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Preface

The main subject of this thesis is the study of torsion points on elliptic curves
over number fields. This is a subject of study that goes as far back as 1906, where
it starts with the work of Beppo Levi who studied torsion points on elliptic curves
over Q. He showed that for each of the groups

Z/NZ for N = 1, 2, . . . , 10, or 12(1)

Z/2Z× Z/NZ for N = 1, 2, 3, or 4(2)

over Q there are infinitely many non isomorphic elliptic curves whose torsion sub-
group is isomorphic to that group. In addition he also showed that the group
structures Z/NZ for N = 14, 16, 20 and Z/2Z× Z/2NZ for N = 10, 12 do not oc-
cur as the torsion group of an elliptic curve over Q. Bepo Levi shared his ideas on
what would happen for larger values of N on the 1908 International Mathematical
conference in Rome. He believed that the groups in (1) and (2), with the possible
addition of Z/24Z, are the only groups that can occur as the torsion subgroup of
an elliptic curve over Q. However this conjecture seems to have been forgotten and
it has been restated by Trygve Nagell in 1952 and by Andrew Ogg in 1970. As a
result the conjecture that the groups in the lists (1) and (2) are the only groups
that can occur as a torsion group of an elliptic curve over Q came to be known as
Ogg’s conjecture. This conjecture was later proven by Barry Mazur in his break-
trough paper1. A very nice exposition of the above history of the study of torsion
points on elliptic curves over Q, can be found in article [7] on Beppo Levi’s life and
mathematical work.

After Mazur’s proof of Beppo Levi’s conjecture which was later restated by
Nagell and Ogg, the study moved to torsion points on elliptic curves over number
fields other then Q. Sheldon Kamienny generalized the techniques of Mazur to
number fields of higher degree2 and together with Mazur he determined all group
structures that can occur as the torsion subgroup of an elliptic curve over a qua-
dratic field3, and the list of all such groups turned out to be finite again. This
phenomenon continues to hold in higher degrees. In fact, building on the ideas of
Mazur an Kamienny, Löıc Merel proved that if d > 0 is an integer then the list of
groups that occur as the torsion group of an elliptic curve over a number field of

1B. Mazur. “Modular curves and the Eisenstein ideal”. In: Inst. Hautes Études Sci. Publ.
Math. 47 (1977), 33–186 (1978).

2S. Kamienny. “Torsion points on elliptic curves over fields of higher degree”. In: Internat.
Math. Res. Notices 6 (1992), pp. 129–133.

3S. Kamienny and B. Mazur. “Rational torsion of prime order in elliptic curves over number
fields”. In: Astérisque 228 (1995). With an appendix by A. Granville, Columbia University

Number Theory Seminar (New York, 1992), pp. 3, 81–100.
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degree d is finite4. Degrees 1 and 2 are the only degrees for which this finite list is
known, although the list of primes that can divide the order of the torsion group is
also known for degree 3 by work of Parent56.

This thesis contains several new results considering which group structures can
occur as the torsion subgroup of an elliptic curve over a number field of small
degree. This thesis consist of four chapters, the first of which is introductory and
contains no new results. The three other chapters are research articles that have
been written together with several co-authors to whom I am very grateful for their
successful collaboration. The three articles all contain original ideas both from my
co-authors as well ones from myself and ones that came up during the many fruitful
discussions we had on the subject. What follows is a short summary of the main
results of each of the three research article chapters.

Chapter 2 is an article that has been published in the Journal of Algebra and
is joint work with Mark van Hoeij. In this chapter the torsion groups of the form
Z/NZ are studied over number fields of degree 5,6,7, and 8. For of these degrees
the explicit list of all integers N such that the torsion structure Z/NZ occurs for
infinitely many non isomorphic elliptic curves is determined, where the study of
degrees ≤ 4 was omitted because here the answer was already known.

Chapter 3 is an article that is joint work with Sheldon Kamienny, William Stein
and Michael Stoll, this article is not yet published but will soon be submitted for
publication. In this article the primes that can divide the order of a torsion group
of an elliptic curve over a number field of degree d are determined for degrees 4, 5,
and 6. Aside from the main result it also contains a section in which theory is
developed that allows one to determine the set of all rational points on symmetric
powers of a curve in certain situations. The Appendix of this chapter contains
a proof of Joseph Oesterlé’s Theorem that states that if an elliptic curve over a
number field of degree d contains a torsion point of order p, then p < (3d/2 + 1)2.
It is included because a proof of this statement has not yet been published. The
appendix closely follows Oesterlé’s unpublished notes which he made available to
me, although it contains some minor simplifications using literature that did not
exists yet at the time that Oesterlé proved his Theorem.

The final chapter is an article that will appear in a memorial volume for Fu-
miyuki Momose. It is co-authored by Barry Mazur and Sheldon Kamienny. In this
article the question is asked what one can still do if d,N are integers such that there
are infinitely many non isomorphic elliptic curves over number fields of degree d
with a torsion point of order N . Can one somehow still find all of them? As a
first start in answering this question is done by an explicit case study, namely the
question is answered for N = 17 and d = 4. This value of d is the smallest integer
for which there exist infinitely many elliptic curves over a number field of degree d
with a point of order 17.

4L. Merel. “Bornes pour la torsion des courbes elliptiques sur les corps de nombres”. In:

Invent. Math. 124.1-3 (1996), pp. 437–449.
5P. Parent. “Torsion des courbes elliptiques sur les corps cubiques”. In: Ann. Inst. Fourier

(Grenoble) 50.3 (2000), pp. 723–749.
6P. Parent. “No 17-torsion on elliptic curves over cubic number fields”. In: J. Théor.

Nombres Bordeaux 15.3 (2003), pp. 831–838.
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Modular curves and modular forms
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MODULAR CURVES AND MODULAR FORMS 3

1. Elliptic curves

There are two ways in which one can look at modular curves, one is the stand-
point of complex geometry and the other is the standpoint of algebraic geometry.
These two standpoints meet at the place where one starts to do algebraic geometry
over C. In this section the theory of both sides is discussed in parallel.

A complex elliptic curve is pair (E, 0)
of a compact Riemann surface E of
genus 1 together with a base point
0 ∈ C. In both the complex and the
algebraic setting we will just write E in-
stead of (E, 0) in the rest of this text.

Let S be a scheme, an algebraic ellip-
tic curve over S is a pair (E, 0) where
E is a scheme that is smooth of relative
dimension 1 and proper over S such that
all its geometric fibers are irreducible
genus one curves and 0 ∈ E(S).

Let Λ ⊂ C be a lattice, i.e. a dis-
crete subgroup of maximal rank, mean-
ing rank 2 in this case. Then

EΛ := C/Λ
together with the equivalence class of
0 ∈ C is an elliptic curve. The holomor-
phic one form dz on C is invariant under
translation by Λ and hence descends to a
nonzero holomorphic one form on C/Λ.

Let R be a commutative Z[1
6
]-algebra,

and a4, a6 ∈ R such that

−16(4a3
4 + 27a2

6) ∈ R∗,
then the projective curve Ea4,a6 given by

y2 = x3 + a4x+ a6

together with ∞ is an elliptic curve and

ωa4,a6 := (3x2 + a4)−1dy = (2y)−1dx

is a global one form.

Conversely if ω ∈ Ω1(E) is a nonzero
holomorphic one form, then there exists
a unique lattice ΛE,ω ⊂ C and a unique
isomorphism

f : E
∼−→ C/ΛE,ω

such that f ∗(dz) = ω.

Suppose SpecR ⊂ S is an affine open
with 6 ∈ R∗ such that there exist a
nowhere vanishing 1 form ω ∈ Ω1

E/R(E)
then there are unique a4, a6 ∈ R and a
unique

f : E
∼−→ Ea4,a6

such that f ∗ωa4,a6 = ω

Using the isomorphism f the elliptic
curve E gets a group law, the group law
is independent of the choice of dz since
scalar multiplication C → C is a group
homomorphism.

One can put a group scheme structure
on E by dentifying E with Pic0

E/S by
sending P ∈ E(T ) to the line bundle T
OET (P − 0T ) for all S schemes T .

The story on the algebraic side can be generalized to the case of Z-algebras with
a little bit more effort. Also one can mimic the definition of the group structure in
the complex case by first putting a group scheme structure on Ea4,a6 using explicit
equations, and use f to give E a group scheme structure as well. So we have
seen that both complex and algebraic elliptic curves, although defined by abstract
properties can always be written down explicitly, and that they automatically
inherit a group (scheme) structure.
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If Ea is an algebraic elliptic curve over C then Ea(C) is a complex elliptic curve
and if Ec is a complex elliptic curve then one write Ec ∼= C/Λ. Define

℘Λ : C \ Λ→ C (1)

z 7→ 1

z2
+

∑

λ∈Λ\{0}

(
1

(z − λ)2
− 1

(−λ)2

)

G2k(Λ) :=
∑

λ∈Λ\{0}

1

λ2k
, for k ∈ Z≥2 (2)

g2(Λ) := 60G4(Λ), g3(Λ) := 140G6(Λ). (3)

The function ℘Λ is called the Weierstrass P-function. The function ℘Λ and it’s
derivative satisfy the following equation

(1
2
℘′Λ(z))2 = ℘Λ(z)3 − 1

4
g2(Λ)℘Λ(z)− 1

4
g3(Λ).

The functions ℘Λ and ℘′Λ are invariant under translation by Λ so they induce a map

fΛ : C/Λ→ E 1
4
g2,

1
4
g3

(C) (4)

z 7→ ℘Λ(z), 1
2
℘′Λ(z),

where the equivalence class 0 + Λ is sent to ∞. The map fΛ is an isomorphism of
elliptic curves, and it is even compatible with the choice of one forms since

f ∗Λ(
dx

2y
) =

d℘(z)

℘′(z)
= dz. (5)

Two elliptic curves C/Λ1 and C/Λ2

are isomorphic if an only if there exists
a u ∈ C∗ such that Λ2 = uΛ1. Define
the j-invariant of C/Λ by

j(Λ) := 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
.

Using the fact that g2(uΛ) = u−4g2(Λ)
and g3(uΛ) = u−6g3(Λ) it follows that
j only depends on the isomorphism
class of C/Λ and one can even show
that j determines the isomorphism class
uniquely.

Let R be a Z[1
6
] algebra and

a4, a6, a
′
4, a
′
6 ∈ R such that Ea4,a6 and

Ea′4,a′6 are elliptic curves. These curves
are isomorphic over R if and only if there
exists an u ∈ R∗ such that a′4 = u−4a4

and a′6 = u−6a6. Define

j(a4, a6) := 1728
4a3

4

4a3
4 + 27a2

6

.

Then j(a4, a6) only depends on the iso-
morphism class of Ea4,a6 and if R is an
algebraically closed field then j even de-
termines it uniquely.

This shows that both complex the algebraic way of looking at elliptic curves
agree if in the algebraic world one restricts to elliptic curves over C.

1.1. Some q-expansions. Two elliptic curve C/Λ and C/Λ′ are isomorphic if and
only if there exists a c ∈ C such that cΛ = Λ′. Now chose two generators λ1, λ2

of Λ. By scaling with λ−1
2 one sees that C/Λ is isomorphic to C/(λ1/λ2Z + Z).
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In particular, by replacing λ1/λ2 by −λ1/λ2 if necessary, one sees that there is
always a τ ∈ H := {z ∈ C | Im z > 0} such that C/Λ ∼= C/τZ + Z. For τ ∈ H
define Λτ := τZ+Z. By additionally defining ℘(z, τ) := ℘Λτ (z), G2k(τ) := G2k(Λτ )
and gi(τ) = gi(Λ) for i = 2, 3 one can view ℘ as a meromorphic function on C×H
and G2k and gi as holomorphic functions on H. All these functions are invariant
under translation by 1 on the τ coordinate since Λτ and Λτ+1 are the same lattice.
Also z and z + 1 define the same point in C/Λτ showing that ℘ is also invariant
under translation by 1 in the z coordinate. This means that all these functions
can be written as power series in q := e2πiτ whose coefficients are Laurent series in
u := e2πiz. See for example [Silverman(1994), I §6,§7]. The resulting power series
are

℘(z, τ) = (2πi)2

(∑

n∈Z

qnu

(1− qnu)2
+

1

12
− 2

∞∑

n=1

qn

(1− qn)2

)
(6)

G2k(τ) = (2πi)2k

(
−B2k

(2k)!
+

2

(2k − 1)!

∞∑

n=1

n2k−1qn

1− qn

)
, (7)

where Bk ∈ Q are the Bernoulli numbers, which are defined as the coefficients of

the Taylor series t
et−1

=
∑∞

k=1Bk
tk

k!
. Applying ∂

∂z
= 2πiu ∂

∂u
to ℘ one obtains the

formula1

∂℘(z, τ)

∂z
:= −(2πi)3

∑

n∈Z

qnu(1 + qnu)

(1− qnu)3
(8)

The formula’s for G2k(τ) and gi(τ) are often rewritten using the auxiliary functions

σk(n) :=
∑

d|n,d>0

dk, sk(q) :=
∞∑

n=1

nkqn

1− qn =
∞∑

n=1

σk(n)qn. (9)

One has B4 = − 1
30

and B6 = 1
42

so that the q-expansion of 1
4
g2(τ) and 1

4
g3(τ) are

1

4
g2(τ) := (2πi)4(

1

48
+ 5s3(q)) and

1

4
g3(τ) := (2πi)6(− 1

864
+

7

12
s5(q)). (10)

1.2. Tate Curve. Let τ be in the upper half plane, then the elliptic curve y2 =
x3− 1

4
g2(τ)x− 1

4
g3(τ) has j-invariant j(τ) := j(Λτ ) and discriminant ∆(τ) : g2(τ)3−

27g3(τ)2. Using the above formulas for q-expansion one can show that

j(τ) =
1

q
+
∞∑

n=0

c(n)qn, c(n) ∈ Z, and (11)

∆(τ) = (2πi)12q

∞∏

n=1

(1− qn)24 (12)

1This differs by a minus sign from the formula in [Silverman(1994), I Thm 6.2], where there
is a sign mistake.
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Define g̃2 = (2πi)−4g2, g̃3 := (2πi)−6g3, ℘̃ := (2πi)−2℘, and ∆̃ := (2πi)−12∆ with
these definition the elliptic curve y2 = x3 − 1

4
g̃2(τ)x− 1

4
g̃3(τ) isomorphic to C/Λτ

via (x, y) = (℘̃(z, τ), 1
2
∂
∂z
℘̃(z, τ)). This model of C/Λτ over H has not only a j-

invariant whose q-expansion has integral coefficients, but the coefficients of the
q-expansion of its discriminant ∆̃ are integral as well. The functions g̃2 and g̃3

do not have integral q-expansions, although they are close to being integral since
they are fractions whose denominator is a divisor of 864 = 23 · 33 as formula (10)
shows. Substituting x = x′ + 1

12
and y = y′ + 1

2
x′ gives the curve

y′2 + x′y′ = x′3 + a4x
′ + a6, a4 := −5s3, a6 := −5s3 + 7s5

12
(13)

It is clear that a4 has integral coefficients in its q-expansion. For any integer n
one has 5n3 + 7n5 ≡ 0 mod 12 so that a6 also has integral coefficients. The Tate
curve Eq is the curve (13) over Z[[q]] where one uses q-expansion to see a4 and
a6 as elements of Z[[q]]. It is not an elliptic curve since its fiber above q = 0 is
singular, however since ∆̃ is a unit in Z[[q]][1

q
] it is an elliptic curve over Z[[q]][1

q
].

The Tate curve is useful since it allows one to study elliptic curves over p-adic
fields, i.e. finite extensions of Qp. This is captured in the following Theorem due
to Tate whose statement can be obtained by combining [Silverman(1994), V Thm
3.1 and Lemma 5.1]

Theorem 1.1 (Tate). Let K be a p-adic field and q0 ∈ K∗ with |q0| < 0 then the
power series a4 and a6 converge in q0. Let Eq0 be the curve given by

y′2 + x′y′ = x′3 + a4(q0)x′ + a6(q0)

then Eq0(K) is isomorphic to K
∗
/q0 as Gal(K/K) modules. The curve Eq0 has

|j(Eq0)| > 1 and for every elliptic curve E over K with |j(Eq0)| > 1 there is a
unique q0 ∈ K such that E ∼= Eq0 over K.

The isomorphism between K̄∗/q0 and Eq0(K) is obtained by using formula’s 6
and 8 to find the q-expansions of x′ = ℘̃− 1

12
and y′ = 1

2
∂
∂z
℘̃− 1

2
℘̃− 1

12
. With this

isomorphism one sees that the invariant differentials

2πidz =
du

u
=

dx′

2y′ + x′
,

are equal, where the left most differential only makes sense in the complex world.
The above theorem is the p-adic analogue of the fact that every elliptic curve over
C can be written as C/τZ + Z ∼= C∗/e2πiτZ .

1.3. Néron polygons. The fiber of the Tate curve Eq over Z[[q]] at q = 0 is not
an elliptic curve although it is still a curve, in fact it’s special fiber is isomorphic
to P1 with two points glued together. The special fiber is an example of a Néron
1-gon. In general if N is an integer and R is a ring then the Néron N -gon NN
over R is defined to be the singular projective curve over R that one obtains by
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taking a copy Xi of P1
R for each i ∈ Z/NZ and glueing the point ∞ of Xi to the

point 0 of Xi+1 in such a way that the intersections become ordinary double points.
Using the identification Gm,R = P1

R \ {0,∞} one sees that the smooth locus of the
Néron N -gon over R is isomorphic to Gm,R × Z/NZ, turning the smooth locus
of the Néron N -gon into a group scheme. Morphisms between Néron N -gons are
the scheme morphisms that induce group-scheme homomorphisms when restricted
to the smooth locus, so in particular they should map the smooth locus to itself.
If K is field of characteristic co-prime to N then one can make µN(K) act on
P1
K × Z/NZ by ζN((a : b), i) := ((ζ iNa : b), i) and one can make {±1} act on it

by −((a : b), i) := ((b : a),−i). Both these actions are group homomorphisms
when restricted to Gm,K × Z/NZ ⊆ P1

K × Z/NZ and they are compatible with
the identifications of ∞ on the i-th component with 0 on the i+ 1-th component.
Since these actions commute, one gets that automorphism group of NN contains

µN(K)× {±1} .
The above group is actually the entire automorphism group.

1.4. Generalized Elliptic curves. Theorem 1.1 shows that the Tate curve Eq
over Z[[q]] can be used to study elliptic curves over p-adic fields with |j| > 0 and
j 6= ∞. It special fiber at q = 0 is not an elliptic curve but it is still a Néron
N -gon. Generalized elliptic curves are curves where we also allow the geometric
fibers to be Néron N -gons, to be more precise.

Definition 1.2. Let S be a scheme, a generalized elliptic curve over S is a scheme
E that is proper, flat and of finite presentation over S together with a group scheme
structure on Esm, such that each of the geometric fibers EK of E is isomorphic to
either an elliptic curve over K or the Néron N -gon over K.

In the above definition Esm denotes the locus of E that is smooth over S and the
isomorphisms of the geometric fibers should respect the group scheme structure on
Esm
K

. A point of order N on a generalized elliptic curve E/S is understood to be
an element P ∈ E(S) of order N such that all geometric fibers of P also have order
N and furthermore such that subgroup generated by P meets all components of
all geometric fibers.

2. Modular curves

2.1. The modular curve Y1(N). Modular curves are curves whose points cor-
respond to elliptic curves with some extra structure. The modular curve Y1(N)
is the curve whose points correspond to an elliptic curve with a torsion point of
order N . To avoid technical difficulties we assume that N > 4 is an integer. Let
(E1, P1) and (E2, P2) be pairs of an elliptic curve together with a point of order N
, then an isomorphism from (E1, P1) to (E2, P2) is defined to be an isomorphism
of elliptic curves f : E1 → E2 such that f(P1) = f(P2). This definition will be
used for both complex and algebraic elliptic curves.
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Let H be the complex upper half
plane. To τ ∈ H one can associate the
elliptic curve Eτ := C/(τZ + Z). If E =
C/Λ is an elliptic curve and ω1, ω2 are
generators of Λ such that Im(ω1/ω2) > 0
then division by ω2 gives an isomorphism
E ∼= Eω1/ω2 showing that every elliptic
curve is isomorphic to some Eτ .

Let SL2(Z) act on H by [ a bc d ] τ = aτ+b
cτ+d

.
Then the sequence of isomorphisms

Eτ ∼= C/ ((aτ + b)Z + (cτ + d)Z)

∼= C/
(
aτ+b
cτ+d

Z + Z
)

= Eaτ+b
cτ+d

.

shows that if γ ∈ SL2(Z), then Eγτ ∼=
Eτ . One can even show that if τ1, τ2 ∈ H
then Eτ1

∼= Eτ2 if and only if there exists
a γ ∈ SL2 (Z) such that τ2 = γτ1.

The point 1
N
∈ Eτ has order N , and

because N > 3 one can show that Eτ
has no automorphisms that fix 1

N
. Now

cτ+d
N
≡ 1

N
mod τZ + Z

if and only if (c, d) ≡ (0, 1) mod N , so if
one defines Γ1(N) ⊆ SL2(Z) to be the set
of matrices with (c, d) ≡ (0, 1) mod N
then the isomorphism(

Eaτ+b
cτ+d

, 1
N

)
∼=
(
Eτ ,

cτ+d
N

)

shows that if γ ∈ SL2 (Z), then
(Eγτ , 1/N) ∼= (Eτ , 1/N) if and only if
γ ∈ Γ1(N). So that Y1(N) := Γ1(N)\H
can be interpreted as the set of isomor-
phism classes of pairs (E,P ) where E is
an elliptic curve and P ∈ E a point of
order N .

Let R be a ring if b, c ∈ R, then Eb,c
is the curve given by

y2 + (1− c)xy − by = x3 − bx2.

Define Rb,c := Z[b, c, 1
∆b,c

] where ∆b,c is

the discriminant of the curve Eb,c and
define Y := SpecRb,c. The curve Eb,c is
an elliptic curve over Y and

P0 := (0 : 0 : 1) ∈ Eb,c(Y ).

Let ΦN ,ΨN ,ΩN ∈ Rb,c be such that

(ΦNΨN : ΩN : Ψ3
N) = NP0.

The equation ΨN = 0 is equivalent to P0

having order dividing N . One can show
that if d | N then Ψd | ΨN . Define FN by
removing all factors coming of the form
Ψd with d | N, d 6= N from ΨN , and

Y1(N) := SpecRb,c[
1
N

]/FN .

Let b̄, c̄ ∈ SpecRb,c[
1
N

]/FN denote the
equivalence classes of b, c and define
E1(N) := Eb̄,c̄, it is an elliptic curve over
Y1(N) and P1(N) := (0 : 0 : 1) is a point
on it.

Let R be a Z[ 1
N

]-algebra and X ∈
Y1(N)(R), then E1(N)X is an elliptic
curve over R and the order of P1(N)X
as well as that of all its geometric fibers
is N . Conversely if E is an elliptic
curve over R and P ∈ E(R)[N ] is such
that the order of P is N is all geo-
metric fibers. Then there exist unique
b, c ∈ R such that FN(b, c) = 0 and
(E,P ) ∼= (Eb,c, P0), furthermore this iso-
morphism is unique. So the pair b, c de-
fines a point X ∈ Y1(N)(R) such that
(E,P ) ∼= (E1(N)X , P1(N)X).

We have seen that in the complex world the points of Y1(N) correspond to pairs
(E,P ) where E is elliptic curves over C and P a point of order N . In the algebraic
world we have seen that if R is a Z[ 1

N
] algebra, then the points in Y1(N)(R)

correspond to pairs (E,P ) where E is an elliptic curve over R and P ∈ E(R)[N ]
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is such that the order of P is also N in all geometric fibers, in other words Y1(N)
represents the functor which takes an R algebra to the set of isomorphism classes
of pairs (E,P ) of elliptic curve over R together with a point of order N . Taking
R = C one obtains an isomorphism Y1(N) ∼= Y1(N)(C) of Riemann surfaces.
The curve Y1(N) is smooth over Z[ 1

N
] and has geometrically irreducible fibers,

see [Deligne and Rapoport(1975), Ch. IV].

2.1.1. The universal elliptic curve with a point of order N . In the above discussion
we have seen that the pair (E1(N), P1(N)) is pair of an elliptic curve over Y1(N)
together with a point P1(N) ∈ E1(N)(Y1(N)) of order N all whose geometric fibers
are also of order N . And we have even seen for R a Z[1/N ]-algebra that every
pair (E,P ) where E is an elliptic curve over R and P ∈ E(R) a point of order N
all whose geometric fibers also have order N can be obtained as the base change
of (E1(N), P1(N)) along a unique morphism X : SpecR → Y1(N). The pair
(E1(N), P1(N)) is called the universal elliptic curve with a point of order N . Now
(E1(N)(C), P1(N)(C)) is a smooth family of elliptic curves with a smooth family of
points of order N over Y1(N)(C) and this family can actually also be constructed
directly in the complex world. Let Z2 act on C×H by (m,n)(z, τ) = (z+mτ+n, τ).
Then the fiber of (C × H)/Z2 above τ ∈ H is the elliptic curve Eτ , and the map
P1(N) : H → (C × H)/Z2 which sends τ to (1/N mod Zτ + Z, τ) is a point of
order N . If one lets SL2(Z) act on C×H by

SL2(Z)× (C×H)→ C×H (14)
([
a b
c d

]
, (z, τ)

)
7→
(

z

cτ + d
,
aτ + b

cτ + d

)

Then one can make the semi-direct product Z2 o SL2(Z) act on C×H by

((m,n), γ)(z, τ) = (m,n)(γ(z, τ)).

Now define E1(N) := (Z2 o Γ1(N))\(C × H). The map E1(N) → Y1(N) which
sends (Z2 o Γ1(N))(z, τ) to Γ1(N)τ makes E1(N) into a family of curves over
Y1(N). Using N > 4 one sees that the stabilizer of τ in Γ1(N) is trivial for
all τ ∈ H. This triviality of the stabilizers implies that the fiber of E1(N) →
Y1(N) above Γ1(N)τ is isomorphic to Eτ for all τ ∈ H. One checks that the map
P1(N) : H → (C × H)/Z2 induces a map P1(N) : Y1(N) → E1(N) by taking
the quotient by Γ1(N) on both sides. The pair (E1(N),P1(N)) is the universal
elliptic curve with a point of order N in the complex setting. And it is isomorphic
to (E1(N)(C), P1(N)(C)).

2.2. The modular curve X1(N). The curve Y1(N) of the previous section is
not compact and the curve Y1(N) is not proper over Z[ 1

N
]. But compactness

and properness are properties that are useful for studying curves (and higher di-
mensional varieties/schemes). The modular curves X1(N), respectively X1(N)
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that will be defined in this section are compact respectively proper over Z[ 1
N

] and
Y1(N) respectively Y1(N) will be open and dense parts of them.

The j-invariant induces a holomorphic
map j : Y1(N) → C by sending (E,P )
to j(E). This turns Y1(N) into a finite
ramified cover of C. See C as an open in
P1(C) whose complement is the point∞.
Take D ⊆ P1(C) a punctured disc cen-
tered at∞. By choosing D small enough
one can assure that j−1(D) is a dis-
joint union of punctured discs. The Rie-
mann surface X1(N) is the Riemann sur-
face obtained from the Riemann surface
Y1(N) by filling the holes in these punc-
tured discs. The map j turns X1(N)
into a finite ramified cover of P1(C). One
has j−1(∞) = X1(N) \Y1(N). The set
j−1(∞) is a finite set and its elements
are called the cusps.

The j-invariant induces a morphism of
Z[ 1

N
]-schemes j : Y1(N)→ A1

Z[1/N ] which

sends (E,P ) ∈ Y1(N)(T ) to j(E) ∈ OT
for all Z[ 1

N
]-schemes T . See A1

Z[1/N ] as an

open subscheme of P1
Z[1/N ] whose com-

plement is the closed subscheme∞. The
generic point of P1

Z[1/N ] is SpecQ(j) and

by viewing j as element of Q(Y1(N)) we
see that Q(j) ⊆ Q(Y1(N)) is a finite ex-
tension of fields. The curve X1(N) is
defined as the normalization of P1

Z[1/N ] in

Q(Y1(N)). The map j turns X1(N) into
a finite ramified cover of P1

Z[1/N ]. One has

j−1(∞) = X1(N) \ Y1(N). The scheme
j−1(∞)Z[1/N,ζN ]∩R is a disjoint union of
copies of SpecZ[ 1

N
, ζN ] ∩ R.

In the complex world there is also a second way to construct the underlying
topological space of the Riemann surface X1(N). For this one first defines H∗ :=
H ∪ P1(Q) and one extends the action of SL2(Z) to H∗ still using the formula
[ a bc d ] τ = aτ+b

cτ+d
, where one defines a∞+b

c∞+d
= a

c
and az+b

cz+d
= ∞ if cz + d = 0. One

can show that SL2 Z acts transitively on P1(Q). One topologizes H∗ by saying
that HimZ>x ∪ {∞} with x ∈ R>0 forms a basis of open neighbourhoods of ∞
and requiring that the topology is invariant under the action of SL2(Z). One can
show that there is a unique isomorphism of topological spaces between X1(N) and
Γ1(N)\H∗ that is the identity on Y1(N) := Γ1(N)\H. This allows one to identify
the cusps of X1(N) with Γ1(N)\P1(Q).

2.2.1. Moduli interpretation of the cusps. In the section on Y1(N) we saw that
there exists an elliptic curve E1(N) over Y1(N) which has a point of order N
that also has order N in all geometric fibers, and that for every Z[ 1

N
] algebra

R every elliptic curve over R together with a point of order N that also has
order N in all geometric fibers is the base change of E1(N) to R for a unique
morphism X : SpecR→ Y1(N). Using the notion of generalized elliptic curve this
story extends to X1(N). There is a unique extension (E ′1(N), P ′1(N)) of the pair
(E1(N), P1(N)) over Y1(N) to X1(N) such that the geometric fibers of E ′1(N) over
X1(N) are generalized elliptic curves, the point P ′1(N) lies in the smooth locus
of E ′1(N), the geometric fibers of P ′1(N) are all points of order N and for each
geometric fiber P ′1(N) is a generator of the component group.
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Theorem 2.1. [Deligne and Rapoport(1975), Ch. IV] This pair (E ′1(N), P ′1(N))
mentioned above is universal, meaning that if S is a scheme over Z[ 1

N
] and (E,P )

is a pair where E is an elliptic curve over S and P ∈ E(S) a point of order N such
that all the geometric fibers of P are also of order N and generate the component
group of their fiber, then there exists a unique X : S → X1(N) such that (E,P ) is
isomorphic to the base change of (E ′1(N), P ′1(N)).

In particular, if K is an algebraically closed field and s ∈ (X1(N) \ Y1(N))(K),
then E ′1(N)s is a Néron d-gon for some integer d and P ′1(N)s is a point of order
N that generates the component group of the Néron d-gon. Since the component
group of a Néron d-gon is Z/dZ this means that d | N .

