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 

Abstract—In the thermodynamic studies the problem of 

work done by magnetized materials is often approached with 

general-theorical approach. Sometimes ambiguities can be 

found in the demonstrations, because some authors do not 

specify clearly the terms in the relations. Conversely, a 

definition of “heat of magnetization” is not given in a general 

complete way. Some engineers and physicists use practical 

relations to calculate power dissipated on superconducting 

materials during magnetization cycles, but it is not possible to 

find theoretical works that justify the validity of these 

relations in general situations, for example as instantaneous 

losses. In this paper we want to approach both these aspects 

with a more complete analysis. 

 

Index Terms — Heat exchange for magnetizing process, 

losses in superconductors, losses for eddy currents. 
 

I. INTRODUCTION 

ANY thermodynamic texts and handbooks which 

treat the first principle of thermodynamics specify 

that among the works done on the system, there may 

be also the magnetic work. The volumetric magnetic work 

lM is defined as: 
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where H is the magnetic field and M the magnetization of 

the body. Actually eq. (1) presents some ambiguities, 

because in presence of a magnetized body, the magnetic 

field H may be the sum of the external field, usually called 

the “applied field” Ha, and the de-magnetizing field Hm 

produced by the magnetized body itself: so an exact 

definition of H is necessary. Some authors neglect to 

specify the origin of H (for example treating only special 

configurations without de-magnetizing field [1-2]), whereas 

others explicitly distinguish the cases, arriving to conclude 

that H is the “applied field” Ha only [3-4].  

If the work for magnetization is often discussed (even 

with some ambiguities sometimes, as focused above), the 

heat exchanged in magnetization processes is not afforded 

with a general approach. When some processes of energy 

dissipation are involved during closed cycles of 

magnetization, as for magnetic hysteresis in 

superconductors, most authors use practical relations. For 

example assuming to work in closed loops, for the energy 

conservation the volumetric heat absorbed qM is taken equal 

to the volumetric work received [5-6]; moreover, because 

the work is done in a closed cycle, in the usual case where 
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M and H are parallel, the integration variable can be 

substituted with the integrand, obtaining:  

  MdHHdMqM 00       (2) 

 The change in sign of last term in (2) is due to the fact 

that the path of integration changes verse when H is 

exchanged with M.  

Other authors demonstrate (2) with different approaches 

[7-8], and specify clearly that the magnetic field H to be 

considered is the external applied field Ha. If we write 

Ba=0Ha  and because of a thermodynamic convention qM 

is the “absorbed heat”, the “out-going heat” qdiss (dissipated 

heat) can be re-written as: 

 adiss MdBq        (3) 

Many authors use (3) to calculate hysteresis losses in 

bulk and composite superconductors [5, 9-12]. 

However the eq. (2) and (3) result valid for a closed loop 

only, and they do not give information where and how 

much, along the cycle, the heat is exchanged. In other 

words, the average power per cycle can be computed, 

dividing the heat loss with the time period, but it is not 

possible to have information about the instantaneous losses.  

 Some other authors use to calculate superconducting 

hysteresis losses considering the dissipative work done by 

the pinning forces of fluxoid quanta during their 

displacement [13] (and again with this approach the 

average loss per cycle is calculated) or considering the 

volumetric power JE [6,14]. For this last method, it is 

necessary to assume that JE is a dissipative power, as 

occurs for normal material and for the mixed state of II-

type superconductors, and not a reversible power, as for the 

Meissner state [6]. An interesting review of classical 

methods used to calculate losses in HTS (mainly also valid 

in LTS) can be found in [8]. 

Here we want to give the demonstration of a different 

general method of calculating the instantaneous heat 

produced or absorbed during a magnetization process in 

superconductors or other problems of eddy currents, by 

means of a pure thermodynamic approach, that, to our 

knowledge, hasn’t been presented in a general complete 

way. 

