are included, and
specifically on the choice of the observable σ1 used to start the iteration. Indeed, the eigenvectors
selected for a specific iteration depend on the subspace spanned by the previous eigenvectors,
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and consequently a different ordering will indeed change the particular linear combinations that
are selected. However this does not significantly affect the total number of eigenvectors needed,
because the optimal subspace of linear combinations required to describe all observables with a
given accuracy remains the same regardless of the order they are presented. We have verified
that this is indeed the case, though we observed small fluctuations by one or two units in the
final number of eigenvectors due to the discontinuous nature of the tolerance criteria Eq. (15).

3 Results and validation

We now present the validation of the SM-PDF algorithm described in the previous section.
Using this methodology, we have constructed four specialized minimal PDF sets for different
representative cases of direct phenomenological relevance at the LHC:

1. Higgs physics,

2. Top quark pair production physics,

3. Electroweak gauge boson production physics,

4. The combination of all processes included in (1), (2) and (3).

These examples have been chosen since, for each SM-PDF, there is a strong case for the use of
optimized PDF sets with a greatly reduced number of eigenvectors. For instance, these SM-PDFs
could be of interest for studies of the Higgs Cross-Section Working Group [17] (case 1), the LHC
Top Working Group (case 2), and the LHC Electroweak Working Group (case 3), respectively.
As an example, the SM-PDFs for W,Z production could be relevant for the determination of
the W boson mass [18–20], which is a extremely CPU-time consuming task.

In this section, we will first define the PDF priors and LHC cross-sections that have been
used to construct the SM-PDF sets listed above, then validate the performance of the algorithm
using a variety of figures of merit.

3.1 Input PDFs and cross-sections

In order to validate the SM-PDF methodology, we have used three different prior PDF sets, all
of them in the Monte Carlo representation:

1. The NNPDF3.0 NLO set [6] with Nrep = 1000 replicas,

2. The MMHT14 NLO set [5] with Nrep = 1000 replicas, obtained from the native Hessian
representation using the Watt-Thorne method [21], and

3. The PDF4LHC 2015 NLO prior set [9], with Nrep = 900 replicas, built from the combina-
tion of 300 replicas from each of the CT14, MMHT14 and NNPDF3.0 NLO sets. This set
is denoted by MC900 in the following.

These three choices are representative enough for the validation of our methodology; they show
that the procedure works regardless of the choice of input PDF set. As already mentiond in
Sect. 2.3 the SM-PDF methodology can be applied equally to NLO or NNLO PDFs, and NLO
PDFs are chosen here purely for the sake of illustration. Indeed, in Appendix B we provde an
example in which NNLO PDFs are used.

In order to compute the theoretical predictions for all input PDF sets and as many cross-
sections as possible, we have generated a large number of dedicated APPLgrid grids [22] using the
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Input cross-sections for SM-PDFs for Higgs physics

process distribution grid name Nbins range kin. cuts

gg → h incl xsec ggh 13tev 1 - -

dσ/dpht ggh pt 13tev 10 [0,200] GeV -

dσ/dyh ggh y 13tev 10 [-2.5,2.5] -

VBF hjj incl xsec vbfh 13tev 1 - -

dσ/dpht vbfh pt 13tev 5 [0,200] GeV -

dσ/dyh vbfh y 13tev 5 [-2.5,2.5] -

hW incl xsec hw 13tev 1 - pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpht hw pt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyh hw y 13tev 10 [-2.5,2.5] pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

hZ incl xsec hz 13tev 1 - pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpht hz pt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyh hz y 13tev 10 [-2.5,2.5] pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

htt̄ incl xsec httbar 13tev 1 - -

dσ/dpht httbar pt 13tev 10 [0,200] GeV -

dσ/dyh httbar y 13tev 10 [-2.5,2.5] -

Table 1: LHC processes and the corresponding differential distributions that have been used as input in
the construction of the SM-PDFs dedicated to Higgs physics. In each case we also provide the APPLgrid

grid name, the range spanned by each distribution, the number of bins Nbins, and the kinematical cuts
applied to the final-state particles. For associated production with vector bosons, hW and hZ, we
impose basic acceptance cuts on the charged leptons from the weak boson decays. All processes have
been computed for the LHC 13 TeV.

aMCfast [15] interface to MadGraph5 aMC@NLO [16]. Cross-sections and differential distributions
have been computed for the LHC Run II kinematics, with a center-of-mass energy of

√
s = 13

TeV. In particular we have generated fast NLO grids for the following processes:

• Higgs production: total cross-sections and rapidity and pT differential distributions for
gluon-fusion, vector-boson fusion, associated production with W and Z bosons and asso-
ciated production with top quark pairs. No Higgs decays are included, since we are only
interested in the production dynamics.