The Tate curve given by Eq. (13) gives a way to study the curve E ′1(N) over
X1(N) in the neighbourhood of the cusps. Let d | N be an integer and denote
by Eq,d the base change of Eq to Z[[q1/d]]. The scheme Eq,d is not smooth over
Z[[q1/d]], but if d = 1 then it is at least still a regular scheme. If d > 1 then the
singularities of Eq,d can be resolved by blowing up the point (q, x′, y′) = (0, 0, 0)

exactly bd
2
c times, let Ẽq,d denote the resulting scheme, its fiber over q1/d = 0

is the Néron d-gon over Z, and for every field K one has that Ẽq,d,K[[q1/d]] is the
minimal regular model of Eq,d,K[[q1/d]]. Consider x′ and y′ of Eq. (13) as elements

of in Z((u))[[q]] and let i, j be two integers. Evaluating x′ and y′ at u = ζ iNq
j gives

a Z[ 1
N
ζN ][[q1/d]] point of Ẽq,d, which we will denote by Pd,i,j. This point lies in the

smooth locus and its order is a divisor of N . Actually the map

α : Z/NZ× Z/dZ→ Ẽsm
q,d (Z[ 1

N
, ζN ][[q

1
d ]]) (15)

i, j 7→ Pd,i,j (16)

is a well defined injective group homomorphism. The point α(1, 0) lies in the iden-
tity component and α(0, 1) is a generator of the component group at q1/d = 0.
Define Ad ⊂ Z/NZ × Z/dZ to be the set of elements of order N whose sec-
ond coordinate generates Z/dZ. The set Ad is exactly the set of (i, j) such
that the pair (Ẽq,d, α(i, j)) gives a point sd,i,j ∈ X1(N)(Z[ 1

N
, ζN ][[q1/d]]). Let

s′d,i,j ∈ X1(N)(Z[ζN ]) be the point obtained by setting q1/d = 0, then s′d,i,j is a cusp,

and the map sd,i,j : SpecZ[ζN ][[q1/d]] → X1(N) induces an isomorphism between
Z[ζN ][[q1/d]] and the completion of X1(N)

Z[
1
N
,ζN ]

along s′d,i,j. Every Néron d-gon

together with a point of order N with a point that generates the component group
is obtained from some s′d,i,j with (i, j) ∈ Ad, showing that

{
s′d,i,j|d | N, (i, j) ∈ Ad

}

is exactly the set of cusps of X1(N)
Z[

1
N
ζN ]

, however two different elements of Ad

might give the same cusp, indeed one can make µd(Z[ 1
N
, ζd])× {±1} act on Ad by

ζd(i, j) = (i+ jN/d, j) and −(i, j) = (−i,−j). This action is compatible with the
action of µd × {±1} on the set of points of order N of the Néron d-gon, showing
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that s′d1,i1,j1 = s′d2,i2,j2 if and only if d1 = d2 and (i1, j1) and (i2, j2) are in the same
orbit under this action.

3. Modular forms

Let k > 0 be an integer, f : H → C be a holomorphic function and γ =
[ a bc d ] ∈ SL2(Z), define f [γ]k : H → C to be the function given by f [γ]k(τ) :=
(cτ + d)−kf(γτ). The map f → f [γ]k defines a right action of SL2(Z) on the set
of all holomorphic functions H→ C called the weight k action.

Definition 3.1. Let k > 0 be an integer and Γ ⊆ SL2(Z) be a finite index
subgroup, then a modular form of weight k for Γ is a continuous function f :
H∗ → C such that:

(1) f is invariant under the weight k action of Γ, i.e. f = f [γ]k for all γ ∈ Γ.
(2) f is holomorphic when restricted to H.

The function f is called a cusp form if f(x) = 0 for all x ∈ P1(Q).

This complex analytic definition of modular forms does not carry over to the
algebraic world, however it can be reinterpreted in a way that does make sense in
the algebraic world. Namely one can define ωΓ,k to be the sheaf on X(Γ) := Γ\H∗
to be the sheaf whose function on Γ\U are the continuous functions f : U → C
invariant under the weight k action of Γ that are holomorphic when restricted to
H∩U for all open U ⊂ H∗ that are invariant under Γ. If either k is even or Γ acts
freely on H then the sheaf ωΓ,k is a line bundle on X(Γ), i.e. it is a sheaf of OX(Γ)

modules that is locally free of rank 1. The global sections of ωΓ,k are exactly the
modular forms of weight k. This line bundle ωΓ,k is the object that does generalize
to the algebraic world, at least if one requires that Γ is a congruence subgroup:

Definition 3.2. Let N be an integer and define

Γ(N) :=

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[
1 0
0 1

]
mod N

}
.

A congruence subgroup is a subgroup Γ ⊆ SL2(Z) such that there exists an N for
which Γ(N) ⊆ Γ.

For simplicity we will restrict ourselves to congruence subgroups Γ that contain
Γ1(N) as a normal subgroup for some N in the discussion below. First we will
discuss modular forms of weight k for Γ1(N) with N > 4 and only later will we
discuss it for its super groups.

3.1. Modular forms for Γ1(N). Let N > 4 be an integer. Over the curve X1(N)
we have the universal curve E1(N), and we have the zero section 0 : X1(N) →
E1(N). This means we can look at the sheaf Ω1

E1(N)/X1(N) of relative differential
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forms on E1(N), this sheaf is locally free of rank 1 when restricted to the locus of
E1(N) where it is smooth over X1(N). Define

ωE1(N)/X1(N) := 0∗Ω1
E1(N)/X1(N).

One has that ωE1(N)/X1(N)
∼= ωΓ1(N),1 and more generally ω⊗kE1(N)/X1(N)

∼= ωΓ1(N),k.

Indeed let π : H∗ → X1(N) be the quotient map, then π∗ωωE1(N)/X1(N)
is a free

sheaf of rank 1 when restricted to H, indeed one has π∗ωΓ1(N)
∼= 0∗Ω1

((C×H)/Z2))/H)

which is generated by dz where z is the coordinate on C. Since[
a b
c d

]
dz = d

z

cτ + d
=

1

cτ + d
dz

it follows that f 7→ 2πifdz = f du
u

gives an isomorphism between ω⊗kE1(N)/X1(N) and

ωΓ1(N),k on Y1(N). Using the Tate curve over C one can show that 2πidz = du
u

is
also a generator of Ω1

E1(N)/X1(N) in a neighbourhood of the 0 section at the cusps

(u = 1 at the zero section), hence the isomorphism over Y1(N) extends to one
over X1(N).

In the previous section it was already shown that modular forms of weight k for
Γ1(N) can be seen as sections of ωΓ1(N),k and using the isomorphism ω⊗kE1(N)/X1(N)

∼=
ωΓ1(N),k one can even see them as sections of ω⊗kE1(N)/X1(N). This last definition is

the definition that carries over to the algebraic world.

Definition 3.3. Let N > 4 and k be integers and R a Z[ 1
N

] algebra. Define

ωX1(N),R,k :=
(
0∗Ω1

E1(N)R/X1(N)R

)⊗k
.

An R valued modular form of weight k for X1(N) is a global section f of ωX1(N),R,k.
A modular form f is called a cusp form if it has zeros at all cusps, i.e. it is zero
on X1(N)R \ Y1(N)R.

The above discussion shows that if one takes R = C then this definition agrees
with the complex analytic definition.

3.2. Modular forms in weight 2. In weight 2 there is even a different interpre-
tation of modular forms. The reason for this is that[

a b
c d

]
dτ = d

aτ + b

cτ + d
=
a(cτ + d)− c(aτ + b)

(cτ + d)2
dτ =

1

(cτ + d)2
dτ,

showing that if f is a complex analytic modular form of weight 2 for some con-
gruence subgroup Γ, then 2πifdτ = f dq

q
is a differential on H that is invariant

under the action of Γ. In particular, f dq
q

descends to a differential on Y1(N).

Using the description of the formal neighbourhoods of the cusps one can show
that this differential has no poles at the cusps if and only if f is a cusp form,
so that f 7→ f dq

q
gives an isomorphism ωΓ1(N),2

∼= Ω1
X1(N)/C(cusps) called the

Kodaira-Spencer isomorphism. This isomorphism extends to the algebraic world
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as an isomorphism ωX1(N),Z[1/N ],2
∼= Ω1

X1(N)/Z[1/N ](cusps), where the isomorphism

is given by (du
u

)⊗2 7→ dq
q

at the Tate curve.

This discussion shows cusp forms of weight two for X1(N) over a ring R can be
interpreted as global sections of Ω1

X1(N)/R.

4. The Modular curve X0(N)

In the sections on Y1(N) andX1(N) we saw that these curves parametrize elliptic
curves together with a point of order N . The curves Y0(N) and X0(N) are the
curves that parametrize elliptic curves together with a cyclic subgroup of order N .

The complex setting will be described first. Define

Γ0(N) :=

{[
a b
c d

]
∈ SL2(Z) | c ≡ 0 mod N

}
,

and recall that if τ ∈ H that we then used Eτ to denote the curve C/(τZ + Z).
In the discussion on Y1(N) it was shown that if τ1, τ2 ∈ H then pairs (Eτ1 , 1/N)
and (Eτ2 , 1/N) are isomorphic if and only if there exists a γ ∈ Γ1(N) such that
τ2 = γτ2. Similarly one can show that replacing the point 1/N ∈ Eτ by the
subgroup generated by 1/N that (Eτ1 , 〈1/N〉) and (Eτ2 , 〈1/N〉) are isomorphic if
and only if there exists a γ ∈ Γ0(N) such that τ2 = γτ2. This shows that over
C the isomorphism classes of pairs (E,G) of elliptic curve together with a cyclic
subgroup of order N are in one to one correspondence with Γ0\H. So the modular
curve Y0(N) is defined to be Γ0\H. One can compactify Y0(N) in a similar way
to Y1(N) and the resulting compactification will be denoted by X0(N) = Γ0\H∗.

Note that Γ1(N) is a normal subgroup of Γ0(N) so that we could also have con-
structed Y0(N) and X0(N) as quotients of Y1(N) and X1(N) by Γ0(N)/Γ1(N).
The map Γ0(N) → (Z/NZ)∗ given by [ a bc d ] 7→ d is a surjective group homomor-
phism whose kernel is Γ1(N) showing that Γ0(N)/Γ1(N) ∼= (Z/NZ)∗. One can
even interpret the action of (Z/NZ)∗ on X1(N) directly, since d ∈ (Z/NZ)∗ it
corresponds to sending the pair (E,P ) of elliptic curve with point of order N to
(E, dP ). The automorphism of X1(N) corresponding to d ∈ (Z/NZ)∗ is denoted
by 〈d〉 and is called a diamond operator.

The action of d ∈ (Z/NZ)∗ given by by (E,P ) 7→ (E, dP ) also makes sense in
the algebraic world and gives an action on the Z[ 1

N
]-schemes Y1(N) and X1(N).

One uses this action to define the modular curves Y0(N) resp. X0(N) to be
Y1(N)/(Z/NZ)∗ resp. X1(N)/(Z/NZ)∗. We saw that Y1(N)(R) can be identi-
fied with the set of isomorphism classes of pairs (E,P ) of elliptic curve together
over R with a point of order N for all Z[ 1

N
]-algebras R. However for Y0(N) this

property fails. A pair (E,G) of elliptic curve together over R with a cyclic sub-
group of order N still gives rise to an R valued point on Y0(N), but non isomorphic
pairs (E1, G1) and (E2, G2) might give the R point of Y0(N). Although in the case
R = K is an algebraically closed field then one still has that Y0(N)(R) can be
identified with the set of isomorphism classes of elliptic curves with a point of
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order N , as we already saw over C. An additional problem with Y0(N) and Y0(N)
is that there is no universal elliptic curve over them. If one tries to define the
universal elliptic curve E0(N) := (Z2 o Γ0(N))\(C × H) over Y0(N), similar to
what was done for E1(N), then one runs into problems. This definition would
still give a curve over Y0(N) := Γ0(N)\H, however the proof that the fiber of
E1(N) over Γ1(N)τ ∈ X1(N) is isomorphic to Eτ uses that Γ1(N) acts freely on
H under the assumption N > 4. This is no longer true for Γ0(N), in fact since
− Id :=

[ −1 0
0 −1

]
∈ Γ0(N) and − Id acts trivially on H we see that the fiber of

E0(N) above Γ0(N)τ is a quotient of Eτ/±1 which is not an elliptic curve, but
something isomorphic to P1(C). One has similar problems with trying to construct
the universal elliptic curve over X0(N),

4.1. Modular forms on X0(N). The complex analytic definition of a modular
form in Definition 3.1 is general enough to also work if one takes Γ = Γ0(N).
However the algebraic definition 3.3 for modular forms on X1(N) uses the existence
of the universal elliptic curve E1(N) over X1(N). This leads to problems when
trying to define modular forms on X0(N), since we saw previously that we have
no universal elliptic curve in this case. However these problems can by solved.
Namely let R be a Z[ 1

N
]-algebra and let π : X1(N)→ X0(N) denote the quotient

map, then π∗ωX1(N),R,k is a sheaf on X0(N) with an action of (Z/NZ)∗, taking
(Z/NZ)∗ invariants gives the desired sheaf of X0(N).

Definition 4.1. Let N > 4 and k be integers and R a Z[ 1
N

] algebra. Define

ωX0(N),R,k := (π∗ωX1(N),R,k)
(Z/NZ)∗ .

An R valued modular form of weight k for X0(N) is a global section f of ωX1(N),R,k.
A modular form f is called a cusp form if it has zeros at all cusps, i.e. it is zero
on X0(N)R \ Y0(N)R.

Let R be a ring that is flat over Z[ 1
N

], then Ω1
X0(N)/R

∼= (π∗Ω1
X1(N)/R)(Z/NZ)∗ so

the Kodaira-Spencer isomorphism ωX1(N),Z[1/N ],2
∼= Ω1

X1(N)/Z[1/N ](cusps) descends

to an isomorphism ωX0(N),Z[1/N ],2
∼= Ω1

X0(N)/Z[1/N ](cusps), showing that one can
still see cusp forms over R as one forms. However if R is a ring that is not flat
over Z[ 1

N
] there are some troubles that can arise, especially rings of characteristic

2 and 3 pose problems. More details on different ways of viewing cusp forms as
differential forms and the difficulties that arise in characteristics 2 and 3 can be
found in [Mazur(1977), §II.4].

4.2. The modular curve Xµ(N). The modular curve Xµ(N) is just a slight
variation on the modular curveX1(N). The curveX1(N) parametrizes pairs (E,P )
of an elliptic curve together with a point of order N , or equivalently pairs (E,α)
where α : Z/NZ → E is a closed immersion of the constant group scheme into
E. The modular curve Xµ(N) parametrizes pairs (E, β) where β : µN → E is a
closed immersion of the group of N -th roots of unity into E. Since over Z[ 1

N
, ζN ]
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one has that µN ∼= Z/NZ one sees that X1(N)Z[1/N,ζN ]
∼= Xµ(N)Z[1/N,ζN ], this

isomorphism shows in particular that X1(N) and Xµ(N) are isomorphic over all
algebraically closed fields. Showing that Xµ(N) and X1(N) are twists of each other
over Z[ 1

N
, ζN ]. Since ζN ∈ C there is nothing that really changes in the complex

world so that we still can see Xµ(N)(C) as X1(N) = X1(N)(C). However over
rings not containing ζN there is a difference. Since the constant group scheme
Z/NZ and µN become isomorphic over Z[ 1

N
, ζN ], one sees that X1(N) and Xµ(N)

become isomorphic over the finite étale extension Z[ 1
N
, ζN ] of Z[ 1

N
], so X1(N) and

Xµ(N) are twists of each other in the étale topology. This twist can even be made
explicit by the isomorphism

Xµ(N) ∼=
(
X1(N)×Z[ 1

N
] Z[

1

N
, ζN ]

)
/(Z/NZ)∗,

where d ∈ (Z/NZ)∗ acts on X1(N) via the diamond operator 〈d〉 and on Z[ 1
N
, ζN ]

via ζN 7→ ζdN . In contrast to X0(N), the modular curve Xµ(N) does have a univer-
sal elliptic curve over it. This universal elliptic curve is denoted by Eµ(N) and the
entire story about modular forms on X1(N) translates directly to a description of
the modular forms on Xµ(N). For an Z[ 1

N
] algebra R one can define

ωXµ(N),R,k :=
(

0∗Ω1
Eµ(N)R/Xµ(N)R

)⊗k
.

similar to Definition 3.3, and say that an R-valued modular form of weight k on
Xµ(N) is a global section of ωXµ(N),R,k. Also the Kodaira-Spencer isomorphism
ωXµ(N),Z[1/N ],2

∼= Ω1
Xµ(N)/Z[1/N ](cusps) continues to exist.
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GONALITY OF THE MODULAR CURVE X1(N)

MAARTEN DERICKX AND MARK VAN HOEIJ

Abstract. In this paper we compute the gonality over Q of the modular curve
X1(N) for all N 6 40 and give upper bounds for each N 6 250. This allows
us to determine all N for which X1(N) has infinitely points of degree d where d
is either 5 or 6. We conjecture that the modular units of Q(X1(N)) are freely
generated by f2, . . . , fbN/2c+1 where fk is obtained from the equation for X1(k).

1. Introduction

Notation 1. If K is a field, and C/K is a curve1, then K(C) is the function field
of C over K. The gonality GonK(C) is min{deg(f) | f ∈ K(C) − K}. In this
article we are interested in the case C = X1(N), and K is either Q or Fp.

It was shown in [Der12] that if C/Q is a curve and p is a prime of good reduction
of then:

GonFp(C) 6 GonQ(C). (1)

A similar statement was given earlier in [Fre94] which attributes it to [Deu42].
We use (1) only for C = X1(N). The primes of good reduction of X1(N) are the
primes p - N .

The main goal in this paper is to compute GonQ(X1(N)) for N 6 40. The
Q-gonality for N 6 22 was already known [Sut12, p. 2], so the cases 23 6 N 6 40
are of most interest. For each N , it suffices to:

• Task 1: Compute a basis of div(F1(N)), which denotes the set of divisors
of modular units over Q, see Definition 1 in Section 2 for details.
• Task 2: Use LLL techniques to search div(F1(N)) for the divisor of a non-

constant function gN of lowest degree.
• Task 3: Prove (for some prime p - N) that Fp(X1(N))−Fp has no elements

of degree < deg(gN). Then (1) implies that the Q-gonality is deg(gN).

Table 1: GonQ(X1(N)) for N 6 40. Upper bounds for N 6 250.

1In this paper, a curve over a field K is a scheme, projective and smooth of relative dimension
1 over SpecK that is geometrically irreducible.
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N 1 2 3 4 5 6 7 8 9 10
gon = 1 1 1 1 1 1 1 1 1 1
N 11 12 13 14 15 16 17 18 19 20

gon = 2 1 2 2 2 2 4 2 5 3
N 21 22 23 24 25 26 27 28 29 30

gon = 4 4 7 4 5 6 6 6 11 6
N 31 32 33 34 35 36 37 38 39 40

gon = 12 8 10 10 12 8 18 12 14 12
N 41 42 43 44 45 46 47 48 49 50

gon 6 22 12 24 15 18 19 29 16 21 15
N 51 52 53 54 55 56 57 58 59 60

gon 6 24 21 37 18 30 24 30 31 46 24
N 61 62 63 64 65 66 67 68 69 70

gon 6 49 36 36 32 42 30 58 36 44 36
N 71 72 73 74 75 76 77 78 79 80

gon 6 66 32 70 51 40 45 60 42 82 48
N 81 82 83 84 85 86 87 88 89 90

gon 6 54 58 90 48 72 64 70 60 104 48
N 91 92 93 94 95 96 97 98 99 100

gon 6 84 66 80 83 90 56 123 63 90 60
N 101 102 103 104 105 106 107 108 109 110

gon 6 133 72 139 84 96 105 150 72 156 90
N 111 112 113 114 115 116 117 118 119 120

gon 6 114 96 167 90 132 105 126 120 144 96
N 121 122 123 124 125 126 127 128 129 130

gon 6 132 139 140 120 125 96 211 112 154 126
N 131 132 133 134 135 136 137 138 139 140

gon 6 225 120 180 156 144 144 246 132 253 144
N 141 142 143 144 145 146 147 148 149 150

gon 6 184 189 210 128 210 184 168 171 291 120
N 151 152 153 154 155 156 157 158 159 160

gon 6 299 180 216 180 240 168 323 234 234 184
N 161 162 163 164 165 166 167 168 169 170

gon 6 264 162 348 210 240 240 365 192 260 216
N 171 172 173 174 175 176 177 178 179 180

gon 6 270 231 392 210 240 240 290 274 420 192
N 181 182 183 184 185 186 187 188 189 190

gon 6 429 252 310 264 342 240 360 276 288 270
N 191 192 193 194 195 196 197 198 199 200

gon 6 478 224 488 328 336 252 508 240 519 240
N 201 202 203 204 205 206 207 208 209 210

gon 6 374 382 420 288 420 398 396 336 450 288
N 211 212 213 214 215 216 217 218 219 220

gon 6 583 351 420 396 462 288 480 445 444 360
N 221 222 223 224 225 226 227 228 229 230

gon 6 504 342 651 384 360 444 675 360 687 396
N 231 232 233 234 235 236 237 238 239 240

gon 6 480 420 711 336 552 435 520 432 748 384
N 241 242 243 244 245 246 247 248 249 250

gon 6 761 396 486 465 504 420 630 480 574 375
Tasks 1–3 are only possible when:
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(a) There is a modular unit gN of degree GonQ(X1(N)).
(b) There is a prime p - N for which GonFp(X1(N)) = GonQ(X1(N)).

We have completed Tasks 1–3 for 1 < N 6 40, and hence (a),(b) are true in
this range. We do not know if they hold in general.

We implemented two methods for Task 1. Our webpage [DvH] gives the resulting
basis of div(F1(N)) for N 6 300. For Task 2, for each 4 6 N 6 300 we searched
div(F1(N)) for short2 vectors, and placed the best function we found, call it gN ,
on our webpage [DvH]. The degree of any non-constant function is by definition
an upper bound for the gonality. Table 1 gives deg(gN) for N 6 250.

Finding the shortest vector in a Z-module is NP-hard. For large N , this forced
us to resort to a probabilistic search (we randomly scale our vectors, apply an LLL
search, and repeat). So we can not prove that every gN on our webpage is optimal,
even if we assume (a).

For certain N (e.g. N = p2, see Section 4) there are other ways of finding
functions of low degree. Sometimes a good function can be found in a subfield of
Q(X1(N)) over Q(X1(1)), see [DvH]. All low degree functions we found with these
methods were also found by our probabilistic LLL search. So the upper bounds in
Table 1 are likely sharp when (a) holds (Question 1 in Section 2.2).

At the moment, our only method to prove that an upper bound is sharp is to
complete Task 3, which we have done forN 6 40. The computational cost of Task 3
increases drastically as a function of the gonality. Our range N 6 40 contains
gonalities that are much higher than the previous record, so in order to perform
Task 3 for all N 6 40 it was necessary to introduce several new computational
ideas.

Upper bounds (Tasks 1 and 2) will be discussed in Section 2, and lower bounds
(Task 3) in Section 3. We cover N = 37 separately (Theorem 1), this case is the
most work because it has the highest gonality in our range N 6 40. Sharp lower
bounds for other N 6 40 can be obtained with the same ideas. Our computational
proof (Task 3) for each N 6 40 can be verified by downloading the Magma files
from [DvH].

Remark 1. For each N 6 40, the Q-gonality happened to be the Fp-gonality for
the smallest prime p - N . That was fortunate because the computational complexity
of Task 3 depends on p.

We can not expect the Fp-gonality to equal the Q-gonality for every p. For
example, consider the action of diamond operator <12> on C(X1(29)). The fixed
field has index 2 and genus 8 (type: GammaH(29,[12]).genus() in Sage). By Brill-
Noether theory, this subfield contains a function fBN of degree 6 b(8 + 3)/2c = 5.

2We want vectors with small 1-norm because deg(g) = 1
2 ||div(g)||1.
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Viewed as element of C(X1(29)), its degree is 6 2 · 5 which is less than the Q-
gonality3 11. By Chebotarev’s theorem, there must then be a positive density of
primes p for which the Fp-gonality of X1(29) is less than 11.

2. Modular equations and modular units

Definition 1. A non-zero element of Q(X1(N)) is called a modular unit (see
[KL81]) when all its poles and roots are cusps. Let F1(N) ⊂ Q(X1(N))∗/Q∗ be the
group of modular units mod Q∗.

There are bN/2c+ 1 Gal(Q/Q)-orbits of cusps, denoted4 as C0, . . . , CbN/2c. Let

D1(N) := ZC0 ⊕ · · · ⊕ ZCbN/2c

be the set of Q-rational cuspidal divisors. The degree5 of
∑
niCi is

∑
nideg(Ci).

Denote D0
1(N) as the set of cusp-divisors of degree 0, and

C1(N) := D0
1(N)/div(F1(N)),

a finite group called the cuspidal class group.

Let E be an elliptic curve over a field K, and P be a point on E of order exactly
N . If N > 4 and char(K) - N , one can represent the pair (E,P ) in Tate normal
form:

Y 2 + (1− c)XY − bY = X3 − bX2, with the point (0, 0). (2)

This representation is unique and hence b, c are functions on pairs (E,P ). The
function field K(X1(N)) is generated by b, c. Whenever we use the notation b or
c, we implicitly assume N > 4, because the reduction to (2) succeeds if and only if
N > 4. This implies (for N > 4) that poles of b, c must be cusps. The discriminant
of (2) is ∆ := b3 · (16b2 +(1−20c−8c2)b+c(c−1)3) so E degenerates when ∆ = 0.
So all roots of ∆ (and hence of b) are cusps. Poles of ∆, b are cusps because poles
of b, c are cusps. So ∆, b are modular units, and hence

F2 := b4/∆ =
b

16b2 + (1− 20c− 8c2)b+ c(c− 1)3
and F3 := b

are modular units as well.
For N > 4, the functions b, c on X1(N) satisfy a polynomial equation FN ∈

Z[b, c], namely (for N = 4, 5, 6, 7, . . .) c, b− c, c2 + c− b, b2 − bc− c3, . . .
If k 6= N , the condition that the order of P is k is incompatible with the

condition that the order is N . This, combined with the observation that all poles

3We do not know if there are other N 6 40 with C-gonality 6= Q-gonality.
4Let d|N , 0 6 i < d, with gcd(i, d) = 1 and let j be such that the point Pd,i,j = (i, ζjN ) has

order N in the Neron d-gon Z/dZ × Gm. Let Cd,i,j be the cusp corresponding to Pd,i,j , then
Cd,i,j and Cd′,i′,j′ are in the same Galois orbit iff d = d′ and i ≡ ±i′ mod d. We denote the
Galois orbit of Cd,i,j as Cn where 0 6 n 6 N/2 and n ≡ ±iN/d mod N . With this numbering,
the diamond operator <i> sends Cn to Cn′ where n′ ≡ ±ni mod N .

5The degree of Ci is as follows. Let d = gcd(i,N). If i ∈ {0, N/2} then deg(Ci) = dφ(d)/2e,
otherwise deg(Ci) = φ(d), where φ is Euler’s function.
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of b, c are cusps, implies (for N, k > 4) that the modular equation Fk is a modular
unit for X1(N). We define a subgroup of F1(N) generated by modular equations6:

F ′1(N) :=<F2, F3, . . . , FbN/2c+1> ⊆ F1(N).

Conjecture 1. F ′1(N) = F1(N) for N > 3. In other words, F1(N) is freely
generated by modular equations F2, . . . , FbN/2c+1.

We verified this for N 6 100, see also Section 2.1. The conjecture holds for
N = 3 because F2 rewritten to j, x0 coordinates generates F1(3). The case N = 2
is a little different, clearly F2 can not generate F1(2) since it must vanish on X1(2).
However, rewriting F2F4 to j, x0 coordinates produces a generator for F1(2). The
conjecture is only for Q; if X1(N)K has more than bN/2c+1 Galois orbits of cusps,
for example X1(5)K with K = C or K = F11, then the rank of F ′1(N) would be
too low.

2.1. Computations. As N grows, the size of FN grows quickly. Sutherland
[Sut12] obtained smaller equations by replacing b, c with other generators of the
function field. For 6 6 N 6 9, use r, s defined by

r =
b

c
, s =

c2

b− c, b = rs(r − 1), c = s(r − 1)

and for N > 10, use x, y defined by

x =
s− r

rs− 2r + 1
, y =

rs− 2r + 1

s2 − s− r + 1
, r =

x2y − xy + y − 1

x(xy − 1)
, s =

xy − y + 1

xy
.

The polynomial defining X1(N) is then written as f4 := c, f5 := b− c, f6 := s− 1,
f7 := s − r, f8 := rs − 2r + 1, f9 := s2 − s − r + 1, f10 := x − y + 1, f11 :=
x2y−xy2 + y− 1, f12 := x− y, f13 := x3y−x2y2−x2y+xy2− y+ 1, etc. Explicit
expressions for f10, . . . , f189 ∈ Z[x, y] can be downloaded from Sutherland’s website
http://math.mit.edu/~drew/X1_altcurves.html.

The same website also lists upper bounds for the gonality for N 6 189, that are
often sharp when N is prime. Table 1 improves this bound for every composite
N > 26, a few composite N < 26, but only three primes: 31, 67, and 101. When
N is prime, we note that Sutherland’s [Sut12] bound, deg(x), equals [11N2/840]

6Fk is a modular equation for X1 if it corresponds to P having order k. A computation
is needed to show that F2, F3 are modular equations in this sense. The fact that F2 and F3

correspond to order 2 and 3 is obscured by the b, c coordinates, so we introduce j, x0 coordinates
for X1(N) that apply to any N > 1 provided that j 6∈ {0, 1728}. Here x0 is the x-coordinate of a
point P on y2 = 4x3−3j(j−1728)x−j(j−1728)2. The condition that P has order 2 or 3 can be

expressed with equations F̃2, F̃3 ∈ Q[j, x0]. These F̃2, F̃3 are functions on X1(N) for any N > 1.
Hence they can (for N > 3) be rewritten to b, c coordinates. To obtain modular units, we have to

ensure that all poles and roots are cusps, which requires an adjustment: F2 := F̃ 2
2 /(j

2(j−1728)3)

and F3 := F̃ 3
3 /F̃

4
2 .
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where the brackets denote rounding to the nearest integer ([11N2/840] is a valid
upper bound for any N > 6, but it is not very sharp for composite N ’s).

Let f2 := F2 and f3 := F3. Then Fk/fk ∈< f2, . . . , fk−1 > for each k > 2. In
particular

F ′1(N) =<f2, f3, . . . fbN/2c+1> .

For each 3 6 N 6 300 and 2 6 k 6 bN/2c + 1 we calculated div(fk) ∈ D1(N).
This data can be downloaded (in row-vector notation) from our webpage [DvH].
This data allows one to determine D0

1(N)/div(F ′1(N)) for N 6 300. If that is
∼= C1(N), then the conjecture holds for N . We tested this by computing C1(N)
with Sage7 for N 6 100. The div(fk)-data has other applications as well:

Example 1. Let N = 29. Suppose one wants to compute explicit generators for
the subfield of index 2 and genus 8 mentioned in Remark 1. Let x̃, ỹ denote the
images of x, y under the diamond operator < 12 >. Clearly x̃x, ỹy are in our
subfield, which raises the question: How to compute x̃, ỹ?

Observe that x = f7/f8 and y = f8/f9 (The relations 1 − x = f5f6/(f4f8),
1 − y = f6f7/f9, 1 − xy = f 2

6 /f9 may be helpful for other examples.) So we
can find div(x) by subtracting the (7-1)’th and (8-1)’th row-vector listed at [DvH]
for N = 29. We find (0,−1,−2,−3,−1, 0, 0, 0, 3, 2,−1,−3, 2, 3, 1) which encodes
div(x) =

−C1 − 2C2 − 3C3 − C4 + 3C8 + 2C9 − C10 − 3C11 + 2C12 + 3C13 + C14.

The diamond operator <12> sends Ci to C±12i modN and hence div(x̃) =

2C1 − C4 − 2C5 + C6 − 3C7 + 2C8 + 3C9 − C10 + 3C11 − C12 − 3C13.