 

II. MAGNETIZATION WORK 

Firstly we want to re-propose a demonstration of the 

work done by a magnetic system against the external 

environment when it modifies its magnetization of a 

quantity dM. With this demonstration we will reach the 

well-known relations of the magnetization work. 

 We initially suppose that the magnetic system, well 

defined from the rest of the universe, has a small volume 
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dV, so that the magnetization M of the very small volume 

can be assumed uniform.  

Clearly there is evidence that the elementary magnetic  

dipoles inside the system feel the influence of the magnetic 

field; without an external magnetic field, the work done by 

the system for the magnetization variation dM must be null. 

One may consider that the elementary dipoles themselves 

generate a magnetic field, and so a work may be done 

during the variation dM because of the interactions of the 

elementary dipoles with this “self-field”. This is the 

situation that occurs when a magnetized volume generates a 

magnetic field Hm, usually called de-magnetizing field, due 

to the fictitious magnetizing currents inside the volume or 

on the surface, given by: 

MrotJ M


   nMJ SM


      (4) 

where n is the unitary vector normal to the volume surface, 

or, from a different but equivalent approach, due to the 

fictitious volumetric or superficial magnetic charges, given 

by: 

MdivM


   nMM


      (5) 

Actually, the hypothetical work done by the elementary 

dipoles for the interaction with this “self-field” Hm must 

not be considered here, because it is not a work done 

against external parts of the system, but eventually against 

internal parts of the system. According to formal definition 

of the works in thermodynamics, this kind of energy will 

have to be considered in the energetic balance of the 

internal energy, as we will discuss later. 

In conclusion we may state that if the system does a 

work for the variation dM, it is necessary the presence of an 

external magnetic field Ha (also called the “applied field”), 

which is produced on the space occupied by the volume of 

the system independently by the presence of the system, or 

as the system was substituted by vacuum. Once we have 

chosen a small volume dV for the system, we may consider 

again Ha being uniform on dV. 

 We suppose now that the external applied magnetic field 

Ha is generated by an ideal, very long, thin solenoid, in 

which the system is located. The solenoid has to be 

connected to a power supply, which keeps constant the 

current Ia which circulates in the solenoid, in order to keep 

constant Ha during the whole process which produce the 

magnetization variation dM.
1
 The work dLM done by the 

 
1 The magnetic work done by the system has to be computed supposing 

that Ha is constant during the process because Ha represents a quantity 

produced by an external apparatus respect to the exanimated system; so 
the computation of the work has to be done by supposing that this external 

quantity does not vary. The situation is very similar to the computation of 

the mechanical work given by dL=PdV, where P is the pressure produced 
by an external force, which is considered constant during the infinitesimal 

variation dV of the volume. In the case of the work due to magnetization 

this concept apparently appears more hardly to be figured because the 
magnetization variation, in the real cases, is almost always produced by 

the variation of magnetic field external to the system. However, in order to 

apply correctly the thermodynamic concepts, it is necessary to decouple 
the works done by the system for the variation of its own magnetization 

only, from the other energies given by the external apparatus to vary the 

magnetic field Ha. The last ones, in fact, don’t have to be considered as 
works done from the examined variation dM, because ideally they are 

performed externally and they are independent on the considered system. 

The magnetization variation may be represented as produced by 
relaxations of some internal forces between elementary dipoles, exactly as 

we are used to represent the volume variation of a gas in a container as 

due to particle collisions to the walls, and the particles lose kinetic internal 
energy when the recipient adiabatically expands.  

magnetic system against the external, conceptually has to 

be found as the work dLg done by the power supply, i.e.: 

dtIVdLdL agM        (6) 

where dt is the infinitely small time during the variation dM 

of the system and ΔV is the voltage across the terminal of 

the power supply, which is equal to the voltage across the 

solenoid. If we don’t consider the power dissipated in the 

solenoid for Joule effect, which does not depend on the 

considerations about the magnetization that we are 

discussing here, the potential difference ΔV is zero if the 

magnetization variation is zero, because nothing is varying. 