• Top quark pair production: total cross-section, pt and rapidity distributions of the top
and the anti-top quarks, and invariant mass mtt̄, pt, and rapidity distributions of the tt̄
system.

• Electroweak gauge boson production. For Z production: total cross-section, pT and rapid-
ity distributions of the two charged leptons and of the Z boson, and pT and invariant mass
distribution of the dilepton pair. For W production: total cross-section, pT and rapidity
distributions of the charged lepton and of the W boson, missing ET and transverse mass
mT distribution. For the W and Z processes, we apply kinematical cuts to the charged
leptons from the weak boson decay to reflect the typical acceptance constraints of the LHC
experiments.

A more detailed description of these processes, including binning and the kinematical cuts
applied, is provided in Tables 1–3. We also indicate the names of the (publicly available)
APPLgrid grids generated for the present validation study. Producing fast NLO grids for addi-
tional processes, or with a different binning or set of analysis cuts, is straightforward using the
aMC@NLO/aMCfast framework. We adopt the default choice of renormalization and factorization
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Input cross-sections for SM-PDFs for tt̄ physics

process distribution grid name Nbins range kin. cuts

tt̄ incl xsec ttbar 13tev 1 - -

dσ/dpt̄t ttbar tbarpt 13tev 10 [40,400] GeV -

dσ/dyt̄ ttbar tbary 13tev 10 [-2.5,2.5] -
dσ/dptt ttbar tpt 13tev 10 [40,400] GeV -
dσ/dyt ttbar ty 13tev 10 [-2.5,2.5] -

dσ/dmtt̄ ttbar ttbarinvmass 13tev 10 [300,1000] -

dσ/dptt̄t ttbar ttbarpt 13tev 10 [20,200] -

dσ/dytt̄ ttbar ttbary 13tev 12 [-3,3] -

Table 2: Same as Table 1 for the SM-PDFs dedicated to top-quark pair production physics.

Input cross-sections for SM-PDFs for electroweak boson production physics

process distribution grid name Nbins range kin. cuts

Z incl xsec z 13tev 1 - pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpl
−
t z lmpt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyl
−

z lmy 13tev 10 [-2.5,2.5] pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpl
+

t z lppt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyl
−

z lpy 13tev 10 [-2.5,2.5] pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpzt z zpt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyz z zy 13tev 5 [-4,4] pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dmll z lplminvmass 13tev 10 [50,130] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpllt z lplmpt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

W incl xsec w 13tev 1 - pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dφ w cphi 13tev 10 [-1,1] pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dEmiss
t w etmiss 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dplt w lpt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyl w ly 13tev 10 [-2.5,2.5] pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dmt w mt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpwt w wpt 13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyw w wy 13tev 10 [-4,4] pT (l) ≥ 10 GeV, |ηl| ≤ 2.5

Table 3: Same as Table 1 for the SM-PDFs dedicated to electroweak gauge boson production physics.
The kinematical cuts are applied to the charged leptons from the weak boson decays.

scales in aMC@NLO, namely µF = µR = HT /2, with

HT ≡
∑
i

√
p2
T,i +m2

i , (31)

the scalar sum of the transverse masses of all final state particles at the matrix-element level.
Clearly, some of these cross-sections contain overlapping information, so our list is partially

redundant. For instance, if differential distributions are reproduced, this will be also the case
for total inclusive cross-sections. Similarly, the rapidity distributions of the W and Z bosons are
closely related to the rapidity distributions of the leptons from their decay, so including both
distributions will lead to a certain degree of redundancy.

This redundancy can be used to provide non-trivial check of our methodology. For instance,
we have verified that by beginning with the total cross-sections, only the most extreme bins
of the differential distributions, which contribute less to the cross section, might require extra
eigenvectors in order to be reproduced to the desired tolerance. Conversely, if we begin the
algorithm using differential distributions as input, no additional eigenvectors are required to
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describe the corresponding total cross-sections.

3.2 Choice of settings

The SM-PDF method is fully determined by the choice of kinematic region Ξ, Eq. (18), which in
turn is fully specified by the correlation function and tolerance TR. The only tunable parameters
are thus the scale Q used for the evaluation of correlations in Eq. (16) and the threshold value
t. As the choice of scale Q, we adopt the mean value of the factorization scale µF at which the
PDFs are evaluated by the corresponding APPLgrid grids, that is, the event-by-event weighted
average of the value of µF used in the calculation of each specific cross-section or differential
distribution.

