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Abstract

The advancement in medical science has increased life expectancy in devel-
oped countries, which results in a rise in the elderly population. Conse-
quently, age related health issues are also increasing and aging societies are
continuously searching for new technologies to provide better healthcare ser-
vices to the elderly population. One of the prominent health issues relates
to the elderly population is cognitive impairment. The decline in cognitive
health does not only affect day to day matters of the individual, but also cre-
ates difficulties for clinicians and caregivers in terms of providing necessary
support to individuals suffering from cognitive disorder. Therefore, an early
detection of cognitive impairment is very important, so that clinicians, care-
givers, and individuals can take necessary measures to support a cognitively
impaired person.

In medical literature, the term Mild Cognitive Impairment (MCI) is rec-
ognized as a transitional phase between normal aging and dementia. Sev-
eral studies show that in early stages of the disorder, signs are quite subtle.
Hence, it is difficult to capture subtle signs through episodic medical workups.
Studies in this domain also conclude that the deteriorated cognitive health
significantly affects the ability of an elderly person to correctly perform rou-
tine life activities. Therefore, a continuous monitoring of the daily routine of
the elderly can be helpful for clinicians to diagnose the early onset of MCI.
Thanks to the recent advancement in the pervasive technology, which allows
us to develop such systems which can continuously monitor daily routine of
the elderly through a smart space.

This thesis focuses on the detection of fine-grained anomalies found in
the daily behavior of the subject; an elderly person who lives independently
in a smart home. We particularly focused on those anomalies which reflect
early onset of MCI. In order to model abnormal behavior, we have collabo-
rated with neuro-science experts and clinicians. The medical model provides
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natural language descriptions of fine-grained anomalies.
We proposed FABER, a novel technique for Fine Grained Abnormal BE-

havior Recognition (FABER). FABER is a modular architecture and relies
on artificial intelligence techniques for the recognition of abnormal behavior.
FABER is developed with the objective to support clinicians for a proper
diagnosis of MCI. In FABER, we have exploited a combination of statistical,
symbolic, and hybrid techniques to infer fine-grained anomalies. Complex
human activities are characterized by wide variability; a person can adopt
several different patterns of simple actions to perform an activity. Simple ac-
tions are detected by various multi-modal sensors deployed in a smart space.
For the sake of privacy, we do not consider audio and visual sensors. The
data stream from multimodal sensors contain several activities performed
by a smart home resident. FABER recognizes boundaries of activities i.e.,
the start and end time instants of an activity. We have considered various
techniques to recognize boundaries of activities. These techniques include
supervised machine learning such as Random Forest and hybrid techniques
such as Markov logic network (MLN).

After recognizing activities, the next step is the detection of fine-grained
anomalies. We constructed a knowledge-base to recognize these fine-grained
anomalies. For this purpose, we have represented knowledge using a symbolic
technique: first-order logic. Knowledge is acquired from various sources: 1)
experts provide us knowledge of abnormal behavior and other necessary infor-
mation required for the detection of fine-grained anomalies such as a medical
prescription to detect an anomaly missed medicine; 2) contextual informa-
tion is acquired from multi-modal sensors which includes spatio-temporal
information; 3) recognized activities are obtained from activity recognition
module.

In order to infer anomalies, natural language descriptions of fine-grained
anomalies are translated into first-order logic rules. In an if-then rule, the an-
tecedent is based on conditions defined by the clinical model for an anomaly
and the consequent is a single class of fine-grained anomaly to be recognized.
The clinical model also specifies seriousness level of each anomaly such as a
critical anomaly or a non-critical anomaly. The critical anomaly alerts clini-
cians for a serious behavioral modification, whereas the non-critical anomaly
indicates routine life errors that may occur due to negligence, hastiness or
personal habits.

In general, knowledge representation is a challenging task and depends
on several factors. These factors include smart home layout, environmental
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conditions, personal habits of the subject, and physical health of the sub-
ject. In order to formulate rules, a knowledge engineer must understand the
hidden relationship between these factors and the relevant anomaly class.
Moreover, manually formulated rules are not seamlessly portable to different
environments. In order to solve these issues, we have considered a rule in-
duction technique, RIPPER, which automatically learns rules from a set of
features. In this way, we can automatically generate anomaly detection rules
for different environments while using same feature set for each environment.

In order to evaluate the proposed framework, we have conducted exper-
iments with two datasets: 1) a smart home lab data set in which actors
simulated daily behavior of MCI patients; 2) a real home dataset in which
a real patient performed activities. According to the directions of clinicians,
we have selected three activities for the experimentation which includes tak-
ing medicines according to a medical prescription, preparing a meal during
mealtime, and eating a meal during mealtime. The system periodically infers
fine-grained anomalies, in our case we infer anomalies at the end of each day
i.e., by 12:00 a.m. midnight. We have used k-fold cross validation to validate
the performance of the system. In each fold, the data acquired for exactly
one day serve as test set, whereas data acquired for the rest of days serve as
training set.
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Chapter 1

Introduction

The advancement in medical science and availability of better healthcare
services result in a rapid increase in life expectancy in developed countries.
According to the United Nations, the percentage of elderly population will
rise from 5% in 2013 to 11% in 2050. Several other recent studies also validate
this fact; for instance, the proportion of people aged 65 or older is projected
to increase by 45% in Europe in the next 20 years [66]. As a consequence, a
growing portion of people is at high risk of experiencing non communicable
diseases, frailty and social exclusion, and may need long-term care, including
nursing at home or frequent hospitalization. Of course, the inability of living
independently may not only spoil the quality of life of elderly people and
those caring for them, but will also challenge the sustainability of entire
health system.

In particular, if we only consider the elderly people suffering from cog-
nitive health issues, then the global demographics show that prevalence of
dementia is steadily increasing across the globe. According to an estimate
from the World Health Organization, in 2015, around 47.5 million people are
suffering from dementia in the world. This figure will rise to an estimated
75.6 million by 2030, and triple by 2050 [1]. These statistics are alarming and
alert both the scientific community and aging societies to take appropriate
measures to counter negative effects of the disorder on the individual as well
as on the society.

Dementia is a slowly growing disorder, which progresses gradually from
an asymptomatic phase to a symptomatic phase, and then to its final stage.
In literature, the term Mild Cognitive Impairment (MCI) is used to identify a
transition phase between normal aging and dementia. According to clinicians
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CHAPTER 1. . . .

and health professionals, it is not trivial to define clear demarcations between
the three interleaved phases of the disorder, i.e, normal aging, MCI, and
Dementia [62]. However, the research carried out over the past few decades
has revealed that the elderly people suffering from MCI exhibit different
behaviors than normal elderly persons. Studies show that extensive clinical
examinations are required for a proper diagnosis of the stage of the disorder;
particularity at its initial stage.