Conversely, when there is a variation dM of the 

magnetization, an electro-motive force ΔV will be present 

in the terminals of the solenoid, which by definition can be 

computed as: 

 
L

ldEV


         (7) 

with L the path along the windings that compound the 

solenoid, and E the electric field (strictly speaking an 

electro-motive field) produced by the variation dM.  

We recall the expression of the vector potential A due to 

magnetic dipole MdV located in the origin of the cartesian 

axis: 
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So the part of the electric field E generated by the 

magnetic variation is given by: 

 
 

3

0

4 r

rdV
t

M

t

rA
rE































    (9) 

The time derivation is done on the magnetization M only 

because we are in the hypothesis that all the other quantities 

(locations and volumes) do not vary. If we substitute (9) in 

(7) we obtain: 
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Also in this case we can take out the time derivation 

because all the other quantities are not time dependent. 

Finally, substituting (10) in (6): 
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If we suppose that the solenoid loops are separated each 

other by a quantity δza and  that S is the surface of the 

solenoid, we can write:  

azLS         (12) 

and if the solenoid is very long with the symmetry axis 

coincident with the cartesian z axis: 

a

a
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z

I
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          (13) 

consequently: 

udSHIld aa
ˆ


       (14) 

The (11) can be re-written as: 
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It is easy to find out that, because of the vector product 

with r and the scalar product with u, the only component 
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of dM that does not vanish is dMz. So the (15) can be re-

written as: 
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The integral in (16) can be easily solved considering  the 

solenoid infinitely long:  

 
1

2

4

1
'ˆ

4

1

2

3
22

2

3










 Rz

dzR
dSu

r

rz

S







   (17) 

where R is the solenoid radius. We obtain the final results: 

dVdMHdL zaM 0        (18) 

In the general case, not dependent on the choice of the 

orientation of solenoid axis respect to the cartesian axis: 

dVMdHdL aM 


0       (19) 

 In case of a finite volume V for the considered system, 

the work done by the whole system, because of the 

magnetization variation dM, is then given by:  

 
V
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The finite work LM due to the magnetization variation is 

then:  
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 It is possible to note that with this approach the 

magnetization work LM is well defined also in the general 

case when Ha is not constant on the volume V: in this case 

Ha remains inside the volumetric integral of (24). The 

volumetric work lM introduced in (1) is then demonstrated. 

.  

III. MAGNETIZATION HEAT 

In this paragraph we calculate in a general way the heat 

absorbed (or given) by a system during a process involving 

the magnetization variation. This energy quantity, when 

negative, represents the heat given to the environment, and 

consequently, for a not reversible process, it is a term of 

energy dissipated by the system, for example as loss due to 

magnetic hysteresis or parasitic eddy currents. We will 

follow a classical thermodynamic approach, similar to the 

one done for the calculation of the magnetization work.  

The heat QM exchanged by the system during a 

magnetization process can be calculated from the first 

principle of thermodynamics, i.e. considering the sum of 

the magnetization work and the variation of the magnetic 

internal energy:  

MMM ULQ         (25) 

where LM represents the work done for the magnetization, 

given by integration of eq. (20), and ΔUM the variation of 

internal energy due to the magnetization contribution. In 

the determination of the heat QM given by (25), everything 

is reduced to the computation of the term ΔUM, i.e. to the 

variation of internal energy due to the magnetization that 

goes from the initial to the final value. To evaluate ΔUM, 

some assumptions have to be made about how the energy 

can be “stored” in the system or in the material. Here we 

assume that the whole energy can be stored just for 

“building” and for orienting the elementary magnetic 

dipoles that determine the magnetization M of the system. 

This situation particularly applies to superconductors, 

where the magnetization is produced by persistent currents 

which circulate in the material. It could also apply to other 

classical problems of eddy currents, where the screening 

circulating currents can be substituted assuming an 

equivalent magnetization for the system, where M is given 

by (4) and JM and JSM represent the screening currents. 

