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Several lines of evidence suggest that, besides being a strong independent predictor of
the occurrence of primary coronary events, a low plasma high density lipoprotein (HDL)
cholesterol level is also associated with short- and long-term unfavorable prognosis
in patients, who have recovered from a myocardial infarction, suggesting a direct
detrimental effect of low HDL on post-ischemic myocardial function. Experiments
performed in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury
have clearly shown that HDL are able to preserve cardiac function when given before
ischemia or at reperfusion; the protective effects of HDL against I/R injury have been
also confirmed in other tissues and organs, as brain and hind limb. HDL were shown
to act on coronary endothelial cells, by limiting the increase of endothelium permeability
and promoting vasodilation and neoangiogenesis, on white blood cells, by reducing
their infiltration into the ischemic tissue and the release of pro-inflammatory and matrix-
degrading molecules, and on cardiomyocytes, by preventing the activation of the
apoptotic cascade. Synthetic HDL retains the cardioprotective activity of plasma-derived
HDL and may become a useful adjunctive therapy to improve clinical outcomes in
patients with acute coronary syndromes or undergoing coronary procedures.

Keywords: high density lipoproteins, HDL cholesterol, synthetic HDL, ischemia–reperfusion injury, acute coronary
syndrome

A series of large population studies have revealed the existence of a strong inverse correlation
between plasma levels of high density lipoprotein cholesterol (HDL-C) and the incidence of
coronary heart disease; interestingly, the inverse relation is observed at all levels of low density
lipoprotein cholesterol, including very low concentrations achieved in statin-treated patients
(Barter et al., 2007). The same relationship was also found for the incidence of ischemic
cerebrovascular events (Koren-Morag et al., 2002; Soyama et al., 2003).

Besides being independent predictors of the incidence of acute ischemic diseases, low plasma
levels of HDL-C were shown to be associated to an unfavorable prognosis; indeed, plasma levels
of HDL-C at admission are inversely associated with the severity of the ischemic insult, with 1-
year mortality, and with the recurrence of subsequent clinical events (Olsson et al., 2005; Ghazzal
et al., 2009; Yeh et al., 2013). The relationship between HDL-C and prognosis is not likely due
to an accelerated atherogenesis, but may suggest a detrimental effects of low HDL on post-
ischemic recovery; low levels of HDL-C are indeed associated with post-ischemic left ventricular
dysfunction independent of coronary atherosclerosis severity (Kempen et al., 1987; Wang et al.,
1998, 1999). Thus, in recent years several studies have been devoted to assess whether plasma-
derived and synthetic HDL (sHDL) could reduce ischemic injury using in vitro, ex vivo, and in vivo
models, and to investigate the HDL components and the mechanisms responsible for the protective
effects.
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HDL AND MYOCARDIAL I/R INJURY

Acute myocardial infarction is the result of the occlusion of an
epicardial coronary artery, generally due to the sudden rupture
of an atherosclerotic plaque, limiting the perfusion of the cardiac
region distal to the occlusion site (the so-called “area at risk”). If a
timely reperfusion is not achieved and no collateral circulation
is present, cardiomyocytes will be irreversibly damaged and
substituted by fibrous tissue with impairment of contractile
function. Thus, reperfusion is mandatory to limit infarct size and
improving post-ischemic cardiac function; however, reperfusion
itself is associated with additional myocardial damage, generating
the definition of “ischemia/reperfusion (I/R) injury” (Carden and
Granger, 2000).

To evaluate the I/R pathology and possible therapeutic
approaches to limit I/R damage, different models can be used,
ranging from ex vivo isolated hearts to in vivo ligation of
coronary arteries in small to large mammals. Isolated hearts
are useful for their easiness of manipulation (i.e., duration and
nature of I/R) and allow a complete biochemical, physiological,
and morphological evaluation. However, the isolated heart has
a limited life-span and does not allow to evaluate the role
of hemodynamic and systemic factors, as in vivo models do
(i.e., permanent or temporary ligation of the left descending
coronary artery, LAD; Hearse and Sutherland, 2000). Small
animals as rodents are of great help for their ease of breeding,
low cost, and availability of transgenic models, but their
translational relevance is limited by the huge anatomical and
physiological differences with humans; large animals as pigs,
dogs, and primates surely display a much closer phenotype
to humans and represent a mandatory step toward clinical
trials, but still suffer of differences in the extent of collateral
blood flow and resistance to infarct development (Ibanez et al.,
2015).