According to Alzheimer’s Society, the medical work-ups required for MCI
diagnosis may involve several different types of procedures: medical history
analysis of the individual; assessment of independent function and daily ac-
tivities; reports from family members and trusted friends; mental status as-
sessments through various tests such as memory evaluation, planning, judg-
ment, and thinking skills; clinical neurological examination; evaluation of
mood; and laboratory tests which include blood tests, brain imaging, and
cerebrospinal fluid test. However, normally a clinical examination is initi-
ated when a substantial evidence is found regarding the decline in cognitive
health of the subject. Apart from the success rate of these diagnostics, there
are certain limitations of these methods and among them the primary one is
their episodic nature. The elderly persons have to regularly visit clinics and
have to pass through the suggested clinical tests.

In the early stage of the disorder, the subject manifests subtle deficits
which may be difficult to capture during episodic clinical examinations [87].
In this situation, clinicians have to trust the subject’s or informant’s reports
regarding functional difficulties faced by the subject in his/her daily routine.
However, studies show that clinicians cannot fully ignore the doubt of biased
reporting, which could be due to several reasons such as stress, forgetfulness,
and lack of reporter’s skills in judging behavioral changes of the subject
[87]. Thus, for a reliable diagnosis, clinicians are interested to use methods
involving continuous and longitudinal monitoring of daily routine of elderly
persons, while they live independently in their own homes.

The technological advancement in sensing devices, over the past few years,
has realized the concept of smart homes. Smart homes are not only aiming
to provide an environment for assisted living [35], but are also enabling longi-
tudinal monitoring of elderly people in an unobtrusive manner [18]. Several
studies conclude that decline in cognitive health affects normal daily routine
of the elderly [79]. Therefore, a continuous monitoring of the daily behavior
may help practitioners for an early detection of the disorder.
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1.1. PROBLEM FORMULATION CHAPTER 1. . . .

1.1 Problem formulation

Consider a typical scenario which explains the importance of using a per-
vasive system for the early detection of MCI. Suppose an elderly woman,
named Anna, lives independently in her home. Anna is suffering from hyper-
tension and few other age related health problems. Therefore, her physician
prescribes a few medicines for her and she has to take these medicines reg-
ularly during prescribed times. A caregiver visits her regularly and takes
care of her routine life essentials such as food items and medicines. With
the passage of time, the caregiver has noticed that sometimes Anna exhibits
a peculiar behavior and face functional difficulties while performing routine
life activities. For example, sometimes she spends unusually long time to
prepare a meal, and sometimes she forgets to take her regular medicines.
However, the frequency of such peculiar behavioral episodes is quite low.
The caregiver decided to contact neuro-physicians to investigate the prob-
lem. Neuro-physicians used standard cognitive assessment screening tests [20]
to assess her cognitive condition. However, assessment tests do not provide
sufficient evidence that Anna is suffering from any type of cognitive impair-
ment. Neuro-physicians then decided to monitor her daily behavior, inside
her home, while she performs her routine life activities such as maintain-
ing personal hygiene, taking medicine(s) during prescribed times, preparing
meals, and eating meals. Neuro-physicians are interested to discern various
abnormalities in her routine life, so that they can differentiate between her
normal aging problems and signs of cognitive impairments. Neuro-physicians
can face the following potential difficulties while monitoring the daily routine
of Anna.

• Privacy: Due to privacy reasons, it is difficult that a human can di-
rectly observe the daily routine of Anna and gather sufficient clues of
her behavioral changes. Even if the subject allows a caregiver or a
family member to directly observe her daily routine, still a continuous
(24/7) monitoring is not possible due to the observer’s inability to be
consistently present with the subject while she performs her routine
life activities.

• Imprecision: Human based monitoring of the subject involves certain
imprecision which can significantly affect the diagnosis. First, since
an observer is unable to continuously monitor the subject’s routine,
the observed behavior is only a snapshot of her daily routine and such
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snapshots may not provide an adequate evidence to clinicians for a
successful diagnosis of MCI. Second, a human observer can influence
Anna’s natural way of carrying out activities and such an influence
may hide the real behavioral changes exhibited by the subject. Third,
in order to determine behavioral modifications, clinicians are normally
interested to look a history of behavioral changes in the daily routine
of the subject, however, it may be difficult for a human observer to
maintain a detailed record of long term abnormalities found in her daily
routine. Fourth, in some situations, a close observation is required to
notice the abnormal behavior, otherwise, a human observer can easily
overlook an occurred anomaly. For example, the subject regularly takes
a medicine during prescribed time, but one day she has mistakenly
replaced the prescribed medicine with a wrong medicine. In this case,
the human observer has to closely observe which medicine has been
taken by the subject. In conclusion, in early stages of MCI, the subject
manifests subtle deficits in routine life activities which are difficult to
capture with a high accuracy, by a human observer through the episodic
monitoring.

• Cost: A proper monitoring of the subject needs necessary skills in
which the observer must possess knowledge about the behavior of an
MCI patient. Therefore, it is normally difficult for an ordinary person
to capture such symptoms which can indicate an early onset of MCI.
The neuro-physicians can invite the subject to a laboratory in which
Anna can perform various activities. Another possibility is hiring a
skilled caregiver who can observe subject’s behavior in her home and
then report behavioral changes to neuro-physicians. However, these
methods are episodic and also costly because of specific arrangements.

In order to address above mentioned issues, we proposed a pervasive
healthcare monitoring system which is described in Chapter 4. Several other
research studies have considered sensor based monitoring systems and these
methods are reviewed in Chapter 3. However, comparing with the state of
the art research happened in this field, we have particularly focused on the
following objectives:

• Continuous monitoring of the subject while he/she performs her routine
life activities.
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• Maintaining a maximum possible privacy of the subject.

• Unobtrusive monitoring, so that the process of monitoring does not
interfere subject’s daily routine.

• Automatic detection of fine-level abnormalities found in daily behavior
of the subject. We are interested to develop a system which can capture
subtle changes manifest by the subject while performing activities.