In this situation the internal energy stored by the system 

UM can be considered as the sum of two values: the first 

term represents the magnetic energy necessary to orientate 

the elementary dipoles (intended as MdV) for the effect of 

the external magnetic field Ha; the second term instead 

represents the stored magnetic energy by itself: it could be 

seen as the energy necessary to “build” the magnetic 

system with magnetization M, without the presence of any 

external magnetic field.  

A. Magnetic stored energy for orientation 

If we call UMA the term of energy necessary to orientate 

the dipoles, it can be calculated directly by elementary 

electromagnetic consideration: the elementary magnetic 

dipole MdV is subjected to a torque with module T given 

by:  

 sin MdVBT        (26) 

where  is the angle from B direction and M direction. The 

work dL necessary to orientate the dipole in the direction  

(assuming as initial position the one with the two vectors 

perpendicular, i.e. =/2) is:  

dVMBMdVBdTdL

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

 cos'
2

  (27) 

Since the energy stored to orientate the system UMA is 

equal to the work done, it follows: 

 
V

M dVMBLU
A


      (28) 

B is the external field, in which the system is immersed, 

leading: 
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Consequently: 
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  The differential form of (28) is then: 
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B. Magnetic energy to “build” the magnetic system 

If we call this term of internal energy UMB, we can think 

to compute it from the vector potential A. In the quasi-static 

approximation, the stored magnetic energy is given by: 
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where J and Js represent respectively the volumetric 

currents and the superficial current  in the volume V and on 

the surface Sv of the system, and A is the vector potential 

due to the magnetization of the system. The volumetric and 

superficial currents J and Js are the ones given by the 

magnetization of the system, i.e. they are the fictitious or 

the real currents equivalent to the magnetization 

description, which can be calculated from eq. (4). 

Consequently eq. (32) can be written as: 
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 dSMAndVMrotAU
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Applying the divergence theorem on last term: 
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and for a well-known vector identity: 
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which finally gives:  

 
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Because we had stated that A was the vector potential 

due to the magnetization of material only, now we can 

comprehend that B in (37) is the field produced by the 

magnetization M in the volume V, i.e.:
2
  

MHB m


00            (38) 

where Hm is the magnetic field produced by the 

magnetization of the volume, usually called as “de-

magnetizing” field. The de-magnetizing field Hm is given 

from the “Coulombian” integration of the fictitious 

magnetic charges, given by (5), which are present on the 

volume V and on the surface Sv of the volume, and which, 

in analogy to electrostatics, produce Hm [15]. Consequently 

we can write:  
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For brevity here we assume that the symbol ‘ in any 

quantity has the meaning to specify explicitly that the 

quantity is dependent by the r’ only, i.e. for example  

M’ ≡ M(r’) and M ≡ M(r). Applying the divergence 

theorem and a vector identity, eq. (39) becomes:  
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Using (37) and (38), the variation dUMB becomes: 
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the operator grad in (40) can move inside the volume 

integral, and it derives only the not-primate variable r. The 

last volume integral in the parenthesis of (41) can be 

written now as: 
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and then, executing explicitly the derivatives: 
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By reverting the order of the two volumetric integrals, 

the (43) can be written as: 
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2 The demonstration could be performed in a slight different but 

equivalent way: if the vector potential A in eq. (32) had included also the 

external field Ha, the magnetic flux B in (38) would have included also the 

term 0Ha. In this situation the splitting of total internal energy UM in two 
parts UMA and UMB wouldn’t have been necessary.  

which is equal to the first volume integral in the parenthesis 

of (41). Finally we obtain:  
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 If we go back to (25), the heat QM absorbed during the 

magnetization process is:  

BA MMMM UULQ        (47) 

and in the differential form: 