Since div(f2), . . . , div(f15) are listed explicitly at [DvH], solving linear equations
provides n2, . . . , n15 for which div(x̃) =

∑
nidiv(fi). Setting g :=

∏
fni
i =

(x2y − xy + y − 1)(x− 1)2(x− y + 1)(x2y − xy2 − x2 + xy − x+ y − 1)4y3

(y − 1)2(xy − 1)(x− y)(x2y − xy2 − xy + y2 − 1)4x4
,

it follows that x̃ = cg for some constant c (c is not needed here, but it can be
determined easily by evaluating x̃ and g at a point.) Repeating this computation
for y, we find explicit expressions for x̃x, ỹy. An algebraic relation can then be
computed with resultants; it turns out that x̃x, ỹy generate the subfield.

2.2. Explicit upper bound for the gonality for N 6 40. The following table
lists for each 10 < N 6 40 a function of minimal degree. We improve the upper
bound from Sutherland’s website (mentioned in the previous section) in 16 out of
these 30 cases.

7The Z-module of modular units is computed with modular symbols by determining the∑
nici ∈ Zcusps of degree 0 with

∑
ni{ci,∞} ∈ H1(X1(N)(C),Z) ⊂ H1(X1(N)(C),Q).
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11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
x x x x x y x h1 x x h1 x x h1 h2
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
y h3 h3 x h5 h1 h4 h6 h1 h7 h8 x h2 h9 h5

Here

h1 =
x2y − xy2 + y − 1

(x− y)x2y
, h2 =

x(1− y)(x2y − xy2 − xy + y2 − 1)

(x− y + 1)(x2y − xy2 + y − 1)
,

h3 =
(1− x)(x2y − xy2 − xy + y2 − 1)

(x− y)(x2y − xy2 + y − 1)
, h4 =

(1− x)(x2y − xy2 + y − 1)

x(1− y)
,

h5 =
(1− y)(x2y − xy2 − xy + y2 − 1)

(x− y)y(x− y + 1)

h6 =
f10f11f12
f17

, h7 =
f17
f18

, h8 =
f14f

2
17

f 2
19

, h9 =
f12f13f14
f19

.

Each h1, . . . , h9 is in the multiplicative group <f2, f3, . . .>. To save space, we only
spelled out h1, . . . , h5 in x, y-notation (the f19 that appears in h9 is substantially
larger than the f11 that appears in h1). Similar expressions for N 6 300 are given
on our website [DvH].

Question 1. Does Q(X1(N)) always contain a modular unit of degree equal to the
Q-gonality?

It does not suffice to restrict to rational cusps (Ci’s of degree 1) because then
N = 36 would be the first counter example. Question 1 may seem likely at first
sight, after all, it is true for N 6 40. However, we do not conjecture it because
the function fBN ∈ C(X1(29)) from Remark 1 is not a modular unit over C, but
unlike Conjecture 1, there is no compelling reason to restrict Question 1 to Q.

3. Lower bound for the gonality

Task 3 is equivalent to showing that the Riemann-Roch space H0(C,D) is Fp

for every divisor D > 0 of degree < deg(gN). This is a finite task, because over
Fp, the number of such D’s is finite. For N = 37, the Q-gonality is 18, and the
number of D’s over F2 with D > 0 and deg(D) < 18 is far too large to be checked
one by one on a computer. So we will need other methods to prove:

Theorem 1. Let f ∈ F2(X1(37))− F2. Then deg(f) > 18.

Definition 2. Let f ∈ K(X1(N)). The support Supp(div(f)) is {P ∈ X1(N)K |
vP (f) 6= 0}, i.e., the set of places where f has a non-zero valuation (a root or
a pole). Let mdegK(f) denote max{degK(P ) |P ∈ Supp(div(f))}. Likewise, if
D =

∑
niPi is a divisor, then mdegK(D) := max{degK(Pi) |ni 6= 0}.
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Overview of the proof of Theorem 1:

We split the proof in two cases: Section 3.2 will prove Theorem 1 for the case
mdeg(f) = 1. Section 3.3 will introduce notation, and prove Theorem 1 for the
case mdeg(f) > 1. (Task 3 for the remaining N 6 40 is similar to Section 3.3 but
easier, and will be discussed in Section 3.4.)

3.1. The F2 gonality of X1(37). In [Der12] there are already tricks to for com-
puting the Fp gonality of a curve in a computationally more efficient way then the
brute force method from earlier papers. These tricks were not efficient enough to
compute the F2 gonality of X1(37). However, by subdividing the problem, treat-
ing one part with lattice reduction techniques, and the other part with tricks from
[Der12], the case N = 37 becomes manageable on a computer. We divide the
problem as follows:

Proposition 1. If there is a g ∈ F2(X1(37))− F2 with deg(g) 6 17 then there is
an f ∈ F2(X1(37))−F2 with deg(f) 6 17 that satisfies at least one of the following
conditions:

(1) mdeg(f) = 1
(2) all poles of f are rational cusps, and f has > 10 distinct poles.
(3) f has a pole at > 5 rational cusps and at least one non-rational pole.

Proof. X1(37) has 18 F2-rational places, all of which are cusps. View g as a
morphism X1(37)F2 → P1

F2
. For all h ∈ Aut(P1

F2
) we have deg(g) = deg(h ◦ g). If

there is h ∈ Aut(P1
F2

) such that mdeg(h ◦ g) = 1 then take f = h ◦ g and we are
done. Now assume that such h does not exist. Then at least two of the three sets
g−1({0}), g−1({1}), g−1({∞}) contain a non-rational place. If all three do, then
the one with the most rational cusps has at least 18/#P1(F2) = 6 > 5 rational
cusps and we can take f = h ◦ g for some h ∈ Aut(P1

F2
). Otherwise we can assume

without loss of generality that g−1({∞}) only contains rational cusps. If g−1({∞})
contains at least 10 elements then we can take f = g. If g−1({∞}) contains at
most 9 elements then g−1({0}) ∪ g−1({1}) contains at least 18 − 9 = 9 rational
cusps, so either g−1({0}) or g−1({1}) contains at least 5, and we can take f = 1/g
or f = 1/(1− g). �

3.2. The case N = 37 and mdeg = 1.

Proposition 2. Every f ∈ F2(X1(37))− F2 with mdeg(f) = 1 has deg(f) > 18.

Proof. Let M = ZX1(37)(F2) ⊂ div(X1(37)F2) be the set of all divisors D with
mdeg(D) = 1. Let N = ker(M → picX1(37)F2), i.e. principal divisors in M .
Magma can compute N directly from its definition, an impressive feat considering
the size of the equation! First download the file X1_37_AFF.m from our web-page
[DvH]. It contains the explicit equation for X1(37) over F2, and assigns it to AFF

with the Magma command AlgorithmicFunctionField.



26 MAARTEN DERICKX AND MARK VAN HOEIJ

> load "X1_37_AFF.m";

> plc1 := Places(AFF, 1); //18 places of degree 1, all cusps.

> M := FreeAbelianGroup(18); gen := [M.i : i in [1..18]];

> ClGrp, m1, m2 := ClassGroup(AFF); //takes about 3 hours.

> N := Kernel(Homomorphism(M, ClGrp, gen, [m2(i) : i in plc1]));

Let ‖ ‖1 and ‖ ‖2 be the standard 1 and 2 norm on M with respect to the
basis X1(37)(F2) (i.e. plc1). For a divisor D ∈ N with D = div(g) we have
deg(g) = 1

2
‖D ‖1. So we need to show that N contains no non-zero D with

‖D‖16 2 · 17. The following calculation shows that N contains no divisors D 6= 0
with ‖D‖226 2(142 + 32) = 410 and 1

2
‖D‖16 17.

> //Convert N to a more convenient data-structure.

> N := Lattice(Matrix( [Eltseq(M ! i) : i in Generators(N)] ));

> SV := ShortVectors(N,410);

> Min([&+[Abs(i) : i in Eltseq(j[1])]/2 : j in SV]);

18 1

From this we can conclude two things. First, there is a function f of degree 18
with mdeg(f) = 1. We already knew that from our LLL search of div(F1(37)), but
this is nevertheless useful for checking purposes (see Remark 2 below). Second, if
there is a non-constant function f of degree 6 17 and mdeg(f) = 1 then ‖div f‖22
> 2(142 +32) so either f or 1/f must have a pole of order > 15 at a rational point.
Then either f or 1/f is in a Riemann-Roch space H0(X1(N)F2 , 15p + q + r) with
p, q, r in X1(37)(F2). Since the diamond operators act transitively on X1(37)(F2)
we can assume without loss of generality that p is the first element of X1(37)(F2)
returned by Magma. The proof of the proposition is then completed with the
following computation:

> p := plc1[1];

> Max([Dimension(RiemannRochSpace(15*p+q+r)) : q,r in plc1]);

1 1
�

Remark 2. Computer programs could have bugs, so it is reasonable to ask if
Magma really did compute a proof of Proposition 2. The best way to check this is
with independent verification, using other computer algebra systems.

We computed div(fk), for k = 2, . . . , b37/2c + 1, in Maple with two separate
methods. One is based on determining root/pole orders by high-precision float-
ing point evaluation at points close to the cusps. The second method is based on
Puiseux expansions. The resulting divisors are the same. Next, we searched the Z-
module spanned by these divisors for vectors with a low 1-norm. Maple and Magma
returned the same results, but what is important to note is that this search (in char-
acteristic 0) produced the same vectors as the divisors of degree-18 functions (in
characteristic 2) that Magma found in the computation for Proposition 2.
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We made similar checks throughout our work. Magma’s RiemannRochSpace
command never failed to find a function whose existence was known from a com-
putation with another computer algebra system. The structure of Magma’s Class-
Group also matched results from computations in Sage and Maple.

The key programs that the proofs of our lower bounds depend on are Magma’s
RiemannRochSpace program (needed for all non-trivial N ’s), and ClassGroup pro-
gram (needed for N = 37). We have thoroughly tested these programs, and are
confident that they compute correct proofs.

3.3. The case N = 37 and mdeg > 1. It remains to treat cases 2 and 3 of
Proposition 1. Let S2 ⊆ F2(X1(37))−F2 be the set of all functions f with deg(f) 6
17 such that all poles of f are rational and f has at least 10 distinct poles. Similarly
let S3 ⊆ F2(X1(37))−F2 be the set of all functions f with deg(f) 6 17 such that f
has a pole at at least 5 distinct rational points and a pole at at least 1 non-rational
point. To complete the proof of Proposition 1 we need to show:

Proposition 3. The sets S2 and S3 are empty.

We will prove this with Magma computations, using ideas similar to those in
[Der12]. To main new idea is in the following definition:

Definition 3. Let C be a curve over a field F and S ⊆ F(C) − F a set of non-
constant functions. We say that a that a set of divisors A ⊂ divC dominates S
if for every f ∈ S there is a D ∈ A such that f ∈ Aut(P1

F)H0(C,D) Aut(C) (i.e.
f = g ◦ f ′ ◦ h for some g ∈ Aut(P1

F), f ′ ∈ H0(C,D), and h ∈ Aut(C)).

It follows directly from this definition that

S ⊆
⋃

D∈A
Aut(P1

F)H0(C,D) Aut(C)

and hence:

Proposition 4. Let C be a curve over a field F, S ⊆ F(C) − F and A ⊂ divC.
Suppose that A dominates S, and that:

∀D∈A S ∩ Aut(P1
F)H0(C,D) Aut(C) = ∅. (3)

Then S = ∅.
Proof of Proposition 3. Appendix A.1 gives two sets A2 and A3 that dominate S2

and S3 respectively. The Magma computations given there show that

∀D∈A2∪A3 min{deg(f) | f ∈ H0(C,D)− F2} > 18

where C = X1(37)F2 . Since deg(f) is invariant under the actions of Aut(P1
F) and

Aut(C) it follows (for i = 2, 3 and D ∈ Ai) that Si∩Aut(P1
F)H0(C,D) Aut(C) = ∅

so we can apply Proposition 4. �
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3.4. The cases N 6 40 and N 6= 37. Subdividing the problem into three smaller
cases as in Proposition 1 was not necessary for the other N 6 40. Instead we used
an easier approach which is similar to the case N = 37 and mdeg > 1.

For an integer N let pN denote the smallest prime p such that p - N . Let
dN = deg(gN) denote the degree of the lowest degree function we found for N
(Section 2.2 or online [DvH]). Now in order to prove GonQ(X1(N)) > dN we
will prove GonFpN

(X1(N)) > dN . We have done this by applying Proposition 4
directly with S the set of all functions of degree < dN . To verify hypothesis (3)
from Proposition 4 with a computer for A = div+

dN−1(X1(N)FpN
) (i.e. all effective

divisors of degree dN − 1) was unfeasible in a lot of cases. Instead we used the
following proposition to obtain a smaller set A of divisors that still dominates all
functions of degree < dN .

Proposition 5. Let C be a curve over a finite field Fq and d an integer. Let
n := d#C(Fq)/(q + 1)e and

D =
∑

p∈C(Fq)

p

then

A := div+
d−n(C) +D =

{
s′ +D | s′ ∈ div+

d−n(C)
}

dominates all functions of degree 6 d.

Proof. For all f : C → P1
Fq

we have f(C(Fq)) ⊆ P1(Fq). By the pigeon hole

principle, there is a point p in P1(Fq) whose pre-image under f has at least n
points in C(Fq). Moving p to ∞ with a suitable g ∈ Aut(P1

Fq
), the function g ◦ f

has at least n distinct poles in C(Fq). So if deg(f) 6 d then div(g ◦ f) > −s−D
for some s ∈ div+

d−n(C). �

Proposition 5 reduces the number of divisors to check, but increases their de-
grees. However, for our case C = X1(N) the gonality is generally much lower then
the genus, so the Riemann-Roch spaces from equation (3) are still so small that it
is no problem to enumerate all their elements, and compute their degrees to show
S ∩ Aut(P1

F)H0(C,D) Aut(C) = ∅.
As a further optimization we can make A even smaller by using the orbits under

diamond operators. The Magma computations [DvH] show that hypothesis (3) in
Proposition 4 is satisfied for S, the set of functions of degree < dN in FpN (X1(N))−
FpN , and A, an explicit set of divisors dominating S.

Despite all our tricks to reduce the number of divisors, the number of divisors
for N = 37 (due to its high gonality) remained far too high for our computers,
specifically, divisors consisting of rational places. We handled those by using the
relations between rational places in the Jacobian. That idea (worked out in Sec-
tion 3.2) allowed us to complete N = 37 and thus all N 6 40.
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4. Patterns in the gonality data

Definition 4. Let Γ ⊆ PSL2(Z) be a congruence subgroup and X(Γ) := H∗/Γ be
the corresponding modular curve over C. The improvement factor of a function
f ∈ C(X(Γ))− C is the ratio

[PSL2(Z) : Γ]/ deg(f) = deg(j)/ deg(f).

The definition is motivated by a well known bound from Abramovich:

Theorem 2 ([Abr96]).

GonC(X(Γ)) > 7

800
[PSL2(Z) : Γ].

If Selbergs eigenvalue conjecture is true then 7/800 can be replaced by 1/96.

The theorem says that an improvement factor can not exceed 800/7, for any Γ,
even over C. To compare this with X1(N) (over Q), we plotted the improvement
factors of our gN ’s from [DvH]. This revealed a remarkable structure:
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What immediately pops out is that our best improvement factor is often 48 (in
151 out of 300 levels N). Levels N > 9 with an improvement factor < 48 are either
of the form N = p or N = 2p for a prime p. For prime levels, our improvement
factor converges to 420/11.

Levels of the form N = kp2 with p > 3 prime stand out in the graph, with
improvement factors significantly higher than 48. To explain this, first observe
that improvement factors for kp2 are > those of p2 because:

Remark 3. If Γ ⊆ Γ′ are two congruence subgroups, π : X(Γ) → X(Γ′) denotes
the quotient map and f ∈ C(X(Γ′)) then f and f ◦ π have the same improvement
factor. So improvement factors for X(Γ′) can not exceed those for X(Γ).

It remains to explain the high observed improvement factors at levels N = p2:
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level 52 72 112 132 172

improvement 60 56 55 54 3
5

542
5

The best (lowest degree, highest improvement factor) modular units gN we found
for these five cases turned out to be invariant under a larger congruence subgroup
Γ0(p

2) ∩ Γ1(p) ⊇ Γ1(p
2). Now

Γ0(p
2) ∩ Γ1(p) =

[
1 0
0 p

]
Γ(p)

[
1 0
0 p

]−1
.

This suggests to look at X(p) to find high improvement factors for X1(p
2).

5. Points of degree 5 and 6 on X1(N)

The values of N for which the curve X1(N) has infinitely many places of degree
d over Q are known for d = 1 (Mazur), d = 2 [K86], d = 3 [JKL11a] and d = 4
[JKL11b]. In this section, we extend this to d = 5 and d = 6.

Theorem 3. X1(N) has infinitely many places of degree d = 5 resp. d = 6 over
Q if and only if

• for d = 5: N 6 25 and N 6= 23.
• for d = 6: N 6 30 and N 6= 23, 25, 29.

The case X1(25) is by far the most interesting (and the most work) because
its set of non-cuspidal places of degree d = 6 is finite8 even though 6 is larger
than the Q-gonality of X1(25)! The remainder of this section contains the proof
of Theorem 3 and a remark on larger d’s.

Lemma 1.

(1) Let C/Q be a curve. If C has a function f over Q of degree d then C has
infinitely many places of degree d over Q.

(2) If the Jacobian J(C)(Q) is finite, then the converse holds as well. To
be precise, if C has more than #J(C)(Q) places of degree d, then Q(C)
contains a function of degree d.

(3) If N 6 60 and N 6= 37, 43, 53, 57, 58 then J1(N)(Q) is finite.
(4) If N > 60 or N = 37, 43, 53, 57, 58 then X1(N) has finitely many places of

degree 6 6.

Proof. (1) Hilbert’s irreducibility theorem shows that there are infinitely many
places of degree d among the roots of f − q = 0, q ∈ Q.

(2) If n = #J(C)(Q) < ∞ and P1, . . . , Pn+1 are distinct places of degree d,
then by the pigeon hole principle, there exist i 6= j with Pi−P1 ∼ Pj −P1.
The function giving this linear equivalence has degree d.

8and not empty, we found an explicit example [DvH]
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(3) Magma has a provably correct algorithm to determine if L(J1(N), 1) is 0
or not. It shows L(J1(N), 1) 6= 0 for each N in item 3. By a result of Kato
this implies that J1(N)(Q) has rank zero and hence is finite.

(4) The case N = 58 follows from the map X1(58) → X1(29) and the fact
that X1(29) has only finitely many points of degree 6 6 (by items 3, 2
and Table 1). GonQ(X1(37)) = 18, and a similar computation shows
GonQ(X1(43)) > 13 (this bound is not sharp, but the computational effort
increases if we try to prove a better bound). For N = 53, 57 or > 60,
we find 7

800
[PSL2(Z) : Γ1(N)] > 12, and Abramovich’s bound (Section 4)

implies GonQ(X1(N)) > 13. Now item 4 follows from the main theorem of
[Fre94] which states that a curve C/Q with C(Q) 6= ∅ has finitely many
places of degree < GonQ(C)/2.

�

Items 4, 3, 2, and 1 of Lemma 1 reduce Theorem 3 step by step to:

Proposition 6. X1(N) has a function over Q of degree d = 5 resp. d = 6 if and
only if:

• for d = 5: N 6 25 and N 6= 23.
• for d = 6: N 6 30 and N 6= 23, 25, 29.

Proof. For each N, d listed here, our divisor data [DvH] makes it easy to find an
explicit function in F1(N) (Section 2) of degree d. So it suffices to show that there
are no such functions in the other cases.

• N > 40 and N 6= 42: In these cases 7
800

[PSL2(Z) : Γ1(N)] > 6, so it follows
from Abramovich’s bound (Section 4).
• N 6 40 or N = 42 and (N, d) 6= (25, 6): For N 6 40 see Table 1. A similar

computation (Proposition 5 with q = 5, d = 6) shows GonQ(X1(42)) > 6.
• (N, d) = (25, 6): We prove this by verifying conditions 1–5 of Proposition 7

below with C = X1(25), d = 6 and p = 2.
1. The rank of J1(25)(Q) is 0 and #J1(25)(F3) = 2503105 is odd. So

#J1(25)(Q) is finite and odd and hence J1(25)(Q) ↪→ J1(F2).
2,3 We verified this using a Magma computation (files at [DvH]).
4. Since 6 − GonF2 X1(25) = 1 we only need to show surjectivity of

W 1
5 (Q) → W 1

5 (F2). A Magma computation shows #W 1
5 (F2) = 1,

and W 1
5 (Q) 6= ∅ by Table 1.

5. This is true because X1(25)(F2) consists exactly of the 10 cusps that
come from the rational cusps in X1(25)(Q).

�

For N 6 40, applying a ShortVectors-search to our divisor data [DvH] shows
that Q(X1(N)) has a function of degree d > GonQ(X1(N)) if (N, d) 6∈ S = {(25, 6),
(25, 7), (32, 9), (33, 11), (35, 13), (39, 15), (40, 13)}. The search also showed that
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there are no modular units with (N, d) ∈ S. Ruling out degree-d functions other
than modular units is more work:

Proposition 7. Let C/Q with C(Q) 6= ∅ be a smooth projective curve with good
reduction at a prime p. Let W r

d (K) denote the closed subscheme of picdC(K)
corresponding to the line bundles L of degree d whose global sections form a K-
vectorspace of dimension > r + 1. Suppose that:

(1) J(C)(Q)→ J(C)(Fp) is injective.
(2) Fp(C) contains no functions of degree d.
(3) W 2

d (Fp) = ∅.
(4) W 1

d−i(Q)→ W 1
d−i(Fp) is surjective for all 1 6 i 6 d−GonFp(C).

(5) C(i)(Q)→ C(i)(Fp) is surjective for all 1 6 i 6 d−GonFp(C).

Then Q(C) contains no functions of degree d.

Proof. Item 1 and C(Q) 6= ∅ imply that pick C(Q) to pick C(Fp) is injective for all
k. To show that Q(C) has no function of degree d it suffices to show for all L in
W 1

d (Q) that every 2-dimensional subspace V ⊂ L(C) has a base point.
Let L ∈ W 1

d (Q). Item 3 implies dimFp LFp(CFp) = 2 and so dimQ L(C) = 2.
Let DFp be the divisor of basepoints of LFp and let i be its degree. Item 2 implies
i > 1 and because LFp(−DFp) ∈ W 1

d−i(Fp) we have i 6 d − GonFp(C). By item 5

there is a D ∈ C(i)(Q) that reduces to DFp . By of the injectivity of picd−iC(Q)→
picd−iC(Fp), we know that L(−D) is the unique point lying above LFp(−DFp).
Then item 4 gives the following inequalities

2 6 dimQ L(−D)(C) 6 dimQ L(C) = 2.

In particular, the unique 2-dimensional V ⊂ L(C) has the points in D as base
points. �

Remark 4. To extend Theorem 3 to d = 7, 8, we can use the same mathematical
arguments; the main difficulty is computational. Our Magma files for Proposition 7
cover (N, d) = (25, 6) and (25, 7). Our divisor data [DvH] makes it easy9 to find
functions of degree 7 on X1(N) for N = 1 . . . 24, 26, 27, 28, 30 and functions of
degree 8 for N = 1 . . . 28, 30, 32, 36. To prove that these are the only values for
which X1(N) has infinitely many points of degree 7 resp. 8, we need to compute
higher lower-bounds for the gonality, specifically10 for N = 42, 43, 53 (for d = 7)
and N = 42, 43, 44, 46, 48, 53, 57 (for d = 8). For d = 7, the lower-bound needed for
Frey’s theorem is 15, which is is 3 less than the bound we managed to compute in
Theorem 1. So the number of Riemann Roch spaces needed for d = 7 is manageable,
however, each Riemann Roch computation for N = 53 will likely be slow (we did

9This part takes little CPU time and can easily be done for much larger (N, d)’s.
10All but finitely many values of N are handled by an improvement to Abramovich’s bound

(Remark 4.5 in [BGGP05]) and N = 58 is again handled by its map to X1(29).
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not attempt this). For d = 8, the number of Riemann Roch computations will be
much higher.

New mathematical problems arise for d = 9. X1(37) has a Jacobian with posi-
tive rank, and the Q-gonality is 18 so we can not use Frey’s theorem to rule out
infinitely many places of degree 9. J1(37) has only one simple abelian sub-variety
of positive rank, namely an elliptic curve E isogenous to X+

0 (37). So the question
whether X1(37) has infinitely many places of degree 9 is equivalent to the ques-
tion whether W 0

9 (X1(37)) contains a translate of E. Higher values of d lead to
additional mathematical problems, for instance, when X1(N) has infinitely many
places of degree d but no function of degree d.

Appendix A. Magma Calculations

We use one custom function. It takes as input a divisor and gives as output the
degrees of all non-constant functions in the associated Riemann-Roch space.

function FunctionDegrees(divisor)

constantField := ConstantField(FunctionField(divisor));

space,map := RiemannRochSpace(divisor);

return [Degree(map(i)) : i in space | map(i) notin constantField];

end function;

We divide the computation according to type:

Definition 5. Write D as
k∑

i=1

nipi

with pi distinct places and ni ∈ Z − {0} such that (deg(p1), n1) > (deg(p2), n2) >
· · · > (deg(pk), nk) where > is the lexicographic ordering on tuples. Then type(D)
is defined to be the ordered sequence of tuples

((deg(p1), n1), (deg(p2), n2), . . . , (deg(pk), nk)).

If deg(pi) = 1 for all i then (n1, . . . , nk) is a shorter notation for type(D).

For example if D = P1 + 3P2 where P1 is a place of degree 5 and P2 a place of
degree 1 then

type(D) = ((5, 1), (1, 3)).

The type of a divisor is stable under the action of Aut(C).

A.1. The case N = 37 and mdeg > 1.
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A.1.1. Dominating the set S2. Let

cuspsum :=
∑

p∈X1(37)(F2)

p

(short for rational-cusp-sum) be the sum of all F2 rational places. Then the set

A′2 := {cuspsum +D | D = p1 + · · ·+ p7 with p1, . . . , p7 ∈ X1(37)(F2)}
dominates S2. However, A′2 contains many divisors. Using divisors of higher
degree, of the form k · cuspsum+ · · · for k = 1, 2, 3 depending on type(D), we can
dominate S2 with much fewer divisors. To prove:

min{deg(f) | f ∈ H0(X1(37)F2 , cuspsum +D)− F2} > 18 (4)

for all cuspsum + D in A′2 we divide the computation: The table below list for
each type(D) (a partition of 7) from which Magma calculation we can conclude
inequality (4) for that type.

type(D) calculation
(7), (6, 1) and (5, 2) 1
(5, 1, 1), (4, 3), (4, 2, 1), (4, 1, 1, 1) and (3, 3, 1) 2
(3, 2, 2) 3
(3, 2, 1, 1) and (3, 1, 1, 1, 1) 2
(2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) 4

As in Section 3.2, start the computation by loading the file X1_37_AFF.m. Next,
load the program FunctionDegrees and then run the following:

> //calculation 1

> p := plc1[1];

> [Dimension(cuspsum + 6*p + 2*P) : P in plc1];

[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

> //calculation 2

> Min(&cat[FunctionDegrees(2*cuspsum + 4*p + 2*P) : P in plc1]);

18 105

> //calculation 3

> s := Subsets(SequenceToSet(plc1[2..18]),2);

> &cat[FunctionDegrees(cuspsum + 3*p + 2*(&+PQ)) : PQ in s];

[]

> //calculation 4

> Min(FunctionDegrees(3*cuspsum - 4*p);

18 48

The set A2 in the proof of Proposition 3 is the set of divisors occurring in the four
calculations above. Calculation 4 used that if f ∈ F2(X1(37)) has deg(f) 6 17
then at least one of f, f + 1 has an F2-rational root since #X1(37)(F2) = 18.
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A.1.2. Dominating the set S3. The set

A′3 := {cuspsum +D | D > 0, deg(D) = 12 with > 1 nonrational place}
dominates all functions in S3. This time we break up the computation into the
following types where we use the following shorthand notation

a(c, d) := (c, d), . . . , (c, d)︸ ︷︷ ︸
a

type(D) covered by calculation #c c
((12,1)) and ((11, 1),(1,1)) 1
((10,1),(1,2)) and ((10,1),(1,1),(1,1)) 2
((9,1)(1,3)) 3
((9,1),(1,2),(1,1)) and ((9,1),(1,1),(1,1),(1,1)) 4
((7,1),(1,5)), ((7,1),(1,4),(1,1)) and ((7,1),(1,3),(1,2)) 5
((7,1),(1,3),(1,1),(1,1)) and ((7,1),(1,2),(1,2),(1,1)) 6
((7,1),(1,2),3(1,1)) and ((7,1),5(1,1)) 7
((6,2)) and ((6,1),(6,1)) 8
((6,1),(1,6)), ((6,1),(1,5),(1,1)), ((6,1),(1,4),(1,2)), ((6,1),(1,3),(1,3)) 9
((6,1),(1,4),2(1,1)), ((6,1),(1,3),(1,2),(1,1)), ((6,1),3(1,2)) 10
((6,1),2(1,2),2(1,1)),((6,1),(1,3),3(1,1)),((6,1),(1,2),4(1,1)),((6,1),6(1,1)) 11

X1(37)F2 has no places of degrees 2–5 and 8. So any non-rational place contributes
at least 6 to deg(D), a fortunate fact that reduces the number of divisors to a
manageable level. The Magma commands to cover these 11 cases are similar to
those in Section A.1.1 and can be copied from [DvH].

Theorem 4. The values in Table 1 are upper bounds for the gonality of X1(N)
over Q. For N 6 40 they are exact values.

Proof. The functions listed at [DvH] are explicit proofs for the upper bounds in
Table 1. Section 3, Appendix A, and the accompanying Magma files on [DvH]
prove that the bounds are sharp for N 6 40. �
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TORSION POINTS ON ELLIPTIC CURVES
OVER NUMBER FIELDS OF SMALL DEGREE

MAARTEN DERICKX, SHELDON KAMIENNY, WILLIAM STEIN,
AND MICHAEL STOLL

Abstract. We determine the set S(d) of possible prime orders of K-rational
points on elliptic curves over number fields K of degree d, for d = 4, 5 and 6.

1. Introduction

For an integer d ≥ 1, we let S(d) be the set of primes p such that there exists
an elliptic curve E over a number field K of degree d with a K-rational point of
order p in E(K). The notation Primes(n) will be used to denote the set of all
primes ≤ n. Mazur [1977, 1978] has famously proved that

S(1) = Primes(7).

Kamienny [1992b] showed that

S(2) = Primes(13)

and Parent [2000, 2003], extending the techniques used by Mazur and Kamienny,
proved that

S(3) = Primes(13).

In fact S(d) is finite for every d as proven in Merel [1996], and Merel even gave an
explicit but super exponential bound on the largest element of S(d). Shortly after
Merel proved the finiteness of S(d), Oesterlé managed to improve upon Merel’s
bound by showing S(d) ⊆ Primes((3d/2 + 1)2) if d > 3 and S(3) ⊆ Primes(37) ∪
{43}. The result of Parent mentioned earlier depends on Oesterlé’s bound for S(3)
and a hypothesis Parent denoted by (∗)p [Parent, 2000, p. 724] for the primes
p ≤ 43. The hypothesis (∗)p is that the rank of the winding quotient Je

µ(p) is
zero. Parent already mentioned that (∗)p probably holds for all primes and that
this result would follow from results announced by Kato, but these results were
not yet published at the time that Parent wrote is article. These results have
now indeed been published as Kato [2004]. Details on Je

µ(p) and how to do derive
(∗)p from the work of Kato are given in Section 4. Oesterlé never published his
results, but was kind enough to give us his unpublished notes so that the gap in
the literature could be filled. The Appendix of this article contains his arguments
for showing that S(d) ⊆ Primes((3d/2 + 1)2) for d ≥ 6 and S(d) ⊆ Primes(410) for

Date: June 10, 2016.
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d = 3, 4, 5 as stated in Theorem A.2. His notes also included a section where he
further improved the bound on S(d) with d = 3, 4, 5, but these are omitted since
we have found it easier to deal with these cases using the techniques developed in
the main text.