The only remaining free parameter is then the threshold t, which specifies according to
Eq. (18) which points are included in the reduced matrix X|Ξ: low values of t lead to the
inclusion of a wider region in phase space, and conversely. Clearly, if Ξ is too wide, the reduction
will not be very effective and the ensuing number of eigenvectors will be large. On the other
hand, if the region Ξ is too small, the number of eigenvectors will be small, but it might be lead
to a result which is unstable upon small changes of the input observables.

In order to determine a suitable value of t, we use the full set of cross-sections listed in
Tables 1 to 3. We will henceforth refer to this specific set of observables (and the associate
SM-PDF set) as the “ladder”. In Fig. 2 (left) we plot the number of eigenvectors Neig that
we obtained as a function of the parameter t when the SM-PDF methodology is applied to the
MC900 prior set, for a fixed tolerance TR = 5%. We show the results for the Higgs, EW and
the “ladder” set of input processes.

As expected, Neig decreases as the value of t is raised, since in this case fewer points in the
(α, x) grid are selected. While the specific position of the minimum of the Neig(t) curve depends
on the input set of cross-sections, we see from Fig. 2 that the curve reaches its minimum around
t ∼ 0.9 for all processes. Note that, as discussed at the end of Sect. 2.3, the value of Neig(t) can
fluctuate, typically by one or two units, depending on the specific ordering of the input processes.
We therefore choose t = 0.9: this means that we adopt the smallest value of t (i.e. the widest
kinematic region) compatible with having the smallest possible number of eigenvectors.

In Fig. 2 (right) we show the value of the correlation coefficient Eq. (16) between the MC900
prior set and the inclusive cross-section for Higgs production in gluon fusion, as a function of x
and for the seven independent PDF flavors, evaluated at the average scale Q of the grids. The
value of the correlation ρ = tρmax corresponding to t = 0.9 is shown as a dashed red line in the
plots; the points for which the correlation coefficient (blue curve) is larger in modulus than the
threshold are shown as a shaded region.

We observe that, for this specific cross-section, the algorithm in the first iteration will include
in the region Ξ Eq. (18) only the gluon PDF for x ' 10−2, which corresponds to the region
that dominates the total cross-section for Higgs production in gluon fusion. In Appendix A
we provide additional correlation plots, similar to Fig. 2 (right) but for other Higgs production
channels, as well as the correlation plots for subsequent iterations, j ≥ 2, of the algorithm,
illustrating how the selected regions in the (x, α) grid vary along the iteration.

3.3 Results and validation

We now present the results of applying the SM-PDF procedure to the PDF sets and cross-
sections described in Sect. 3.1. In Table 4 we show the results for the number of eigenvectors
Neig obtained, for each input PDF set, using the three different groups of LHC processes that
we consider: Higgs, tt̄, and W/Z production. In addition, for the Higgs production processes,
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Figure 2: (left) Final number of eigenvectors Neig obtained applying the SM-PDF algorithm to the
MC900 NLO PDF set with 900 Monte Carlo replicas, as a function of the threshold parameter t Eq. (18)
for fixed tolerance TR = 5%. We show the results for three choices of input cross-sections: Higgs
(Table 1), electroweak gauge boson production (Table 3), and “ladder” (all processes in Tables 1 to 3).
(right) Correlation Eq. (16) between all the PDFs and the total cross-section for Higgs production in
gluon fusion, as a function of x (solid blue lines). The value ρ = 0.9ρmax is shown as a dashed line and
the region in which the correlation exceeds the threshold is shown as a shaded band.

we have also studied the results of applying our methodology to each of the Higgs production
channels individually, as summarized in Table 5. The algorithm has been applied for two different
values of the tolerance TR, namely 5% and 10%. We also indicate in the bottom row the results
for the “ladder” SM-PDF (i.e. including all the above processes.)

Several comments on Table 4 are in order.

• Results are reasonably stable upon a change of tolerance, with differences smaller with the
MMHT14 prior, which has smaller underlying number of parameters than NNPDF3.0.

• The most dramatic reduction in number of eigenvectors is seen for the production of top
pairs, or Higgs in gluon fusion, where only Neig ' 4 eigenvectors are needed. This can be
understood as a consequence of the fact that in both cases the dominant contribution to
the cross-section arises from the gluon distribution in a narrow region of x.

• Total cross-sections and differential distributions for all the Higgs production modes can
be reproduced, in the case of the MC900 prior, with 11 to 15 eigenvectors (depending on
the choice of tolerance TR).

• The number of eigenvectors required is largest for the Higgs and the W/Z family of pro-
cesses, as one would expect given that in both cases several PDFs in a wide kinematic
range are required.