BA MMMM dUdUdLdQ       (48) 

where dLM, dUMA and dUMB are given respectively by (20), 

(31) and (46). For the linearity of the volume integral 

operator, it holds: 
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 The constitutive relation between B, H and M is:  
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So (49) becomes: 
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If we rely (52) for a finite variation of heat:  
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According to the usual thermodynamic convention, the 

heat QM represents an energy absorbed by the system. As a 

consequence, if in the magnetization process we consider 

that the heat is going out from the material (as in all the 

cases where the energy is dissipated), the heat QMext is:  
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 It descends directly that the instantaneous volumetric 

heat-power exchanged during the process pMext is then:  

dt

Bd
MpMext



         (55) 

 If the power density is intended as averaged over the 

volume V, eq (55) can be re-written as:  

 
V

Mext dV
dt

Bd
M

V
p


1       (56) 

 Generally in superconductor hysteresis curves and in 

eddy currents problems the sign of magnetization M is 

opposite to the sign of the variation of B: this leads to a 

positive dissipation pMext. 

It is useful to note that eq. (47) assures that the 

calculation of heat over a closed loop gives again the same 

results of the first equivalence of (2), because UMA and UMB 

are state functions, which depend on the state of the system 

only. Similarly, the integration of (47) over a closed loop 

gives exactly the second equivalence of (2) (with H=Ha, in 

agreement with [8]), because the last two terms of (49) are 

equal to ΔUMB which must vanish in a closed loop. 
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IV. APPLICATIONS TO HYSTERESIS LOSSES IN 

SUPERCONDUCTORS 

We apply the results obtained in eq. (54) to calculate the 

hysteresis losses in classical examples of configurations 

with II type superconductors.  

A. Slab parallel to the field 

We assume to work with the one-dimensional model of 

an infinitely long (z-direction) and infinitely high (y-

direction) slab of superconductor, centred in the origin of 

the Cartesian axes, with a thickness of 2a (x-direction), and 

an external field Ha parallel to y direction. The analytical 

calculation of the volumetric losses q during closed loop 

with a total external field variation Htot = Btot /0 is well 

known and is based on the so called critical state model 

[16]; here we summarize the results reported in [5] for 

volumetric loss q along a cycle:  



























2

0

2
0

2

3

21

2

32







tot

tot

B

B

q
  

1

1








     (57) 

where the ratio )2/( 0 aJB ctot    represents the fraction of 

penetration of the flux field inside the slab (β1 means full 

penetration), and Jc is the critical current density of the 

slab, which is approximated constant during the field 

variation. The relation (57) is calculated with a classical 

method, integrating the electric power density JcE over the 

slab volume and considering a complete cycle of variation 

for the external field. Many other classical texts reach the 

same results using the second equivalence of eq. (2), or 

calculating total energy variation over cycle [10-12]. Again 

in this way the average dissipation per cycle can be 

computed.  

 To calculate the loss along the path using the new eq. 

(54), we need to find M and B. Considering an external 

field Ha which is swinging from the highest value aJ c
 to 

the lowest value aJ c , the magnetization M in the slab is 

different for a partial or for fully penetrated field. 

According to the critical state model, for a partial 

penetrated field (β≤1), the magnetization assumes a 

constant value in the central zone of the slab, whereas 

decreases or increases linearly (depending by the sign of 

the screening persistent current Jc) in the zone where the 

field penetrates. Using the normalized variable 

)/(/2 0  aJHBH catota  , it holds: 

 

 

   
 

 



















































axa
a

x
aJ

axa
a

x
aJ

axaJ

xM

c

c

c

2

12
1

2

12
11

1
1

10











                      (58) 

where γ is swinging from 1 to -1 in the first half-cycle and 

we represent only the half space with x ≥ 0 for the 

symmetry of system. 