Theorem 1.1. Suppose that S(d) ⊆ Primes(2281) for 3 ≤ d ≤ 7, then

S(3) = Primes (13),

S(4) = Primes (17),

S(5) = Primes (19),

S(6) = Primes (19) ∪ {37} and

S(7) ⊆ Primes (23) ∪ {37, 43, 59, 61, 67, 71, 73, 113, 127} .
The reason for including the condition S(d) ⊆ Primes(2281) in the statement is

to make it possible for us to give a proof that does not Oesterlé’s bound (Theorem
A.1 of the appendix). Theorem A.2 of the appendix tells us that condition S(d) ⊆
Primes(2281) is satisfied for 3 ≤ d ≤ 7 so the conclusion of the above Theorem
holds unconditionally. Theorem A.1 actually also implies S(d) ⊆ Primes(2281)
for 3 ≤ d ≤ 7, but the proof given in the appendix depends on Theorem 1.1, so
we need to use Theorem A.2 to avoid creating circular references. Additionally
the reason for reproving the already known result on S(3) is because the results
of Parent [2000, 2003] depend on the unpublished results of Oesterlé. We cannot
cite Parent in the appendix in order to prove S(3) ⊆ Primes(43), since we want to
give a proof Oesterlé’s unpublished results in the appendix.

From our computation it even follows that S(7) ⊆ Primes (23) ∪ {37} if the
condition (∗∗)d,p,` holds for d = 7, p = 43, 59, 61, 67, 71, 73, 113, 127 and ` = 2.

The effective divisors D ⊆ X1(p)(d)(F`) such that the associated line
bundle OX1(p)F`

(D) lifts to Z(`) are exactly the effective divisors whose

support consists of the cusps mapping to the cusp 0F` of X0(p)(F`).
(∗∗)d,p,`

This condition is easily seen to be true if p > (`d/2 + 1)2, see Section 5.3, and
we managed even to verify it for many p ≤ (2d/2 + 1)2 and d ≤ 7. However the
verifying of the condition for the p ≤ (2d/2 + 1)2 and d ≤ 7 was done using explicit
calculations and careful case by case studies. Finding a theoretical argument that
also works for p ≤ (`d/2 + 1)2 is of interest though, since if there exists a function
P ∗∗ : N>0 → R such that for every integer d > 0 and prime p with p > P ∗∗(d)
one can find an ` > 2 such that (∗∗)d,p,` holds, then [Parent, 1999, Thm. 1] shows
that S(d) ⊆ Primes(max(P ∗∗(d), 65(2d)6)). So from the existence of a function
P ∗∗(d) < (3d/2 + 1)2 as above one obtains an improvement upon Oesterlé’s bound.

Let S ′(d) be the set of primes p such that there exist infinitely many elliptic
curves E with pairwise distinct j-invariants over a number field K of degree d. One
of course has S ′(d) ⊆ S(d). For d = 1, 2 or 3 one even has an equality S ′(d) = S(d)
Mazur [1977], Kamienny [1992b], Jeon et al. [2011a]. There are a lot more S ′(d)
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known, indeed S ′(4) = Primes(17) Jeon et al. [2011b], S ′(5) = S ′(6) = Primes(19)
and S ′(7) = S ′(8) = Primes(23) Derickx and van Hoeij [2014]. These results,
together with the fact that a twist of the elliptic curve y2 +xy+y = x3 +x2−8x+6
has a point of order 37 over the degree 6 number field Q(

√
5, cos(2π/7)) [Elkies,

1998, Eq. 108], show that we only need to prove ⊆ instead of = in Theorem 1.1.
The ⊆ inclusions are obtained by studying the points on X1(p) over number

fields of degree d. Indeed if E is an elliptic curve over a number field K of degree
d and P ∈ E(K) a point of order p, then the pair (E,P ) gives rise to a point
s ∈ X1(p)(K). If one lets σ1, . . . , σd : K → Q be the d different embeddings of K
in Q then

s(d) :=

(d)∑

i=1

σi(s) ∈ X1(p)(d)(Q) (1)

is a Q rational point on the d-th symmetric power of X1(p). Conversely, every

point in X1(p)(d)(Q) can be written as
∑m

i=1 nis
(di)
i with si ∈ X1(Ki), Ki a number

field of degree di and ni ∈ N>0. So the question whether p ∈ S(d) can be answered
if one can find all Q rational points on X1(p)(d).

In Section 3 some general theory is developed that, if certain conditions are met,
allows one to find all rational points on the symmetric powers of a curve. This
theory is similar to the Chabauty for symmetric powers of curves in Siksek [2009],
except for the fact that we use formal immersions, as done in Mazur [1978] and
Kamienny [1992a], instead of the p-adic integration used by Siksek. As we will
see later, this allows us to work over discrete valuation ring with smaller residue
characteristic then Siksek. The discussion of Mazur and Kamienny is specific
to modular curves, whereas in Section 3 we took care to write down how their
arguments work out for arbitrary curves. The most essential part of Section 3 for
obtaining Theorem 1.1 is the trick of Parent [2000] that allows one to also work
over discrete valuation rings in characteristic 2: this trick is the use of assumption
(3) of Proposition 3.2 instead of (1).

In Section 5 we spell out very explicitly what the results of Section 3 mean when
applied to modular curves, giving several variations on the strategies of finding all
rational points on symmetric powers of modular curves as a corollary of Section 3.
We even work out the strategy explicitly enough so that it can be tested by a
computer program written in Sage [2014]. Most cases were handled quite easily
by this computer program, although the proof that 29, 31, 41 /∈ S(d) for d ≤ 7 and
73 /∈ S(6) required some extra attention.

Acknoweldgements. We would like to thank Barry Mazur and Bas Edixhoven for
their many valuable comments and suggestions, Pierre Parent for his suggestion
to look at CM elliptic curves in order to show that 73 /∈ S(6), and Tessa Schild
for her proofreading.
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2. Formal Immersions

Definition / Proposition 2.1 (Formal Immersion). Let φ : X → Y be a mor-
phism of Noetherian schemes and x ∈ X be a point which maps to y ∈ Y . Then φ
is a formal immersion at x if one of the two following equivalent conditions hold:

• the induced morphism of the complete local rings φ̂∗ : ÔY,y → ÔX,x is sur-
jective.
• The maps φ : k(y)→ k(x) and φ∗ : Coty(Y )→ Cotx(X) are both surjective.

Proof. It is clear that the first condition implies the second. The other impli-
cation can be proved by using Nakayama’s lemma to lift a basis of Coty(Y ) to

a set of generators f1, . . . , fn of my, the maximal ideal of ÔY,y. The fact that

φ̂∗(f1), . . . , φ̂∗(fn) generate mx/m
2
x implies that φ̂∗(f1), . . . , φ̂∗(fn) also generate

mx. As a consequence we get that for all i the map mi
y/m

i+1
y → mi

x/m
i+1
x is sur-

jective, hence by the completeness of ÔY,y we also have that φ̂∗ is surjective. �

There is one important property of formal immersions that we will use:

Lemma 2.2. Let X, Y be Noetherian schemes. Let R be a Noetherian local ring,
with maximal ideal m and residue field k = R/m. Suppose f : X → Y is a
morphism of schemes that is a formal immersion at a point x ∈ X(k) and suppose
P,Q ∈ X(R) are two points such that x = Pk = Qk and f(P ) = f(Q). Then
P = Q.

Proof. Let y = f(x) and view P,Q as morphisms SpecR → X and hence write
f ◦P instead of f(P ). The morphisms P,Q and f induce maps on the local rings,
we will call these P ∗m, Q

∗
m and f ∗x respectively:

R OX,x OY,y

R̂ ÔX,x ÔY,y

f∗x

P ∗m

Q∗m

f̂∗x

P̂ ∗m

Q̂∗m

Since f ◦ P = f ◦ Q we also know that P̂ ∗m ◦ f̂ ∗x = Q̂∗m ◦ f̂ ∗x . Now f is a formal

immersion at x. This means f̂ ∗x is surjective and hence that P̂ ∗m = Q̂∗m. Because

R is Noetherian local ring, the map R→ R̂ is injective and hence P ∗m = Q∗m. The
proposition now follows from the following commuting diagrams:
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X

SpecR SpecOX,x
Pm

P

X

SpecR SpecOX,x
Qm

Q

�

3. Rational points on symmetric powers of curves

This section contains a very general discussion on rational points on symmetric
powers of curves similar to [Siksek, 2009, §3]. There is a huge overlap where both
the results of [Siksek, 2009, §3] and this section are applicable. However, both
Siksek’s and our own results are applicable in situations where the others result is
not; both the overlap and differences will be discussed.

Throughout this section R will be a discrete valuation ring whose residue field k
is perfect. Its fraction field will be denoted by K and its maximal ideal by m. If C is
a smooth and projective curve over R, such that CK is geometrically irreducible,
then its Jacobian J exists. Let J0 be the fiberwise connected component of 0,
which is isomorphic to Pic0

C/R and semi-Abelian [Bosch et al., 1990, §9.7 Cor. 2].

Since C is smooth over R, actually J0 = J and the special fiber of J is an Abelian
variety, hence J is an Abelian scheme over R.

For any R-scheme S and any x ∈ C(d)(S), define

fd,x : C
(d)
S → JS (2)

as the map that for all S-schemes T and all D ∈ C(d)
S (T ) sends D to the class of

OCT (D − xT ) in JS(T ), where we use [Bosch et al., 1990, §9.3 Prop. 3] to see the

points in C
(d)
S (T ) as effective relative Cartier divisors of degree d on CT over T .

The following Lemma is the key Lemma which will be used throughout this
paper to study the rational points on C(d).

Lemma 3.1. Let C be a smooth and projective curve over R with geometrically
irreducible generic fiber and Jacobian J . Let t : J → A be a map of Abelian
schemes 1 over R. Let y ∈ C(d)(k) and assume that the following conditions hold:

(1) t(J1(R)) = {0}, where J1(R) := ker J(R)→ J(k),

(2) the map t ◦ fd,y : C
(d)
k → Ak is a formal immersion at y.

Then there is at most one point in C(d)(R) whose reduction is y.

1one could even more generally take t to be a map from the formal group of J to a formal

group F over R, and replace fd,y by f̂d,y : Spf Ô
C

(d)
k ,y

→ Spf ÔJk,0. But in the case where

we want to apply this lemma the Abelian variety JK is of GL2 type and hence J had enough
endomorphisms to not need to use the formal group version
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Proof. If there is no point in C(d)(R) whose reduction is y, then there is nothing
to prove, so let x ∈ C(d)(R) be a point whose reduction is y. Then condition
2 above ensures that t ◦ fd,x : C(d) → A is a formal immersion at y. Indeed,

both Coty C
(d)/Coty C

(d)
k and Coty A/Coty Ak are canonically isomorphic with

m/m2 = Cotk R, hence the surjectivity of t ◦ fd,x∗ : Cot0A → Coty C
(d) follows

from the surjectivity of (t◦fd,y)∗ : Cot0Ak → Coty C
(d)
k . Now let x′ ∈ C(d)(R) be a

point whose reduction is y, then condition 1 together with fd,x(x
′)k = 0k = fd,x(x)k

imply that t ◦ fd,x(x′) = 0R = t ◦ fd,x(x). Finally, according to Lemma 2.2 the fact
that t ◦ fd,x is a formal immersion implies x′ = x. �

In the case where we want to apply Lemma 3.1, the ring R will be Z(`). In this
case J1(R) is a finite index subgroup of J(R) and hence we need t(J(R)) to be
finite in order for condition (1) to be satisfied. Conversely if t(J(R)) is finite, then
there are some quite mild conditions on t, A and R that imply that condition(1)
is satisfied.

Proposition 3.2. Suppose that R = Z(`) and t(J(R)) is finite and either

(1) ` > 2,
(2) ` = 2 and A(R)[2] injects into A(F2), or
(3) ` = 2 and t = t2 ◦ t1 where t1 : J → A′, t2 : A′ → A are maps of Abelian

schemes such that t1(J(R)) is finite and t2 kills all the elements in A′(R)[2]
that reduce to 0 mod `.

then condition (1) of Lemma 3.1 is satisfied.

Proof. If either ` > 2, or ` = 2 and A(R)[2] injects into A(k), then t(J(R))→ A(k)
is injective, hence t(J1(R)) = {0} wich deals with the first to case. Alternatively
one could see them as special cases of the third one if one takes t2 = 1. In the third
case we know that since t1(J1(R)) is finite and contained in the kernel of reduction
that t1(J1(R)) ⊂ A′(R)[2] and hence t2◦t1(J1(R)) = {0} by the definition of t2. �

In the case that the map t of Lemma 3.1 is the identity map, condition (2) of

that Lemma can be nicely restated in terms of C
(d)
2,k where C

(d)
2,k ⊆ C

(d)
k is defined

as the closed sub-variety corresponding to the divisors D over k̄ of degree d such
that H0(Ck̄,OCk̄(D)) is a k̄ vector space whose dimension is at least 2.

Proposition 3.3. Let y ∈ C(d)(k̄) be a point then the map fd,y : C
(d)

k̄
→ Jk̄ is a

formal immersion at y if and only if y /∈ C(d)
2,k(k̄). In particular if C(k) 6= ∅, then

fd,y is a formal immersion at all points in C
(d)
k (k) if and only if k(Ck) contains no

non-constant functions of degree ≤ d.

Proof. Since the map L 7→ L(−y) induces an isomorphism PicdCk → J , we see

that fd,y is a formal immersion at y if and only if the canonical map C
(d)
k → PicdCk/k

is. The map C
(d)
k \ C

(d)
2,k → PicdCk/k can be written as a closed immersion followed
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by an open immersion and hence is a formal immersion at all its points, which

proves the “if”-part. For the “only if”-part one just notices that if y ∈ C(d)
2,k , then

the fiber of fd,y above 0 = fd,y(y) contains a P1 and hence fd,y is not a formal
immersion at y. �

Let C be as in the above proposition, let x ∈ Ck be a closed point, k(x) be its

residue field and q ∈ ÔCk,x be a uniformizer. The completed local ring ÔCk,x is
isomorphic to k(x)[[q]], and if we have a global 1-form ω ∈ Ω1

Ck/k
(Ck), then we can

write its pullback to ÔCk,x as fdq with f in ÔCk,x, hence we can write:

ωOCk,x =
∞∑

n=1

anq
n−1dq, an ∈ k(x). (3)

The right hand side of the above formula is called the q-expansion of ω.
The map f1,x : Ck(x) → Jk(x) induces an isomorphism f ∗1,x : H0(Jk(x),Ω

1) →
H0(Ck(x),Ω

1) and evaluation in zero gives an isomorphismH0(Jk(x),Ω
1)→ Cot0 Jk(x).

If ω′ ∈ Cot0 Jk(x) corresponds to ω ∈ H0(Ck(x),Ω
1) under these isomorphisms then

we also say that
∑∞

n=1 anq
n−1dq is the q-expansion of ω′.

The following complete local rings are equal

Ô
C

(d)
k(x)

,dx
= k(x)[[q1, . . . , qd]]

Sd = k(x)[[σ1, . . . , σd]] (4)

where qi is the pullback of q along the i’th projection map πi : Cd
k(x) → Ck(x) and

σ1 := q1 + · · ·+qd up to σd := q1q2 · · · qd are the elementary symmetric polynomials

in q1 up to qd. Let dσi denote the image of dσi in CotdxC
(d)
k(x), then dσ1 up to dσd

form a basis of CotdxC
(d)
k(x).

Proposition 3.4. Let d be an integer, C, J and fd,dx : C
(d)
k(x) → Jk(x) be as in the

setup of Lemma 3.1 for x ∈ Ck a closed point. Let q be a uniformizer at x, qi, σi
as above and ω ∈ Cot0 Jk(x) an element with q-expansion

∑∞
n=1 anq

n−1dq. Then

d∑

n=1

(−1)n−1andσn = f ∗d,dxω ∈ CotdxC
(d)
k(x)

Proof. Let p : Cd
k(x) → C

(d)
k(x) denote the quotient map then fd,dx ◦p =

∑d
i=1 f1,x ◦πi

where πi : Cd
k(x) → Ck(x) denotes the i’th projection map. In particular,

(fd,dx ◦ p)∗(ω) =
∞∑

n=1

an

(
d∑

i=1

qn−1
i dqi

)
.

For a ring B consider the map of B[[σ1, . . . , σd]]-modules

DB :
d⊕

j=1

B[[σ1, . . . , σd]]dσj →
d⊕

i=1

B[[q1, . . . , qd]dqi
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given by dσj 7→
∑d

i=1
∂σj
∂qi

dqi. If we define sj :=
∑d

i=1 q
j
i for all integers j and

σj = 0 for all j > d, then Newton’s identities give

sn +
n−1∑

j=1

(−1)jσjsn−j = (−1)n−1nσn.

Applying d to this expression shows that

(−1)n−1dσn −
d∑

i=1

qn−1
i dqi =

1

n
d

(
n−1∑

j=1

(−1)jσjsn−j

)

for B = Q. The right hand side is actually contained in
⊕n−1

j=1 Idσj where I ⊂
Z[[σ1, . . . , σd]] is the ideal generated σ1 up to σd. The proposition follows by base

changing DZ to Dk and quotient out by
⊕d

j=1 Idσj. �

Corollary 3.5. Let y ∈ C(d)(k) be a point and write y =
∑m

j=1 djyj with yj ∈
C(d)(k̄) distinct and m, d1, . . . , dm ∈ N>0. Let qj be a uniformizer at yj, e be a
positive integer and ω1, · · · , ωe ∈ t∗(Cot0Ak̄) ⊆ Cot0 Jk̄. For 1 ≤ i ≤ e and
1 ≤ j ≤ m let a(ωi, qj, dj) := (a1(ωi), . . . , adj(ωi)) be the vector of the first dj
coefficients of ωi’s qj-expansion.

Then t ◦ fd,y : C
(d)
k → Ak is a formal immersion at y if the matrix

A :=




a(ω1, q1, d1) a(ω1, q2, d2) · · · a(ω1, q1, dm)
a(ω2, q1, d1) a(ω2, q2, d2) · · · a(ω2, q1, dm)

...
...

. . .
...

a(ωe, q1, d1) a(ωe, q2, d2) · · · a(ωe, q1, dm)


 (5)

has rank d. If ω1, · · · , ωe generate t∗(Cot0Ak̄), then the previous statement even
becomes an equivalence.

Proof. The natural map
∏m

j=1C
(dj)

k̄
→ C

(d)

k̄
is étale at (d1y1, d2y2, . . . , dmym), hence

we get an isomorphism of cotangent spaces

Coty C
(d)

k̄
∼=

m⊕

j=1

Cotdjyj C
(dj)

k̄
.

For j from 1 up to m and 1 ≤ i ≤ dj let σj,i be the symmetric functions associated

to qj as in (4). The elements (−1)j−1dσj,i with 1 ≤ j ≤ m and 1 ≤ i ≤ dj form a

basis of Coty C
(d)

k̄
under this isomorphism. The corollary follows since if 1 ≤ h ≤ e

is an integer then the h’th row of A is just f ∗d,y(ωh) with respect to this basis. �
If one takes R = Z` with ` > maxi(di) then the matrix A in Theorem 1 of

Siksek [2009] is obtained by dividing the columns of the matrix A above by certain
column dependent integers ≤ maxi(di). Actually, there is a huge overlap between
Theorem 1 of Siksek [2009] and the result one gets when combining Lemma 3.1
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and Corollary 3.5. Our version has the advantage that one doesn’t have the con-
ditions ` > maxi(di). The reason is that the formal immersion criterion, and more
generally the formal group over R approach, do not introduce denominators in the
matrix A, while the p-adic logarithm in Siksek’s Chabauty approach does intro-
duce them, since it is only defined over K and not over R. Theorem 1 of Siksek
[2009] has the advantage that one has more freedom in the choice of the one-forms
ωi. For example, our version is useless if J is simple and has rank r > 1, while
Siksek’s version is still applicable in cases where r + d ≤ g where g is the genus
of C, although this problem can be mitigated by replacing the map t : J → A
by a map of formal groups in Lemma 3.1. The reason for not using the results of
Siksek [2009] is that we really want to take ` = 2, since in general the number of
points on C(d)(F`) is the smallest for ` = 2, so that we need to check the formal
immersion condition (2) of Lemma 3.1 for fewer points.

The most straightforward way to turn Lemma 3.1 into a way to determine all
rational points in C(d)(R) is the following:

Theorem 3.6. Let C be a curve that is smooth and projective over R such that
CK is geometrically irreducible, and let J denote its Jacobian over R. Let d be a
positive integer and S ⊆ C(d)(R) be a finite set. Let t : J → A be a map of Abelian
schemes over R, denote by redk the reduction to k map and µ : C(d) → PicdC/R
the map sending a divisor to its associated line bundle. Assume that the following
conditions hold:

(1) t(J1(R)) = {0}, where J1(R) := ker(J(R)→ J(k)),

(2) the map t ◦ fd,s : C
(d)
k → Ak with fd,s as in Eq. (2) is a formal immersion

at all s ∈ redk(S) and
(3) redk(S) = µ−1(redk(PicdC/R(R))).

Then S = C(d)(R).

Proof. Condition 3 ensures that redk(C
(d)(R)) = redk(S), and the first two condi-

tions together with Lemma 3.1 ensure that every point in redk(S) has exactly one
point in C(d)(R) reducing to it. �

In the above theorem however the set S might be huge, and it might get im-
practical to verify condition 2 explicitly in concrete examples. It turned out that
this is the case in the situation where we want to apply it. However in our
setup there will often exist a map of curves f : C → D such that the set S
for which we want to prove S = C(d)(R) is the inverse image of a single point un-
der f (d) : C(d)(R) → D(d)(R). The following generalization of the above theorem
whose proof is similar will be useful in these cases.

Theorem 3.7. Let C and D be smooth and projective curves over R whose generic
fibers are geometrically irreducible. Let f : C → D be a non constant map. Denote
by J the Jacobian of D over R. Let d be a positive integer and S ⊆ C(d)(R) and
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T ⊆ D(d)(R) be finite sets such that S = f (d)−1
(T ) ⊆ C(d)(R). Let t : J → A be a

map of Abelian schemes over R, denote by µ : C(d) → PicdC/R the map sending a
divisor to its associated line bundle. Assume that the following conditions hold:

(1) t(J1(R)) = {0}, where J1(R) := ker J(R)→ J(k),

(2) the map t ◦ fd,s : D
(d)
k → Ak with fd,s as in Eq. (2) is a formal immersion

at all s ∈ redk(T ) and
(3) f (d)(µ−1(redk(PicdC/R(R)))) ⊆ redk(T ).

Then S = C(d)(R).
S� _

��

// T� _

��

PicdC/R(R)

redk
��

C(d)(R)
µ
oo

redk
��

f (d)

// D(d)(R)

redk
��

PicdC/R(k) C(d)(k)
µ
oo

f (d)

// D(d)(k)

Proof. Condition (3) ensures that

redk(f
(d)(C(d)(R))) = f (d)(redk(C

(d)(R))) ⊆ redk(T ),

and the first two conditions together with Lemma 3.1 ensure that every point in
redk(T ) has exactly one point in D(d)(R) reducing to it. So we can conclude that

f (d)(C(d)(R)) = T hence the theorem follows from the assumption S = f (d)−1
(T ).
�

Remark. Theorems 3.6 and 3.7 are still true if one lets t depend on s. Theoretically
this is not a huge gain since one can always take t : J → A to be the universal
map of Abelian schemes such that (1) holds. However, if one wants to restrict the
choice of t to t ∈ EndR J , then the elements such that (1) holds form a two sided
ideal I ⊆ EndR J . If this ideal is not principal then it might pay to use a t that
depends s.

If condition (3) of Theorem 3.6 holds, then taking T = f (d)(S) ensures that (3)
of Theorem 3.7 holds. However, even in the case that (3) of Theorem 3.6 fails
to hold for S = C(d)(R), it might still be possible to find an f : C → D and a
T ⊆ D(d)(R) such that (3) of Theorem 3.7 holds. The only case where we will
make use of this is for showing 73 /∈ S(6). There we found a Q rational point
x(6) ∈ (X1(73)/〈10〉)(6)(Q) that was the only Q-rational point in its residue class
mod 2. We could show that none of the points X1(73)(6)(Q) mapping to x(6) were
defined over Q, hence we could show that the 4 points in X1(73)(6)(F2) mapping

to x
(6)
F2

had no Q-rational points above them.
If the curve C is a smooth curve over some global field and one has generators

for a finite index subgroup of the Mordell-Weil group of (a quotient of) J , then
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instead of using Theorem 3.6 or Theorem 3.7 for a single prime, one could even use
the Mordell-Weil sieve as described in [Siksek, 2009, §5] to combine the information
about the rational points of C(d) obtained by Lemma 3.1 for several primes. This
however, was not necessary for our purposes.

4. The winding quotient

In this section we will let N be an integer and H ⊆ (Z/NZ)∗ a subgroup. The
curve XH over Z[1/N ] is defined to be the quotient curve X1(N)/H where (Z/NZ)∗

acts as the diamond operators. Taking H = 1 gives X1(N) and H = (Z/NZ)∗

gives X0(N).
Integration gives a map

H1(XH(C), cusps,Z)→ HomC(H0(XH(C),Ω1),C) ∼= H1(XH(C),R).

By a theorem of Manin and Drinfeld the image of this map is contained in
H1(XH(C),Q). Let {0,∞} ∈ H1(XH(C), cusps;Z) be the element coming from a
path from 0 to i∞ in the complex upper half plane.

Definition 4.1. The element e := ω 7→
∫
{0,∞} ω ∈ H1(XH(C),Q) is called the

winding element and the corresponding ideal Ae := Ann(e) ⊆ T, consisting of the
elements annihilating e, is called the winding ideal. The quotient Je

H := JH/AeJH
is called the winding quotient.

One can also define Xµ,H to be the quotient of Xµ(N) by H. The winding
element and the winding quotient can be defined in the same way, and the latter
will be denoted by Je

µ,H . The isomorphism

WN : Xµ(N)→ X1(N) (6)

sending (E, f : µN → E[N ]) to (E/ im(f), f∨ : Z/NZ → E[N ]/ im(f)) is defined
over Z[1/N ]. It interchanges the cusps 0 and ∞ and commutes with taking the
quotient by H. This isomorphism sends the winding ideal of Xµ,H to the winding
ideal of XH and hence we get an isomorphism Je

µ,H
∼= Je

H .
The essential property of the winding quotient is that its group of rational points

is finite.

Theorem 4.2. The rank of Je
H(Q) and Je

µ,H(Q) are 0 .

In [Parent, 1999, §3.8] this theorem is proved for Je
0 (N) using a result from

Kolyvagin and Logachëv [1989]. This result states that an abelian variety A over
Q that is a quotient of J0(N)Q has Mordel-Weil rank 0 if its analytic rank is zero.
The result of Kolyvagin and Logachev was generalized by Kato [Kato, 2004, Cor.
14.3] to abelian varieties that are a quotient of J1(N)Q. In both Parent [2000]
and Parent [2003] it is mentioned that the theorem follows from using Kato’s
generalization. Here is a short sketch how to deduce the finiteness of the winding
quotient form the work of Kato, where we closely follow the arguments of [Parent,
1999, §3.8].
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Proof. Because Je
H is a quotient of Je

1 (N) and Je
H
∼= Je

µ,H , it suffices to show the
theorem for Je

1 (N).
The Hecke algebra TQ viewed as subalgebra of the endomorphism ring of S2(Γ1(N))Q

can be written as
TQ := Rf1 ×Rf2 . . .×Rfk

where the fi range over all Galois orbits of newforms for Γ1 of level Mi dividing
N and Rfi is the restriction of TQ to the subspace Efi of S2(Γ1(N))Q consisting of
all elements that can be written as linear combinations of the Galois conjugates
of Bd(fi) with d | N/Mi [Parent, 1999, Thm. 3.5] . Now let M be an integer that
divides N and d an integer dividing N/M . The degeneracy map Bd : X1(N) →
X1(M) gives rise to B∗d : J1(M)Q → J1(N)Q and we can define

J1(N)newQ := J1(N)Q/
∑

M |N,M 6=N,d|M/N

imB∗d .

And we can use the maps Bd,∗ : J1(N)Q → J1(M)Q to define a map of abelian
varieties

Φ: J1(N)Q →
⊕

M |N

⊕

d|N/M
J1(M)newQ .

Now the identification

S2(Γ1(N))C ∼= H0(X1(N)C,Ω
1) ∼= H0(J1(N)C,Ω

1) ∼= Cot0(J1(N)C

together with the isomorphism ⊕M |N⊕d|N/MS2(Γ1(M))newC → S2(Γ1(M))newC shows
that ΦC is an isogeny, so Φ is one also. We also have an isogeny J1(M)new → ⊕Jf
where f runs over the Galois orbits of newforms in S2(Γ1(N) and Jf is the abelian
variety attached to such a Galois orbit. Combining these isogenies with Φ we get
an isogeny

J1(N)Q →
⊕

i

⊕

d|N/Mi

Jfi,Q.

where the fi range over all Galois orbits of newforms for Γ1 of level Mi dividing
N . Define Rfi as ⊕i 6=jRfj , with this definition the product ⊕d|N/Mi

Jfi,Q will be

isogenous to J1(N)Q/R
fiJ1(N)Q.

Now Parent shows that if the integration pairing 〈e, fi〉 is non-zero, then Ae,Q∩
Rfi = 0 and conversely that if 〈e, fi〉 = 0, then Ae,Q ∩ Rfi = Rfi . Now since
L(fi, 1) = 2π〈e, fi〉 we can write

Ae,Q =
⊕

i:L(fi,1)=0

Rfi .

Combining this with the previous discussion we get an isogeny

Je
1 (N)→

⊕

i:L(fi,1) 6=0

Je
1 (N)/RfiJe

1 (N)→
⊕

i:L(fi,1)6=0

⊕d|N/Mi
Jfi,Q

where the latter product has rank 0 by Kato’s theorem. �
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5. The conditions of 3.7 for Xµ(N)→ Xµ,H.

Let p be a prime. In order to determine X1(p)(d)(Q) or equivalently Xµ(p)(d)(Q)
by using the isomorphism Wp defined in (6) we will apply Theorem 3.7 to the
quotient map f : Xµ(p)→ Xµ,H where H ⊆ (Z/pZ)∗/± 1 is some subgroup such
that we manage to verify all conditions. Much of the strategy also works if one
drops the assumption that p is a prime.

5.1. Condition 1: Using the winding quotient. Let N be an integer, ` - N a
prime and H ⊆ (Z/NZ)∗ a subgroup. Then we can use Theorem 4.2 to construct
a t : Jµ,H → A for some Abelian variety A such that (1) of 3.7 holds, i.e. such that
t(J1

µ,H(Z(`))) = 0 where J1
µ,H(Z(`)) is the kernel of reduction.

Proposition 5.1. Let ` > 2 be a prime coprime to N then condition (1) of 3.7 is
satisfied with R = Z(`) for the quotient map t : Jµ,H → Je

µ,H .

This proposition will not be used in this text, but it is stated since it allows for
comparison with other approaches of determining or bounding S(d).