1.2 Contributions

Abnormal behavior recognition through sensor based behavior monitoring is
a challenging task. In order to develop such a pervasive system, we have to
consider various aspects of the system which include modeling of abnormal
behavior, providing a sensing solution, acquiring sensor data from a sensing
infrastructure, and processing the acquired data to infer abnormal behavior.
Due to the large scope of this project, the overall project is completed by a
group of researchers. In fact, this thesis work covers some portions of the
overall project which include some primary tasks and some novel contribu-
tions. Here it is important to mention that the thesis work has been carried
out within SECURE project1. SECURE: Intelligent System for Early Diag-
nosis and Follow-up at Home, a project funded under the Industrial Research
and Experimental Development in the strategic sectors of the Lombardy Re-
gion and the Ministry of Education, University and Research. The project
aims to develop a prototype for monitoring of daily behavior of an elderly
person along with his/her physiological parameters to support clinicians for
an early detection of cognitive impairment. Contributions of this work in the
overall project are summarized as:

1. Sensing infrastructure: Human activities consist of simple actions which
can be detected by various multi-modal sensors deployed in a smart
environment. Therefore, as an essential step for abnormal behavior
recognition, we proposed a sensing solution which can detect simple
actions performed by humans during routine life activities. The elderly
is supposed to live independently in such a smart environment; where
he/she can freely perform his/her routine life activities. In order to

1The project details along with the list of industrial partners are available at: http:

//secure.ewlab.di.unimi.it/
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1.2. CONTRIBUTIONS CHAPTER 1. . . .

maintain maximum privacy of the inhabitant, we have avoided audio
or visual sensors. Our proposed sensing solution is based on various off-
the-shelf multi-modal sensors which can be easily deployed in a smart
space and detect various human gestures and movements executed by
the inhabitant.

2. Activity recognition: Human activities are complex and a person can
execute an activity in various different ways. The multi-modal sensors
deployed in the smart home detects various simple actions performed in
different activities. Our proposed method relies on activity recognition
for abnormal behavior recognition. In order to recognize activities from
multi-modal sensor data, we have exploited various statistical and hy-
brid techniques. We have performed experiments using various state of
the art machine learning techniques such as Support Vector Machine,
Random Forest, Bayesian Classifiers, and Multilayer Perceptron.

3. Fine-grained anomaly recognition: It is the main objective of this re-
search work and also the major novel contribution in the research do-
main. Fine-grained anomalies are fine-level details of the abnormal
behavior found in the daily routine of an elderly person suspected of
having MCI. Our proposed model relies on medical models which have
been developed over the past several years and indicate fine-level details
of abnormal behavior found in activities performed by an MCI patient.
Besides thoroughly studying the medical literature, we have also col-
laborated with neuro-science experts and clinicians to understand the
abnormal behavior exhibited by an MCI patient. Neuro-science ex-
perts and clinicians provide us natural language details of fine-grained
anomalies. In order to recognize fine-grained anomalies, we have trans-
lated the natural language descriptions of fine-grained anomalies into
rules. Rules are manually formulated by considering background knowl-
edge, contextual information acquired from smart home, and activities
performed by an elderly person in a smart home. The fine-grained
anomaly recognition method is discussed in detail in Chapter 7

4. Automated fine-grained anomaly recognition: It is another novel con-
tribution in the domain. Knowledge representation is a complex and
challenging task. As mentioned earlier, anomaly recognition rules are
manually formulated by considering various factors. The manual for-
mulation of anomaly recognition rules is an arduous and time expensive
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experience. Moreover, manually formulated rules are not seamlessly
portable to different environments. It means an analyst has to develop
separate rules-sets for different smart homes or different residents. It
is because, while formulating rules, an analyst has to carefully consider
various factors that are involved in the process of anomaly recogni-
tion. These factors include smart home layout, environmental condi-
tions, clinical model of abnormal behavior, personal habits of a smart
home inhabitant, and physical health of the smart home resident. In
order to simplify the task, we proposed a semi-automated approach
in which a rule induction algorithm automatically learns rules from a
set of features. An analyst (formally a knowledge engineer) extracts
these features by considering various factors involved in the process of
anomaly recognition. In this way, we can automatically generate mul-
tiple rule-sets for different cases, while using a generic feature set. The
rule induction based method provides us a portable, flexible, and time
inexpensive way to generate anomaly recognition rules. The approach
is discussed in detail in Chapter 6.
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Chapter 2

Modeling Abnormal Behavior

In the Introduction, we have explained the importance of the early detection
of MCI and also highlighted difficulties faced by clinicians in the early diag-
nosis of the disorder. In this chapter, we will try to understand the medical
conditions of the disorder and its symptoms in more depth. We will focus
on the clinical definition of the disorder and also explain effects of the dis-
order on the routine life of an elderly person. Afterwards, we will discuss
about abnormal behavior exhibited by a cognitively impaired elderly person
and also introduce the concept of fine-grained anomalies, which is the core
research topic of this thesis. We will also present the clinical model which
defines abnormal behavior; our proposed method for fine-grained anomaly
recognition relies on this clinical model.

2.1 Mild Cognitive Impairment (MCI)

In medical literature, the term MCI is used to define the medical condition
interceding between normal aging and very early stage of dementia. Thus
MCI is a prodromal stage of dementia, in which the decline in cognitive
abilities is very subtle in the beginning of the disorder. However, MCI is
recognized as a pathological condition and its manifestations varies from
normal aging. Numerous epidemiological studies show that progression of
the disorder is usually slow towards dementia (final stage) and it can take
several years when symptoms of the disorder are much evident. Due to slow
progression and slight cognitive changes, it is difficult to diagnose the disorder
at early stages. However, clinical studies reveal that a continuous monitoring

20



2.1. MILD COGNITIVE IMPAIRMENT (MCI) CHAPTER 2. . . .

enables clinicians to understand behavioral modifications exhibited by an
elderly over a course of time. Unusual changes observed in the behavior of
an elderly person can be good indicators to judge the degradation in cognitive
abilities in the person. In fact, the aim of this research is to precisely detect
these unusual changes and behavioral modifications which can help clinicians
to diagnose early onset of MCI.