• All the processes that we are including can be described with a SM-PDF set, the “ladder”,
which includes about the same number of eigenvectors as needed for the Higgs or for the
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Neig

Process
MC900 NNPDF3.0 MMHT14

TR = 5% TR = 10% TR = 5% TR = 10% TR = 5% TR = 10%

h 15 11 13 8 8 7
tt̄ 4 4 5 4 3 3

W,Z 14 11 13 8 10 9

ladder 17 14 18 11 10 10

Table 4: Number of eigenvectors Neig obtained by applying the SM-PDF procedure, starting from each
of the three input prior PDF sets, to the three families of processes summarized in Tables 1 to 3: Higgs
production, tt̄ production, and W/Z production physics. The final row is based on the inclusion of all
the three families of processes, in the same order as they are listed. Results are shown for two different
values of the tolerance threshold TR, 5% and 10% respectively.

Neig

Process
MC900 NNPDF3.0 MMHT14

TR = 5% TR = 10% TR = 5% TR = 10% TR = 5% TR = 10%

gg → h 4 5 4 4 3 3
VBF hjj 7 5 10 5 4 3
hW 6 5 6 4 6 3
hZ 11 7 6 4 8 5
htt̄ 3 2 4 4 3 2

Total h 15 11 13 8 8 7

Table 5: Same as Table 4, now for the case where the separate Higgs production channels as used as
input to the SM-PDF algorithm.

the Drell-Yan and W/Z family of processes. This “ladder” SM-PDF, with only Neig '
15 eigenvectors, can be used reliably for a large number of LHC cross-sections, including
those not included in its construction.
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Figure 3: Total number of eigenvectors Neig required by the SM-PDF algorithm to describe a sequen-
tially increasing number of input cross-sections and distributions, for a tolerance TR = 5%. Results are
presented for the three prior PDF sets, namely MC900, NNPDF3.0 and MMHT14.

Next, in Fig. 3 we show the total number of eigenvectors Neig which are required, for a
tolerance of TR = 5%, as more and more processes are sequentially included, until the complete
list of processes in Tables 1 to 3 has been exhausted. This plot demonstrates the robustness and
flexibility of the SM-PDF algorithm, in that it shows how more processes can be added without
information loss to a reduced PDF set, thereby allowing for a study of the information brought in
by each process. In Fig. 3 results are presented for the three input PDF sets, MC900, NNPDF3.0
and MMHT14. As already seen in Table 4, a smaller number of eigenvectors is required in order
to describe the MMHT14 set, which has a smaller underlying number of parameters than the
NNPDF3.0 set; the combined MC900 set requires roughly the same number of eigenvectors as
NNPDF3.0, which is contained in it. Inspection of Fig. 3 indicates which processes bring in new
information in comparison to those already included. For instance, the fact that the number of
eigenvectors is unchanged when adding all the observables related to top quark pair production
shows that SM-PDFs based on Higgs processes also describe top production.

In Figs. 4-6 we compare various cross-sections and differential distributions computed with
the MC900 prior PDF set and with the corresponding SM-PDFs for some of the cases discussed
above, normalized to the central value of the prior. In the upper plots of Fig. 4, we show the
Higgs pT and y distributions in gluon fusion production, comparing with the Higgs SM-PDF.
In the lower plots of Fig. 4, we show the top quark pair invariant mass mtt̄ and top rapidity
yt distributions, comparing with the tt̄ SM-PDF. In Fig. 5 we compare various differential
distributions in weak gauge boson production with the W,Z SM-PDFs, and finally in Fig. 6 we
compare the “ladder” SM-PDFs with various total inclusive cross-sections

In these comparisons, results are shown for two values of the tolerance TR = 5% and TR =
10%. PDF uncertainties are shown as one-sigma confidence intervals; for the MC900 prior, the
central 68% confidence intervals are also shown (inner ticks). In all cases we observe excellent
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Figure 4: Upper plots: comparisons of the predictions for the pt (left) and rapidity (right) differential
distributions in Higgs production in gluon fusion between the prior MC900 and the corresponding Higgs
SM-PDFs for two different values of the tolerance TR, 5% and 10%. Results are shown normalized to the
central value of MC900. Lower plots: same comparison, now for the tt̄ SM-PDFs, showing the invariant
mass of the tt̄ pair mtt̄ (left) and the top quark rapidity yt (right). See Tables 1 and 2 for the details of
the binning and the kinematical cuts in each case.

agreement between the prior and the corresponding SM-PDF sets, which provides a further
validation of the reliability of the method.