The proposition above is used for J0(p) with p prime and an ` that depends
on p in the argument of Merel [1996], and is used for J0(pn) for ` = 3 or 5 in
the argument of Parent [1999]. It was used by Oesterlé with ` = 3 to prove his
exponential bound (3d/2 + 1)2, although it is only implicitly used in the Appendix
since the part of Oesterlé’s argument that uses it is replaced by a citation to Parent
[1999]. The need for ` > 2 is also the reason for the occurrence of 3 and not 2 as
the base for the exponent in Oesterlé’s bound.

The set Xµ(N)(d)(F`) has fewer elements for elements for smaller ` so one would
like to use ` = 2 if ` - N . However, there are two difficulties that arise when
doing so. The first one is that it is not necessarily true that the Jµ,H(Q)tors injects
into Jµ,H(F2). The second difficulty arises when determining which elements in
Cot0 (Jµ,H)Fl come from Cot0 (Je

µ,H)Fl as needed for Corollary 3.5. This is because
the exact sequence that relates Cot0 (Jµ,H)Fl to Cot0 (Je

µ,H)Fl for ` > 2 is not
necessarily exact for ` = 2. In Parent [2000] there is already a way of dealing with
these difficulties when using Xµ(N). His solution is to take t1 : Jµ(N) → Jµ(N)
to be a Hecke operator that factors via Je

µ and t2 : Jµ(N) → Jµ(N) such that it

kills all the two torsion in J1
µ(N)(Z(2)) and apply Proposition 3.2.

The operator t2 as needed for Proposition 3.2 can be obtained using the following
proposition.

Proposition 5.2. Let q - N be a prime, then (Tq − 〈q〉 − q)(Q) = 02 for all
Q ∈ Jµ,H(Q)tors of order coprime to q.

2This is slightly different from [Parent, 2000, prop. 1.8], in that proposition it should also
read aq := Tq−〈q〉− q. The mistake in that paper comes from Parent using the Eichler-Shimura
relation for the X1(N) while in his article he is working with Xµ(N), although he denotes our
Xµ(N) by X1(N). For more details on the Eichler-Shimura relations on Xµ(N) and X1(N) see
[Diamond and Im, 1995, p. 87]
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Proof. Let Q ∈ Jµ,H(Q) be torsion of order coprime to q, then (Tq −〈q〉− q)(Q) is
also a point of order coprime to q. Now let QFq ∈ JH(p)Fq(Fq) be its specialisation
and let Frobq be the Frobenius on JH(p)Fq and Verq its dual (verschiebung). Then
we have the Eichler-Shimura relation Tq,Fq = 〈q〉Frobq + Verq see [Diamond and
Im, 1995, p. 87] and Verq ◦Frobq = q in EndFq(JH(p)Fq). So

Tq,Fq(QFq) = 〈q〉Frobq(QFq) + Verq(QFq) = 〈q〉QFq + qQFq

giving (Tq,Fq −〈q〉− q)(QFq) = 0. Since specializing a point on a group scheme can
only change its order by a power of the characteristic of the residue field we see
that the order of (Tq − 〈q〉 − q)(Q) must be a power of q, and coprime to q at the
same time hence (Tq − 〈q〉 − q)(P ) = 0. �

What we need now is to find a way to find a Hecke operator t1 as in Proposi-
tion 3.2. Now suppose if t1 ∈ T is such that t1Ae = 0 then t1 is a Hecke operator
such that t1 : Jµ,H(p) → Jµ,H(p) factors via Je

µ,H(p). Lemma 1.9 of Parent [1999]
already gives a way of finding such Hecke operators for Jµ(p) as soon as we have
found an element t that generates the Hecke algebra T1(N)Q. If N is a prime
then the Hecke algebra T1(N)Q is of prime level and weight 2 so it is a product
of number fields. In particular we know that such a t exists. By just trying “ran-
dom” elements we should probably find such a t reasonably fast. However if N is
composite this is not necessarily true. And even in the prime case testing whether
t is a generator is a computationally expensive task if t is represented by a huge
matrix, so we don’t want to try many different t’s. Therefore we generalize his
Lemma slightly so that we don’t need t to be a generator.

Proposition 5.3. Let t ∈ TΓH be an element and let P (X) =
∏n

i=1 Pi(X)ei its
factorized characteristic polynomial when viewing t as an element of EndS2(ΓH)Q.
Define

I := {i ∈ {1, . . . , n} | P/Pi(t)e = 0 or ei > 1}
then t1(t) :=

∏
i∈I P

ei
i (t) is such that t1Ae = 0.

Proof. We have already seen that the Hecke algebra TΓH ,Q viewed as sub algebra
of the endomorphism ring of S2(ΓH)Q can be written as

TΓH ,Q := Rf1 ×Rf2 . . .×Rfk

where the fi range over all Galois orbits of newforms for ΓH of level Mi dividing N
and the Rfi are the restriction of TΓH ,Q to certain subspaces Efi of S2(ΓΓH ,Q)Q. And
we have also seen that Ae,Q = ⊕i:L(fi,1)=0Rfi . Now define Ee := ⊕i:L(fi,1)=0Efi and

E⊥e := ⊕i:L(fi,1)6=0Efi then S2(ΓH)Q = Ee⊕E⊥e and ′mathcalAe,Q :=
{
t′ ∈ TQ | t′|E⊥e = 0

}

so in particular t1Ae,Q = 0 if t1|Ee = 0. So it suffices to show that t1|Efi = 0 for all

i such that L(fi, 1) = 0. Now all Ei are contained in some generalized eigenspace
corresponding to the factor P

eji
ji

for some ji depending on i. Now for the i such

that eji > 1 we have P
eji
ji

(t)|Efi = 0 so t1|Efi = 0. For the other i we have eji = 1
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and in particular Efi = kerPji(t) so that we have P/Pji(t) ∈ Ri, now L(fi, 1) = 0
implies P/Pji(t)e = 0 hence ji ∈ I and hence t1|Efi = t1|kerPji (t)

= 0 �

If N is composite then one can get away with a smaller set than I in the previous
proposition, because then not all the terms with ei > 1 are needed. On can see
which ones are not needed by studying the action of t on the space of new forms
or Γ1(M)ΓH for all M | N . But this is not necessary for our application.

5.2. Condition 2: Kamienny’s criterion. Let N be an integer and H ⊆
(Z/NZ)∗ a subgroup, denote by S∞ ⊆ Xµ,H(Q) the set of cusps that map to
the cusp ∞ under the map Xµ,H → X0(N). On has that there are exactly
φ(N)/# {±H} elements in S∞, where φ is Euler’s totient function. Actually
(Z/NZ)∗/ {±H} acts transitively and freely on them. Define

S(d)
∞ := π(Sd∞) ⊆ X

(d)
µ,H(Q), (7)

where π : Xd
µ,H → X

(d)
µ,H is the quotient map. Then we want to be able to check

whether condition (2) of Theorem 3.7 holds for S = S
(d)
∞ . In order to do this we

make the following definition.

Definition 5.4. Let d be an integer, n0 ≥ n1 ≥ . . . ≥ ni ≥ 1 a sequence of
integers that sum to d and σ0, . . . , σi pairwise distinct cusps in Xµ,H that lie above
∞ ∈ X0(N), then we call n0σ0 + . . .+niσi an ordered sum ∞ cusps (of degree
d).

It is clear that every element of S
(d)
∞ can be written as an ordered sum of cusps

in a unique way.

Remark. If Xµ,H = X0(p) there is only one ordered sum of ∞ cusps of degree d,
namely d∞. So in this case condition (2) is the easiest to verify.

The proposition we will use to verify (2) of Theorem 3.7 is the following variant
of Kamienny’s Criterion which is a slight generalization of the variant [Parent,
2000, Prop. 2.8].

Proposition 5.5 (Kamienny’s Criterion). Let ` - N be a prime, σ = n1σ1 + . . .+
nmσm be an ordered sum of ∞ cusps of Xµ,H of degree d. Let 〈d1〉, . . . , 〈dm〉 ∈
(Z/NZ)∗/ {±H} be the diamond operators such that∞ = 〈dj〉σj. Let fd,σ : X

(d)
µ,H →

Jµ,H as in Eq. (2), let t ∈ TΓH and view t as a map Jµ,H → Jµ,H then t ◦ fd,σ : is
a formal immersion at σF` if and only if the d Hecke operators

(Ti〈dj〉t)j∈1,...,m
i∈1,...,ni

(8)

are F` linearly independent in TΓH ⊗ F`.
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Specializing to the case Xµ,H = X0(N) where S
(d)
∞ = {d∞} the condition in

Eq. (8) above becomes: The map t ◦ fd,d∞ is a formal immersion at d∞F` if and
only if the d Hecke operators

T1t, T2t, . . . , Tdt (9)

are F` linearly independent in TΓ0(N) ⊗ F`.

Proof of Proposition 5.5. We have k(t ◦ fd,σ(σF`)) = k(0F`) = Fl = k(σF`) so we
only need to check that the linear independence criterion is equivalent to

(t ◦ fd,σ)∗ : Cot0F`
Jµ,H → CotσF` X

(d)
µ,H

being surjective.
Let Eq/Z[1/N ][[q]] be the Tate curve. It has a canonical µN,Z[1/N ][[q]] embedding

α coming from the unifomization map. The pair (Eq, α) gives a formal coordinate
at the cusp ∞ of Xµ(N)Z[1/N ] and since Xµ(N) → Xµ,H is unramified at ∞ it
also gives a formal coordinate on Xµ,H at ∞. An element ω ∈ H0(Xµ,H,Z[1/N ],Ω

1)
with q-expansion

∑∞
i=1 aiq

i−1dq is sent to the cusp form fω :=
∑∞

i=1 aiq
i under the

isomorphism H0(Xµ,H,Z[1/N ],Ω
1) ∼= S2(ΓH ,Z[1/N ]). Let qj = 〈dj〉∗q, then qj is a

formal coordinate at σj. And the qj expansion of ω at σj is 〈dj〉fdqj/qj. This
shows that the a(ω, qj, nj) defined as in Corollary 3.5 is given by

a(ω, qj, nj) = a1(〈dj〉fω), a2(〈dj〉fω), . . . , anj(〈dj〉fω).

The q expansion of t∗ω is tfω, now let ω1, · · · , ωg be generators ofH0(Xµ,H,Z[1/N ],Ω
1),

then t∗ω1, · · · , t∗ωg generate t∗H0(Xµ,H,Z[1/N ],Ω
1). In particular, using Corol-

lary 3.5 we see that t∗fd,σ is a formal immersion at σF` if and only if the matrix

A :=




a(t∗ω1, q1, n1) a(t∗ω1, q2, n2) · · · a(t∗ω1, q1, nm)
a(t∗ω2, q1, n1) a(t∗ω2, q2, n2) · · · a(t∗ω2, q1, nm)

...
...

. . .
...

a(t∗ωg, q1, n1) a(t∗ωg, q2, n2) · · · a(t∗ωg, q1, nm)


 (10)

has rank d over F`.
Now by formula (5.13) of Diamond and Shurman [2005] we have for an integer

1 ≤ n ≤ nj that a(t∗ωi, qj, nj)n = an(〈dj〉tfωi) = a1(Tn〈dj〉tfωi). Using the isomor-
phism TΓH/`TΓH → Hom(S2(ΓH ,F`),F`) [Diamond and Im, 1995, Prop. 12.4.13]
3 given by T 7→ (f 7→ a1(Tf)) we see that we can replace the column of A that
contains the elements a(t∗ωi, qj, nj)n where 1 ≤ i ≤ g by Tn〈dj〉t. �

3There they show it only for ΓH = Γ0(N) or ΓH = Γ1(N), however the statement for ΓH
follows from the statement for Γ1(N), because S2(ΓH ,Z) = S2(Γ1(N),Z)ΓH/Γ1(N) and TΓH

=
TΓ1(N)|S2(ΓH ,Z).
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5.2.1. Making the testing of Kamienny’s criterion for Xµ,H faster. As we have
already seen Kamienny’s criterion for Xµ(N) requires the testing of a lot of linear
independence relations while Kamienny’s criterion for X0(N) requires testing only
1 linear independence relation. To be more specific about what we mean by a
lot, suppose that d is the degree and p = N the the prime for which we want to
check the Kamienny’s criterion of Xµ(p) and we only consider the ordered sums of
∞ cusps n0σ0, . . . , niσi where the multiplicities n0, . . . , ni are all equal to 1 (hence

i = d−1) then there are already
(

(p−3)/2
d−1

)
different linear independencies we need to

verify. So when doing actual computations using a computer we rather use X0(p)
instead of Xµ(p) whenever possible. While doing the explicit computations, it
turned out that the X0(p) version of the criterion sometimes fails for primes which
are too big to make it practical to just try the Xµ(p) criterion for all possible
ordered cusp sums. For example, we were unable to find t1 and t2 such that the
X0(p) version of the criterion was satisfied for d = 7 and p = 193. In this case the
Xµ(p) version would require verifying more than 869 million linear independencies
and the matrices involved are 1457 by 1457. But luckily we can do something
smarter.

We again restrict our attention to the ordered sums of∞ cusps n0σ0 + · · ·+niσi
where the multiplicities n0, . . . , ni are all equal to 1. Checking Kamienny’s criterion
for all these sums of cusps comes down to checking whether

〈d0〉t, . . . , 〈di〉t
are linearly independent for each set of pairwise distinct diamond operators 〈d0〉, . . . , 〈di〉
where the first one is the identity. However, equivalently we can also check that
all linear dependencies over Fl between the Hecke operators 〈1〉t, . . . , 〈(p− 1)/2〉t
involve at least d + 1 nonzero coefficients. It turned out that the dimension of
this space of linear dependencies was often zero or of very low dimension, so it
takes no time at all to use a brute force approach and just calculate the number
of nonzero coefficients of all linear dependencies. The following lemma generalizes
this example to the case where the n0, . . . , ni are not necessarily equal to 1. This
trick makes it more feasible to check the Xµ(N) version of the criterion on the
computer.

Lemma 5.6. Let ` - N be a prime, d be an integer and t ∈ TΓH and let D ⊂ Z
be a set of representatives of (Z/NZ)∗/ {±H} such that 1 ∈ D. Define for all
integers r the following set

Dr := {(1, j) | d− r < j ≤ r} ∪ {(k, j) | 1 ≤ j ≤ d− r, k ∈ D} .
Suppose that for all r with bd

2
c ≤ r ≤ d there is no F` linear dependence among d

of the elements (t〈k〉Tj)(k,j)∈Dr in TΓH/`TΓH . Then t◦f : X
(d)
µ,H → Jµ,H is a formal

immersion at σF` for all ordered sums of∞ cusps σ := n0σ0 + · · ·+nmσm of degree
d.
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Proof. Suppose for contradiction that there is an ordered sum of ∞ cusps σ :=
n0σ0 + · · · + nmσm of degree d such that t ◦ f is not a formal immersion at σF` .
Write σ0 = 〈di〉σi with di ∈ D for 0 ≤ i ≤ m then by 5.5 we see that the d vectors

(t〈k〉Tj)((k,j)∈S) , S := {(di, j) | 0 ≤ i ≤ m, 1 ≤ j ≤ ni}
are Fl linearly dependent in TΓH ⊗ Fl. We know that

min(n0, d− n0) ≥ n1 ≥ n2 ≥ . . . ≥ nm.

So if n0 ≥ bd2c then S ⊆ Dn0 and if n0 ≤ bd2c then S ⊆ Dd−n0 so both cases lead
to a contradiction. �
5.2.2. Testing the criterion. Using a computer program written in Sage we first
tested the criterion for X0(p). The program and the output generated by it will be
available at http://www.math.leidenuniv.nl/nl/theses/, the location where
this thesis is published. The results of testing the criterion are summarised in the
following propositions.

Proposition 5.7. If p = 131, 139, 149, 151, 167, 173, 179, 181, 191 or p is a prime
with 193 < p ≤ 2281 then there are t1, t2 ∈ TΓ0(p) with t1, t2 as in Proposition 3.2
such that t1t2T1, . . . , t1t2T7 are F2 linearly independent in TΓ0(p) ⊗ F2.

Proof. The computer tested the criterion for all 17 ≤ p ≤ 2281 using different
choices of t1 and t2. The t1 that were tried are t1 = t1(t) as in Proposition 5.3,
using t = T2, . . . , T60, and the t2 that were tried are t2 = Tq − q − 1 for all primes
2 < q < 20 with q 6= p. For all primes mentioned above the computer found at
least one pair t1, t2 such that the linear independence holds. The total time used
was about 2 hours4 when checking the criterion for about 8 primes in parallel so
it could be used to check the criterion for bigger d and p. �

Testing the fast version of the criterion for Xµ(p) gives the following proposition:

Proposition 5.8. For all pairs (p, d) with p a prime p ≤ 193 and 3 ≤ d ≤ 7 not
satisfying any of the following conditions:

• d = 3 and p ∈ Primes(17)
• (d = 4 or d = 5) and p ∈ Primes(19) ∪ {29}
• (d = 6 or d = 7) and p ∈ Primes(37)

there are t1 and t2 as Proposition 3.2 such that for t = t1t2 the Dr as in lemma
5.6 do not contain a subset of size d which is linearly dependent over F2.

Proof. This was again verified using the computer. This time the t1, t2 that were
tried are t1 = t1(t) for t = T2, . . . , T20 and t2 = Tq−q−〈q〉 for the primes 2 < q < 20
only trying new choices of t1 and t2 if no successful pair combination of t1 and t2
had been found yet. The most time was spent on the case p = 193 which took
about 14 hours.4And that while only one combination of t1 and t2 was tried since
t1 = t1(T2) and t2 = T3 − 3− 〈3〉 already gave the desired result. �

4This is not a very precise timing and meant for indicative purposes only.
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5.3. Condition 3: Study of X1(p)(d)(F2). For a prime p > 7 we know from
Mazur [1977] that Y1(p)(Q) = ∅ and hence that X1(p)(Q) consists of (p − 1)/2
cusps that map to the cusp 0 on X0(p). Let S0 ⊆ X1(p)(Q) be the set of these
(p− 1)/2 cusps mapping 0 on X0(p), and define

S
(d)
0 := π(Sd0) ⊆ X1(p)(d)(Q) (11)

where π : X1(p)d = X1(p)(d) is the quotient map, then S
(d)
0 = W

(d)
p (S

(d)
∞ ). We

would like to verify condition (3) of Theorem 3.6 with S = S
(d)
∞ and C = Xµ(p)

when taking R = Z(`), or condition (3) of Theorem 3.7 with and C = Xµ(p),

D = X0(p), S = S
(d)
∞ and T = {d∞}. However since the moduli interpretation of

X1(p) is easier then that of Xµ(p), we instead apply W
(d)
p so that we verify it for

S = S
(d)
0 and C = X1(p) instead. One situation in which condition 3 is trivially

satisfied is if X1(p)(d)(F`) = redF`(S
(d)
0 ) and T = f (d)(S). For this it is useful to

know X1(p)(d)(F`). Let y ∈ X1(p)(d)(F`), then y can be written as
∑m

i=1 eiy
(fi)
i with

m, ei, fi ∈ N≥0 and yi ∈ X1(p)(F`fi ) such that each of the yi does not come from a

subfield of F`fi and such that all the y
(fj)
i are distinct.

Theorem 5.9. [Waterhouse, 1969, Thm 4.1] Let p, ` be distinct primes and d be
an integer then

Y1(p)(F`d) = ∅
if and only if the following 5 statements are true

(1) p does not divide any integer n such that both |n − `d − 1| < 2`d/2 and
gcd(n− 1, `) = 1.

(2) If d is even then p - `d + 1± 2`d/2.
(3) If d is even and l 6≡ 1 mod 3 then p - `d + 1± `d/2.
(4) If d is odd and ` = 2 or 3 then p - `d + 1± `(d+1)/2.
(5) If d is odd or l 6≡ 1 mod 4 then p - `d + 1.

and if (1) is false then all points in Y1(p)(F`d) are supersingular.

The theorem as stated above only follows from [Waterhouse, 1969, Thm 4.1] for
p > 4 since for those primes the moduli problem for Y1(p) is representable over
Z[1/p], but one easily verifies that Y1(p)(F`d) 6= ∅ and that statement 1 is false for
p = 2 or 3.

If we again assume that p > 4 then X1(p)(Q) has aside from the (p− 1)/2 cusps
defined over Q, also (p − 1)/2 cusps defined over the real subfield of Q(ζp). The
reduction of these (p− 1)/2 non-rational cusps mod ` are definable over F`d if and
only if p | `d−1 or p | `d+1. In particular one sees that X1(p)(F`d′ ) = X1(p)(F`) =
redkX1(p)(Q) holds if p > (`d/2 + 1)2. Specializing to the case ` = 2 and 3 ≤ d ≤ 7
one can with a small computation for the primes p < (`d/2 +1)2 show the following:
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Proposition 5.10. Let 3 ≤ d ≤ 7 be an integer and p be a prime such that

p ≥ 11 and p 6= 13, if d = 3,

p ≥ 19, if d = 4,

p ≥ 23 and p 6= 31, 41, if d = 5,

p ≥ 23 and p 6= 29, 31, 37, 41, 73, if d = 6, and

p = 47, 53 or (p ≥ 79 and p 6= 113, 127), if d = 7.

then
X1(p)(F2d′ ) = X1(p)(F2) = redF2(X1(p)(Q))

for all d′ ≤ d.

Corollary 5.11. If one takes p, d as in the above proposition and one lets S
(d)
0 as

in Eq. (11), then

X1(p)(d)(F2) = redF2(S
(d)
0 )

and hence condition (3) of Theorem 3.6 holds for C = X1(p), S = S
(d)
0 and

R = Z(2). Additionally condition (3) of Theorem 3.7 holds for C = X1(p), D =

X0(p), S = S
(d)
0 , T = {d0} and R = Z(2). By applying the Atkin-Lehner op-

erator Wp : X1(p) → Xµ(p) condition (3) of Theorems 3.6 and 3.7 hold for

C = Xµ(p),D = X0(p),S = S
(d)
∞ , T = {d∞} and R = Z(2), where S

(d)
∞ is as in

Eq. (7).

6. Proof of Theorem 1.1

Proposition 6.1. Let d ≤ 7 be an integer. If S(d) ⊆ Primes(2281), then S(d) ⊆
Primes(193).

Proof. It suffices to show that if d ≤ 7 and 193 < p ≤ 2281 is a prime, then

p /∈ S(d). We apply Theorem 3.7 with C = Xµ(p), D = X0(p), S = S
(d)
∞ , T = {d∞}

and R = Z(2). By Propositions 3.2, 5.5 and 5.7 we see that there exists a t such
that conditions (1) and (2) are satisfied. By Corollary 5.11 we see that condition

(3) is satisfied so we can apply the Theorem 3.7. It follows that S
(d)
∞ = Xµ(p)(d)(Q),

showing that the only points in Xµ(p) defined over a number field of degree ≤ d
are cusps and hence p /∈ S(d). �
Proposition 6.2. If S(d) ⊆ Primes(193) for all d ≤ 7 then

S(3) = Primes (17),

S(4) = Primes (17) ∪ {29} ,
S(5) = Primes (19) ∪ {29, 31, 41} ,
S(6) = Primes (19) ∪ {29, 31, 37, 41, 73} and

S(7) ⊆ Primes (43) ∪ {59, 61, 67, 71, 73, 113, 127} .
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Proof. This is proven almost the same as Proposition 6.1, with the difference that
this time one has to use Theorem 3.6 instead of Theorem 3.7. Also Propositions 5.5
and 5.7 have to be replaced by Lemma 5.6 and Proposition 5.8. �

So in order to prove Theorem 1.1 it remains to deal with the primes 17, 29, 31, 41
and 73.

6.1. Proof of Theorem 1.1 for p = 17, 29, 31 or 41. We quote [Conrad et al.,
2003, Prop. 6.2.1.] in an equivalent formulation using that J1(p) ∼= Jµ(p) and
adding some more information from Section 6.2 in loc.cit.

Proposition 6.3. The primes p such that Jµ(p) has rank zero are the primes
p ≤ 31 and 41, 47, 59, and 71.

For all of these, except possibly p = 29, the Mordell-Weil group is generated by
differences of rational cusps, and for all except p = 17, 29, 31 and 41, the order of
J1(p)(Q) is odd.

We can add to this the following new result.

Theorem 6.4. The group J1(29)(Q) is generated by differences of rational cusps.

Proof. Instead of proving this statement for J1(29) we will prove it for Jµ(29).
This suffices because X1(N) and Xµ(N) are isomorphic over Q by an isomorphism
that sends cusps to cusps. This allows us to use the description for the action of
Galois on the cusps of Xµ(N) described in Stevens [1982]. It is already known
that Jµ(29)(Q)[p∞] is generated by differences of rational cusps for all p 6= 2 prime
(see the discussion after Conjecuture 6.2.2 of Conrad et al. [2003]). So it suffices
to prove that Jµ(29)(Q)[2∞] is generated by the rational cusps.

Let q 6= 2, 29 be a prime then Proposition 5.2 implies that

Jµ(29)(Q)[2∞] ⊆ Jµ(29)(Q)[2∞, Tq − 〈q〉 − q].
Let τ : Jµ(29)(Q)→ Jµ(29)(Q) be complex conjugation, then also

Jµ(29)(Q)[2∞] ⊆ Jµ(29)(Q)[2∞, τ − 1].

Using the isomorphism Jµ(29)(Q)[2∞] ∼= lim−→ 2−iH1(Xµ(29),Z)/H1(Xµ(29),Z) it
is possible to compute the kernels of τ − 1 and Tq − 〈q〉 − q seen as maps on

Jµ(29)(Q)[2∞] purely in terms of modular symbols. Let

M := Jµ(29)(Q)[2∞, T5 − 〈5〉 − 5, τ − 1]

then a Sage computation shows that M ∼= (Z/4Z)6. Let C ⊆ Jµ(29)(Q(ζ29))
be the subgroup generated by all cusps: using a Sage computation we showed
M = C[2∞]. Using the explicit description of the action of G := Gal(Q(ζ29)/Q)
on the cusps in Stevens [1982] we verified that C[2∞]G = Jµ(29)(Q)[2∞] is indeed
generated by the differences of rational cusps. �
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This shows that for all primes p such that J1(p)(Q) is finite, the latter group is
generated by differences of rational cusps. Now if J1(p)(Q) is finite and J1(p)(Q)[2] ↪→
J1(p)(F2) then condition (1) of Theorem 3.6 is satisfied for t = IdJ1(p). For the
primes p = 3, 5, 7, 11, 13, 19, 23, 47, 59 and 71, J1(p)(Q)[2] ↪→ J1(p)(F2) is trivially
satisfied, since the group has odd order. Ironically the primes of Proposition 6.3
missing from this sequence are exactly the primes we are interested in.

Proposition 6.5. For p = 17, 29, 31 or 41 one has J1(p)(Q)[2] ↪→ J1(p)(F2), and
hence condition (1) of Theorem 3.6 is satisfied for t = IdJ1(p).

Proof. We only have to consider p = 17, 29, 31 and 41. We know that J1(p)(Q) is
generated by differences of rational cusps, see Proposition 6.3 and Theorem 6.4. It
is also known what the order of this group is, see [Conrad et al., 2003, § 6.2.3 and
Table 1]. We now use Magma Bosma et al. [1997] to compute a model of X1(p)
over F2 and check that the subgroup of its Picard group generated by differences
of its F2-points (which are the images of the cusps under reduction mod 2) has the
correct order. In fact, it suffices to check that the 2-primary part of the group has
the correct order. For p = 17, we do this directly. For the other three primes, we
use an intermediate curve XH such that the predicted order of the 2-primary part
of JH(Q) equals that of J1(p)(Q), since the computation using X1(p) directly would
be too involved. We check that the subgroup of JH(F2) generated by differences of
the images of cusps has 2-primary part of the correct size. For p = 29, we use XH

corresponding to d = 7 in the notation of Conrad et al. [2003], for p = 31, we use
the curve corresponding to d = 3, and for p = 41 we use the curve corresponding
to d = 4. In each case, the computation gives the desired result. (It is also possible
and not taking too much time to do the computation directly on X1(p) over F2

for p = 29 and p = 31.) �

Lemma 6.6. Condition (3) of Theorem 3.6 is satisfied for C = X1(29) and C =

X1(31), S = S
(d)
0 , R = Z(2) and d ≤ 7. Here S

(d)
0 is as in Eq. (11).

Proof. For d < 5, this is covered by Proposition 5.10. For d = 5, 6, 7, we check it by
a Magma calculation. In this calculation we computed the images in PicCF2

/F2(F2)

of all points s ∈ C(d)(F2) not coming from a point in S
(d)
0 . We verified that these

images are not in the subgroup of PicCF2
/F2(F2) generated by the points coming

from Q-rational cusps, and we know that the Q rational cups generate PicCQ/Q(Q)
for these two curves by Proposition 6.3 and Theorem 6.4. �

The above proof involves computing PicCF2
/F2(F2) in Magma. For C = X1(41)

this would probably take too long to be practical. Therefore we deal with C =
X1(41) in a slightly different way:

Lemma 6.7. Condition (3) of Theorem 3.6 is satisfied for C = X1(41), S = S
(d)
0 ,

R = Z(2) and d ≤ 7.
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Proof. There is no elliptic curve E over F2e with 41 | #E(F2e) if e = 1, 2, 3, 4, 6 or
7. There is exactly one elliptic curve E over F25 with #E(F25) = 41; this is the
curve y2 +y = x3 +x+1 already defined over F2. Its automorphism group over F25

is cyclic of order 4; we therefore obtain only 10 = (41 − 1)/4 distinct F25-points
on X1(41) that are not cusps. Let XH be the intermediate curve corresponding to
d = 4 in Conrad et al. [2003]. Then X1(41) → XH is an étale cover of degree 5,
and the ten F25-points on X1(41) map to two F2-points on XH . In fact, XH(F2)
consists of six points; four of them are cusps, and the other two are the ones just
mentioned. It can be checked that these two points do not map into the subgroup
of PicXH,F2

/F2(F2) generated by the four cusps, which implies condition (3). �
Proposition 6.8. The following exclusions hold:

17 /∈ S(3),

29 /∈ S(4),

29, 31, 41 /∈ S(5),

29, 31, 41 /∈ S(6) and

29, 31, 41 /∈ S(7).

The proof of 17 /∈ S(3) is similar to that in Parent [2003] although we manage
to avoid the careful analysis of the formal group of J1(p)Z2 since we have proven
that J1(p)(Q)[2] ↪→ J1(p)(F2)[2] in Proposition 6.5.

Proof. This is again done by applying Theorem 3.6 over R = Z(2), this time with

C = X1(p) and S = S
(d)
0 for the p, d for which we want to show p /∈ S(d). We check

that Theorem 3.6 can indeed be applied by verifying that its conditions (1),(2) and
(3) are satisfied using t = Id : J1(p)→ J1(p).

(1) This follows from Proposition 6.5.
(2) For (p, d) = (17, 3) this is in [Parent, 2000, §4.3].

For p = 29 resp. 31 it is known that the F2 gonality of X1(p) is 11 resp.
12 [Derickx and van Hoeij, 2014, Tbl. 1, Rmk. 1]. So condition (2) is
satisfied by Proposition 3.3.

For p = 41 this follows from Proposition 5.8 together with Lemma 5.6
using the isomorphism Wp : Xµ(p)→ X1(p).

(3) For p = 17 this is Corollary 5.11, for p = 29, 31, 41 it follows from Lem-
mas 6.6 and 6.7.

�
This leaves us with only one case which we also found the hardest to prove.

