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ABSTRACT: Sunburn can affect grape quality both for chemical modifications and by visual impact of the browning. Optical
properties of 17 white grape accessions were investigated in the visible region using a noninvasive instrument. Reflectance spectra
were obtained using a Jaz System spectrometer. Browning was induced by exposing grape bunches to direct sunlight at 12:30
p-m. for § h. During the experiment, the global solar radiation ranged from 2.6 to 2.7 MJ m~> h™" and the air temperature from
24.3 to 29.2 °C; the exposed berries reached a temperature of 34.2 °C in comparison to the 30.4 °C of the shaded ones.
Differences between the spectra of controlled and exposed berries mainly emphasized the loss in chlorophyll and the formation
of brown compounds. A positive correlation between the chlorophyll concentration and berry browning was proposed.
Developing rapid, noninvasive, and low-cost methods based on reflectance spectroscopy could support grapevine variety
characterization with respect to sunburn susceptibility as well as study of the physiological processes involved in the symptoms’

appearance.
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Bl INTRODUCTION

Fruit quality involves sensory properties, nutritive value,
chemical composition, structural and mechanical characteristics,
and absence of defects." Sunburned berries exhibit a series of
physiological and compositional disorders that may adversely
affect market value, especially in the case of table grapes, and
the final wine quality, when speaking about wine grape
varieties.” Bunches directly exposed to sunlight may present
symptoms of sunburn damages” induced by high fluxes of solar
radiation, exacerbated by high ambient temperature® in
combination with the ultraviolet radiation.* Often this type of
damage can lead to browning, cracking, or complete berry
wilting and desiccation in both red- and white-berried varieties.”
The browning of the berry’s exocarp is related to the loss of cell
compartmentalization and to the oxidation of polyphenolic
compounds by polyphenol oxidases. This results in the
formation of polymerized melanin-like pigments.” The
appearance and the extent of this disorder are strongly
dependent on factors such as grape variety, berry stage of
development,2 and environmental conditions.

During the past years, our research group has been
particularly involved in the phenotypic evaluation of germplasm
within the framework of COST Action FA1003 “Grapenet:
East—West Collaboration for Grapevine Diversity Exploration
and Mobilization of Adaptive Traits for Breeding”. Thus, as a
major objective, we have been considering the development of
high-throughput methods to evaluate compositional and
qualitative traits of grape cultivars. Tissue spectral signature
of grapevine varieties in the visible and near-infrared ranges is
mainly ruled by content, composition, and localization of
pigments, epicuticular waxes, and water content.” " All of
these factors result in defined changes in fruit absorbance and,
thus, reflectance and transmittance at specific wavelengths."' '
It follows that the typical combinations of these characters in a
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single species and/or cultivars can allow the assessment of their
phenotypic traits on the basis of the reflected radiation. As an
example, we have recently developed a method based on the
reflectance spectrum for grape color phenotyping.'* The
pigment (mainly chlorophylls, carotenoids, anthocyanins, and
other phenolics) contents as well as their proportions
determine fruit color and a.ppearance,l’15 which represent
markers for commercial quality. Nowadays, it is also possible to
elucidate the contribution to the tissue color of different
compounds at the molecular scale with the theoretical
chemistry approach. Some examples are already available in
the literature concerning differences in grape anthocyanin
color'® and copigmentation affecting the absorption properties
through molecular interactions.'” Pigments under%o changes
during ripening and as a result of various stresses."®'” Thus, an
understanding of fruit optical properties could support the
development of sensitive techniques with the purpose of
deducing the composition, structure characteristics, and
response of grape tissues to specific environmental conditions
and physiological disorders, such as sunburn.”® Besides the
description of grape composition, phenotyping could involve
the ability of the cultivars to react to specific environmental
conditions.

In this paper we investigated changes in the optical
properties of a number of white-berried grapes with three
main objectives: (i) to identify the reflectance spectrum
variations related to incipient browning symptoms appearance;
(ii) to search for relationships with physiological processes
involved in sunburning; (iii) to emphasize chemical composi-
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tional markers of sunburning predisposition, with the aim of
developing high-throughput methods useful in exploring the
phenotypical variability of the grapes’ susceptibility to sunburn
damage.

B MATERIALS AND METHODS

All of the Vitis vinifera L. accessions tested were grown in the same
germplasm collection vineyard, located at the Regional Research
Station of Riccagioia (Lombardy region, northern Italy) already
described in a previous paper.'* The experimental layout provided for
the selection of 17 Lombard germplasm accessions named Bianca
Botticina, Bianca Gabana, Pinot bianco, Chiavennasca bianca,
Colombaia bianca, Croatina bianca, Erbamat, Favorita, Invernenga,
Cortese, Marzemino bianco, Pollini A, Malvasia Istriana, Verdicchio,
Uva bianca dura invernale, Verdea, and Vernassa. For each accession
one shaded bunch was chosen. On August 29, 2012, at 12.30 p.m. solar
time, the bunches were exposed to direct sunlight by leaf removal from
the southwestern side facing the sun; the epicuticular waxes were
mechanically removed through a slight rubbing of the berry surface
with paper towels to facilitate the sunburning symptoms” appearance
and to exclude the wax heterogeneity as an additional source of
variability. After S h, at 5.30 p.m.,, all of the bunches were collected.

