Continuous Flow Cyclopropanation Reactions using Cu(I) complexes of Pc-L* ligands supported on silica as catalysts with carbon dioxide as a carrier.

Brunilde Castano¹, Emma Gallo¹, Vladimiro Dal Santo², David J. Cole-Hamilton³ and Alessandro Caselli¹.

¹ Dipartimento di Chimica, Università di Milano, Via G. Venezian 21, 20133 Italy.

² CNR – Istituto di Scienze e Tecnologie Molecolari, Via C. Golgi 19, 20133 Italy. ³ EaStCHEM, School of Chemistry, University of St. Andrews, St. Andrews, Fife, Scotland, UK KY16 9ST.

We have recently reported that copper(I) complexes of the new C_1 -symmetric pyridine-based 12-membered tetraaza macrocycles, *Pyridine Containing Ligands* (**Pc-L***), are competent catalysts in the asymmetric cyclopropanation. ^{1,2} In order to improve our catalytic system Cu(I) complexes based on **Pc-L*** ligands were heterogeneized on mesoporous ordered and non-ordered silicas (Davisil, MCM-41, etc.) by the Supported by HydrogenBond (SHB) method. ³

Supported catalysts \mathbf{C} were tested in enantioselective cyclopropanation in batch conditions showing good catalytic activities of differently substituted olefins employing ethyl diazoacetate (EDA) as carbene precursor in n-hexane. The silica support has a strong influence on the diastereoselective outcome of the reaction, favoring the formation of the more challenging cis isomer. Then, catalysts \mathbf{C} were tested as catalyst for the cyclopropanation reaction under flow conditions focusing our attention on the use of supercritical CO_2 . As model reaction we chose the cyclopropanation of α -methyl styrene with EDA. The catalyst has been located in a reactor while the substrate (α -methyl styrene and EDA) are transported into the reactor dissolved in 1,2-DCE or in supercritical CO_2 , which simultaneously acts as a transport vector for the products. Under optimised conditions, the catalyst was stable over at least 10 h of continuous flow, without drop in activity or selectivity.

References

Catalytic asymmetric hydrogenation of naphthalenes and quinolines

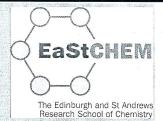
R. Kuwano and R. Ikeda

Department of Chemistry, Graduate School of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan

Catalytic asymmetric hydrogenation of carbocyclic arenes had been a formidable subject in organic synthesis, although various heteroarenes have been reduced through asymmetric catalysis. We have developed the highly enantioselective hydrogenations of 5-membered nitrogen-containing heteroarenes by using a chiral catalyst, PhTRAP—ruthenium.¹ In this study, we found that the chiral ruthenium catalyst is also effective for the asymmetric hydrogenation of carbocycles in naphthalenes and quinolines. The hydrogenation of naphthalene-2,6-dicarboxylate 1 was conducted with [RuCl(p-cymene){(S,S)-(R,R)-PhTRAP}]Cl (2) and DBU under hydrogen (50 atm) in BuOH at 40°C for 24 h. The hydrogenation product, tetralin 3, was obtained in 98% isolated yield with 86% ee (eq. 1). The ruthenium complex 2 promote the hydrogenation of 2-alkoxynaphthalenes 4 to give the desired chiral product 5 with up to 92% ee (eq. 2).²

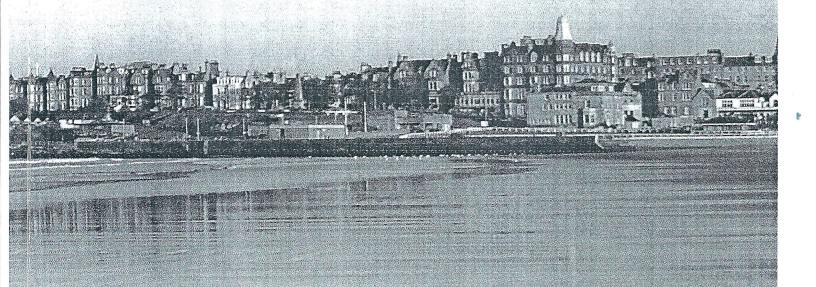
In the hydrogenation of quinolines, their nitrogen-containing rings were exclusively reduced to give 1,2,3,4-tetrahydroquinolines in general. To our surprise, the reduction preferentially occurred on the carbocycles of quinolines, when the hydrogenation was conducted in the presence of PhTRAP—ruthenium catalyst. In particular, 8-substituted quinolines were converted to chiral 5,6,7,8-tetrahydroquinolines in good stereoselectivities and high yields. In the reaction of 8-methoxyquinoline (6), the desired product 7 was formed with 83% ee, while no formation of 1,2,3,4-tetrahydroquinoline 8 was observed (eq. 3).

¹R. Kuwano, M. Kashiwabara, *Org. Lett.*, 2006, **8**, 2653; R. Kuwano, M. kashiwabara, M. Ohsumi, H. Kusano, *J. Am. Chem. Soc.*, 2008, **130**, 808; R. Kuwano, N. Kameyama, R. Ikeda, *J. Am. Chem. Soc.*, 2011, **133**, 7312


² R. Kuwano, R. Morioka, M. Kashiwabara, N. Kameyama, *Angew. Chem. Int. Ed.*, 2012,

C26

¹ A. Caselli, F. Cesana, E. Gallo, N. Casati, P. Macchi, M. Sisti, G. Celentano, S. Cenini, *Dalton Trans.* **2008**, 4202


² B. Castano, S. Guidone, E. Gallo, F. Ragaini, N. Casati, P. Macchi, M. Sisti, A. Caselli Dalton Trans. 2013, **42** (7), 2451

Programme and Abstracts

20th EuCheMS Conference on Organometallic Chemistry St Andrews, Scotland

30 June - 4 July, 2013

600 YEARS