6.2. Proof of Theorem 1.1 for p = 73. First we start by analysing the points
in X1(73)(Fd2) for d ≤ 6. The first thing to notice is that for d ≤ 6 the only points
in X1(73)(F2d) \ Y1(73)(F2d) are the points mapping to the cusp 0 on X0(73),
because 2d 6≡ ±1 mod 73 for d ≤ 6. Using the isomorphism Wp : X1(p) →
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Xµ(p) and applying Lemma 5.6 and Proposition 5.8 shows that the conditions of
Lemma 3.1 are satisfied for all cuspidal points of X1(73)(6)(F2). As a result we
only need to study the residue classes in X1(73)(6)(F2) that do not consist entirely
of cusps. After a detailed study of these residue classes the proof will be finished
by Proposition 6.9.

We continue by analysing the points of X1(73)(6)(F2) that do not consist com-
pletely of cusps. For this we first describe the Tate normal form see Knapp [1992] of
a point (E,P ) ∈ Y1(N)(K) for K a field and N ≥ 4 an integer coprime to the char-
acteristic to K. For every pair (E,P ) where E is an elliptic curve over K and P a
point of order exactly N there are unique b, c ∈ K such that (E,P ) ∼= (Eb,c, (0, 0))
where Eb,c is the elliptic curve given by the Weierstrass equation

y2 + (1− c)xy − by = x3 − bx2. (12)

By Waterhouse [1969] one sees that there are no points in Y1(73)(F2d) for d ≤ 5
and that all points in Y1(73)(F26) are supersingular. To explicitly find the Tate
normal form of all points in Y1(73)(F26) note that Eb,c has discriminant ∆b,c :=

b3(c4 + c3 + c2 + b+ c) and j-invariant (c+1)12

∆b,c
in characteristic 2. The curve Eb,c is

supersingular if and only if j = 0, which is equivalent to c = 1. By computing the
73 division polynomial Eb,1 one sees that the solutions of

(b6 + b+ 1)(b6 + b3 + 1)(b6 + b5 + b2 + b+ 1)(b6 + b5 + b4 + b+ 1) (13)

are exactly the values of b ∈ F26 such that (0, 0) is of order 73. This calculation
shows that X1(73)(6)(F2) has exactly 4 points that do not consist entirely of cusps,
namely the points corresponding to the 4 factors of (13). Explicitly calculating
the action of (Z/73Z)∗/ {±1} on these 4 points one can show that the diamond
operator 〈10〉 of order 4 acts transitively on them. Let H ⊆ (Z/NZ)∗/ {±1} be
the subgroup generated by 10, then 4 points in Y1(73)(6)(F2) map to a single point

on Y
(6)
H (F2) by the discussion above.

If E is an elliptic curve with 73 = 26+1+8 points over F26 then the characteristic
polynomial of frobenius is

x2 − 8x− 26 = (x− 8ζ3)(x+ 8ζ3 + 8).

Let Eζ3 be an elliptic curve Q(ζ3) that has complex multiplication by Q(ζ3), then
Eζ3 has two isogenies of degree 73 over Q(ζ3) namely 8ζ3−1 and −8ζ3−9. The map
X1(73)→ X0(73) is of degree 36 = (73−1)/2, and since the automorphism ζ3 of or-
der 3 preserves the kernels of the isogenies 8ζ3−1 and −8ζ3−9 we see that the ram-
ification index of π : X1(73)→ X0(73) at the points corresponding to the isogenies
8ζ3−1 and −8ζ3−9 is 3. Showing that S := π−1({(E, 8ζ3 − 1), (E,−8ζ3 − 9)}) ⊆
X1(73)(Q) is a set of size 24. The action of Galois on S is transitive because
there are no CM elliptic curves with a 73 torsion point over number fields of de-
gree < 24 [Clark et al., 2013, Table 1]. If one fixes a prime ` above 2 in Q, then
reduction modulo ` gives a bijection between S and Y1(73)(F26). The existence
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of this bijection can be shown either by explicit computation in Sage or by pure
thought by showing that for (E,P ) ∈ Y1(73)(d)(F2) the canonical lift (E0, φ0) of
(E,FrobF26 /8) to Q̄ is either (E, ζ3) or its Galois conjugate (E,−ζ3 − 1).

The above discussion shows that if one takes x1, . . . , x6 ∈ XH(Q̄) to be the 6
points corresponding to the 6 orbits of 〈10〉 acting on S, that then

x(6) : x1 + · · ·+ x6 ∈ X(6)
H (Q) (14)

is a point that reduces to the unique point in the image of Y1(73)(6)(F2)→ Y
(6)
H (F2).

Since x(6) corresponds to a CM curve and CM curves over number fields of
degree < 24 have no 73 torsion as mentioned before, and we know that a point in

y ∈ X(6)
H (Q) coming from X1(73)(6)(Q) has to specialize to x

(6)
F2

we can prove that
73 /∈ S(6) by showing:

Proposition 6.9. Let H ⊆ (Z/73Z)∗/ {±1} the subgroup generated by 10. Then

the point x(6) defined above is the unique point in X
(6)
H (Q) reducing to x

(6)
F2

modulo
2.

Proof. We do this by proving instead that W
(6)
p (x(d)) ∈ X

(6)
µ,H(Q) is the unique

point reducing to W
(6)
p (x

(d)
F2

). This allows us to work with a model where the cusp
at infinity is rational. We are going to prove that the matrix A of Corollary 3.5 at

W
(6)
p (x

(d)
F2

) has rank 6 using an explicit model of Xµ,H,F2 , we know that its genus
is 43. Using Sage to compute an explicit basis of H0(Xµ,H,F2 ,Ω

1) = S2(ΓH ,F2)
shows that q47 is the largest leading term among all modular forms. So giving the
coefficients of a modular form up to and including q47 is enough to determine it
uniquely. The subspace subspace H0(Xµ,H,F2 ,Ω

1(−41∞)) ⊆ H0(Xµ,H,F2 ,Ω
1) is 3

dimensional and has as basis

ω1 := (q42 + q47 + q49+O(q50))dq
q

ω2 := (q43 + q49+O(q50))dq
q

ω3 := (q47 + q48+O(q50))dq
q
.

Let L ⊆ Ω1
Xµ,H,F2

be the line bundle generated by ω1, ω2, ω3 then L has degree at

most 2 · 43 − 2 − 41 = 43. Viewing ω1, ω2, ω3 as sections of L gives us a map
φ : Xµ,H,F2 → P2

F2
given by φ(P ) = (ω1(P ) : ω2(P ) : ω3(P )). Its image is given by

a homogeneous polynomial of degree at most 43. Indeed, using the computer to
compare the q-expansions of products of ω1, ω2 and ω3 we found a homogeneous
polynomial fH ∈ F2[x0, x1, x2] of degree 41 describing the image of φ, since this
is only 2 smaller then expected we know that Ω1

Xµ,H,F2
/L is an effective divisor F2

of degree 2, in particular there are no points with residue field F26 in its support,
meaning that at least one of ω1, ω2, ω3 is a generator of Ω1

Xµ,H,F2
at the points we are

interested in. The polynomial fH takes about two pages in LaTeX so we did not
include it here, but we could use Sage to compute with it. Let CH be the curve with
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equation fH , using Sage we computed its geometric genus. Its genus turned out to
be 43, so we know it has to be birational to Xµ,H,F2 . The next step is to find the
points in Xµ,H(F26) that are supersingular, for this we use the Hasse invariant A2,
it is a modular form of weight 1 over F2 whose zero’s are exactly the supersingular
curves and its q expansions is 1 ∈ F2[q]. Using Magma we listed all points with
residue field F26 on the desingularisation of imφ ⊂ P2

F2
none of these points had

that the 3-th coordinate was 0. So we know that g := A2
2/ω3 is a function on

Xµ,H(F26) has a zero at all the supersingular points in Xµ,H(F26), comparing q-
expansions we found to homogeneous polynomials gnum, gden ∈ F2[x0, x1, x2] of
degree 40 such that

A2
2g
den(ω1, ω2, ω3) = ω3g

num(ω1, ω2, ω3),

so that g = gnum/gden. Choose a c ∈ F26 such that c6 + c5 + 1 = 0. By looking at
the zero’s of g we found that, up to relabeling, the points

xi := (0 : c2i−1

: 1) ∈ (imφ)(F26) ⊂ P2(F26), 1 ≤ i ≤ 6

correspond to the points x1, . . . , x6 of Eq. (14). Define T = (T3 − 〈3〉 − 3)t1(T5)
where t1 is as in Proposition 5.3. Then T is as in Proposition 3.2. The matrix of
T when seen as acting on S2(ΓH ,F2) was seen to be of rank 39 showing that the
dimension of T ∗(Cot0 Jµ,H,F2) is 39, providing good hope that we can find ωi such
that the matrix A of Corollary 3.5 has rank 6.

Define

ω′1 := (q40 + q41 + q46 +O(q48))dq
q

ω′2 := (q37 + q43 +O(q48))dq
q

ω′3 := (q36 + q38 + q39 + q41 + q46 + q47 +O(q48))dq
q

ω′4 := (q34 + q39 + q43 + q44 + q45 +O(q48))dq
q

ω′5 := (q33 + q39 + q45 +O(q48))dq
q

ω′6 := (q32 + q41 + q44 + q46 + q47 +O(q48))dq
q

Let qj be a uniformizer at xj such that and write ω3 = fjdqj and ω′i = fi,jdqj. Then
the coefficient a(ω′i, qj, 1) of the matrix A is just fi,j(0). If we view gi := ω′i/ω3 as
a function on Xµ,H,F2 then because as we saw earlier that fj(0) 6= 0 we see that gi
does not have a pole at xj and gi(xj) = fi,j(0)/fj(0). The rank does not change if
we scale the qj’th row by fj(0) so the rank of the matrix A is the same as that of
(gi(xj))

6
i,j=1. Comparing q-expansions like we did to write g = gnum/gden we again
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managed to find the function gi explicitly on our model, allowing us to compute

(gi(xj))
6
i,j=1 :=




c46 c29 c58 c53 c43 c23

c14 c28 c56 c49 c35 c7

c8 c16 c32 c c2 c4

c35 c7 c14 c28 c56 c49

c c2 c4 c8 c16 c32

c5 c10 c20 c40 c17 c34



.

The fact that each column is the square of the previous column is explained by

gi(xj)
2 = Frob2(gi(xj)) = gi(Frob2(xj)) = gi(xj).

The determinant of the above matrix is 1 showing that the map

T ◦ f
6,x

(6)
F2

: X
(6)
µ,H,F2

→ Jµ,H,F2

is a formal immersion at x
(6)
F2

. So we can apply Lemma 3.1 to get the proposition.
�
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Löıc Merel. Bornes pour la torsion des courbes elliptiques sur les corps de
nombres. Invent. Math., 124(1-3):437–449, 1996. ISSN 0020-9910. doi:
10.1007/s002220050059. URL http://dx.doi.org/10.1007/s002220050059.

Pierre Parent. Bornes effectives pour la torsion des courbes elliptiques sur les corps
de nombres. J. Reine Angew. Math., 506:85–116, 1999. ISSN 0075-4102. doi:
10.1515/crll.1999.009. URL http://dx.doi.org/10.1515/crll.1999.009.

Pierre Parent. Torsion des courbes elliptiques sur les corps cubiques. Ann. Inst.
Fourier (Grenoble), 50(3):723–749, 2000. ISSN 0373-0956. URL http://www.

numdam.org/item?id=AIF_2000__50_3_723_0.



66 MAARTEN DERICKX, SHELDON KAMIENNY, WILLIAM STEIN, AND MICHAEL STOLL

Pierre Parent. No 17-torsion on elliptic curves over cubic number fields. J. Théor.
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APPENDIX A: OESTERLÉ’S BOUND

A.1. Introduction. The goal of this appendix is to publish a proof of the follow-
ing well known theorem.

Theorem A.1 (Oesterlé, 1994, unpublished). Let K/Q be a number field of degree
d, E/K an elliptic curve and P ∈ E(K) a point of prime order p then

p ≤ (3d/2 + 1)2.

Löıc Merel already proved this theorem in 1994 with a bound of d3d
2
, published

in [Merel, 1996]. Shortly after Merel, Joseph Oesterlé proved the theorem above
for (d, p) 6= (3, 43) and in fact Oesterlé’s improvement is already announced in
Merel’s article. The case case (d, p) = (3, 43)) was later dealt with in [Parent,
2000]. This appendix closely follows Oesterlé’s notes which he made available to
the first author, although this appendix contains some minor simplifications using
literature which didn’t exist in 1994. The better bound of Oesterlé is an essential
starting point in order to make the explicit computations in the article to which
this Appendix is attached possible. Conversely, because of Theorem 1.1 of the
main text and the results that p ≤ 7 if d = 1 of [Mazur, 1977] and p ≤ 13 if d = 2
of [Kamienny, 1992b] it suffices to prove the following weaker theorem:

Theorem A.2. Let K/Q be a number field of degree d, E/K an elliptic curve and
P ∈ E(K) a point of prime order p then:

(1) p ≤ (3d/2 + 1)2 if d ≥ 6.
(2) p < 410 if d = 3, 4 or 5.

Actually, in his notes Oesterlé first establishes Theorem A.2, and then later
goes on to prove Theorem A.1 for (d, p) 6= (3, 43) using a comparable but slightly
different strategy. The section of his notes where Oesterlé proves Theorem A.1
for d = 3, 4, 5, p < 410 and (d, p) 6= (3, 43) contains no surprising new techniques.
This section is omitted since it is covered by the computations in the main text.

Several of Oesterlé’s ideas can already be found in the literature, since Pierre
Parent generalized several of his ideas to points on elliptic curves whose order is a
prime power in [Parent, 1999]. In fact, Theorem A.2 for d > 25 is an easy corollary
of the following theorem, as will be shown in section A.2.

Theorem A.3. [Parent, 1999, Thm. 1.6] Let E be an elliptic curve over a number
field K of degree d over Q possessing a K-rational point P of prime power order
pn. Let l be prime different from 2∗ and p. Suppose that for every prime ideal `

∗Parent only mentions the condition l 6= p in his Theorem and not l 6= 2. However he mentions
it at the beginning of §1.3 and this condition is necessary for his proof of this Theorem to work.

67
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of OK dividing l one has that E has split multiplicative reduction and that P has
order pn in the component group of the Néron model of E, then

pn < 65(2d)6 if p > 2 and pn < 129(3d)6 if p = 2.

But not all ideas of Oesterlé were generalized by Parent. The main ingredients
that are not yet in the literature are the intersection formulas in sections A.5.3
and A.5.4.

Note that from the work of Parent it is also possible to deduce a version of
A.2 with the weaker bound p < 65(2d)6 for d ≤ 25. However the results of
the main text would have been very difficult to obtain starting from this weaker
bound (although maybe not impossible), since it would require significantly more
computer computations as the following table indicates.

d 4 5 6 7 25
b(3d/2 + 1)2c 100 275 784 2281 847× 109

65(2d)6 17,039,360 65,000,000 194,088,960 489,419,840 1, 015× 109

Acknowledgements. I would like to thank Tessa Schild for her proofreading, Löıc
Merel for his help explaining Oesterlé’s notes and Bas Edixhoven for his useful
discussions and his detailed reading of this text. But most of all I would like to
thank Joseph Oesterlé for his help in understanding his proof and giving me his
notes. I also want to thank him for allowing me to use it to write this appendix.
The two sections A.5.3 and A.5.4 and section A.6 are a translation into English
of Oesterlé’s notes, where I added some details making claims easier to verify for
the reader and replaced certain arguments by references. The rest of this article
is a summary of needed background theory and results already present in the
literature, much of which was also already in Oesterlé’s notes.

A.2. Proof of Theorem A.2 for d > 25. To be able to use [Parent, 1999, Thm.
1.6] we first have to check whether its conditions are satisfied. This means we
first need to prove the following proposition which is similar to Proposition 1.4 of
[Parent, 1999].

Proposition A.4. Let K/Q be a number field of degree d, E/K an elliptic curve
with Néron model Ẽ and P ∈ E(K) a point of prime order p. If p > (3d/2 + 1)2

then Ẽ has split multiplicative reduction at all primes ` of OK dividing 3 and P̃OK/`

does not lie in the identity component of ẼOK/`.

Remark. The map X0(p) → X0(1) is unramified at the cusp ∞ and ramified of
order p at the cusp 0 see [Mazur, 1977, p. 64], so one sees that because P̃OK/` lies

in a component that is not the identity implies that the pair (ẼOK/`, 〈P̃OK/`〉) has
to be the cusp 0 of X0(p) [Deligne and Rapoport, 1975, VII, §2]. This however is
inconsistent with the modular interpretation of the cusps on page 159 of [Mazur,
1977]. The description of the cusps in [Deligne and Rapoport, 1975, VII, §2] shows
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that moduli interpretation of the unramified cusp of X0(p) should be a Néron 1-gon
and that of the ramified cusp a Néron p-gon. Luckily this mistake does not affect
the main results of [Mazur, 1977] since one can apply the Atkin-Lehner operator
Wp to swap the cusps 0 and ∞. This mistake also propagated to works that cite
Mazur his article, among for example [Kamienny, 1992a,b, Kamienny and Mazur,
1995], the first author has notified Kamienny and Mazur of this mistake and an
erratum is being written.

Proof. Let ` be a prime ideal of OK dividing 3 and k be its residue field. We want
to rule out all types of reduction except split multiplicative where P̃k does not lie
in the identity component.

The first thing to notice is that p > (31/2 + 1)2 > 3 = char k. This means that
the map Ẽ[p](OK)→ Ẽ[p](k) is injective and in particular that P̃k ∈ Ẽ[p](k) has
order p.

• Ẽ does not have good reduction at `, because if it has good reduction, then
Ẽk is an elliptic curve and hence the Hasse bound gives

#Ẽ(k) ≤ (
√

#k + 1)2 ≤ (3d/2 + 1)2

which clearly contradicts that Ẽ(k) has a point of order p > (3d/2 + 1)2.
• Ẽ does not have additive reduction at `. This is because additive reduction

means that we have an exact sequence:

Ga(k)→ Ẽ(k)→ φ(k)

where φ is the component group of Ẽk. This means that either P̃k lies in
the image of Ga(k), in which case p = 3 or p | #φ(k) ≤ 4 , with both
possibilities leading to a contradiction with p > (31/2 + 1)2 > 7.
• Ẽ does not have non-split multiplicative reduction at `. This is because

this would mean that we have an exact sequence

G̃m,k(k)→ Ẽ(k)→ φ(k)

G̃m,k is the quadratic twist of the multiplicative group over k. In this case
either

p|#G̃m(k) = #k + 1 < (3d/2 + 1)2 or p|#φ(k) ≤ 2,

with both possibilities leading to a contradiction with p > (3d/2 + 1)2.
• If Ẽ has split multiplicative reduction, then P̃k cannot lie in the identity

component of Ẽk. This is because the identity component is isomorphic to
Gm and #Gm(k) = #k − 1 < (3d/2 + 1)2 < p.

�
Now Theorem A.2 easily follows from Theorem A.3 using the following inequal-

ity:

If d ≥ 26 then (3d/2 + 1)2 > 65(2d)6. (A.1)
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Indeed, suppose that K is a number field of degree d ≥ 26 over Q, E/K an elliptic
curve and P ∈ E(K) of prime order p. Then Proposition A.4 says that either
p < (3d/2 + 1)2, in which case we are done, or the hypotheses of Theorem A.3 are
satisfied. In the latter case one gets

(3d/2 + 1)2 > 65(2d)6 > p

and Theorem A.2 follows.

A.3. The Winding Quotient. This section only contains a short summary about
the winding quotient Je

0 (Q). For more details and the fact that Je
0 (Q) is finite, see

either [Merel, 1996, §1] or [Parent, 1999, §3.8] or §4 of the main text. Note that
the finiteness of Je

0 (Q) is proved by using the analytic rank 0 implies algebraic
rank 0 case of the BSD conjecture as proven in [Kolyvagin and Logachëv, 1989]
completed by [Bump et al., 1990] or [Murty and Murty, 1991].

If a, b ∈ Q ∪ {∞} , then we define {a, b} ∈ H1(X0(p)(C), cusps,Z) to be the
element given by a path from a to b in H∪Q∪ {∞}. The element {a, b} is called
a modular symbol. If k ∈ Z(p) is a fraction whose denominator is not divisible by
p, then define

λ(k) := {0, 1/k} . (A.2)

The element λ(k) only depends on k mod p, hence one can also see λ as a map

λ : Z/pZ→ H1(X0(p)(C), cusps,Z).

The λ(k) where k ranges over Z/pZ are known to generate H1(X0(p)(C), cusps,Z)
and if k 6≡ 0 mod p then λ(k) ∈ H1(X0(p)(C),Z), and hence the element λ(0) = {0,∞}
generates the rank 1 Z-module H1(X0(p)(C), cusps,Z)/H1(X0(p)(C),Z).

We have an isomorphism H1(X0(p)(C),R) ∼= H1(X0(p)(C),Ω1)∨, of real vector
spaces, given by integration. So the map

e : H1(X0(p)(C),Ω1)→ C (A.3)

ω 7→ −
∫

{0,∞}
ω

defines an element e ∈ H1(X0(p)(C),R) under this isomorphism, which is called
the winding element. Actually (p−1)e ∈ H1(X0(p)(C),Z) showing that e ∈ H1(X0(p)(C),Q).
Let T be the sub algebra of EndH1(X0(p)(C),Z) generated by the Hecke operators
and the Atkin-Lehner involution, then T also acts faithfully on J0(p), the Jacobian
of X0(p) over Z[1/p]. Let Je ⊆ T be the annihilator of e, then

Je
0 := J0(p)/JeJ0(p)

is called the winding quotient.
Let X0(p)

(d) be the d-th symmetric power of the modular curve X0(p), then one
has a natural map X0(p)

(d) → J0(p) by sending a divisor D of degree d to the
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linear equivalence class of D−d∞. Composing with the quotient map J0(p)→ Je
0

gives us the map

fd : X0(p)
(d) → Je

0 . (A.4)

Now if x ∈ X0(p)(K) is a point where K is a number field of degree d and
σ1, . . . , σd : K → Q̄ are the different embeddings, then define

x(d) := σ1(x) + · · ·+ σd(x) ∈ X0(p)
(d)(Q).

We will also write x(d) for
∑d

i=1 x if x ∈ X0(p)(Q).

A.4. Kamienny’s Criterion. The discussion that follows is based on section
4.12 of [Parent, 1999], who himself says that he is following Oesterlé’s unpublished
exposition. The main reason for following Parent, is because this allows certain
proofs to be skipped and instead just cite Parent. This section is called Kami-
enny’s criterion because the main ideas originate from [Kamienny, 1992a, §3] ,
although many of Kamienny’s arguments have been sharpened to get the needed
statement of this section. The following proposition is a slight variation of [Par-
ent, 1999][Thm. 4.15], although his Theorem is much shorter. The reason the
statement of Theorem 4.15 of Parent is so much shorter is because Parent did not
include his running hypotheses in his Theorem.

Proposition A.5. Let d be an integer and p be a prime such that p > (3d/2 + 1)2.
If there exists a number field K/Q of degree d, an elliptic curve E/K and a point
P ∈ E(K) of prime order p, then the map fd : X0(p)

(d) → Je0 of equation A.4

above is not a formal immersion at ∞(d)
F3

.

Proof. LetK/Q be a number field of degree d, E/K an elliptic curve and 0 6= P ∈ E(K)[p].
Consider j resp. j′ ∈ X0(p)(K) to be the points corresponding to (E, 〈P 〉) resp.

(E/〈P 〉, E[p]/〈P 〉). By proposition A.4 one sees that j
(d)
F3

= 0
(d)
F3

and hence j
′(d)
F3

=∞(d)
F3

.

Now because Je0(Q) is torsion and fd(j
′(d))F3 = fd(∞(d))F3 = 0 we get fd(j

′(d)) = fd(∞(d)) = 0.
But j′(d) 6=∞(d), hence we can apply [Parent, 1999][Lemma 4.13] to get the propo-
sition. �

The above proposition reduces the proof of Theorem A.2 to checking whether
fd is a formal immersion.

Theorem A.6. [Parent, 1999][Thm 4.18] Let l > 2 be a prime, then the following
two statements are equivalent:

(1) fd is a formal immersion at ∞(d)
Fl

.
(2) T1e, . . . , Tde are linearly independent in Te/lTe.
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A.5. Intersection numbers of modular symbols. Since we can view X0(p)(C)
as a smooth oriented real manifold we get an intersection pairing on homology. The
intersection pairing • : H1(X0(p)(C),Z)×H1(X0(p)(C),Z)→ Z also gives a pairing
• : H1(X0(p)(C),Fl) ×H1(X0(p)(C),Fl) → Fl. It would be convenient to be able
to use these pairings to check the linear independence of T1e, . . . , Tde in Te/lTe.
However while Te ⊂ H1(X0(p)(C),Q), it is not true that Te ⊂ H1(X0(p)(C),Z), so
checking the linear independence cannot be checked directly with the intersection
pairing. The solution, which will be worked out in more detail later, is to chose a
Hecke operator I in such a way that Ie ⊆ H1(X0(p)(C),Z) and use this to write
down a linear map

I : Te→ H1(X0(p)(C),Fl)
after which we can use the intersection pairing to check linear independence.

A.5.1. Action of the Hecke operators on homology. For r > 0 an integer and define
σ1(r) :=

∑
d|r,d>0 d. Using this definition one can compute (Tr − σ1(r)) e as follows.

Lemma A.7. [Merel, 1996, Lemma 2] If p is a prime and r < p a positive integer,
then the following equality holds in H1(X0(p)(C),Q)

(Tr − σ1(r)) e = −
∑

a > b ≥ 0
d > c > 0
ad− bc = r

λ(c/d).

Where one should note that our element λ(k) is denoted by ξ(k) in [Merel, 1996].

Remark. Note that since p > r = ad − bc ≥ ad − (a − 1)(d − 1) ≥ d > c > 0, we
see that none of the c and d in the sum are divisible by p. This means that the
right hand side actually is an element of H1(X0(p)(C),Z). Since H1(X0(p)(C),Z)
is torsion free, the equality actually holds in H1(X0(p)(C),Z), and in particular
(Tr − σ1(r)) e ∈ H1(X0(p)(C),Z). This is also something that could have been
seen directly by noting that the boundary of (Tr − σ1(r)) {0,∞} is zero.

A.5.2. The intersection number λ(k) • λ(k′). For p a prime and 1 ≤ k < p an
integer let k∗ be the integer such that 1 ≤ k∗ < p and kk∗ ≡ −1 mod p and let
Ck denote the oriented straight line segment in C from e2πik/p to e2πik

∗/p. Recall
that if k ∈ Z/pZ∗ then λ(k) was defined as {0, 1/k} ∈ H1(X0(p)(C),Z). The
intersection number of λ(k) and λ(k′) can be computed as follows.

Lemma A.8. [Merel, 1996, Lemma 4.] Let k, k′ be two integers such that 1 ≤ k < p
and 1 ≤ k′ < p. If k′ 6= k and k′ 6= k∗ then λ(k) • λ(k′) equals the intersection
number Ck′ • Ck and λ(k) • λ(k′) = 0 otherwise.

Where in [Merel, 1996] the element k∗ is denoted by k∗. The fact that λ(k)•λ(k′) = 0
if k′ = k or k′ = k∗ is not mentioned by Merel. But this follows easily from the
fact that • is an alternating bilinear form and λ(k) = −λ(k∗).
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The reason that the order of intersection is swapped is because Merel first proves
λ(k) • λ(k′) = C ′k • C ′k′ where C ′k denotes the oriented straight line segment in C
from e−2πik/p to e−2πik

∗/p, and then concludes by C ′k •C ′k′ = Ck′ •Ck because both
complex conjugation and reversing the order of intersection changes sign. The
lemma above is independent of the choice of orientation on C as long as one takes
the orientation on X0(p)(C) to be the one compatible with the map H→ X0(p)(C).
From now on we will take the orientation on C such that [−1, 1]• [−i, i] = 1 where
[a, b] denotes the oriented straight line segment from a to b.

Definition A.9. Let H : R→ R be the function given by

H(x) =





1 if x > 0
1
2

if x = 0
0 if x < 0

With this definition the above lemma translates to

λ(k) • λ(k′) = −H(k′ − k) +H(k′ − k∗) +H(k′∗ − k)−H(k′∗ − k∗).
This equality can be verified by first checking that the both sides only depend
on the cyclic ordering, with possible equalities, of k, k∗, k′, k′∗ in Z/pZ. And then
verifying it holds for the possible cyclic orderings.

A.5.3. The intersection number Ire • λ(k). Let p be a prime and let 1 ≤ r < p be
an integer. Define

Ir := Tr − σ1(r),
then Ire ∈ H1(X0(p)(C),Z).

Proposition A.10. Let p be a prime number and let r, k be integers such that
1 ≤ k < p and 1 ≤ r < p, then one has

Ire • λ(k) =
∑

s|r

(⌊
sk

p

⌋
−
⌊
sk∗

p

⌋)
+ vr(k)− vr(k∗)

where for i ∈ Z one defines vr(i) to be the following quantity

vr(i) = # {a′, b′, c′, d′ ∈ N≥1 | a′d′ + b′c′ = r, d′i ≡ c′ mod p}
Proof. Define the map x 7→ kx from P1(Q) to the set {1, . . . , p} by sending a
simple fraction x where p does not divide the denominator to the unique element
congruent to it modulo p, and one defines kx = p for x = ∞ and the fractions
where p divides the denominator. Combining Lemmas A.7 and A.8 one gets

Ire•λ(k) =
∑

a > b ≥ 0
d > c > 0
ad− bc = r

(
H(k − kc/d)−H(k − k−d/c)−H(k∗ − kc/d) +H(k∗ − k−d/c)

)
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The equality stays true if we also include the terms with c = 0 in the sum, since
those terms are all 0. Now let Br be the set of all matrices [ a bc d ] of determinant r
with a > b ≥ 0,d > c ≥ 0 and let B′r (resp. B′′r ) be the set of matrices in Br with
b 6= 0 (resp. c 6= 0). Now we have a bijection between B′r and B′′r by sending the
matrix [ a bc d ] to

[
b −a+mb
d −c+md

]
where m is the unique integer such that 0 ≤ −a+mb < b

(its inverse is obtained by sending [ a bc d ] to
[ −b+na a
−d+na c

]
where n is the unique integer

such that 0 ≤ −d+ na < c). This shows

Ire • λ(k) = S1 − S2 + S3, where

S1 =
∑

Br\B′r

(
H(k − kc/d)−H(k∗ − kc/d

)

S2 =
∑

Br\B′′r

(
H(k − k−d/c)−H(k∗ − k−d/c)

)

S3 =
∑

B′r

(
H(k − kc/d)−H(k − k(c−md)/d)−H(k∗ − kc/d) +H(k∗ − k(c−md)/d)

)

Let’s start by calculating S2. The matrices in Br \B′r are the matrices of the form
[ a 0
c d ] with ad = r and 0 ≤ c < d. For s | r let S1(s) be the contribution to S1

of coming from the matrices such that d = s. The contribution to S1(s) of the
matrix with c = 0 is 0. For 1 ≤ c < d the number kc/d is equal to up+c

d
, where

u is the element 1 ≤ u < d congruent to −c/p mod d, and kc/d is the smallest
integer ≥ up

d
. The map which associates u to c is a permutation of {1, . . . , d− 1}.

So the number of c ∈ {1, . . . , d− 1} such that kc/d ≤ k is equal to the number of
u ∈ {1, . . . , d− 1} such that up

d
≤ k. An analogues argument with k replaced by

k∗ gives that

S1 =
∑

s|r

(⌊
sk

p

⌋
−
⌊
sk∗

p

⌋)
− 1

2
S ′1 +

1

2
S ′′1 ,

where S ′1 (resp. S ′′1 ) is the number of pairs of integers (c, d) such that d | r,
1 ≤ c < d and kc/d = k (resp. kc/d = k∗).