We have also verified that SM-PDFs reproduce well PDF correlations, even though the
tolerance criterion Eq. (15) is only imposed on diagonal PDF uncertainties. The PDF-induced
correlation between two cross-sections computed using a Monte Carlo PDF set is given by

ρ(σi, σj) =

〈
σ

(k)
1 σ

(k)
2

〉
rep
−
〈
σ

(k)
1

〉
rep

〈
σ

(k)
2

〉
rep

sσ1sσ2

, (32)

while for a Hessian set it is

ρ(σi, σj) =

∑Neig

k=1

(
σ̃

(k)
i − σ

(0)
i

)(
σ̃

(k)
j − σ

(0)
j

)
s̃σ1 s̃σ2

. (33)

In Fig. 7 we show the difference between the correlations determined using the MC900 prior
(from Eq. (32)) and the “ladder” SM-PDF set (from Eq. (33)), with TR = 5%, for all the total
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Figure 5: Same as Fig. 4 for representative differential distributions in W and Z production, comparing
the MC900 prior with the W,Z SM-PDFs.

inclusive cross-sections used as input to the “ladder” SM-PDF set. We find that the deviation
in correlation is at the few percent level or better for most cases, and anyway never worse than
20%.

An additional validation test can be performed by comparing the predictions for a given SM-
PDF outside the kinematic range of the input processes. To illustrate this point, in Fig. 8 we
compare the pt and rapidity distributions in Higgs production via gluon fusion using the Higgs
SM-PDF (which uses as input the processes in Table 1) but now with an extended kinematical
range: the rapidity distribution now includes y ∈ [−5, 5], rather than the range y ∈ [−2.5, 2.5]
used as input, and the pt distribution covers now pt ∈ [0, 400] GeV as compared to the original
input pt ∈ [0, 200] GeV. In both cases, we show both the standard deviation (left) and the full
probability distribution obtained with the prior and the two compressed sets with TR = 5% and
TR = 10%; the smoothened probability distributions are obtained using the using the Kernel
Density Estimation (KDE) method discussed Ref. [12]. The good agreement seen in all cases
demonstrates the robustness of the SM-PDF method: namely, SM-PDF sets are stable upon
variations of kinematic cuts and binning of the input cross-sections.

While the SM-PDFs are stable upon extrapolation, they will not provide accurate predictions
when used for processes dominated by PDFs in an altogether different kinematic range. To
illustrate this point, in Fig. 9 we show predictions for inclusive jet distributions obtained using
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Figure 6: Same as Fig. 4 for the “ladder” SM-PDF, now comparing with the total ggH, tt̄, Z and W
inclusive cross-sections.

the Higgs and ladder SM-PDF sets, compared to the result obtained using the MC900 prior.
Specifically, we show the pjet

t distributions in the most forward rapidity bin (3.6 ≤ |yjet| < 4.4)
of the ATLAS 2010 inclusive jet measurement [23]; bins are ordered in increasing pT . Clearly,
the agreement deteriorates at large pT , where results depend on the large-x quarks and gluon,
which are weakly correlated to the processes included in the construction of the both the Higgs
and “ladder” SM-PDF sets. This also suggests that good agreement, with a marginally larger
number of eigenvectors, could be likely obtained by just widening the range of some of the inputs
to the “ladder”, such as, for instance, including the Higgs transverse-momentum distribution up
higher values of pt. In fact, we have explicitly checked [24] that the “ladder” PDF set provides
comparable accuracy to the PDF4LHC15 30 eigenvector set when used for the determination of
all the hadronic observables included in the NNPDF3.0 PDF determination [6], despite having
almost half the number of eigenvectors.
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Figure 7: Differences in the correlation coefficients between the MC900 prior and the “ladder” SM-PDFs
with TR = 5%, computed for all the inclusive cross-sections that enter the construction of the latter.
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Figure 8: The pt and rapidity distributions for Higgs production in gluon fusion, computed with the
MC900 prior and with the Higgs SM-PDFs, for two values of the tolerance TR, this time in a kinematic
range that doubles that of the input processes in Table 1 (see text). In the left plot we show the
standard deviation in each bin, while in the right plot we show the full probability distributions per bin,
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4 A posteriori combination of SM-PDFs

So far, we considered the construction of a PDF set tailored to a given list of input cross-sections.
However, one may also encounter the situation in which two SM-PDF sets constructed using
different processes as input are already available, and wishes to use them simultaneously, without
having to produce a new dedicated SM-PDF set using as input the two processes at the same
time. A typical application is a computation in which one of these processes is the signal and
the other to a background. The SM-PDF methodology also allows to deal with this situation:
we first discuss how this is done, and then we present an example of application.

4.1 General method

In Sect. 2 we have shown how, starting from a Monte Carlo PDF prior, Xlk, Eq. (1), we can
construct a specialized minimal Hessian representation, X̃lk, Eq. (28), in terms of a reasonably
small number of eigenvectors. The result of the SM-PDF algorithm can be expressed as a regular
Hessian PDF set, with the error parameters given by Eq. (29). Alternatively, one can directly
use the final matrix of Hessian coefficients P to express the cross-sections computed with each
of the replicas of the prior set, Eq. (8), as linear combinations of cross-sections computed with
the final eigenvector sets, Eq. (13). The two results are equivalent by linear error propagation.