The clinical diagnosis of MCI at an early stage is not a trivial task and
involves various types of screening tests developed for the staging of demen-
tia. Typically, these screening tests have two fundamental objectives: the
first is to inspect memory impairment, and the second is to assess an im-
pairment in executive function. Several specialized screening tests, such as
MiniMental State Examination (MMSE) [31], have been developed over the
past few decades which are mainly based on questions asked to an elderly
person suspected with MCI. Questionnaires evaluate different human skills
and contain questions from various areas such as memory, orientation, plan-
ning and judgment, and problem solving. Similarly, some screening tools also
consider information provided by an informant about the subject’s cognitive
health. Informant’s reports normally cover aspects which relates to general
living of the subject; such information may be based on the subject’s level of
activeness in routine life, hobbies, socialization, and personal care. Screen-
ing tools normally generate results in the form of numerical scores which are
calculated from the answers given by the subject or may also consider the
feedback from an informant or a caregiver. For example, Cognitive Demen-
tia Rating (CDR) is a questionnaire-based dementia staging tool in which
numeric score reflects the severity of the disorder; scores 0, 0.5, 1, 2, and
3 reflect the cognitive health status as non-impaired, very mildly impaired,
mildly impaired, moderately impaired, and severely impaired, respectively.
However, due to different clinical cases and stages of dementia, the nature of
screening tests varies. Clinical surveys show that today the most debatable
issue in this domain is the suitability of a screening tool for a particular case
and stage of dementia. Moreover, since MCI is a medical condition in which
the symptoms are not much evident, therefore, it is possible that screen-
ing tools cannot correctly identify this stage of dementia. Considering this
fact, some clinical methods rely on monitoring the behavior of the subject.
For this purpose, the subject’s behavior is either monitored by clinicians
in clinical setups or it may be reported by an informant who observe the
subject’s behavior in his/her home. Nevertheless, the clinical monitoring of
the subject is obtrusive and episodic like questionnaire-based screening tools.
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Monitoring in short intervals at clinics may not be useful to detect behavioral
modifications. Similarly, we cannot ignore the doubt of biased reporting in
home-based monitoring of the subject. In short, both questionnaire-based
screening tests and human-based monitoring methods have their own limita-
tions which can influence the process of MCI diagnosis. Here comes pervasive
systems which can overcome limitations found in clinical methods and can
also support clinicians to collect better clues required for a proper diagnosis
of the disorder.

2.2 Human activities

Human daily routine is based on several activities: ranging from very ba-
sic activities to complex activities. In the literature, the term Activities of
Daily Living (ADLs) is used for routine life self-caring basic tasks such as
eating, dressing, bathing, and personal hygiene [73]. According to health
professionals, the ability to independently perform these ADLs determines
the person’s health conditions: both physical and cognitive health. How-
ever, in some cases, ADLs do not provide enough evidence in the decline
of a person’s health. It is particularly true for elderly people suffering from
MCI as cognitive health deteriorates slowly over time. In order to fill this
gap, Instrumental Activities of Daily Living (IADLs) have been introduced.
IADLs include complex routine life tasks such as preparing meal, shopping,
traveling, and financial management [51]. An elderly person may depend on
other humans to successfully complete IADLs.

Human activities are complex and often composed of a pattern of various
basic actions performed by a person. In particular, we considered Instrumen-
tal activities of daily living (IADLs) to model the independent lifestyle of an
elderly person. An activity consists of a temporal sequence of simple actions
performed by a person during an activity. We assume that a simple action is
an atomic step which is a manipulative gesture or a body movement involving
an object (for example, “open refrigerator”, “sit on a chair in kitchen”). We
also assume that each atomic step can be detected by a sensor deployed in
the environment. A person can perform an activity with varying sequences of
atomic steps. For example, Figure 2.1 shows three different sequences which
can be followed while performing an IADL “taking a medicine”. In the first
sequence (Figure 2.1(a)), the person opens the medicine repository, retrieves
the medicine, returns it after five minutes, and then close the repository. In
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the second sequence (Figure 2.1(b)) the person repeats the same task, how-
ever, this time he/she retrieves the medicine and then close the repository.
After thirty minutes he/she accesses the repository again and then returns
the medicine. The third sequence (Figure 2.1(c)) is same as (a), but here the
person forgets to close the repository at the end of the IADL. Depending on
the person’s lifestyle and habits, he/she can adopt various ways for executing
the same IADL.

Figure 2.1: Example of an IADL: “taking a medicine”

2.3 Fine-grained anomalies

The objective of this research is to detect the fine-grained anomalies found
in the daily routine of a smart home resident. We use the term fine-grained
anomalies to define fine-level details of abnormalities observed during the
execution of quantifiable activities. An activity is characterized as abnormal
if it is executed in a way that diverges from the expected one. We consider
the detection of fine-grained anomalies in the activities which are observed
within a relatively short period: ranging from a few seconds to a whole day.
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In general, an activity is characterized anomalous if it exhibits the following
characteristics:

• The person tries to perform an activity, however, fails to complete it.

• The activity is performed at an unusual or inappropriate time.

• A non-existence of an expected activity.

• The activity is completed, but performed in an improper way.

Type of anomaly Description Example
Substitution A different object than ap-

propriate is used or a differ-
ent component action than
expected is performed

Using spoon to spread
butter

Replacement The subject replaces a cor-
rect action with a wrong one

Putting the butter in-
side a non-refrigerated
cabinet

Improper activity The subject performs an ac-
tivity that is not consistent
with the model

Taking a medicine
that was not pre-
scribed

Repetition The subject repeats the
same action or activity more
times than expected

Consuming the morn-
ing breakfast twice in
a day

Improper order The subject performs ac-
tions in different order than
appropriate

Putting pasta before
boiling water

Quality The activity is performed to
minimize its complexity

Preparing meal by
only pre-heating the
same food every day

Table 2.1: Different types of commission anomalies

We are interested in anomalies which indicate an early onset of MCI or
reflect cognitive decline in elderly persons. There are several clinical mod-
els which describe indications of abnormal behaviors for the early onset of
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MCI [33, 81]. Considering these models, we collaborated with local clini-
cians and neuro-science experts to understand the nature of the abnormal
behavior exhibited by a person having tendency of MCI. We have developed
the clinical model after having comprehensive discussions and meetings with
experts from the Institute Fatebenefratelli1, Lombardy —a leading center in
the field of mental health research on neurodegenerative disorders —within
the SECURE2 research project funded by Lombardy region and MIUR Ital-
ian ministry. Based on medical practices and relevant literature [13], a list
of fine-grained anomalies has been identified during different project meet-
ings among technical and medical partners of the project. Note that, these
meeting were conducted in the local language (Italian) without affecting the
modeling process. Anomalies are defined in natural language by clinicians;
e.g., an anomaly occurs when a person with MCI prepares a meal but forgets
to consume it. In general, these indications can be categorized as:

• Omissions: occurs when the subject forgets to attempt a step or a
sequence of steps which are essentially required to complete an activity.
For example, the subject is on a prescription and he/she has to take a
medicine during the prescribed time. An omission occurs if the subject
forgets to take a prescribed medicine during the prescribed time.

• Commissions: occurs when the subject attempts a step or a sequence
of steps in an inaccurate manner. Commissions include a variety of
anomalies which are shown in Table 2.1.

• Additions: occurs when the subject attempts a step or a sequence of
steps which are irrelevant to an activity. For example, the subject is
cleaning his/her house and retrieves a cooking pot from the cooking
pot cabinet which is not required for this particular activity.