Because the de-magnetizing field Hm is zero, 

MHB a 00   . The dependence of M in eq. (58) respect 

to the variable x, is linked to the variable , consequently it 

necessary to integrate first in x and later in . Eq. (52) 

becomes: 

  
V

aM dHdMMdQ 0      (59) 

The volumetric heat exchange due to an infinitely small 

variation d of the normalized-field is then: 

 









a

a
M ddx

d

dH

d

dM
M

a
dq

0

0 



   (60) 

where 


aJ
d

dH
c

a  , and 
d

dM  have to be calculated from 

eq. (58). Eq. (60) becomes:  

  



d

B
dq tot

M

2

0

2

1
162

        (61) 

and finally, integrating eq. (61) from 1 to   and changing 

the sign, to find the volumetric heat going out from the 

system: 

 3

0

2

1
482





 tot

Mext

B
q         (63) 

The (63) represents the dissipated heat during the 

external field variation from the initial field aJ c
 (i.e.  

γ=1) to Ha  - aJ c
; when Ha = - aJ c

 (i.e. γ=-1) the 

system has accomplished half cycle, and the accumulated 

loss is exactly half value of the one in (57) with β≤1.  

The instantaneous power loss pMext can be calculated by 

deriving (63) respect to the time (only γ depends on the 

time), which, returning from the a-dimensional variable   
to Ha, can be re-written as: 

aa
tot

c

Mext HH
B

aJ
p 

2

0

0

28 











      (64) 

The case with β>1 gives different values for M(x); in 

fact the magnetization has not a flat plateau in the slab and 

it varies until Ha has decreased of aJ c2  from the initial 

maximum value (i.e. 121   ); later it remains 

constant until the half cycle is completed: So for 

121   : 

 

 

 















































axa
a

x
aJ

ax
a

x
aJ

xM

c

c

2

12
1

2

12
01

1
1








 

                  (65) 

Whereas for the last part of field variation, i.e. when 

 211  : 

  









a

x
aJxM c 1        (66) 

 Eq. (65) has to be used in eq. (60) to find the 

accumulated heat in the first part of field variation ( 
decreasing from 1 to 1-2/β), whereas eq. (66) has to be used 

in eq. (60) to find the accumulated heat when  decreases 

from 1-2/β to -1. After the integration first in x and later in 

, we obtain: 

 














































2
11

3

1

4

1

2

1
2

11
482

2

0

2

3

0

2

tot

tot

Mext
B

B

q
     (67) 
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Again eq. (67) represents the dissipated heat by the 

system when the normalized-field  decreases from 1 to the 

generic  ≥ -1; when γ=-1 the system has accomplished half 

cycle and the accumulated loss is exactly half value of the 

one in (57) with β>1. 

The instantaneous power loss pMext in the explicitly form 

is then:  

 

 


























2
2

2
28

0

2

0

0









aJHaJH
aJ

aJHaJHH
B

aJp

caca
c

cacaa
tot

c
Mext





                      (68) 
 

This dissipations could be alternately calculated 

classically integrating the electric power density JcE over 

the slab volume and considering a partial variation of the 

external field, instead of a complete cycle of variation, 

obtaining the same analytical functions of eq. (63), (64), 

(67) and (68). An example can be found in [6], whose 

results of the power losses are in perfect agreement with 

(64) and (68). 

The Fig. 1 represents the behavior of the accumulated 

loss qMext (normalized respect to the factor Btot
2
 /20) given 

by (63) and (67) for different values of the penetration 

factor β.  

  

 
Fig. 1. Normalized accumulated heat starting from γ = 1  up to γ = -1 (half 
cycle), for different values of the penetration factor β. The reading of the 

graph has to be done considering the x-axis moving from the maximum 

value ( γ = 1) up to lower values. 

 

Observing the slope of the curves in Fig. 1 or using eq. 

(64) and (68), it is easy to note that for a linear ramp of Ha, 

the power is lower at the beginning of the ramp and 

increases with the square of the field variation, until, for 

β>1, it remains constant when Ha < -2Jca. Because in 

most practical cases the condition |Ha| > 2Jca is reached at 

the very beginning of the field variation, the power loss can 

be usually considered constant during all the cycle. 