To describe grape temperatures during the experiment, the
BerryTone model”" was used to simulate the hourly temperature of
the bunches. The model has been fed maximum and minimum daily
air temperatures gathered by the weather station located in the
vineyard.

All grape samples were kept at 10 °C and analyzed within 24 h from
their harvesting. Forty berries were selected for each accession. Twenty
of them were taken from the inner part of the shaded side of the
cluster, with the purpose of describing the varietal reflectance spectra
(control berries). Twenty berries on the exposed side of each bunch
were also sampled (exposed berries). The most symptomatic berries
(visual evidence of browning/discoloration), if present, were taken.
When no symptoms were clearly visible, the most exposed berries
were chosen. Before the spectrophotometric analysis, epicuticular
waxes, still present in the control berries, were mechanically removed
with a paper towel to avoid their interference with the optical
properties. ° Overall, 680 reflectance spectra were obtained using a Jaz
System spectrometer (Ocean Optics), completed with a channel with a
DPU module and an ILX511b detector, an OFLV-3 filter, an L2 lens,
and a 50 um slit as installed options. A reflection probe QR600-7-
VIS125 consisting of a tight bundle of seven optical fibers (600 ym in
diameter), in a stainless steel ferrule (six illumination fibers around one
read fiber), was coupled to the spectrophotometer. The instrument
was set up with a NIR—vis light source (Ocean Optics) 4095 power
setting and an integration time automatically corrected by the
instrument. Collected spectra ranged between 341 and 1025 nm and
had a spectral resolution of about 0.3 nm. In this work, the visible
spectral changes (450—750 nm) will be presented and discussed. Each
spectrum was set up to be the average of nine spectra, which were
directly calculated by the instrument. The spectra were converted in
percentage of reflectance (%R) after a calibration with a blank,
obtained by using a white Spectralon surface (Labsphere). The
relationship between reflectance signal and chromophore content is
nonlinear. Thus, the reflectance spectra were converted to approximate
to the (quasi)linear relationship between pigment content and optical
reflectance-based indices using reciprocal reflectance (1/R) spectra.
The difference between exposed and shaded spectra was than
calculated (Figure 3a). To make the browning contribution more
apparent, a normalization to chlorophyll red maximum (678 nm) was
also performed before the differential spectra were calculated,
obtaining the “1/R (chlorophyll normalized)” spectra (Figure 3b).

Chlorophyll content was estimated by using a reflectance index

previously developed by Merzlyak and Solovchenko:*
chlorophyll index = Rgj0/Reg

This index was developed in apple fruits, but we decided to apply it to
grapes because (i) the optical effect of chlorophylls in the red region is
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clearly identified in white grape spectra and (ii) no interferences from
other white grape pigments are expected at these wavelengths.'*

The index was computed on the basis of the average control
spectrum of each cultivar. The objective was to evaluate the berry
susceptibility to sunburn in relation to the initial chlorophyll content.

A browning intensity index was developed to evaluate the degree of
sunburning symptoms in each accession. It was calculated as the
difference of the inverse reflectance spectra, normalized to chlorophyll
“1/R (chlorophyll normalized)” at the maximum absorption wave-
length (490 nm) of melanin-like pigments.

100R .4/g B 100R (g

browning intensity index =

e490 R 5490

where R4 = exposed berries’ reflectance at 678 nm, R 49, = exposed
berries’ reflectance at 490 nm, Ry, = shaded berries’ reflectance at 678
nm, and Ryg, = shaded berries’ reflectance at 490 nm.

The statistical significance of the differences between reflectance
data from exposed and control skins was estimated for each
wavelength according to the classical computation of the mean
confidence intervals per p = 0.95, with the lower limit = M —
(tp95)(5m) and the upper limit = M + (t)95)(s,), where M = average
value, t = Student’s t per p = 0.95, and s,, = standard error (standard
deviation/number of berries'” 2). This analysis, as well as correlations
and ANOVA models, was performed by SPSS statistical software
(version PASW Statistics 19, SPSS Inc., Chicago, IL, USA).