For a proper diagnosis of MCI, clinicians also demanded an orthogonal
classification of fine-grained anomalies i.e., critical and non-critical anomalies.
Critical anomalies are considered stronger indicators of possible MCI onset.
Further explanation of the orthogonal division of anomalies is given as:

1IRCCS (Research and Care Institute ) St. John of God Clinical Research Center,
Brescia, Italy – http://www.irccs-fatebenefratelli.it

2SECURE: Intelligent System for Early Diagnosis and Follow-up at Home, http://
secure.ewlab.di.unimi.it/
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• Non-critical anomaly: an anomaly is considered non-critical when the
subject skips a relevant action while performing an activity or spends
too much time to perform the activity, but still he/she is able to cor-
rectly complete the activity. For instance, we consider a non-critical
anomaly occurs when the subject forgets to close a repository after
taking something from it (a non-critical omission).

• Critical anomaly: a critical anomaly occurs when the subject: 1) skips
one or more necessary actions while performing an activity; 2) forgets
to perform an expected activity; 3) unnecessarily repeats an activity,
for example, forgets to turn off a stove after cooking pasta is a critical
omission.

2.4 Anomalies and human behaviors

There are several factors which influence the execution of an activity in the
daily routine of a person. A few of these factors are: contextual conditions,
individual habits, and personality traits. Consequently, an activity may be
executed with some anomalies which are not necessarily due to the decline in
cognitive abilities. It is particularly true for non-critical anomalies, such as
leaving a repository door open, which may occur in activities performed by
cognitively intact persons due to negligence and hastiness. Similarly, some
anomalies may occur due to a temporary change in the routine of a person.
For example, the person may suffer from a mild seasonal illness like cough
or cold. He/she can take an over-the-counter medicine for the cure of this
disorder. Although this behavior diverges from his/her routine life, it is
certainly not an anomaly and a clinician can ask the person the reason of
such an action.

Due to such ambiguous situations, we consider anomalies as indicators
of abnormal behavior which could support clinicians in diagnosing cognitive
disorder. The proposed automated system periodically (e.g., end of a day)
infers anomalies from the daily routine of the subject. Recognized anomalies
are then reported to clinicians. The frequency of anomalies and their tem-
poral trends are used to trigger alarms for clinicians or caregivers for further
inspecting the history of abnormal behavior and corresponding fine-grained
descriptions.
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Chapter 3

Related Work

In this chapter, we will review state of the art research1 carried out in behav-
iorial monitoring and abnormal behavior recognition. Activity recognition
systems proved to be effective for supporting the diagnosis and improving
healthy ageing [47, 61]. In the literature, various strategies have been pro-
posed to devise effective and unobtrusive activity monitoring systems by
exploiting pervasive computing technologies [89]. A popular research direc-
tion for activity recognition consists in exploiting audio-visual information
recorded by cameras and microphones with the help of sound, image and
scene recognition software. Audio data can be used to assess mood and other
emotional conditions [84]. Speech and voice recordings have been used for di-
agnosis of early-stage dementia [78]. However, those methods are considered
too invasive in a home environment; due to privacy issues they determine.
Hence, in the following we restrict our attention to non-invasive sensor-based
techniques.

3.1 Applications of activity recognition to MCI

diagnosis

Over the past few decades, several clinical studies have been conducted to
delineate various stages of cognitive impairments. For example, Reisberg
and et al. [67] described various stages of cognitive impairment, ranging
from asymptomatic to symptomatic phases, along with the symptoms of

1The material in this chapter is from our publication [69]
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each stage. Studies in the neuro-psychology research field also show that it
is possible to distinguish between cognitively healthy adults and cognitively
impaired individuals based on subtle differences in their behavioral patterns
[88, 83]. For instance, in [76], subjects were asked to execute a set of prede-
fined activities in an observation room of a clinical center, while two cameras
recorded their activities. Researchers annotated the dataset manually based
on the observation of video recordings, giving partial scores to the performed
activities considering different factors, including activity duration, omitted
steps, and number of repeated steps. Partial scores were then aggregated to
obtain a comprehensive score, which proved to be effective in distinguishing
MCI subjects from Alzheimer’s patients, and cognitively healthy seniors from
MCI subjects. There is a growing interest in exploiting pervasive computing
technologies to automatically capture and measure those differences [61].

Machine learning methods applied to accelerometer data and video record-
ings were used in [19] to distinguish between cognitively healthy seniors and
Alzheimer’s patients based on activity execution and gait events. Similarly,
sensors and video recordings were used in [46] to distinguish between MCI
and Alzheimer’s patients. Those methods were applied in controlled en-
vironments, while we aim at monitoring the elderly’s activities and detect
exhibited abnormal behavior at a fine-grained level at home.

Several European projects have considered ICT technologies for enhanc-
ing active and healthy aging [74, 54, 30] and for supporting people with
dementia at home [26]. Based on this line of research, different methods
have been proposed which apply machine learning techniques on data ac-
quired in sensor-rich environments, for assessing the cognitive health status
of an individual performing a set of activities. For instance, motion sensors
and contact sensors have been used in [34] to measure low-level activity pat-
terns such as walking speed and activity level in a home. Results have shown
that the coefficient of variation in the median walking speed is a statisti-
cally significant measure to distinguish MCI subjects from healthy seniors.
A sensor-based infrastructure has been used in [80] to unobtrusively monitor
the execution of activities by older adults in a smart-home. Results have
shown a significant correlation between the cognitive health status of the
subject and the level of assistance that he/she needs to complete activities.
Another research approach relies on tracking activities through prolonged
monitoring and then measuring intra-individual changes. As an example,
the Oregon Centre for Aging and Technology at the Oregon Health and Sci-
ence University has developed various smart sensing platforms, which enable
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continuous and unobtrusive monitoring of various human activities for the
detection of early symptoms of cognitive impairment in elderly persons [53].
Their studies considered a range of routine life activities that may reflect
a cognitive deterioration. These activities include sleeping, computer use,
walking patterns, medication adherence, and social interaction.

In the work of Dawadi et al. [24], patients were invited to execute a list of
routine activities (e.g., write a letter, prepare lunch) inside a hospital smart-
home. Different kinds of sensors were used to detect movements inside the
home and to track the use of furniture and appliances. Based on the data
coming from sensors, supervised machine learning methods were used to as-
sign a score to each performed activity. The score measures the ability of the
subject to perform an activity correctly. Achieved scores were used to predict
the cognitive status of the patient (cognitive health or dementia). Supervised
learning approach has been applied in other works, including [22, 23, 17], us-
ing several other learning methods. However, while a significant correlation
exists between inferred activity scores and the cognitive health status of the
individual, these methods do not provide a description of observed behav-
ioral anomalies. On the contrary, the medical assessment would benefit from
detailed knowledge of the abnormal behavior of the patient. For this reason,
in our approach we do not rely on statistical deviations from the “normal”
behavior; instead, we aim at recognizing fine-grained anomalies, modeled ac-
cording to neuro-science experts as possible indicators of MCI, using a hybrid
statistical and knowledge-based approach.