Plasma-derived HDL were first shown to limit I/R injury in an
ex vivo model on isolated rat hearts retroperfused through the
aorta according to the Langendorff technique (Calabresi et al.,
2003b). A moderate I/R injury was induced by reducing the
perfusion flow for 20 min and then reperfusing the hearts for
additional 30 min; this protocol resulted in an remarkable post-
ischemic impairment of contractile function, increase of coronary
resistance to perfusion flow and cardiac necrosis. In this model,
HDL significantly limited I/R injury, when given immediately
before ischemia or during the first minutes of reperfusion; the
ability of HDL to limit I/R injury even when administered after
ischemia could be clinically relevant and was further confirmed in
isolated mice hearts treated with HDL at reperfusion (Frias et al.,
2013).

Cardioprotection by HDL against I/R injury was definitely
proven in vivo. HDL were given to mice 30 min before the
ligation of left descending coronary artery; after 30 min, blood
flow was restored for additional 24 h. Mice treated with HDL
displayed a large reduction of infarct size with less myocyte
necrosis and inflammation compared to vehicle-treated animals
(Theilmeier et al., 2006). In agreement with this evidence, mice
lacking apoA-I: display increased infarct size after LAD in a
gene-dose-dependent way (Dadabayev et al., 2014).

sHDL AND MYOCARDIAL I/R INJURY

The translational potential of HDL as cardioprotective agents
against I/R injury is hampered by several difficulties, including
their heterogeneity and safety concerns; these limitations
can be overcome by the use of sHDL. These particles are
usually composed by recombinant proteins as apoA-I, the
main protein component of HDL, and phospholipids, generally
phosphatidylcholine, and are now undergoing the clinical phase
of development as plaque-stabilizers in the context of an acute
coronary syndrome (ACS; Krause and Remaley, 2013). By using
the same ex vivo experimental protocol described above, we
showed that these sHDL are able to limit I/R injury when
given before or after the ischemic insult and that the two
sHDL components, apoA-I and phospholipids, are not effective
when given alone (Rossoni et al., 2004). However, the effect of
sHDL is about 50% lower than that of plasma-derived particles,
suggesting that the basic sHDL composition should be modified
in order to achieve maximal cardioprotective activity. Marchesi
et al. (2004) confirmed the sHDL-mediated cardioprotection
against I/R injury in vivo by testing the administration of sHDL
containing the apoA-IMilano variant to rabbits before temporary
LAD; at reperfusion infarct size was reduced in sHDL-treated
compared to vehicle-treated animals. Several agents are able
to inhibit infarct size in animal models, however, a parallel
improvement of cardiac function has not been always observed.
HDL were instead shown to limit the decline of contractile
function and the increase of coronary resistance to perfusion
flow; in addition, sHDL are able to reduce the duration of
ventricular tachycardia or fibrillation at reperfusion when given
to rats before LAD (Imaizumi et al., 2008). Contrary to what
observed ex vivo, where apoA-I had to be associated with
phospholipids to exert cardioprotection, infarct size after LAD
was significantly reduced in rats infused with unlipidated apoA-I
10min before artery ligation (Hibert et al., 2013); this discrepancy
is likely explained by the rapid interaction of infused apoA-I
with circulating lipoproteins and the increase of endogenous
HDL pool, which is not possible in blood-free experimental
settings.