B. Cylinder parallel to the field 

In this example we give the example of the one-

dimensional model of an infinitely long (z-direction) 

cylinder of superconductor, centered in the origin of the 

axes, with radius a and an external field Ha parallel to z-

direction. Again, the analytical calculation of the 

volumetric losses q during a closed loop with a total 

external field variation Htot = Btot /0, based on the so called 

critical state model can be found for example in [5], and 

here we just summarize the results: 


















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

tot

tot

B

B

q
  

1

1








    (69) 

where again the ratio )2/( 0 aJB ctot    represents the 

fraction of penetration of the flux field inside the cylinder 

(β1 means full penetration), and Jc is the critical current 

density of the cylinder, which is approximated constant 

during the field variation. The relation (69) is obtained with 

classical methods, i.e. integrating the electric power density 

JcE over the cylinder volume and considering a complete 

cycle of variation for the external field.  

 To calculate the dissipated heat using eq. (54), we 

need to find M and B. Considering an external field Ha 

which is swinging from the highest value aJ c
 to the 

lowest value aJ c , the magnetization M in the cylinder 

is different for a partial or for fully penetrated field. 

According to the critical state model, for a partial 

penetrated field (β≤1), the magnetization assumes a 

constant value in the central zone of the cylinder, whereas 

decreases or increases linearly (depending by the sign of 

the screening persistent current Jc) in the zone where the 

field penetrates. Using the normalized variable 

)/(/2 0  aJHBH catota  , it holds:  
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                      (70) 

where γ is swinging from 1 to -1 in the first half-cycle. 

Because the de-magnetizing field Hm is zero, 

MHB a 00   . The dependence of M in eq. (70) respect 

to the variable r, is linked to the variable , consequently it 

is necessary to integrate first in r and later in . From eq. 

(54) we can write: 





drdr

d

dH

d

dM
M

a
dq

a

a
M 








 

0

2

0 2   (71) 

where 


aJ
d

dH
c

a  , and 
d

dM  have to be calculated from 

eq. (70). Eq. (71) becomes:  

    






d

B
dq tot

M










3

2
2

0

2

1
24

1
82

  (72) 

Integrating eq. (72) from 1 to   and changing the sign, 

we find the volumetric heat going out from the cylinder: 

   









4

2
3

0

2

1
96

1
242








tot

Mext

B
q    (73) 

The (73) represents the dissipated heat during the 

external field variation from the initial field aJ c
 (i.e.  

γ=1) to Ha  - aJ c
; when Ha = - aJ c

 (i.e. γ=-1) the 

system has accomplished half cycle and this accumulated 

loss is exactly half value of the one in (69) with β≤1. 

The case with β>1 gives the following values for M(r): 

for 121   : 
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                  (74) 

Whereas for the last part of field variation, i.e. when 

 211  : 

  









a

r
aJrM c 1        (75) 

 Eq. (74) has to be used in eq. (71) to find the 

accumulated heat in the first part of field variation ( 
decreasing from 1 to 1-2/β), whereas eq. (75) has to be used 

in eq. (71) to find the accumulated heat when  decreases 

from 1-2/β to -1. After the integration first in r and later in 

, we obtain: 
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Again this represents the heat dissipated by the system 

when the normalized-field   decreases from 1 to the 

generic  ≥ -1; when γ=-1 the system has accomplished half 

cycle and the accumulated loss is exactly half value of the 

one in (69) for the case β>1.  

This dissipation could be alternately calculated 

classically integrating the electric power density JcE over 

the cylinder volume and considering a partial variation of 

the external field, instead of a complete cycle of variation, 

obtaining the same analytical functions of eq. (73) and 

eq.(76). 