However, we can also read Eq. (13) in reverse: if we define

dMC
k (σi) =

√
Nrep − 1

Neig∑
j=1

Pkjd
P
j(σi) , k = 1, . . . , Nrep , i = 1, . . . , Nσ . (34)

we can view the set of Nrep differences dMC
k (σi) (for each of the Nσ observables σi) as a Monte

Carlo set of cross-sections, containing the same information as the reduced SM-PDF set. In
other words, the Nrep values

σ
(k)
i =

√
Nrep − 1

Neig∑
j=1

Pkjd
P
j(σi) + σ

(0)
i , k = 1, . . . , Nrep , i = 1, . . . , Nσ , (35)

of the observable σi can be viewed as “pseudo-Monte Carlo” replicas, to be used to compute
uncertainties and correlations using the standard Monte Carlo procedure.

If two sets of SM-PDFs corresponding to different processes are available, we can then
combine the information contained in them by first turning the predictions obtained from them
into replicas using Eq. (35), and then viewing the set of Monte Carlo replica predictions obtained
in each case as our best approximation to the Monte Carlo set of predictions for that process
obtained with the original PDF replica set. These sets of prediction replicas can then be used
in order to compute any quantity which depends on both processes using standard Monte Carlo
methodology, by just making sure that each process is computed using its corresponding replicas.

4.2 Validation

We illustrate and validate the methodology presented in Section 4.1 with an example. We use as
input prior the NNPDF3.0 NLO set with Nrep = 1000 replicas and then generate two SM-PDFs
for a fixed choice of the tolerance TR = 5%. The first SM-PDF takes as input the tt̄ processes
from Table 2, while the second is constructed from the W,Z processes of Table 3.

We now use these two SM-PDF sets to calculate the PDF uncertainties on the tt̄ and the W
total inclusive cross sections. This can be done both with the original representation, Eq. (7),
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or with the new SM-PDF Hessian representation. As shown in Table 4, we find Neig = 5 for the
tt̄ SM-PDF and Neig = 13 for the W,Z SM-PDF. We obtain the following results for the total
cross-sections: for the tt̄ cross-section with tt̄ SM-PDFs

σtt̄ (prior) = 671.12± 12.0 pb , (36)

σtt̄ (smpdf−tt) = 671.12± 11.9 pb , (37)

and for the W cross section with W,Z SM-PDF

σW (prior) = 23867± 419 pb , (38)

σW (smpdf−wz) = 23867± 417 pb . (39)

Now suppose that we want to compute a quantity which depends both on tt̄ and W cross-
sections, such as the ratio between the two, σtt̄/σW . In the computation of the PDF uncer-
tainty on this ratio, it is essential to properly account for the cross-correlations between the
two processes. This can be achieved by recasting the results of the two different SM-PDFs into
corresponding Monte Carlo sets of predictions through Eq. (35).

Namely, the PDF uncertainty on the cross-section ratio is given by

s σtt̄
σW

=
1

Nrep − 1

Nrep∑
k=1

σ(k)
tt̄

σ
(k)
W

−

〈
σ

(k)
tt̄

σ
(k)
W

〉
rep

2
1
2

, (40)

where σ
(k)
tt̄

and σ
(k)
W have been obtained using Eq. (35) with the P matrix that corresponds

respectively to the tt̄ and W,Z SM-PDF sets.
Using Eq. (40) we get

s σtt̄
σW

= 6.66497× 10−4 , (41)

to be compared to the result obtained from the NNPDF3.0 prior, using the Nrep = 1000 original
replicas,

s σtt̄
σW

(prior) = 6.66503× 10−4 , (42)

which is identical for all practical purposes.
It is important to realize that while Eq. (42) requires the calculation of 2Nrep = 2000 cross-

sections, Eq. (41) only requires the knowledge of the Neig cross-section differences d̃j(σi) for the
two observables, which is equal to the sum of the number of eigenvectors in the two sets which
are being combined, in our case, NWZ

eig +N tt̄
eig = 18, with great computational advantage.