Besides the recognition of abnormal behavior, it is also important to re-
port necessary details of the recognized abnormal behavior to concerned per-
sons: clinicians and caregivers. For this purpose, we need data visualization
tools which enable concerned persons to visualize outcomes of behavioral
monitoring such as recognized critical situations. For example, in [43], a
spatiotemporal data visualization model has been proposed which visually
represents temporal information of activities performed by an elderly per-
son at different locations in a smart home. Considering this requirement, a
dashboard has been developed in this research which is a web-based appli-
cation and displays recognized fine-grained anomalies along with associated
activities and time at which anomalies occur.

29



3.2. RECOGNITION OF SIMPLE ACTIVITIES CHAPTER 3. . . .

3.2 Recognition of simple activities

Several techniques have been proposed to recognize simple activities, which
rely on data acquired from body-worn sensors and on the application of su-
pervised learning methods [6, 45]. Early attempts in this sense are mainly
based on the use of data acquired from multiple body-worn accelerometers
[8], possibly coupled with bio-metrical sensors and integrated in clothes [60],
to recognize locomotion types and simple physical activities. A major limi-
tation of these early systems is that they do not consider contextual infor-
mation, such as current location, environmental conditions, and surrounding
objects, that could be usefully exploited to improve the accuracy of recog-
nition. Hence, other activity recognition approaches take into account the
user’s context by acquiring environmental data from several sensors [52]. For
instance, in [3] authors have proposed the use of machine learning and data
acquired from body-worn sensors (an ear microphone, sensor collar integrat-
ing electromyogram and microphone, and four upper body accelerometers) to
accurately monitor food intake activities (movement, chewing and swallow-
ing). However, being mainly based on body-worn sensors, those methods are
not well suited to recognize more complex activities, which are characterized
by the interaction of the individual with several objects and furniture.

3.3 Recognition of complex activities

The recognition of complex activities relies on the usage of sensors to detect
the user’s movements and the interaction with objects and furniture. For
instance, in [38], authors have proposed a time series data analysis method
to segment sequences of sensor events in order to recognize complex activities.
The application of Hidden Markov Models (HMM) inference is proposed in
[85] to recognize activities based on features extracted from recent sensor
events according to a sliding window.

However, the recognition of complex activities turns out to be challenging
by solely using supervised learning methods. Indeed, complex activities are
characterized by large inter- and intra-personal variability of execution, and
it is very hard to acquire a sufficiently comprehensive training set to include
most of the possible ways of executing activities. Hence, different frame-
works for knowledge representation and reasoning have been investigated to
appropriately model complex human activities by means of ontologies. In
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particular, description logic [7] is emerged among other symbolic formalism,
mostly because they provide complete reasoning supported by optimized au-
tomatic tools.

In [57], ontological descriptions of activities are used for the segmentation
of sensor data streams acquired in a smart home. In particular, a shrinking
time window algorithm is proposed to segment temporal sequences of sensor
events, in order to discover sequences of events that match the ontological
description of a human activity. Our approach is different: we recognize ac-
tivity instances by aggregating the individual inferences of a machine learning
algorithm, considering semantic conditions that the sensor sequence gener-
ated by an activity must satisfy. A Web mining technique to derive semantic
dependencies among activities and used objects is proposed in [59]; those
dependencies are used for activity segmentation. Our segmentation method
considers more complex conditions about the necessary sensor events that
must be observed during an activity execution. A further method to seg-
ment activities based on their semantic description is proposed in [55]; that
method also supports the recognition of overlapped activities.

However, as illustrated in [2], both expressiveness and efficiency issues
strongly limit the feasibility of ontological approaches to activity recognition.
Moreover, the recognition of some complex activities through ontological
reasoning has to start from a set of basic observations (e.g., the user’s posture,
basic gestures, mode of locomotion); this task requires the use of statistical
methods to derive semantic information from raw sensor data (e.g., body-
worn accelerometers).

3.4 Recognition of complex activities using

hybrid techniques

Considering limitations of both statistical and symbolic approaches, some
research groups target to use domain knowledge and contextual information
together to recognize complex activities. In [77], a similar context aware
complex activity recognition technique is proposed which exploits domain
knowledge to identify a situation and then use probabilistic and Markov chain
analysis to recognize complex activities. As an extension of these methods,
a few hybrid activity recognition systems have been proposed in the liter-
ature, which vary on the adopted reasoning techniques and on their inter-
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action mechanisms. An interesting instance of these approaches is Markov
Logic Networks (MLN) [72]: weighted formulas of first-order logic. Given a
training set, and a set of probabilistic formulas, with MLN it is possible to
learn a weight for each grounded formula by iteratively optimizing a pseudo-
likelihood measure. These weights represent the confidence value of the for-
mula. Deterministic formulas can be added to probabilistic ones to express
deterministic knowledge about the domain of interest. Different reasoning
tasks can be executed to infer additional information based on formulas and
facts. We have also considered MLN in our work to recognize activities [71].
A similar approach was adopted in [36] to model and recognize activities
at different levels of complexity using probabilistic description logic. Hy-
brid ontological and statistical reasoning is proposed in [25] to continuously
assess the fall risk of a senior at home, by integrating data acquired from
different fall detection systems and environmental sensors. In this work, we
have considered a hybrid method to recognize the start- and end-time of ac-
tivities based on a combination of supervised learning and knowledge-based
conditions to refine the statistical predictions.

3.5 Long-term analysis of activity data

In the aforementioned works, the detection of abnormal behaviors is mostly
done on a short-term basis and does not take into account the patient’s
personal habits. Other works have proposed methods to model the patient’s
usual behavior from activities performed in the past and use this model to de-
tect anomalies as changes from his/her usual behavior. In [86], a method has
been proposed to monitor the circadian (24-hours) variability of the patient’s
activities using location sensors and statistical calculations were performed
regularly on sensors data to recognize possible deviations in the patient’s
behaviour. In [82] in-home activities and sleep restlessness were captured
using different sensors and a simple alert system was implemented to detect
changes in the activity patterns and generate health alerts that were sent to
clinicians to be rated for their clinical relevance. These ratings were then
used as ground truth in developing classifiers to recognize relevant alerts. In
[29], authors have proposed a technique to detect recurrent activity patterns,
as well as their variations, by mining heterogeneous multivariate time-series
from sensor data acquired in a smart home.