As stated above, an optimization of sHDL composition is
needed to achieve a cardioprotective effect comparable to that of
plasma-derived lipoproteins. Changes could involve the protein
and/or the lipid components, and the inclusion of proteins
that circulate in the bloodstream bound to HDL. For what
concerns the protein composition, apoA-I can be substituted by
apoA-I mimetic peptides, which surely represents an advantage
for the large-scale preparation of sHDL, or apoA-I variants. In
the ex vivo model of I/R injury, particles containing 37 pA
displayed the same cardioprotective activity of those with
apoA-I (Gomaraschi et al., 2008), while sHDL containing the
apoA-I Milano variant display a superior protection against
I/R injury in terms of reduction of cardiomyocyte damage
(Calabresi et al., 2006; Marchesi et al., 2008). Regarding the
lipid composition, a key indication comes from the study by
Theilmeier et al. (2006), in which the cardioprotective effect
of plasma-derived HDL was shown to be mediated by the
interaction of the carried sphingolipid sphingosine-1-phosphate
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(S1P) with its G-protein coupled receptor. The addition of S1P
to sHDL containing apoA-I and phosphatidylcholine resulted in
a significant increase of sHDL-mediated cardioprotection ex vivo
and in vivo (Brulhart-Meynet et al., 2015).

HDL AND I/R INJURY IN OTHER
TISSUES

Some evidences suggest that the protective role of HDL against
I/R injury is not limited to the cardiac muscle but could be
extended to other organs and tissues. In particular, recent studies
demonstrated that HDL can limit I/R injury also in brain,
hindlimb, kidney, intestine, liver, and lung. Both plasma-derived
and sHDL were tested in stroke models. In the first study,
cerebral ischemia was induced in rats by temporary ligation
of the middle cerebral artery (MCA) for 30 min and apoA-I
containing sHDL were infused before ischemia; a dramatic
reduction of brain necrotic area was observed in animals treated
with sHDL compared to vehicle-infused ones 24 h after MCA
reopening (Paterno et al., 2004). The effect of plasma-derived
HDL was tested in a model of focal cerebral ischemia induced by
embolization of a preformed clot in the MCA; in this case, HDL
were administered immediately after stroke onset and caused
marked reductions of mortality rate, infarct volume, blood–brain
barrier breakdown, and neurological deficits at 24 h (Lapergue
et al., 2010). Interestingly, HDL exerted their protective effects
even when infused up to 5 h after stroke onset. Using the same
experimental model HDL were also shown to decrease the rate
of mortality and hemorrhagic transformation induced by tissue
plasminogen activator (Lapergue et al., 2013). The protective
effects of sHDL and unlipidated apoA-I were assessed in the
context of hindlimb ischemia. Unilateral hindlimb ischemia was
induced by resecting the right femoral and saphenous artery
and apoA-I containing sHDL were injected twice per week,
starting 1 week before surgery; 4 weeks after surgery, animals
treated with sHDL displayed superior blood flow recovery
and capillary density than vehicle-treated animals (Sumi et al.,
2007). Similarly, the infusion of apoA-I every second day after
ligation of the femoral artery increased neovessel formation and
blood perfusion in mice (Prosser et al., 2014). HDL markedly
reduced renal dysfunction and I/R injury when given before
arterial and venous clamping: at reperfusion serum, urinary
and histological markers confirmed less renal dysfunction and
cellular damage in HDL-treated rats (Thiemermann et al., 2003).
Intestinal I/R injury was also attenuated by sHDL: when given
before splanchnic artery occlusion, sHDL limited histological and
clinical signs of ileum injury and the infiltration of inflammatory
cells at reperfusion (Cuzzocrea et al., 2004). The overall protective
effect of both plasma-derived and sHDL against I/R injury is well
recapitulated in amodel of multiple organ dysfunction syndrome;
this syndrome is a typical consequence of hemorrhagic shock
in which I/R injury occurs at several organs due to a reduced
blood flow and oxygen supply. A rapid fall of arterial pressure
was obtained by blood withdrawn from rat carotid artery and
subsequent resuscitation by reinjection of blood and isotonic
saline (Cockerill et al., 2001b). The administration of HDL or