The matrices inBr\B′′r all have c = 0, hence k−d/c = p andH(k−k−d/c) = H(k∗−k−d/c) = 0
implying

S2 = 0.

What remains is to determine S3. Let x = c/d be a rational number occurring
in S3, then one has that p > r ≥ d > 0 hence p - d. In particular if kx 6= 1, then
kx−1 = kx− 1 and hence H(k− kx)−H(k− kx−1) equals −1

2
if k = kx or k = kx−1

and equals 0 otherwise. If kx = 1 then kx−1 = p and H(k − kx) − H(k − kx−1)
equals 1/2 if k = 1 and 1 if 1 < k < p. In particular, whether kx = 1 or kx 6= 1,
the following always holds

H(k − kx)−H(k − kx−1)−H(k∗ − kx) +H(k∗ − kx−1) =
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1

2
(#({k∗} ∩ {kx, kx−1})−#({k} ∩ {kx, kx−1})) .

By induction on m, one sees that for all m ≥ 1,

H(k − kx)−H(k − kx−m)−H(k∗ − kx) +H(k∗ − kx−m)

equals the number of integers i ∈ {0, . . . ,m} such that k∗ = kx−i minus the number
of integers such that k = kx−i, taking into account that one counts i = 0 and i = m
only for half an integer.

Now to evaluate S3, let us first define U (resp. U ′, resp. U ′′) as the set of pairs
([ a bc d ] , i) with [ a bc d ] ∈ B′r and 1 ≤ i < m (resp. i = 0, resp. i = m) where m is the
unique integer such that 0 ≤ −a+mb < b. Let u(k) (resp. u′(k), resp. u′′(k)) be
the number of these pairs such that k = k(c−id)/d. This means that

S3 = u(k∗) +
1

2
u′(k∗) +

1

2
u′′(k∗)− u(k)− 1

2
u′(k)− 1

2
u′′(k).

The map ([ a bc d ] , i) 7→
[
b −a+ib
d −c+id

]
is a bijection between U and the set of matrices

of the form
[
a′ −b′
c′ d′

]
with a′, b′, c′, d′ integers ≥ 1 with a′d′ + b′c′ = r (its inverse

is given by sending
[
a′ −b′
c′ d′

]
to
([

b′+ja′ a′

−d′+jc′ c′
]
, j
)

where j is the unique integer such

that 0 ≤ −d′+jc′ < c′). Under this bijection, k = k(c−id)/d if and only if k ≡ −d′/c′
mod p or equivalently if k∗ ≡ c′/d′ mod p. This shows that u(k) = vr(k

∗) and
u(k∗) = vr(k).

The integer u′(k) equals the number of quadruples of integers (a, b, c, d) such
that a > b > 0, d > c ≥ 0, ad − bc = r and k ≡ c/d mod p. The bijection
between B′r and B′′r , one can show that u′′(k) is equal to the number of quadruples
(a, b, c, d) such that a > b ≥ 0, d > c > 0, ad−bc = r and k ≡ −d/c mod p. From
this it follows that u′′(k) = u′(k∗) + S ′′1 and u′′(k∗) = u′(k) + S ′1 and hence

S3 = vr(k)− vr(k∗) +
1

2
S ′1 −

1

2
S ′′1 .

Putting the formulas for S1, S2 and S3 together finally finishes the proof. �

If one defines v′r(i) by the following

v′r(i) := # {a′, b′, c′, d′ ∈ N≥1 | gcd(c′, d′) = 1, a′d′ + b′c′ = r, d′i ≡ c′ mod p} ,
then for r < p one has vr(k) =

∑
s|r v

′
s(k). If one also defines the Hecke operators

I ′r for 1 ≤ r < p to be such that

Ir =
∑

s|r
I ′s, (A.5)

then an equivalent form of the above proposition is obtained by using he Möbius
inversion formula to remove the sum over the divisors of r.
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Proposition A.11. Let p be a prime number and let 1 ≤ k, k∗ < p be integers
such that and kk∗ ≡ −1 mod p. If r is an integer such that 1 ≤ r < p then

I ′re • λ(k) =

⌊
rk

p

⌋
−
⌊
rk∗

p

⌋
+ v′r(k)− v′r(k∗)

where for i ∈ Z one defines v′r(i) to be the following quantity

v′r(i) = # {a′, b′, c′, d′ ∈ N≥1 | gcd(c′, d′) = 1, a′d′ + b′c′ = r, d′i ≡ c′ mod p}
A.5.4. The intersection number I ′re •

{
0, a

c

}
.

Proposition A.12. Let p be a prime and r, c, d be integers such that 1 ≤ r,
1 ≤ d < c < p

r
and c and d are coprime. Define a, b to be the integers such that

ad− bc = 1, 0 ≤ a < c and 0 ≤ b < d. Define 1 ≤ k < p and 1 ≤ k∗ < p to be the
integers that are equal to c/d and −d/c modulo p and finally let u, u∗ be such that
dk = up+ c and ck∗ = u∗p− d. Then 0 ≤ u < d, 0 ≤ u∗ < c and

I ′re • λ(k) =
⌊ru
d

⌋
−
⌊
rb

d

⌋
+
⌊ra
c

⌋
−
⌊
ru∗

c

⌋

Proof. Because rk
p

= ru
d

+ rc
pd

and 0 ≤ rc
pd
< 1

d
one has

⌊
rk

p

⌋
=
⌊ru
d

⌋
.

And because rk∗
p

= ru∗
c
− rd

pc
and 0 < rd

pc
< 1

c
one has

⌊
rk∗

p

⌋
=

⌊
ru∗ − 1

c

⌋
.

Now let a′, b′, c′, d′ be a quadruple as in the definition of v′r(k), because d′k ≡ c′

mod p one has c′d ≡ cd′ mod p. Because 1 ≤ cd′ < cr < p and 1 ≤ c′d < rd < p,
one even has c′d = cd′ and because gcd(c′, d′) = gcd(c, d) = 1, it follows that
c = c′ and d = d′. Since rad − rbc = r = a′d + b′c there exists an integer t
such that tc = ra − a′ and td = rb + b′. The fact that a′, b′ ≥ 1 translate into⌊
rb
d

⌋
< t ≤

⌊
ra−1
c

⌋
and since rb

d
< ra

c
one has

⌊
rb
d

⌋
≤
⌊
ra−1
c

⌋
.

This shows that under the assumptions on r, k and p, that v′r(k) is equal to the
number of integers t satisfying

⌊
rb
d

⌋
< t ≤

⌊
ra−1
c

⌋
, or in formulas:

v′r(k) =

⌊
ra− 1

c

⌋
−
⌊
rb

d

⌋
.

Now let a′, b′, c′, d′ be a quadruple as in the definition of v′r(k
∗). Since d′k∗ ≡ c′

mod p, we get cc′ + dd′ ≡ 0 mod p. Now a′d′ + b′c′ = r implies c′ + d′ ≤ r and
hence 1 ≤ cc′ + dd′ < c(c′ + d′) ≤ cr < p which is incompatible with cc′ + dd′ ≡ 0
mod p so,

v′r(k
∗) = 0.



APPENDIX A: OESTERLÉ’S BOUND 77

Putting the above equalities together one gets

I ′re•λ(k) =

⌊
rk

p

⌋
−
⌊
rk∗

p

⌋
+v′r(k)−v′r(k∗) =

⌊ru
d

⌋
−
⌊
rb

d

⌋
+

⌊
ra− 1

c

⌋
−
⌊
ru∗ − 1

c

⌋
.

What remains to be shown is
⌊ra
c

⌋
−
⌊
ra− 1

c

⌋
=

⌊
ru∗

c

⌋
−
⌊
ru∗ − 1

c

⌋

But this is indeed the case. Since c is coprime with both u∗ and a, one sees that
the left and right hand side are 1 if c divides r and 0 otherwise. �

Taking 1 < k < p/r an integer and d = 1 and c = k in the above proposition
gives a = 1 which proves:

Corollary A.13. Let p be prime and k ≥ 2, r ≥ 1 be integers such that kr < p,
and let 1 ≤ u∗ < k be the inverse of p modulo k then

I ′re • λ(k) =
⌊ r
k

⌋
−
⌊
ru∗

k

⌋
.

Proposition A.14. Let c ≥ 2, r ≥ 1 be integers such that cr < p and 1 ≤ a < c
an integer coprime to c. Let 1 ≤ u∗ < c be such that apu∗ ≡ 1 mod c then

I ′re •
{

0,
a

c

}
=
⌊ra
c

⌋
−
⌊
ru∗

c

⌋
.

Proof. We do this by induction on c. If c = 2 then a = 1 and it follows from the
above corollary.

For larger c, let b, d such that ad − bc = 1 with 1 ≤ d < c. Because a < c it
follows that b < d. The case d = 1 implies b = 0 and hence a = 1 which is dealt
with by the above corollary, so we can assume d ≥ 2.

Let 1 ≤ k < p be such that k ≡ c/d mod p, then
[
a− bk b
c− dk d

]{
0,

1

k

}
=

{
b

d
,
a

c

}
.

Since k ≡ c/d mod p the above matrix is in Γ0(p) and hence λ(k) =
{
b
d
, a
c

}
. Since

ad ≡ 1 mod c we see that the u∗ of this proposition agrees with that of Proposition
A.12. If we take u to be such that pu = dk − c, and using bc ≡ −1 mod d we
get that 1 ≤ u < d and bpu ≡ 1 mod d. So using the induction hypothesis we
have I ′re •

{
0, b

d

}
=
⌊
rb
d

⌋
−
⌊
ru
d

⌋
. Writing

{
0, a

c

}
=
{

0, b
d

}
+
{
b
d
, a
c

}
=
{

0, b
d

}
+λ(k)

finally gives

I ′re •
{

0,
a

c

}
=

⌊
rb

d

⌋
−
⌊ru
d

⌋
+
⌊ru
d

⌋
−
⌊
rb

d

⌋
+
⌊ra
c

⌋
−
⌊
ru∗

c

⌋
=
⌊ra
c

⌋
−
⌊
ru∗

c

⌋

�
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A.6. Putting it all together. With all these intersection formulas now at our
disposal it is time to return to the question of when the morphism

fd : X0(p)→ Je0

of (A.4) is a formal immersion at ∞(d)
Fl

using Theorem A.6.
Let T ′r be the Hecke operators such that Tr =

∑
s|r T

′
s then one easily sees that

for r < p one has
∑

s|r I
′
s = Tr − σ1(r) =

∑
s|r(T

′
s − s) and hence I ′s = T ′s − s .

Define Lr := T ′2r − 2T ′r then Lr = I ′2r − 2I ′r. Using T2r = T2Tr if r is odd and
T2r = T2Tr − 2Tr/2 if r is even, one can deduce that for 1 ≤ r < p:

∑

s|r
I2T

′
s = (T2 − 3)Tr =

∑

s|r
Ls −

∑

s|r, s even

Ls/2,

from which it follows that

I2T
′
r =

{
Lr if r is odd
Lr − Lr/2 if r is even

Since I2e ∈ H1(X0(p)(C),Z) we have that I2 induces a linear map I2 : Te/lTe→ H1(X0(p)(C),Fl),
and we get the following addition to A.6.

Theorem A.15. If l > 2, p are distinct is primes and d > 0 an integer with 2d < p

then fd : X0(p)
(d) → Je0 is a formal immersion at ∞(d)

Fl
if either

(1) L1e, L2e . . . , Lde are linearly independent in H1(X0(p)(C),Fl),
(2) I ′2e, I

′
3e, . . . , I

′
2de are linearly independent in H1(X0(p)(C),Fl), or

(3) I2e, I3e, . . . , I2de are linearly independent in H1(X0(p)(C),Fl).

In the above theorem the statements 2 and 3 are equivalent and they both
imply the first. In Oesterlé’s notes there is a part where he proved that the
linear independence condition 2 of the above theorem always holds if d > 2 and
p/ log4 p ≥ (2d)6, giving a proof of Theorem A.2 for d > 36. We skip this part of
the argument since a variation of this argument is already in [Parent, 1999, §5].
For the smaller d Oesterlé verified the linear independence 1 using the following
proposition.

Proposition A.16. Let d ≥ 1 be an integer, M ≥ 3 an odd integer and l ≥ 3 a
prime. Let ε : (Z/MZ)∗ → 0, 1 be the map such that ε(n) = 0 if n is represented by
an integer between 0 and M/2 and 1 otherwise. Let u ∈ (Z/MZ)∗ and define the
matrix Rd,u to be the matrix with rows indexed by {1, . . . , d} and columns indexed
by (Z/MZ)∗ and whose (r, a) entry is ε(ra)− ε(ru/a).

If the matrix Rd,u has rank d modulo l, then L1e, . . . , Lde are linearly inde-
pendent in H1(X0(p)(C),Fl) for all primes p such that p > 2dM , and pu ≡ 1
mod M .

Proof. The congruence pu ≡ 1 mod M implies that ap(u/a) ≡ 1 mod M and
hence u∗ ≡ u/a mod M where u∗ is as in Proposition A.14 with c = M . Now
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because Lr = I ′2r − 2I ′r and ε(n) =
⌊
2n
M

⌋
− 2

⌊
n
M

⌋
, it follows from A.14 that for all

primes p such that p > 2dM and pu ≡ 1 mod M that Lre•{0, a/M} = ε(ra)−ε(ru/a).
Hence the linear independence holds if Rd,u has rank d modulo l. �

A.6.1. Proof of Theorem A.2 for 3 ≤ d ≤ 25. The following table lists for all
integers 3 ≤ d ≤ 26 an integer Md such that reduction of the matrix Rd,u modulo
3 of the above proposition has rank d for all u ∈ Z/MZ∗.

d 3 4 5 6 7 8 9 10 11 12 13 14
Md 29 37 41 43 47 47 53 53 53 61 73 73

d 15 16 17 18 19 20 21 22 23 24 25 26
Md 79 79 89 89 89 101 101 109 109 109 127 127

These values of Md have been found using a computer and the code can be found
at https://sage.math.leidenuniv.nl/home/pub/51. Since the Md in the table
satisfy 2dMd < (3d/2 + 1)2 if d > 6 and 2dMd ≤ 410 for d = 3, 4, 5 it follows from
Proposition A.16 that L1e, . . . , Lde are linearly independent in H1(X0(p)(C),F3)
for all p > max((3d/2 + 1)2, 410). Hence from Theorem A.15 it follows that

fd : X0(p)
(d) → Jε0 is a formal immersion at ∞(d)

F3
for all p > max((3d/2 + 1)2, 410),

so that Theorem A.2 follows from Proposition A.5.
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This article will appear in a Memorial volume for Fu-
miyuki Momose. He was a generous warm human be-
ing, with immense energy and generosity of spirit, and
an extremely gifted mathematician. One of his abid-
ing interests was rational torsion on elliptic curves over
number fields, as in [32], [24]. This article is written in
his memory.
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1. Introduction

Rational torsion points on elliptic curves present challenges that one
can come back to again and again since the topic simply continues
to be a source of extremely interesting diophantine issues. If E is an
elliptic curve over a number field k, its Mordell–Weil group, E(k), is
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finitely generated. Moreover, any finite subgroup of E(k) is of the
form Z/NZ×Z/mZ where N,m are positive integers with m dividing
N . Ogg’s Conjecture, proved thirty-five years ago, might be phrased
as saying that there is no rational torsion on elliptic curves over Q
except as directly forced by the underlying algebraic geometry. More
specifically: any example of an elliptic curve over Q with its Mordell–
Weil group containing a subgroup isomorphic to Z/NZ × Z/mZ is
a member of a rationally parametrized family, in the sense that the
modular curve X(N,m) classifying such examples is isomorphic to P1.

In a paper published over two decades ago, written jointly with
M. Kenku, Momose inaugurated an analogous investigation of certain
types of subgroups of torsion points on elliptic curves rational over qua-
dratic fields [24]. Kenku and Momose proved the following theorem:

Theorem 1. (Kenku, Momose) For integers N that factor as a product
of powers of prime numbers < 17, and for integers m dividing N the
following statements are equivalent.

(1) There exists a quadratic field k and an elliptic curve E de-
fined over k such that E(k) contains a subgroup isomorphic to
Z/NZ× Z/mZ.

(2) The modular curve that classifies such torsion, X(N,m), is ra-
tional or hyperelliptic.

Following on this work, one of the authors of the present paper es-
tablished general classification results for torsion in the Mordell–Weil
group of elliptic curves over quadratic fields ([21], [23]; for a slightly dif-
ferent problem regarding torsion in elliptic curves and quadratic fields,
see [26]).

Nowadays, one considers even more general questions from theoret-
ical and computational perspectives.

• We might fix N and m and ask for a structural and numerical
understanding of the collection of elliptic curves defined over
fields of some fixed degree d over Q—or over a fixed base num-
ber field k—for which its Mordell–Weil group over those fields
contains a subgroup isomorphic to Z/NZ× Z/mZ.
• Or more specifically, we might ask to classify rationally parametrized

families of elliptic curves defined over number fields Kt of degree
d over k and which possess N -torsion points rational over Kt

1.
In particular, we might study functions of degree d on X1(N)
defined over Q.

This paper will focus on the latter type of problem2 as related to a
diophantine analysis of appropriate Brill–Noether varieties attached to
the modular curves X1(N).

1The word “rational,” then, is used in two senses: the parameter t ranges through
the k-rational points of a rational curve (over k).

2 and even more specifically when the base field is Q and N = 17
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A substantial amount of computation has been done. Intriguing ex-
amples have been discovered ([7], [14], [36], [15], [16]). In work in
progress the authors of this paper will be treating a number of explicit
examples related to modular Brill–Noether curves. The present ex-
pository article, focusing on 17-torsion—dedicated to the memory of
Fumiyuki Momose—is a report on a piece of that work in progress.

We are thankful to Ken Ribet for very helpful comments regarding
an early draft of this paper.

2. Rational N-torsion over fields of degree d

Fix two positive integers (N, d) and darken the point (N, d) in the
plane if there exists a non-CM elliptic curve3 defined over a number
field of degree ≤ d having an N -torsion point rational over that field;
call such points (N, d) simply: data points. One would like to know
anything that stands out in this data set: its structure and its statistics.

There are two standard ways to look for uniformity phenomena:

• Focusing, for example, on prime torsion, fix d and let P (d) be
the largest prime p such that (p, d) is in the data set.

Specific exact values of P (d) are known only for small d. By
[28] P (1) = 7. Kamienny proved that P (2) = 13; Parent, build-
ing on work of Kamienny, showed P (3) = 13. Recently, Maarten
Derickx, Sheldon Kamienny, William Stein, and Michael Stoll
[8] showed that P (4) = 17, P (5) = 19 and P (6) = 37.

For general values of d we have the (trivially obtained) lower
bound

d1/2 � P (d)

and the deep upper bounds given by Merel’s Theorem tellling
us that P (d) <∞. More specifically, Merel [31] (and Oesterlé,
Parent [34]) proved, for general d that

P (d) ≤ (1 + 3d/2)2,

so we have:
d1/2 � P (d)� 3d.

We don’t even seem yet able to come up with much more precise
conjectures for the qualitative behavior and/or the volatility of
P (d). Is P (d) bounded by a constant times dA for any A > 1/2?
Or for some finite value of A? Or does it grow more rapidly
than that?

3 We’re thankful to Andrew Sutherland who suggested that one might keep
separate the study of examples of CM elliptic curves possessing rational points of
order N over fields of low degree d, since they represent a very orderly collection
of known examples where for each such CM-elliptic curve, d admits a linear upper
bound in N—and this would simply muddle the essential data set.
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Consider the ‘minimalist’ attitude that any interesting dio-
phantine phenomenon occurs no more often than would be pre-
dicted by general structural constraints. This viewpoint seems
to lead to firmly believed conjectures, for example, for statistics
regarding ranks of Mordell–Weil groups. This general viewpoint
might also suggest the guess that P (d)� dA for any A > 1/2.
But we don’t seem to have enough experience yet to give any
firm conjectures4.

• Fix N and let D(N) be the smallest integer d such that (N, d)
is in the data set.

In contrast to our knowledge of the asymptotics of P (d), with D(N)
we are in slightly better shape. There is a clear cut-off for D(N):
namely, D(N) ≤ γQ(N) where γQ(N) is the Q-gonality of the modular
curve X1(N). The basic Q-parametrization X1(N) → X(1) ' P1

already gives us γQ(N) ≤ Φ(N)Ψ(N)/2—where Φ(N) is the Euler phi
function and

Ψ(N) = Ψ(
∏

peii ) =
∏

(pi + 1)pei−1
i .

In particular, we have γQ(N) � N2. For a discussion of the concept
of gonality, see [1], [7].

If d = γQ(N), or more generally if there exists an f : X1(N)→ P1 of
degree d, then not only are there elliptic curves over fields of degree d
with rational N -torsion over those fields, but there are infinitely many
of them parametrized by a subset of P1(Q). See Abramovich’s basic
paper [1] where he proves the inequality

21

200
(g − 1) ≤ γC(N) ≤ (g + 3)/2,

where γC(N) is the C-gonality, and g ≈ N2 is the genus, of X1(N).
For more elementary reasons

γC(N) ≤ γQ(N) ≤ g + 1.

For the Q-gonalities of the modular curves X1(N) with N ≤ 40 see [7].
In particular

N = p 13 17 19 23 29 31 37
γQ(N) 2 4 5 7 11 12 18

We will be considering data points (N, d) only for degrees d ≤ γC(N).
We will call an elliptic curve defined over a field of degree d possessing
an N -torsion point rational over that field sporadic if d = γC(N)

4 Some conjectures in the literature give upper bounds for primes of torsion in
elliptic curves of degree d, but since these published conjectures also include CM
elliptic curves which our “P (d)” doesn’t register, those conjectures necessarily must
allow for an essentially linear lower bound. Specifically, see [6] and [27].
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and it is not a member of a Q-rationally parametrized rational family
of such elliptic curves defined over fields of degree d possessing N -
torsion points rational over those fields. We call it very sporadic if
d < γC(N).

Very sporadic data points exist. Here is a list of some known exam-
ples:

d N γC(N) Reference

3 21 4 [33]
9, 10 29 11 [14]

9, 10, 11 31 12 [7]

A result of Pete L. Clark, Brian Cook and James Stankewicz (which
builds on the work of Dan Abramovich) [6] implies that for a prime
p ≥ 5 there are at most finitely many points on X1(p) with degree
< 7

3200
(p2 − 1). Related to this, see [12].

3. Brill–Noether Varieties

Let X be a smooth projective curve over a characteristic zero field
k. Let k̄/k be an algebraic closure, and X̄ := X ×Spec(k) Spec(k̄). For
integers d ≥ 1, r ≥ 0, let

W r
d (X) ⊂ Picd(X)

denote the closed subvariety of Picd(X) (defined over k) classifying
divisor classes of effective divisors D of degree d that are members of
linear systems (of effective divisors of degree d) of dimension ≥ r, or
equivalently such that h0(X,O(D)) ≥ r + 1; see [4], [5], [9].

The collection of Brill–Noether varieties {W r
d (X) | d ≥ 0, r ≥ 0}

connect in the following ways:

(1) For r ≥ 1 we have natural inclusions W r
d (X) ↪→ W r−1

d (X) ⊂
Picd(X).

(2) Let α be a k-rational point of X, and let

fα : Picd(X)→ Picd−1(X)

be the morphism that sends the class of a divisor D to the
class of D − [α]. For r ≥ 1 we have a commutative diagram of
k-rational maps,

W r
d (X)

⊂ //

fα
��

Picd(X)

fα
��

W r−1
d−1

⊂ // Picd−1(X).

Statement (2) above follows from considering the global sec-
tions of the exact sequence

0→ OX(D − α)→ OX(D)→ Oα → 0.
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(3) We have the natural surjection

ηd : Symd(X) � W 0
d (X) ⊂ Picd(X). (1)

which is an isomorphism when restricted to

Symd,#(X) := η−1
d

(
W 0
d (X)−W 1

d (X)
)
⊂ Symd(X),

i.e., to the inverse image of the complement of W 1
d (X):

Symd,#(X)
⊂ //

∼=
��

Symd(X)

��
W 0
d (X)−W 1

d (X)
⊂ // W 0

d (X)
⊂ // Picd(X).

In paticular Symd(X) is a desingularization of W 0
d (X). In cer-

tain cases of interest (e.g., as in our analysis of X = X1(17)
below) Symd(X) is a small resolution of the singularities of
W 0
d (X).

By Theorem (1.1) in Chapter V of [4] if the genus g > 1 of X is in
the range

d− 1 ≤ g ≤ 2(d− 1),

the Brill–Noether variety W 1
d (X) is of dimension greater than or equal

to 2(d− 1)− g. So, if it satisfies these conditions it can be a curve only
if 2d ≤ g + 3 and a surface only if 2d ≤ g + 4.

We will be specifically interested in the cases r = 0, 1:

W 1
d (X) ⊂ W 0

d (X) ⊂ Picd(X),

noting that a choice of k-rational point α of X will give us a (k-rational)
closed immersion

W 1
d (X)

fα
↪→ W 0

d−1(X) ⊂ Picd−1(X).

Note: If X is a curve over k a number field, for any d, one has—
applying a more general theorem of Faltings [11]—that the set of k-
rational points of W 1

d (X) decomposes into a finite union,

W 1
d (X)(k) =

⊔

j

Aj, (2)

where, for each j, the Zariski closure of Aj is a translate of an abelian
subvariety of Pic0(X). For a study of upper bounds for the dimen-
sion of such abelian subvarieties that may arise for given values of d,
gonality, and genus, see [2].
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3.1. The canonical involution v. An important case for us is when
d = g− 1 ≥ 0 where g is the genus of X. In this situation we have the
natural involution

Picg−1(X)
v∼= Picg−1(X)

defined by sending any linear equivalence class of divisors [D] of degree
g−1 to the linear equivalence class of [K−D] where K is the canonical
divisor of X. The involution v is ‘functorially defined’ and is defined
over any field k over which the curve itself is defined, and commutes
with any automorphism of X.

Consider the fixed locus Th(X) ⊂ Picg−1(X) of the involution v.
The 22g geometric points of Th(X) are classically referred to as theta-
characteristics of X; they correspond to ‘square roots’ of the canonical
line bundle. The finite subscheme Th(X) ⊂ Picg−1(X) is a torsor over
Pic0(X)[2]. Note that the Riemann-Roch Theorem guarantees that

h0(X,O(D)) = h0(X,O(K −D)), (3)

so v induces an involution of W r
g−1(X) for any r ≥ 0. Consider the

theta divisor

Θ := W 0
d (X) = W 0

g−1(X) ⊂ Picg−1(X),

noting that choosing any theta-characteristic ∂ ∈ Th(X) ⊂ Picg−1(X)
gives the commutative diagram

Θ
v //

−∂
��

Θ

−∂
��

⊂ // Picg−1(X)

−∂
��

Θ− ∂ −1 // Θ− ∂ ⊂ // Pic0(X),

the theta divisors, {Θ− ∂ ⊂ Pic0(X)} for the theta-characteristics
∂ ranging through Th(X)(k̄) being—each of them—symmetric under
multiplication by −1 in Pic0(X) and the set of them being a torsor
under the group Pic0(X)[2]((k̄)).

Note, as well, that W 1
g−1(X) ⊂ Θ is stable under the involution v as

can be seen from (3).

3.2. Basic Brill–Noether varieties. For X a curve defined over k,
denote by γ = γk̄, its k̄-gonality. Call WX := W 1

γ (X) the Basic Brill–
Noether variety attached to X. Given a k-rational point α of X, we
obtain an immersion

WX = W 1
γ (X)

fα
↪→ W 0

γ−1(X) = Symγ−1(X) ⊂ Picγ−1(X).



RATIONAL FAMILIES OF 17-TORSION POINTS 89

3.3. The Basic Brill–Noether variety attached to X1(N). Con-
sider the basic Brill–Noether variety WX1(N) := W (X1(N)). Thanks
to the functorial nature of Brill–Noether varieties, the automorphism
group of X1(N) viewed as finite group scheme over Q acts naturally on
WX1(N). Thus we have the group ∆ of diamond operators acting Q-
rationally on WX1(N), and the w-operators acting Q(µN)+-rationally.
When N is a prime number all these operators fit into a dihedral group
that act Q(µN)+-rationally on WX1(N).

3.4. Basic Brill–Noether curves attached to algebraic curves
of genus 5 and gonality 4. Assume from now on that X is a curve
defined over Q of genus 5 and has Q-gonality equal to C-gonality γ =
4.5

In this case the Basic Brill–Noether variety, W := WX, is a curve
defined over Q (possibly reducible). We’ll refer to it as the the Basic
Brill–Noether curve attached to X. An application of Clifford’s Theo-
rem6 guarantees that h0(X,OX(D)) ≤ 2 for any effective divisor D of
degree 4, so W 2

4 (X) is empty. That is, the complete linear series that
corresponds to any point in the Basic Brill–Noether curve attached to
X is parametrized by a pencil.

A k-rational point of WX gives us a k-linear parametrization class
of maps X → P1 of degree γk̄(X), and conversely. So we have

Proposition 1. Let Aut(X) denote the group of k-rational automor-
phisms of X. There is a one-to-one correspondence between k-similarity
classes7 of maps X → P1 (defined over k) of degree γk̄(X) and Aut(X)-
orbits of k-rational points of the Basic Brill–Noether curve WX:

k-similarity classes ↔ WX(k)/Aut(X).

If d < γk(X) then W 1
d (X) is empty. In the special case where

γk̄(X) = g − 1 we are in the situation of section 3.1 above, and we
have the canonical involution v acting on W (X) compatibly with its
action on Picg−1(X) giving a commutative diagram:

W (X)
v //

��

W (X)

��

Picg−1(X)
v // Picg−1(X)

which commutes with any automorphism of X.

5 The example we treat, X1(17), is of this form, as are X1(21), and X1(24).
6 See page 204 of [4] for a discussion that covers the case of interest to us: genus

=5, gonality and degree =4.
7 k-similarity is the natural notion of equivalence for k-parametrizations: two

parametrizations are k-similar if one can be brought to the other by composition
with appropriate k-isomorphisms of domain and range.
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Consider a canonical embedding (defined over Q)

β : X
∼=−→Γ ⊂ P4.

Since the genus of X is g = 5, by a theorem of Max Noether [4] the
curve Γ lies on 3 = (g − 2)(g − 3)/2 independent quadrics in P4.

For ease of nomenclature in this discussion (i.e., for the rest of this
section) let us strictly reserve the symbols P4 to mean the projective
4-dimensional space which is the ambient space of the canonical em-
bedding above, and P2 to mean the projective space generated by the
linear space of those three independent quadrics just mentioned.

In the case of our interest we will be fixing bases,

ω0, ω1, ω2, ω3, ω4

of the 5 dimensional space S := H0(X,Ω1(X)) such that the projec-
tivization of S∨ is the P4 above. In terms of this basis we will be
stipulating three independent quadratic relations

e0 := e0(ω0, . . . , ω4)

e1 := e1(ω0, . . . , ω4)

e2 := e2(ω0, . . . , ω4),

generating the kernel of the natural cup product map

(∗) Sym2(S)
κ−→H0(X, (Ω1(X)⊗2),

and therefore representing a basis of the projective space P2 above.
Note that S = H0(X,Ω1(X)) and H0(X, (Ω1(X)⊗2) have a natural

action of Aut(X) with respect to which the morphism (∗) is equivariant.
In the cases of our particular interest S will be the space of cuspforms

of weight two and the cup product above will be given by multiplication
to the space of cuspforms of weight four.