Another approach based on temporal data mining is presented in [41].
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Frequently-occurring temporal relationships between activities are extracted
from the observed history of sensor events and used to model the probability
that a particular event should or should not occur on a given day. A technique
based on unsupervised learning is proposed in [64] to automatically discover
activity patterns and their variations. That technique is coupled with an
activity recognition module and with visualization tools to allow practitioners
inspecting the trend of activity patterns.
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Chapter 4

Proposed Framework for
Behavioral Monitoring

In the previous chapter, we have presented the state of the art research in
activity and abnormal behavior recognition. In order to overcome limita-
tions of existing techniques, we have proposed FABER, a novel technique for
Finegrained Abnormal BEhavior Recognition (FABER). FABER is a hybrid
reasoning framework which relies on medical models describing behavioral
modifications that may indicate the early onset of MCI. Clinical models pro-
vide us natural language descriptions of fine-grained anomalies and we have
used these definitions in FABER to detect abnormal behavior in the daily
routine of the subject. The novel aspect of this research is the recognition of
fine-grained anomalies from the daily behavior of an elderly. In this chapter,
we will explain a general architecture of the proposed model. In Section 4.1,
we will present an overview of the methodology adopted to recognize the
abnormal behavior. In Section 4.2, we will discuss the architecture in detail
along with a brief overview of techniques used to implement the model.

4.1 An overview

In this section, we will briefly summarize our approach to recognize the abnor-
mal behavior. The overall process involves multiple underlying sub-processes.
Each sub-process has its own objectives and produces outcomes for the next
sub-process.
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4.1.1 Identifying target activities

Over the past several years, clinicians and neuro-science experts have put
their efforts together to develop functional assessment tools which measure
abilities of an elderly person to independently perform routine life activities.
These tools are used for the diagnosis of MCI. For example, Katz scale [31]
(for ADLs) and Bristol scale [11](for IADLs) are widely used by clinicians for
the functional assessment of elderly persons to diagnose MCI. As a matter
of fact, due to limited resources, it is difficult to include all these activities
in our research. For this reason, our research work includes an excerpt from
these scales. Cognitively impaired persons face more difficulties, as compared
to cognitively intact persons, in performing routine life activities which are
memory dependent and involves executive function [65]. Therefore, in this
research, we have considered such routine life activities which are memory
dependent and involves executive function. In the rest of the literature, we
will use the term activities referring both ADLs and IADLs, unless these
terms are used in their explicit meanings.

4.1.2 Modeling of target activities

Our approach to model an activity is based on activity theory [49]. The
activity theory describes an activity as a series of interactions between a hu-
man and objects in an environment. We have identified different components
of target activities such as subject, simple action, and object. In a typical
scenario, a subject is a person who performs a simple action on an object.
To simplify the model, we have not considered concurrent and interleaved
activities in the current design. After identifying all components in target
activities, we have represented an activity as a temporal sequence of simple
actions. In the temporal sequence each simple action occurs at a discrete
time instant. The following example describes the activity model.

Example 1 Suppose, Anna, the subject, performs an activity
preparing meal in her home. In this activity she cooks eggs.
In order to model this activity, we identify activity components:
subject is Anna; objects are eggs, fridge, cooking pan, cooking
cabinet, and stove; simple actions are open, close, turn on, and
turn off. After identifying these components, we can represent
this activity as a sequence of following simple actions.
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(Take a food item from fridge)

open fridge at t1

retrieve eggs from fridge at t2

close fridge at t3

(Take a cooking pan from cabinet)

open cooking pot cabinet at t4

retrieve cooking pot cabinet at t5

close cooking pot cabinet at t6

(Use a stove)

turn on stove at t7

turn off stove at t8

Let δ is the duration between two consecutive simple actions:
δ = t2 − t1. The value of δ is random and depends on physical
execution of the activity.

4.1.3 Modeling abnormal behavior

We have modeled the abnormal behavior by identifying possible anomalies
that could be found in activities performed by the subject. In order to
achieve this objective, we have collaborated with clinicians and neuro-science
experts who closely observe cognitively impaired patients on a regular basis.
Clinicians and neuro-science experts provide us natural language descriptions
of fine-grained anomalies. The fine-grained anomalies, recognized by FABER,
allow clinicians to better understand the condition of the subject and also
support them to diagnose the stage of the disorder. For example, a fine-
grained anomaly occurs if the subject forgets to take meals during a mealtime.
Further details of modeling abnormal behavior are given in Chapter 5.

4.1.4 Event sensing and data acquisition

The daily routine of the subject is monitored continuously while the individ-
ual performs activities in a smart space. The smart space is equipped with
a network of muli-modal sensor nodes. These sensors detect environmental
changes and other events that happen when the subject interacts with the
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smart environment. Depending on a sensor, it either generates analog or dig-
ital data. Data are continuously acquired from the smart space and stored
in a database. The raw sensor data is further processed to infer semantics of
each measured sensor event.

4.1.5 Abnormal behavior recognition

Our proposed abnormal behavior recognition framework is based on two main
steps:activity recognition, and anomaly recognition.

Step 1: Activity recognition In order to recognize the abnormal behav-
ior, the first step is to recognize activities performed by the subject in a smart
environment. A human activity may include several simple actions and sen-
sor events, which occur when the subject interacts the smart environment.
As a matter of fact, simple actions and sensor events may occur inside or
outside of an activity. Therefore, it is necessary to recognize activities from
a continuous stream of sensor events. The activity recognition module takes
a continuous stream of raw sensor data as an input and process it to detect
simple actions (for e.g “opening the fridge door”). The output of the activity
recognition module is recognized activity labels, start and end time instants
of activities, simple actions and sensor events (bounded by start/end time
instants).

Step 2: Anomaly recognition The efforts which have been made during
the phase of modeling abnormal behavior result in natural language descrip-
tions describing fine-level details of abnormalities found in the daily routine
of MCI patient. After recognizing activities, the next task is to recognize
the abnormal behavior according to the provided clinical model. In order
to recognize fine-grained anomalies, we have formally represented knowledge
provided by the clinical model using artificial intelligent tools. We have
used first-order logic to represent knowledge and translated natural language
descriptions of fine-grained anomalies into rules. The rule-based reasoning
considers several types of facts which are gathered through the smart en-
vironment, domain knowledge, and contextual information. Formally, the
proposed anomaly recognition method is based on a knowledge-base to infer
fine-grained anomalies.
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4.1.6 Recognized Fine-grained anomalies

The recognized fine-grained anomalies could be interesting and available for:
(1) clinicians to support them for a proper diagnosis of cognitive disorder
and possible therapeutic interventions to treat the disorder, (2) family or
caregivers to help them determine the type of support required by their
elderly relative and interventions in critical situations , and (3) the subject
so that he/she can better understand his/her condition to subsist with the
disorder. Recognized anomalies are delivered to these recipients thorough a
web-based application: a dashboard. The dashboard displays all recognized
fine-grained anomalies along with other necessary information such as time
at which an anomaly occurs, the nature of the anomaly, the relevant activity,
and the frequency of each anomaly in a particular duration (for e.g., one day).