FIGURE 1 | Mechanisms of high density lipoprotein (HDL)-mediated
protection against ischemia/reperfusion injury. HDL can reduce
ischemia/reperfusion (I/R) injury by inhibiting damaging processes and by
promoting protective responses elicited by tissues after ischemia/reperfusion.
HDL exert their effect on different cell types, as cardiomyocytes, endothelial
cells, and leukocytes. See text for details.

sHDL immediately before resuscitation reduced I/R damage
in the liver, kidneys, pancreas, brain, muscles, lung, and
intestine, as demonstrated by serummarkers of cell necrosis (i.e.,
transaminases, creatinine, creatinine kinase, etc.) and histological
analyses: organs from HDL-treated rats showed less edema
and loss of normal tissue structure, less cellular infiltration
and endothelial/epithelial expression of cell adhesion molecules
(CAMs; Cockerill et al., 2001b).

MECHANISMS OF HDL PROTECTION
AGAINST I/R INJURY

In recent years, several studies have been performed to elucidate
the mechanisms underlying plasma-derived and sHDL-mediated
protection against I/R injury. The proposed mechanisms can
be divided into two groups: the stimulation of endogenous
protective responses and the inhibition of damaging processes
(Figure 1). Protective responses are aimed at sustaining cell
viability and at ensuring the maximal perfusion of ischemic
tissues. HDL can promote the activation of different pro-survival
pathways, as the survivor activating factor enhancement pathway
(SAFE; Frias et al., 2013). In addition, HDL administration causes
the release of molecules favoring vasodilation and myocyte
relaxation as prostanoids and nitric oxide ex vivo and in vivo
(Calabresi et al., 2003b; Theilmeier et al., 2006). The increase of
HDL-mediatedNO production through the PI3K/Akt pathway is
almost blunted in the absence of the S1P3 receptor and is involved
in the anti-arrhythmogenic effect of HDL (Theilmeier et al., 2006;
Imaizumi et al., 2008).

Damaging responses are generally consequent to the
activation of the inflammatory cascade, the infiltration of
circulating leukocytes and the increased oxidative stress. HDL
can limit the alterations of endothelial barrier permeability,
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the extravasation of circulating cells and the release of pro-
inflammatory and pro-oxidant molecules like cytokines,
chemokines, and reactive oxygen species. In particular, HDL
modulate cardiac TNFα content, which seems crucial in the
early phase of I/R injury, since it combines the capacity to
directly affect myocyte function with the ability to trigger an
inflammatory response (Frangogiannis et al., 1998; Meldrum,
1998). Preformed TNFα can be immediately released in the
ischemic tissue by the degranulation of resident mast cells
and the cleavage of membrane-bound TNFα (Frangogiannis
et al., 1998; Kupatt et al., 1999), causing a significant increase
of TNFα levels in ischemic hearts (Calabresi et al., 2003b).
Both plasma-derived and sHDL act as TNFα scavengers, able
to bind TNFα and to remove it from the ischemic tissue, thus
preventing its damaging effects (Calabresi et al., 2003b; Rossoni
et al., 2004). The mechanisms outlined above suggest that
HDL-mediated protection against I/R injury is due to their
ability to act on myocytes, but also on endothelial cells and
infiltrating leukocytes, as confirmed in cell studies mimicking I/R
injury through hypoxia-reoxygenation and glucose deprivation
protocols (Figure 1).