 

V. APPLICATIONS TO INTER-FILAMENTS LOSSES 

In this paragraph we consider as example of application 

of eq. (54) and (55) the calculation of losses due to inter-

filament coupling currents in composite superconductors 

induced by a transverse external field. A classic method to 

calculate this loss for uniform field variation is considering 

the Joule effect (ohmic dissipation) [17]. Here we recall the 

final results following the notation reported in [5]. The 

integration of the joule power over the strand gives the 

volumetric dissipated power p for inter filaments currents:  


0

2
2 iB

p


         (77) 

where the time constant  is related to the filament twist 

pitch L and to the effective transverse resistivity of the 

matrix et by means of:  
2

0

22















L

et

       (78) 

In eq. (77) Bi is the total internal field inside the strands, 

due to external field variation and to the a.c. currents, and 

in the above model it is assumed constant. The screening 

inter-filament currents produce an equivalent average 

magnetization for the strands, which according to the same 

model in [5] is:  


0

2 iB
M


         (79) 

For calculating the same power using (55) we can use 

(79), were BBi. It is then trivial to find the same result of 

(77). 

 

VI. FINAL REMARKS 

This alternative way to calculate heat or power loss in 

systems which can be treated as magnetized volume may 

be of great practical interest, for the simplicity of the 

relations (54) and (55). In the scientist community of 

superconducting magnet design these relations are used 

since few years [18]: however a general and theoretical 

assessment of their validity in any situation was lacking, 

especially when intended as instantaneous heat or 

instantaneous power and not only as average power over a 

cycle. The advantage respect to other classic methods is 

that if the curve M vs. B of the system is known, the 

calculation is quite direct. Of course this method is 

consistent with all other classic methods (the integration of 

JE, for example) because they all descends from the same 

Maxwell equations and from the same material properties 

(critical state model for II type superconductor, for 

example). 

If we consider the dependence of B respect to the current 

I, a useful derivation of eq (55) to calculate the total 

dissipated power is:  

 
V

Mext dV
dI

Bd
M

dt

dI
P




       (80) 

 If a linear relation between B in volume V and the 

magnetic field B0 in a specific point (as the bore of the 

magnet, for example) can be assumed (this is a very 

common case and it is a valid approximation in the region 

V occupied by superconducting coils, where the effect of 

the non-linearity of B for the magnetization contribution is 

much marginal), it holds: 

dt

dB

B

B

dI

Bd 0

0




        (81) 

So (80) gives: 

 

 
V

Mext dVBM
BdI

dB

dt

dI
P



0

0 1
   (82) 

where dIdB0
 represents the slope of the load line in the 

point where B0 is evaluated. The computation of the losses 

becomes now direct: when the dependence of M vs. B is 

given, the calculation can be easily done, for example with 

usual codes for magnetostatic analysis, integrating M(B)B 

(M and B are usually parallel) over the volume V. An 

example of application of this method is given in [19]. 

 

VII. CONCLUSIONS 

With a classical approach we have demonstrated how to 

calculate heat exchange during magnetizing process, for 

those systems where the internal energy due the 

magnetization can be stored in the elementary magnetic 

dipole orientation and variation only. It applies particularly 

for systems where the magnetization is due to screening 

currents like in superconductors or in eddy current 

problem. With the two examples in sections IV and V we 

have shown the agreement of the results with other 

classical approaches. In section VI we have shown the 

practical interest of this approach for the community 
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devoted to magnet design. The present method to calculate 

heat in magnetic system is general and can be applied 

independently by type of field variation, as periodic or not-

periodic variation, “fast” or “slow” variation. In principle it 

applies both for bulk and for composite materials, as well 

for twisted superconducting strands and cables, provided 

that the magnetization M and the flux field B can be 

calculated. It applies particularly well for all transient 

phenomena and for all the cases in which the magnetic 

variation is not periodic, so that the losses cannot be 

calculated as it is usually done in periodic a.c. problems. 

Despite their simplicity, relations (54) and (55) may offer 

an alternative and elegant method for calculating heat 

exchange or heat dissipation in magnetized materials. 
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