As a further cross-check, we have recomputed the same cross-section ratio by using the
methodology of Sect. 2, namely, by constructing a dedicated SM-PDF set using as input the two
families of processes, tt̄ and W,Z, simultaneously. This new SM-PDF has now 17 eigenvectors
for the case of a tolerance TR = 5% and leads to

s σtt̄
σW

(combined) = 6.655× 10−4. (43)

This shows that the advantage of constructing a dedicated set in comparison to combining the
pre-existing sets is marginal, as the accuracy is the same, and the total number of eigenvectors
Neig has only decreased by one unit.
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5 Delivery

Building upon our previous MC2H methodology for the construction of reduced Hessian repre-
sentations of PDF uncertainties [11], we have presented an algorithm for the construction of a
minimal Hessian representation of any given prior PDF set, specialized to reproduce a number
of input cross-sections. We have shown that the algorithm can be used to construct specialized
minimal PDF sets which reproduce with percent accuracy the central values and PDF uncer-
tainties for all input observables in terms of a substantially smaller number of eigenvectors as
compared to the prior PDF set. A remarkable advantage of the SM-PDF methodology is that
the complete information contained in the original prior set is kept at all stages of the procedure.
As a consequence, it is possible to add new processes to any given SM-PDF set with no infor-
mation loss. Also, it is possible to combine a posteriori SM-PDF sets corresponding to different
processes without any new computation.

The SM-PDF code is publicly available from the repository

https://github.com/scarrazza/smpdf/

The code is written in Python using the numerical implementations provided by the NumPy

package. Customized interfaces to APPLgrid and LHAPDF6 are also included. The package also
includes the APPLgrid grids for all the processes listed in Tables 1 to 3, and additional processes
can be easily generated upon request.

The input of the SM-PDF code is the prior PDF set and the list of cross-sections {σi} to be
reproduced. The code settings can be be modified by the user by means of a steering card. The
cross-sections can be provided either by indicating the name of the APPLgrid or by means of a
text file (for predictions computed with external codes). An example steering card for the code
is presented in Appendix B.

The output of the code is then the corresponding SM-PDF set, directly in the LHAPDF6

format, as well as the corresponding direct and inverse Hessian parameter matrices, P and P t,
respectively as a CSV file. These rotation matrices allow to easily transform computed cross-
sections back and forth from any SM-PDF representation to the prior representation, as well as
transforming between different SM-PDF representations, as explained in Sect. 4.

Together with this, a number of additional validation features are included in the SM-PDF
package. In particular, comparisons at the level of the input cross-sections as those presented
in Figs. 2, 4 and 7 can be generated automatically by filling the appropriate options in the
YAML configuration file, without the need of writing additional code. The user is encouraged to
refer to the documentation for a more extensive description of the different features available. In
addition, a web interface to similar to that of APFEL Web on-line PDF plotter [25,26] is currently
under consideration.

Finally, the SM-PDFs constructed in Sect. 3 are also available from the same webpage in
the LHAPDF6 format. Users can produce the SM-PDFs that more most suitable for specific
applications by generating the suitable cross-section theory calculations and then running the
SM-PDF code. However, users are encouraged to contact the authors for support if assistance
is needed. Additional SM-PDFs can be added to this webpage upon request.
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Figure 10: Correlation Eq. (16) between the PDFs and the cross section for Higgs production in vector-
boson fusion (left) and associated with a tt̄ pair (right), as a function of x, computed using the MC900
NLO PDF set. The threshold value ρ = 0.9ρmax is shown as a dashed line, and the region in which the
correlation coefficient exceeds the threshold, ρ ≥ 0.9ρmax, is shown as a shaded band.
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A PDF correlations

In this Appendix we illustrate graphically the selection of the region Ξ Eq. (18) by the SM-PDF
algorithm.

In Fig. 10 we plot as a function of x the value of the correlation Eq. (16) between PDFs and
the total cross-section for Higgs production in vector-boson fusion (VBF) and in association with
a tt̄ pair, determined using MC900 NLO PDFs. The Ξ region is that in which the correlation
exceeds the value ρ = 0.9ρmax, shown as a dashed line in the plots, and it is highlighted with a
gray band. The corresponding comparison for Higgs production in gluon fusion was shown in
Fig. 2. We see that Ξ includes the gluon around x ' (0.05, 0.1) and the strangeness s, s̄ around
x ' 10−2, while for htt̄ production it includes the gluon for x ' 0.1.

The corresponding comparisons for Higgs production in association with W and Z bosons
is shown in Fig. 11. In this case, for hW the Ξ region includes the ū, d̄ and d quark PDFs for
x ' 10−2, and for hZ production the same region, but for the u and d quark PDFs.
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Figure 11: Same as Fig. 10 for associated production of Higgs bosons with W (left) and Z bosons
(right).

The regions shown in Figs. 10 and 11 are selected at the first iteration of the SM-PDF
algorithm. These are therefore the regions which are needed in order to determine the most
important eigenvector. At the subsequent iteration, further regions are selected in the orthogonal
subspace. The regions selected at the second and third iterations for Higgs production in VBF
and hZ production are respectively shown in Figs. 12 (to be compared to the first iteration,
shown in left plot of Fig. 11) and in Fig.13 ((to be compared to the first iteration, shown in left
plot of Fig. 11).