3.5. Loci of singular quadrics. For the results we are now about to
quote, see page 207 of [4].

• Let V ⊂ P2 be the sub-locus of singular quadrics8 Q ⊂ P4.
• Let W → V be the double cover determined by choosing one of

the two systems of planes in these singular quadrics.

8 Recall that the ‘generic’ singular quadric threefold Q ⊂ P4 has a unique
singular point ε and is the cone ‘at ε’ of a (nonsingular) quadric surface given by
the intersection of Q with any hyperplane not passing through ε. That quadric
surface has two rulings by lines (possibly not rational over the base field k). Taking
the cone through ε of each of these rulings gives us two 2-dimensional rulings, now,
of the quadric threefold Q (again possibly not rational over the base field k). That
is, Q is swept out by two pencils of planes (i.e., 2-dimensional projective linear
subspaces).
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• Let

G proj→ W
be the P1-bundle whose points consist of pairs (Π,Q) where
Q ∈ V and Π ⊂ Q is a two-plane.
• Let v :W →W be the involution defining the coveringW → V .
• Consider the commutative diagram

G α //

proj

��

Sym4(X)

proj

��

W α // Pic4(X)

where the morphism α : G → Sym4(X) is characterized on
points by the rule that sends (Π,Q) of G to the divisor (of
degree four),

α(Π,Q) := Π ∩ Γ ⊂ Γ,

the latter being construed, via the isomorphism β : X −→ Γ
of subsection 3.4, as an element of Sym4(X). The image of α

restricted to a fiber of G proj→ W runs through a complete lin-
ear system of divisors, and therefore determines a well-defined
point of Pic4(X), providing a characterization (on points) of
the morphism α :W → Pic4(X).

If ever we need to specify the curve X to which these objects are
related, we indicate this in the standard manner; e.g., we write W =
WX, V = VX, G = GX etc.

3.6. The canonical representation of the Basic Brill–Noether
curve. Let X be a curve satisfying our running hypotheses in this
section, and put W := WX, the Basic Brill–Noether curve attached
to X. Recall the involution v : W → W constructed in subsection 3.2.
Let W = WX be as in subsection 3.5 above, recalling the involution
v :W →W constructed there.

The discussion of pp. 207-210 of of [4] gives the following identifica-
tion.

Proposition 2. The image of the canonical morphism α : W →
Pic4(X) is contained in W ⊂ Pic4(X) and induces an isomorphism,

α :W ∼=−→ W commuting with the involutions v on domain and image.
That is, letting V := W/{v}, we have the commutative diagram:

W ∼= //

��

W

��
V ∼= // V
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3.7. Elliptic components and new components. Let X be a (“bi-
elliptic”) curve defined over Q satisfying our running hypotheses in
this section and let W := WX be—as usual—the Basic Brill–Noether
curve attached to X. By an elliptic involution of X let us mean an
involution ι : X → X such that the quotient of X under its action,

projι : X → X/{∼ ι} = E ,

is a curve of genus one. The involution ι induces an action on W and on
the constructions of Subsections 3.5 and 3.6. In particular ι commutes
with the double cover mapping:

W
ι //

v
��

W

v
��

V
ι // V

For any such quotient, and any point u ∈ E let ju : E → E denote
the canonical (nontrivial) involution fixing the point u, and let

projju : E → E/{∼ ju} =: P1
u

denote the projection to the (genus zero) quotient (which we denote
P1
u) under the action of ju. Denote by tu the running parameter in

the projective line P1
u. For any pair (u, tu) with u ∈ E and tu ∈ P1

u

let Dι(u, tu) ⊂ Symm4(X) be the effective divisor of degree four on X
given by

Dι(u, tu) := proj−1
ι ◦ proj−1

ju
(tu).

For each u ∈ E , then, we have a linear system of divisors of degree four
on X parametrized by the variable tu, giving us a point on W , which
we denote wι(u).

The morphism

wι : E −→W

factors through the quotient E ′ of E under the natural action of the
2-torsion subgroup of its jacobian, i.e., Pic0

(
E)[2]. The induced mor-

phism

w′ι : E ′ ↪→ W

is a closed immersion, and its image is a (reduced) irreducible compo-
nent of W defined over the field k. We denote this component Wι ⊂ W
and refer to Wι ≈ E ′ as the k-elliptic component of W associated
to ι. It is fixed by the action of the involution ι on W .

By a new component of W we will mean an irreducible component
that is not elliptic in the above sense.
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4. Fine Siegel units and fine Siegel points

Let X := X1(N). A Fine Siegel unit on X is a rational function
f on X defined over Q̄ whose divisor of zeroes and poles consist only
of Q-rational cusps. Let C(N) denote the set of Q-rational cusps; so
a fine Siegel unit is a unit in the ring of regular functions on X1(N)−
C(N) (over Q̄). Since the action of Gal(Q̄/Q) preserves the divisor
of zeroes-and-poles of a fine Siegel unit, an application of Hilbert’s
Theorem 90 guarantees that we may normalize our fine Siegel units
(by multiplication by an appropriate nonzero scalar) so that they are
defined over Q. Such a normalized Siegel unit f is well-defined by
its divisor of zeroes-and-poles up to a factor in Q∗ and gives us a Q-
rational parametrization f : X → P1. Let Z(N) denote the group of
fine Siegel units modulo Q∗. By the Manin–Drinfeld Theorem, Z(N)
is a free abelian group of rank |C(N)|−1. The action of the group ∆ of
diamond operators on X1(N) induces an action on Z(N) and there is a
natural metric on Z(N) given by the geometric degree of the function
f : X1(N)→ P1. This metric satisfies a triangle inequality:

deg(f · g) ≤ deg(f) + deg(g),

and it scales well, i.e.,

deg(fn) = |n| · deg(f)

for n ∈ Z, and is preserved by the action of the diamond operators.
See [37] for an explicit description of the fine Siegel units in terms of
their q-expansions and their expression in relation to specific modular
forms.

The following two conditions on X := X1(N) hold for only a (finite)
number of values of N but they do hold for the case N = 17.

(1) X = X1(N) contains no very sporadic points (in the terminol-
ogy of Section 2) except for the set of Q-rational cusps C(N).

(2) γC(X) < |C(N)|.
When N = 17 these conditions are indeed met9.

Proposition 3. X1(17) has no non-cuspidal very sporadic points.

Proof: There are no non-cuspidal points on X1(17) of degree 1 by
[28]; none of degree 2 by [19]; and none of degree 3 by [34].

As we shall see (Proposition 6) X1(17) contains no non-cuspidal spo-
radic points, as well.

Under hypothesis (1) above, every function φ : X1(N) → P1 of
degree γC(X) and defined over Q has the property that any of its fibers
above points in P1(Q) either consists entirely of Q-rational cusps, or
contains no Q-rational cusps at all. This is because each fiber is of

9 As has been verified by the first author of this article and Mark van Hoeij,
these two conditions are satisfied for X1(N) for N = 32, and for N < 28 but not
N = 21.
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degree γC(X) and if it contains a Q-rational cusp, the points of the
fiber are all of degree strictly less than γC(X). That is, these points are
all very sporadic, so by (1) they are all rational cusps. If a fiber of such
a φ consists entirely of rational cusps, call it a rational-cuspidal-fiber
of φ. By (2), φ has at least two rational-cuspidal-fibers. Choosing two
rational-cuspidal-fibers of such a φ : X → P1 and composing φ with
an appropriate linear fractional transformation of P1 that sends the
image of one of those fibers to 0 and the other to ∞ we see that any
such φ is in the Q-similarity class of a Q-parametrization of X1(N) by
a fine Siegel unit f (of geometric degree equal to the gonality of X).

There is a natural way of denoting such a fine Siegel unit f up
to the equivalence relation defined by deeming two such Siegel units
equivalent if one can be obtained from the other by composition by
an appropriate Q-automorphism b : P1 → P1. Namely, one simply
lists the rational-cuspidal-fibers of f giving the divisors with support
on cusps that constitutes each of those fibers.

Each divisor with support on the cusps is encoded by |C(N)| integers,
where the i-th integer is the multiplicity of the i-th cusp. We display
this data for a given f as a matrix, with exactly |C(N)| columns,
and as many rows as there are rational-cuspidal-fibers for f . We call it
the rational-cuspidal-fiber matrix for the Q-linear parametrization
class of f .

We also organize these cuspidal-fiber matrices in ∆-orbits. Any
such ∆-orbit determines a Q-similarity class of Q-parametrizations of
X1(N) of geometric degree equal to the gonality of X.

Under both hypotheses above, any such f has at least two rational-
cuspidal-fibers ( |C(N)| > γC(X) implies that there are at least two
fibers containing Q-rational cusps). We can compose f with an appro-
priate b : P1 → P1 sending one rational-cuspidal-fiber to 0 and another
to ∞, so that b ◦ f is a fine Siegel unit.

Consequently

Proposition 4. Under the hypotheses (1) and (2) above

(1) Any Q-parametrization of X = X1(N) of geometric degree
γC(X) is represented by at least one fine Siegel unit in Z =
Z(N) of degree γC(X).

(2) There are only finitely many classes of Q-parametrizations of
X1(N) of degree γC(X).

Definition 1. By a fine Siegel point on the Basic Brill–Noether va-
riety WX1(N) let us mean a Q-rational point on WX1(N) represented
by a linear system parametrized by a fine Siegel unit.
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Corollary 2. Under the hypotheses (1) and (2) above, the Basic Brill–
Noether variety WX1(N) has only finitely many Q-rational points.
These are all fine Siegel points and are effectively obtainable.10.

The first statement in Corollary 2 follows from Proposition 4 simply
by considering the number of pairs of possible cuspidal-fibers. Effectiv-
ity follows because there are effective methods to compute Riemann-
Roch spaces of divisors on curves (cf. [13]). The computations of
cuspidal-fiber matrices can be done for some small values of N (in-
cluding N = 17) by a combination of modular symbol computations
implemented by Sage ([3, p. 57]) and brute force computations.

When N = 17 we shall see that all Q-rational points of WX1(N)
are fine Siegel points. It would be interesting to understand, for more
general values of N what portion of WX1(N)(Q) comes from Siegel
(or fine) Siegel points.

A computation of Derickx and van Hoeij [7] guarantees that for all
N ≤ 40 there is at least one modular unit of degree equal to the
Q-gonality of X1(N). It follows that if, for these values of N , the
Q-gonality were equal to the C-gonality of X1(N), the corresponding
Basic Brill–Noether variety WX1(N) would contain at least one Siegel
point.

5. Families of 17-torsion

The curve X = X1(17) is of genus 5 with Q-gonality and C-gonality
both equal to 4. The basic Brill–Noether variety WX1(17) is a curve.

The curve X1(17) has no non-cuspidal very sporadic points (Propo-
sition 3) and no non-cuspidal sporadic points (Proposition 6). Andrew
Sutherland has computed elegant equations for these modular curves
in [36]. The equation for X1(17) is particularly crisp11:

There is a birational morphism (over Q) of X1(17) onto the bi-
projective curve of bi-degree (4, 4) in P1×P1 cut out by the polynomial

(∗) x4y−x3y3−x3y+x2y4+x2y−x2−xy4+xy3−xy2+xy+y3−2y2+y = 0,

This morphism is an embedding when restricted to the complement of
the cusps, Y1(17) ⊂ X1(17) into P1×P1. Projection to the first factor
is given by the modular unit12 x := E5E6/E1E3 and the projection to
the second factor is given by the modular unit y := E6E7/E2E8. Both

10The same proof gives a similar finiteness and effectivity result for the set of
Q-rational points of the Basic Brill–Noether variety WX of any curve X defined
over Q that has the property that all its very sporadic points are Q- rational and
|X(Q)| is strictly greater than γQ(X).

11 As we understand it, this equation was originally written down by Cady and
Elkies; see also a closely related description of X1(17) in [16].

12 Here we are using the notation of Yang [37], following Kubert-Lang [25].
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x and y are functions of degree 4 and in fact there is another function
of degree 4, namely:

z =
y(x2 − yx+ y − 1)

(y − 1)2x
.

An example of the type of result that we prove (based, of course, on
the results already mentioned) is the following:

Theorem 3. Any elliptic curve defined over a field of degree ≤ 4 pos-
sessing points of order 17 defined over that field can be obtained by
applying a diamond operator to a point of X1(17) for which one of
the functions x, y takes on a rational value 6= 0, 1 or z takes a value
6= 0. Conversely, setting x, y to a rational value 6= 0, 1 or z to a value
6= 0 defines an elliptic curve over a field of degree four with a rational
17-torsion point.

Moreover, the rational parameters x, y, z give, up to Q-similarity13

all Q-rational parametrizations of X1(17) of degree equal to its gonality
(i.e., degree = 4). The Galois group of the finite extension

Q(x) ⊂ Q(X1(17))

is the full symmetric group14 S4 while the finite mappings

y, z : X1(17)→ P1

factor through the bi-elliptic representation

X1(17) −→ X1(17)/{action of 〈13〉} = X1(17)/{action of 〈3〉4}
and their Galois group is the dihedral group D4.

The functions x, y, z of the theorem are in the equivalence classes of
Q-parametrizations of type (C), (A), (B) described in subsection 5.2
below.

The fun here is that there are, in fact, two distinct ways of getting at
the diophantine problem involved, as discussed above. They dovetail
in a nice way. We can approach the problem either by considering:

• Q-rational points on the Basic Brill–Noether modular curve
WX,

or

• rational cuspidal divisors and “fine” Siegel units.

13 Recall the definition in Proposition 1: two parametrizations are Q-similar if
one can be brought to the other by composition with appropriate Q-isomorphisms
of domain and range.

14 Hilbert’s Irreducibility theorem would then guarantee infinitely many special-
izations x 7→ a ∈ Q∗ give a quartic polynomial in Q[y] with full symmetric Galois
group.
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5.1. Via the Basic Brill–Noether modular curve. We have com-
puted the Basic Brill–Noether modular curve W := WX1(17) to be a
double cover of a plane quintic (reducible) curve

(∗) V : X·(X4−3X2Y 2−3X2Z2+Y 4+2Y 3Z+3Y 2Z2−2Y Z3+Z4) = 0.

The involution v of W that is the automorphism of the double cover
W → V (the identity on V ) has three descriptions. First, it is given
by the diamond operator involution 〈13〉 = 〈3〉4. Secondly, it is also
the involution induced on W (via the Serre duality theorem) from the
transformation of divisors of degree four D 7→ K −D where K is the
canonical divisor (of degree 8) on X1(17). The third description comes
from what one might call the canonical representation of W → V as
described in some generality in Subsections 3.5 and 3.6 above.

The group, ∆, of Q-automorphisms of X is canonically isomorphic
to (Z/17Z)∗/{±1}. The operator 〈3〉 ∈ ∆ is a generator.

Let Sk := Sk(Γ1(17)) denote the Q-vector space of cuspforms of
weight k on Γ1(17)). Since the genus of X1(17) is 5 we have dimS2 = 5.
The characteristic polynomial of 〈3〉 acting on S2 is (x − 1)(x4 + 1),
this means that there is a basis ω0, . . . , ω4 ∈ S2 such that with respect
to this basis we have:

〈3〉 =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 0 0 0




One such basis is given by

ω0 := q − q2 − q4 − 2q5 + 4q7 + 3q8 +O(q9) (4)

ω1 := q − q2 − q3 + q6 − q7 + q8 +O(q9) (5)

ω2 := q2 − q3 − 2q4 + q5 + q6 + q7 +O(q9) (6)

ω3 := −q2 + q3 + q4 + q5 − q6 − q7 − q8 +O(q9) (7)

ω4 := q3 − 2q4 + q6 − q7 + 3q8 +O(q9) (8)

Every nonzero element in Sym2(S2) defines a quadratic form in the
ωi and and hence a quadric in P4. Now let Y ⊆ Sym2(S2) be the kernel
of the natural map:

Sym2(S2)→ S4

Then Y will be a 3-dimensional space with basis e0, e1, e2 given by

e0 := ω2
0 − ω2

1 − ω2
2 − ω2

3 − ω2
4 (9)

e1 := 2ω1ω2 + 2ω1ω3 − 2ω3ω4 (10)

e2 := 2ω2ω3 + 2ω1ω4 + 2ω2ω4 (11)
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The matrix of 〈3〉 acting on Y with respect to this basis is:

〈3〉 =




1 0 0
0 0 1
0 −1 0




Let (a0, a1, a2) be coordinates of Y with respect to the basis e0, e1, e2.
Now consider the locus V ⊂ P2 = P(Y ) corresponding to the singular
quadrics in P4. This locus will be given by the single homogenous
equation of degree 5, (*) above.

Each of these singular quadrics has (generally) two rulings by planes,
and each of these planes intersect the canonically embedded curve X in
an (effective, of course) divisor of degree 4. Each ruling, then, gives a
unique linear system of effective divisors of degree 4 on X. That is, we
can identify the Basic Brill–Noether curve W with the locus of rulings
on these singular quadrics. The involution v simply switches rulings
on the same singular quadric.

The plane quintic V breaks up into the union of a line

V0 : X = 0

and a plane quartic

V1 : X4 − 3X2Y 2 − 3X2Z2 + Y 4 + 2Y 3Z + 3Y 2Z2 − 2Y Z3 + Z4 = 0

and W = W0 ∪W1 is a union of two irreducible components where W0

( a double cover of V0) is an elliptic curve of Cremona type 17a4.
The curve of genus one, W0 is directly related to the bi-elliptic rep-

resentation of X1(17). It has four rational points, two of which yield
parameterizations in the Q-similarity class of the function y and the
other two yield parameterizations in the class of z.

The more interesting component W1 is given (birationally) as a dou-
ble cover of V1 given by extracting a “square root” of the function

(2Y 2Z + 2XY 2 +XZ2 −X3)/X3

on V1.
Much of the internal structure of the Basic Brill–Noether curve W

is directly related to the bi-elliptic representation of X1(17) mentioned
above, so let us return to it with a bit more detail. The diamond
operators of X1(17) acting functorially on W preserve the irreducible
component W1 and we have the following curiously similar sequences
of double covers:

• Consider the sequence of double covers:15

15 We use Cremona’s classification to refer to some of the elliptic curves that
occur in these computations.
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X // X/(〈3〉4) //

≈
��

X/(〈3〉2) //

≈
��

X/(〈3〉)
=

��
17a4 // 17a2 // X0(17)

We easily compute that X/(〈3〉4), X/(〈3〉2) and X/(〈3〉) are
curves of genus 1, and the automorphism 〈3〉 acts freely on
them of order 4, 2 and 1 respectively. In particular, the action
of 〈3〉 on X/(〈3〉4) can be understood as the action of trans-
lation by a (Q-rational) point P of order 4 in the jacobian,
J := Pic0(X/(〈3〉4))). This pins things down, after consulting
Cremona’s tables, forcing (the jacobian of) X/(〈3〉4) to be 17a4
(which is the only curve of conductor 17 that has a rational
4-torsion point, the quotient by which is isomorphic to X0(17))
and forcing (the jacobian of) X/(〈3〉2) to then be 17a2.

It is an exercise to see, with no computation at all, that W0

can be canonically identified as the curve of genus one given
as the quotient of the curve X/(〈3〉4) by the natural action of
the 2-torsion subgroup of its jacobian. It follows then that W0

is isomorphic to 17a4, and therefore has exactly four rational
points. These four points break up into two orbits under the
action of the ’diamond operators’ ∆ contributing to two Q-
similarity classes represented by the functions “y” and “z” of
our theorem.
• The curve W1 is a curve of genus 7, but is also directly related to

17a4 and neatly mimics the sequence displayed in the previous
bullet as follows. Consider the diamond operators acting on
W1 which can be computed to produce the sequence of double
covers:

W1
// W1/(〈3〉4) //

=

��

W1/(〈3〉2) //

≈
��

W1/(〈3〉) //

≈
��

X0(17)

=

��
V1

// 17a4 // 17a2 // X0(17)

The curve V1 has exactly four Q-rational points: (1,±1,±1) and the
eight points in W1 comprising the inverse image of those four points
are all Q-rational, and therefore give the full set of Q-rational points
of W1. These eight point comprise a single ∆-orbit. Therefore they
give rise to a unique Q-similarity class of rational parametrizations of
X1(17), for which the function “x” of the theorem is a representative.

5.2. Via Fine Siegel Units. As is clear from the account already
given, to compute the rational points on the Basic Brill–Noether curve
WX1(17) is not greatly difficult since each of its connected components
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is a perfectly specified finite cover of an elliptic curve possessing only
four rational points. Section 4 above offers an utterly independent way
of making this computation: by Proposition 3 the only very sporadic
points on X1(17) are the eight rational cusps, and therefore any Q-
rational function φ of degree 4 on X1(17) has the curious property, as
discussed in section 4 that

• any of its fibers that contain even a single rational cusp must
consist entirely of rational cusps—call such a fiber a rational
cuspidal fiber and
• there are at least two such rational cuspidal fibers.

It follows that by composing φ with an appropriate Q-automorphism of
P1 one gets a fine Siegel unit. It follows that the problem of computing
the Q-rational points on WX1(17) is essentially equivalent to that of
computing fine Siegel units of degree four. As mentioned in Section 4,
this is a finite computation.

We will be giving the collection of all fine Siegel units f of geomet-
ric degree 4—up to composition by appropriate Q-automorphisms b :
P1 → P1. This we do by listing the divisors that describe the cuspidal-
fibers for each f and organizing these cuspidal-fiber matrices in ∆-
orbits. Each such ∆-orbit describes one class of Q-parametrizations of
X1(17) (of geometric degree 4); there are three of them.

Each divisor with support on these rational cusps is encoded by 8
integers, where the i-th integer is the multiplicity of the i-th cusp in
the ordering:

{2/17, 3/17, 4/17, 5/17, 6/17, 7/17, 8/17,∞}.
We display this data for a given f as a matrix, with exactly 8

columns, and as many rows as there are cuspidal-fibers for f . This
is the cuspidal-fiber matrix of f as discussed in section 4 above.

The first two classes factor through the quotient of X1(17) under the
action of the involution 〈13〉. That is, they factor through the double
cover

X1(17)
π−→ X1(17)/〈13〉.

The quotient curve X1(17)/〈13〉 is isomorphic over Q to the elliptic
curve E := 17A4 in Cremona’s classification. The Mordell–Weil group
of 17A4 (over Q), is cyclic of order four. Make one (of the four possible)
identifications—rational over Q:

X1(17)/〈13〉
ι∼= E

The determination of the cuspidal-fiber matrix for each of these two
classes uses a minimum of computation; i.e., we work essentially by
’pure thought,’ given the fact that E(Q) is cyclic of order four. Since
there are eight rational cusps on X1(17) and ι · π is of degree two,
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these eight rational cusps are unramified for the mapping ι · π, and
the set of them map surjectively—by a two-to-one mapping—to E(Q).
Now E itself has precisely four Q-rational involutions υa such that
E/〈υa〉 ∼= P1. These are given by the formulae x 7→ a−x for a ∈ E(Q).
Note that

• |E(Q)/〈υa〉| = 3 if a is trivial or of order two, while
• |E(Q)/〈υa〉| = 2 if a is one of the two generators of E(Q).

Denote

fa : E → E/〈υa〉 ≈ P1

the double cover associated to the involution υa. Now if tb is translation
by b with b a point of order 4 and if a′−a is in E(Q)[2]\{0} then va =
tb ◦ va′ ◦ t−1

b , implying that fa and fa′ are in the same parameterization
class. So we have (at most) two Q-rational classes of parametrizations
of E of degree two coming from the four maps fa.That these are in
fact different equivalence classes can be seen from the bullets above.
For more specificity, choose an identification (“≈”) of E/〈υa〉 with P1

so that in the first case above E(Q)/〈υa〉 is identified with the set
{0, 1,∞} (any order will do) and in the second case it is identified with
{0,∞}. Fixing such an identification, but composing with ι · π for the
four possible choices of ι gives two ∆-orbits of fine Siegel units of degree
four on X1(17).

The cuspidal-fiber matrices for the two Q-parametrizations of X1(17)
(of geometric degree 4) that factor through X1(17)/〈13〉 are immedi-
ately computable from this discussion. In particular they each consist
of a single ∆-orbit of order two. We’ll call them “Q-similarity classes
(A) and (B).”

• Q-similarity class of parametrizations (A):

M1 :=




0 0 2 0 0 0 0 2
0 1 0 1 1 1 0 0
2 0 0 0 0 0 2 0




M2 :=




1 0 1 0 0 0 1 1
0 2 0 2 0 0 0 0
0 0 0 0 2 2 0 0




• Q-similarity class of parametrizations (B):

M3 :=

(
1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1

)

M4 :=

(
1 1 0 1 0 0 1 0
0 0 1 0 1 1 0 1

)

Far less evident is the third (and last) class of Q-parametrization
of X1(17) of degree four. This class (“(C)”) is given (as shown
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in the discussion below) by a single ∆-orbit of order eight, de-
scribed by eight cuspidal-fiber matrices M5,M6, . . . ,M12 per-
muted by the action of ∆. These 8 matrices correspond to the
8 rational points of W1.
• Q-similarity class of parametrizations (C):

M5 :=




1 0 0 1 0 0 0 2
0 2 0 0 0 1 1 0
0 0 3 0 1 0 0 0




M6 := 〈3〉M5 · · · M12 := 〈3〉7M5

Depending on how you decide which of the three rational cuspidal
fibers will be zeroes of your function and which poles you get different
Q-linear parameterizations of X1(17) and different fine Siegel units.
For example E1E3/E5E6 has the first row of M5 as zero-divisor and
the second row as polar-divisor, while E3E4E8/E2E6E7 has the third
row of M5 as zero-divisor and the second row as polar-divisor.

We can summarize as follows. Let

Γ ⊂ X1(17)(Q̄)

denote the set of non-cuspidal algebraic points of X1(17) defined over
number fields of degree four. If γ ∈ Γ let Q(γ) denote the number
field (of degree four) over which γ is defined. Say that γ is of type
(A), (B) respectively (C) if the projection of γ under one of the Q-
parametrization in the equivalence class (A), (B) respectively (C) is
a Q-rational point of P1. Let Γ(A) ⊂ Γ denote the subset of points of
type (A); and similarly for Γ(B) and Γ(C).

Theorem 4. The set Γ (of non-cuspidal algebraic points of X1(17)
defined over number fields of degree four) is the disjoint union

Γ = Γ(A)

⊔
Γ(B)

⊔
Γ(C).

Proof. The above discussion gives us the full list of Q-similar classes of
Q-parametrized points of degree 4 on X1(17). The fact that W 2

4X1(17)
is empty (because X1(17) has no functions of degree 3) shows that the
union above is a disjoint union. It remains to show that X1(17) has
no very sporadic, or sporadic points that are not cusps. For this, see
section 5.3 below. �
Proposition 5. Let x, y, z be the functions from theorem 3, then the
Galois groups of Q(x) ⊂ Q(X1(17)), Q(y) ⊂ Q(X1(17)) and Q(z) ⊂
Q(X1(17)) are S4, D4 and D4 respectively.

Proof. Let Kx denote the Galois closure of Q(x) ⊂ Q(X1(17)), then by
looking at matrix M5 one sees that [Kx : Q(X1(17))] has to be divisible
by 6, implying that 24 divides [Kx : Q(x)] hence the Galois group has
to be S4.
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For the proof that the other two Galois groups are D4, one can use
the following observation: Suppose that M ⊂ L ⊂ K is a tower of field
extensions with [L : M ] = [K : L] = 2 and K/M is not Galois, then
K/M has Galois group D4. One can then apply this observation to
Q(y) ⊂ Q(X1(17)/〈34〉) ⊂ Q(X1(17)) and Q(z) ⊂ Q(X1(17)/〈34〉) ⊂
Q(X1(17)). Now Q(X1(17))/Q(y) and Q(X1(17))/Q(z) are not Galois
follows from the fact that there is no subgroup H ⊂ AutQ(X1(17)) =
(Z/17Z)∗/±1 of order 4 such that X1(17)/H ∼= P1.

�

5.3. Sporadic and very sporadic points on X1(17). The compu-
tations in the previous section show that the number of g1

4’s on X1(17)
that are defined over Q is exactly 12. This is actually proved twice,
once by proving 12 = 4 + 8 = #W0(Q) + #W1(Q), and once by using
proposition 4 and computing that there are exactly 12 cuspidal fiber
matrices corresponding to fine Siegel units of degree 4. The main goal
of this section is to prove the following theorem:

Theorem 5. Every point on X1(17) of degree 4 over Q is in one of
the 12 g1

4’s.

For the proof of this theorem we will use a slight modification of a
theorem due to Michael Stoll in [8].

Let C/Q be a curve with jacobian J , and let d ≥ 1 be an integer.
Let Cd be the dth power, and Cd := Symmd(C) the dth symmetric
power of C. Let

C
{1}
d := Cd ×J W 1

d (C).

So C
{1}
d ⊂ Cd is the closed subvariety parametrizing those divisors D

of degree d such that dimH0(OC(D), C)− 1 = dim |D| ≥ 1.
Denote by s : Cd → Cd the natural quotient map.

Theorem 6. Let ` be a prime of good reduction for C. Let P0 ∈ C(Q)
be chosen as base-point for an embedding ι : C → J . This also induces
morphisms Cd → Cd → J . If the following assumptions hold:

(1) ` > 2 or J(Q)[2] injects into J(F`) (for example, #J(Q) is
odd).

(2) J(Q) is finite.
(3) The reduction map C(Q)→ C(F`) is surjective.
(4) The intersection of the image of Cd(F`) in J(F`) with the im-

age of J(Q) under reduction mod ` is contained in the image
of Cd(F`).

Then Cd(Q) \ C{1}d (Q) is contained in the image of Cd(Q)→ Cd(Q).

Proof. Let ρX denote the reduction map X(Q) → X(F`), where X is
a smooth projective variety over Q with good reduction at `.
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From assumptions (2) and (1) we can deduce that ρJ : J(Q)→ J(F`)

is injective. By the definition of C
{1}
d it is also clear that Cd(Q) \

C
{1}
d (Q)→ J(Q) is injective.
Finally (3) shows that ρdC : Cd(Q)→ Cd(F`) is surjective.

Cd(Q) \ C{1}d (Q)
� _

��

t�
ι

''
Cd(Q)

s //

ρ
Cd (3)
����

Cd(Q)

ρCd
��

ι // J(Q)
� _

ρJ(2,1)

��
Cd(F`)

s // Cd(F`)
ι // J(F`).

Now let P ∈ Cd(Q) \C{1}d (Q)→ J(Q). We want to show that there
is a Q ∈ Cd(Q) such that s(Q) = P . Now ρJ ◦ι(P ) = ι◦ρCd(P ) ∈ J(F`)
so from assumption (4) it follows that there is a Q ∈ Cd(F`) such that
ι ◦ s(Q) = ρJ ◦ ι(P ). Let Q ∈ Cd(Q) be such that ρCd(Q) = Q then

ρJ ◦ ι ◦ s(Q) = ι ◦ s(Q) = ρJ ◦ ι(P ).

The injectivity of ρJ implies ι ◦ s(Q) = ι(P ) and because P /∈ C1
d(Q)

we know that s(Q) = P . �
Corollary 7. If the above hypotheses hold for d = γC(C) then all
sporadic points of C are Q-rational.

Proposition 6. There are no sporadic non-cuspidal points on X1(17).

Proof. We apply Theorem 6 taking C := X = X1(17). We take ` = 3,
so (1) holds. Since J1(17)(Q) is of finite order16, condition (2) holds.
The Hasse-Weil bound implies that for an elliptic curve E over F3

we have #E(F3) ≤ 3 + 1 + 2
√

3 < 8 so this E cannot have an F3-
rational point of order 17 showing that X = X1(17)(F3) consists en-
tirely of cusps, which gives (3). Finally we verified with a computation
in magma that assumption (4) is also satisfied.

�
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