B RESULTS

During the experiment, the global solar radiation ranged from
2.6 to 2.7 MJ m~* h™" and the air temperature from 24.3 to 29.2
°C. The hourly course of berry temperature for the day of the
experiment was simulated with reference to a southwestern
exposed part of the bunch in comparison to the shaded side
(Figure 1). The exposed berries reached a maximum temper-
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Figure 1. Daily course of solar energy and temperatures (air, sun-
exposed and shaded berries). Bunches were exposed on August 29,
2012, at 12.30 p.m. solar time for S h.

ature of 342 °C at 2:00 p.m. At the same time the control
berries were at 30.4 °C and the air at 29.2 °C. The difference
between air and berry temperature was maximum at 1:00 and
2:00 p.m., when 6.1 °C was reached. At that time the difference
between exposed and shaded berries was 4.3 °C.

Reflectance spectra were measured and their relative standard
error was calculated for control and exposed berries to describe
sunburning effects (Figure 2). Reflectance spectra minima
indicate the presence of compounds absorbing in the
corresponding spectral band. Figure 3 represents the variation
of reciprocal reflectance (1/R) (Figure 3a) and 1/R
(chlorophyll normalized) (Figure 3b) spectra in relation to
sunburning. In Figure 3, when the interval of confidence
overlaps zero, no significant compositional changes occurred in
relation to sunlight exposure of berries. If it is above zero, new
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Figure 2. Control and exposed berry average spectra (#standard
errors). Roman numbers indicate spectral regions of specific
absorption interest.

molecules absorbing in the corresponding wavelength range
have been generated (e.g,, melanin-like pigments). Differences
lower than zero are indicative of chromophore loss as a
consequence of sunburn-induced bleaching.

It is possible to note three spectral regions (Figure 2) related
to different grape skin compounds. Molecules related to region
I (chlorophylls, Figure 2) evidently undergo degradation during
sunburn (Figure 3a). In Figure 2, region II mainly indicates a
difference between control and exposed spectra, related to the
formation of brown compounds. In Figure 3 the absorption
signature of melanin-like pigments clearly appears. The
maximum of reciprocal reflectance (1/R) spectra (Figure 3a)
underwent an 18 nm shift toward shorter wavelength after
normalization to the chlorophyll red absorption maximum
(Figure 3b). Region III (Figure 2) indicates a strong
overlapping absorption by several chromophores (e.g.,
chlorophylls, carotenoids, melanin-like pigments).

B DISCUSSION

In the red region, a broad band of combined chlorophyll 4 and
b absorption was detected in the control and exposed berry
spectra (Figure 2, region I). In Figure 2 the minimum of
reflectance near 678 nm should be mostly due to chlorophyll a
(spectral region I), whereas the little shoulder near 650 nm
should be related to chlorophyll b absorption (spectral region
I'), as suggested by Merzlyak et al.>*

In comparison with the control spectrum, the exposed one
(Figure 2) showed a decrease in reflectance in region II. This
trend, emerging during browning, may be explained by the

generation of melanin-like pigments.,s’24 for exam})le, via the
oxidation of polyphenols by polyphenol oxidases.”

In the blue and green region (Figure 2, region III), no
significant difference was recorded. In this region, different
molecules absorb, including chlorophylls. Chlorophylls under-
went degradation (Figure 3a). Nevertheless, the expected
increase in reflectance in the Soret band (see band III in Figure
2) was not detected, probably due to accumulation of other
chromophores, most probably the browning pigments.”® The
normalization of reciprocal reflectance spectra to chlorophyll
allows the exclusion of the overlap in region III between the
absorption of chlorophylls and melanin-like pigments. Thus,
the hypsochromic shift of the melanin-like pigments A,
between panels a and b of Figure 3 should be related to the
removal of this overlapping contribution by chlorophylls to
overall.

Figure 4 shows the correlation between the varietal (shaded
bunches) chlorophyll concentrations and the browning
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Figure 4. Nonlinear correlation between chlorophyll index and
browning intensity index (p < 0.01).

intensity index and, thus, melanin-like pigment generation. A
quadratic model was able to describe the nonlinear relationship.
As expected in oxidative processes, the reaction kinetics appears
above a threshold. After a chlorophyll index value of about 2,
the production of melanin-like compounds suddenly increased.
Below the threshold, no relationships could be detected. Thus,
it is possible to suggest a central role of photo-oxidation in the
sunburn symptom physiology. For this reason it is possible to
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Figure 3. Differences (mean + confidence interval 95%) in the (a) reciprocal reflectance (1/R) and (b) 1/R (chlorophyll normalized) spectra

between exposed and shaded berries.
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propose the use of a chlorophyll index threshold as a marker for
grapes’ susceptibility to sunburning browning. Further experi-
ments could confirm this hypothesis, studying the kinetics of
browning of individual berries and relating the parameters of
these kinetics to the initial chlorophyll content.

With the development of rapid, noninvasive, and low-cost
methods, reflectance spectroscopy could support grapevine
variety characterization with respect to sunburn susceptibility,
as well as the study of the physiological processes involved in
the symptoms’ appearance.
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