For VBF in the second iteration Ξ contains the d PDF at x ' 0.2 and the third the d
PDF at x ' 0.02, and the up and strange PDFs at x ' 0.2. For hZ, it contains the strange
PDFs around x ' 10−2 at the second iteration, and at the third iteration the ū and d̄ PDFs
for x ' (0.01, 0.05). In each case, there is no overlap between regions selected in subsequent
iterations, as it must be because of the projection. The hierarchy in selection shows which
regions and PDFs are increasingly less important in determining the given cross-section.
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ū

1.0
0.5
0.0
0.5
1.0

d̄

1.0
0.5
0.0
0.5
1.0

g

1.0
0.5
0.0
0.5
1.0

d

1.0
0.5
0.0
0.5
1.0

u

10-5 10-4 10-3 10-2 10-1 100

x

1.0
0.5
0.0
0.5
1.0

s

1.0
0.5
0.0
0.5
1.0

s̄

vbfh_13tev(NLO) j=3

1.0
0.5
0.0
0.5
1.0

ū
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Figure 12: Same as the left plot of Fig. 10, but now at the second (left) and third (right) iteration of
the SM-PDF algorithm
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Figure 13: Same as Fig. 12. but now In this case, the results for the first iteration of the algorithm
were shown in the right plot of Fig. 11.
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B Basic usage of the SM-PDF code

While we refer the user to the documentation bundled in with the SM-PDF code, that will be
updated over time, here we provide an annotated example of a basic YAML configuration file that
can be used to define the inputs to the code. In particular, the following example of the steering
card is the one used to generate the Higgs SM-PDF set, constructed using all the processes in
Table 1 as input. In addition, the main executable also produces a number of validation plots
such as those presented in Sect. 3.

Following installation, the SM-PDF code can be executed using the following command:

smpdf higgs.yaml --use-db

where the steering card should contain the following information:

# higgs . yaml
# Global parameters that are used u n l e s s ove rwr i t t en by parameters
# i n s i d e the ac t i on groups
obse rvab l e s : # I n d i c a t e the paths to the APPLgrids , and s p e c i f y the

# per tu rba t i v e order in which they have been c a l c u l a t e d
# Higgs
# Total xsec f o r Higgs in gluon f u s i o n
− {name : ’ data / h iggs / ggh 13tev . root ’ , o rder : NLO}
# ggHiggs d i f f e r e n t i a l d i s t r i b u t i o n s
− {name : ’ data / h iggs / ggH y 13tev . root ’ , o rder : NLO}
− {name : ’ data / h iggs / ggH pt 13tev . root ’ , o rder : NLO}
# Total x s e c s f o r Higgs + W or Z
− {name : ’ data / h iggs / hw 13tev . root ’ , o rder : NLO}
− {name : ’ data / h iggs / hz 13tev . root ’ , o rder : NLO}
# Total x s e c s f o r Higgs in a s s o c i a t i o n with a t tbar pa i r
− {name : ’ data / h iggs / ht tbar 13tev . root ’ , o rder : NLO}

p d f s e t s :
− MC900 nnlo # LHAPDF6 PDF s e t to be used as p r i o r in the a lgor i thm

a c t i o n s :
− smpdf # Generate the SM−PDF s e t s from p r i o r PDF s e t and input obse rvab l e s
− i n s t a l l g r i d s # I n s t a l l the generated s e t s in the LHAPDF path

#The s p e c i f i c a t i o n o f the a c t i o n s to a c t u a l l y be performed
#us ing the above as d e f a u l t
ac t iongroups :
− p r e f i x : H05 #Begin a l l exported f i l enames with t h i s p r e f i x

smpdf to l e rance : 0 .05 #Set T to 5% and execute the d e f a u l t
#a c t i o n s above

− p r e f i x : H10
smpdf to l e rance : 0 .10 #Set T to 10% and execute the d e f a u l t

#a c t i o n s .

− p r e f i x : compall
p d f s e t s : #Change the PDFsets f o r t h i s act iongroup
− MCH nnlo 100
− H05 smpdf∗ #Wildcard expansion i s supported .
− H10 smpdf∗
− MC900 nnlo

a c t i o n s : #Perform p l o t s and save the data o f the convo lut ion .
− v i o l i n p l o t s
− o b s c o r r p l o t s
− c i p l o t s
− savedata

base pd f : MC900 nnlo #Plot va lue s r e l a t i v e to t h i s PDF.

No additional settings need to be modified. By default, the code will also output the generated
SM-PDF set directly in the LHAPDF6 format.
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