Cardiomyocytes
High density lipoprotein limits cardiomyocyte apoptosis in
the ischemic area following LAD (Theilmeier et al., 2006).
These findings were confirmed in vitro on cardiomyocytes
under glucose deprivation or subjected to hypoxia and are
linked to the inhibition of the mitochondrial permeability
transition pore opening consequent to the activation of
the SAFE pathway (Theilmeier et al., 2006; Frias et al.,
2013). The preservation of myocyte viability after hypoxia-
reoxygenation is mediated by S1P through its receptors S1P1
and S1P3 and the subsequent activation of the PI3K/Akt
and the MEK/ERK pathways (Tao et al., 2010). The central
role of mitochondria as targets of HDL-mediated myocyte
survival after I/R is confirmed by two evidences. First, the
administration of sHDL prevents mitochondrial granulation and
disorganization in isolated hearts undergoing I/R (Marchesi
et al., 2008). Second, apoA-I-deficient mice display impaired
mitochondrial function resulting in higher infarct size after LAD
compared to wild-type mice. Interestingly, the administration
of coenzyme Q to apoA-I null mice normalizes electron
transfer rate from complex II to complex III of the electron
transfer chain and reduces infarct size (Dadabayev et al.,
2014).

Endothelial Cells
The HDL-mediated increase of prostanoids and nitric oxide
levels after I/R suggests that HDL-mediated cardioprotection is
due at least in part to their role in promoting vasodilation. In
addition, it is well known that both HDL and sHDL can inhibit
the expression of CAMs, which favor circulating cell adhesion to
the endothelial layer (Barter et al., 2002; Calabresi et al., 2003a);
indeed, HDL can limit the expression of CAMs, neutrophil
binding and transmigration in activated endothelial cells and in
several in vivo models of I/R or acute inflammation (Cockerill
et al., 2001a,b; Paterno et al., 2004; Theilmeier et al., 2006).

Interestingly, HDL increase hypoxia-mediated angiogenesis
in coronary artery endothelial cells; HDL promote endothelial
cell migration, proliferation, and tubulogenesis by acting on
the post-translational regulation of the hypoxia-inducible factor-
1/vascular endothelial growth factor axis, with a mechanism
requiring HDL interaction with the scavenger receptor SR-BI and
the activation of PI3K pathway (Prosser et al., 2014; Tan et al.,
2014). The pro-angiogenic effect of HDL can be also mediated
by their ability to promote the differentiation of peripheral blood
monocytes into endothelial progenitor cells, via activation of the
PI3K/Akt/NO pathway (Sumi et al., 2007).

Infiltrating Cells
An HDL-mediated reduction of neutrophil recruitment in the
ischemic tissues was demonstrated in vivo in different models of
I/R (Cockerill et al., 2001b; Thiemermann et al., 2003; Cuzzocrea
et al., 2004; Theilmeier et al., 2006; Lapergue et al., 2010);
infiltrating cells may considerably contribute to I/R injury by
releasing molecules and enzymes with pro-inflammatory, pro-
oxidant, and proteolytic activities. HDL activity on infiltrating
cells could be particularly relevant in cerebral ischemia, where the
breakdown of the blood brain barrier allows the extravasation of
plasma proteins and leukocytes and the development of cerebral
edema (Ballabh et al., 2004). Activated leukocytes are thought to
take part in this process, since after degranulation they release
enzymes responsible for the proteolysis of extracellular matrix
(Gidday et al., 2005). A recent elegant study performed on
cerebral endothelial cells and leukocytes under oxygen-glucose
deprivation conditions showed that the presence of HDL helped
inmaintaining endothelial layer integrity by inhibiting leukocytes
activation (Bao et al., 2013).

CONCLUSION

Plasma-derived and sHDL have been clearly shown to exert
protective effects against I/R injury in animal models. The
protective effects are related to HDL ability to interfere with
cellular processes known to play a role in myocardial I/R injury.
Interestingly, sHDL are cardioprotective evenwhen administered
after the ischemic insult, supporting the therapeutic potential
of sHDL infusion to reduce I/R injury. sHDL are currently
under clinical development for plaque stabilization/regression in
the setting of ACS, primarily because of their ability to rapidly
remove cholesterol from the arterial wall (Nissen et al., 2003;
Tardif et al., 2007). If administered promptly after ACS, sHDL
could also promote acute protection against I/R damage. Based
on pre-clinical data summarized in the review, this hypothesis
warrants clinical investigation, and could be also extended to
other organs, since the pathologic mechanisms targeted by HDL
in myocardial I/R are likely not specific to the heart.
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