4.2 The Architecture

Figure 4.1 shows the architecture of FABER. The layered architecture is
composed of three main modules: smart home, activity recognition, and
abnormal behaviour recognition. The working and implementation of these
modules is described in the following sections.

4.2.1 Smart home: the sensing infrastructure

Before going into details of the smart home architecture, let us consider
the following example which explains concerns of our subject while being
monitored through a smart home.

Example 2 Clinicians, with the consent of Anna, decided to
continuously monitor her daily routine through a smart home.
Clinicians have convinced the subject for sensor-based monitor-
ing and she accepts to convert her house into a smart space in-
strumented with sensors of various modalities. She performs her
routine life activities in a smart home. However, while living in
the smart home, she has some primary concerns: 1) She feels it
difficult to handle latest technology in the form of smart devices
(e.g. phone and tablet). 2) She accepts a minimum level of ob-
trusiveness in her home. 3) She has privacy concerns and does
not like to be observed using audio or visual devices.
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Figure 4.1: The architecture of proposed model
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Considering her difficulties, we have aimed to develop a smart home hav-
ing these features: convenient to handle smart technology, unobtrusive, and
maintains necessary privacy of the resident. Therefore, we have relied on un-
obtrusive ambient sensors which can be deployed in surroundings and avoided
wearable sensors. We have also avoided microphones and cameras to main-
tain the privacy of the resident. In [40], Jacelon and et. al. reported that
elderly persons prefer to be monitored by ambient sensors rather than cam-
eras.

As mentioned earlier, in order to design a smart home, our primary ob-
jective is to detect simple actions executed by the resident while performing
activities. To achieve this objective, we have used various multi-modal sen-
sors which can sense the environmental changes and resident’s interaction
with the environment. A home environment includes various household ar-
ticles such as furnishings, electronic appliances, and consumable items. In
order to detect simple actions, we have to understand the nature of a hu-
man interaction with various household articles. For example, a person can
perform two simple actions on a door: “opening the door”, and “closing the
door”. These two simple actions reflect two different states of the door during
an activity. Thus, by understanding the nature of these simple actions, we
can select a sensor which can detect these simple actions. Here, we are listing
down some sensors which we have considered to design a smart environment:

• Switch sensors: There is a wide range of switch sensors available in the
market today. A switch sensor produces a binary output, i.e. open
switch or close switch. These sensors are particularly useful to detect
simple actions which oppositely relate each other. For example, the
hall-effect switch sensor deployed on a fridge door can detect two simple
actions: “open the fridge door” and “close the fridge door”.

• Environmental sensors: These sensors normally produce analog data
which can be processed to detect simple actions. A temperature sensor
is a typical example of environmental sensors. A temperature sensor
can be used to detect stove usage, and can also detect hot water usage
in a smart home.

• Motion sensors: A motion sensor is used to detect movements in an
environment. In a smart home, a motion sensor is normally used to
detect human movements in various regions such as living room, bed-
room, and kitchen. Normally, a passive infrared (PIR) sensor is used
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to detect human movements in an environment. A PIR sensor detects
human movements in its surroundings by measuring variations in the
spectrum of infra-red waves; emitted by a human body. An alternate of
PIR sensor is an ultrasonic sensor which detects human movements in
its surroundings by receiving the disrupted reflections of self-generated
sound waves.

• Radio Frequency Identification (RFID) technology: The RFID based
sensing is typically useful in object-based activity recognition methods
[12], which assume that the object usage during an activity provides
strong clues about the nature of the performed activity. The RFID
sensing setup is based on two components: RFID tags and RFID tag
reader. Each RFID tag has a unique identifier which is sensed by
an RFID reader; when the tag is brought within the range of RFID
reader. There are two types of RFID tags available in market: passive
RFID tags and active RFID tags. A passive RFID tag does not have
an internal power source and thus unable to transmit its own signal
to the RFID reader. It is composed of two components: a microchip
and an antenna, together called RFID inlay. A passive RFID tag has
limited range (normally upto 5cm). On the other hand, an active RFID
tag has its own internal power source with a small transmitter. The
active RFID tag transmits its signal continuously which is received by
a nearby RFID reader. The sensing range of an active RFID tag is
relatively longer than a passive RFID tag. Our activity model also
relies on object usage within an activity. The sensing infrastructure
entails RFID sensing to identify contents of consumable items used in
an activity. For example, we can attach a passive RFID tag to each
medicine placed in a medicine cabinet. While retrieving a medicine
from the medicine cabinet, the subject has to bring the RFID tag,
attached on the medicine, within the range of RFID reader, so that
our system can detect which medicine has been retrieved.

4.2.2 Sensor data acquisition and semantics of raw data

In order to construct a smart home, a wireless sensor network has been de-
ployed in the subject’s home. The sensor network includes sensors described
above. Raw sensor data acquired from the smart environment are a contin-
uous stream of sensor events. Each sensor event is stored as an entry in a
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database with its measurement, sensor ID, and the timestamp at which the
event occurs. Raw sensor data are processed to infer semantics of events
occur in an activity. As shown in Figure 4.1, Semantic Integration Layer
(SIL) performs this task. It takes raw sensor events as an input and process
them to infer meaningful real world events. In particular, we have used rules
to express conditions about the type of detected raw events, which deter-
mine the recognition of events. These rules may include conditions about
the temporal occurrence of raw sensor events. Suppose three sensors are de-
ployed in the smart environment: the first is a motion sensor, which detects
the presence of the person near the sink area; the second is a water sensor,
which detects flow of water through a faucet; and the third is a temperature
sensor, which measures the temperature of water flowing through a faucet.
Contextual information received from three different sensors is combined to
infer a simple action: if a motion sensor near a faucet detects a presence of
the subjectAND water sensor detects flow of water from the faucet AND a
temperature sensor detects a rise in the temperature AND these three sensor
events occur close in time THEN the smart home resident performs a simple
action “open hot water kitchen faucet”.

4.2.3 Temporal model

An individual sensor captures at least one manipulative gesture or movement
executed by the subject in an activity. Sensors capture actions and transmit
them to a central database system. We adopted a temporal model to repre-
sent sensor events. Suppose ε (for e.g., ε = door is open, door is closed, . . .)
is a set of all possible events that correspond to various multimodal sensors
deployed in the environment. Also, suppose T is a set of all possible times-
tamps at which a sensor event can occur. For our convenience, we replaced
each timestamp with a number which corresponds to the temporal distance
(in seconds) between mid-night (12:00 a.m.) and the time instant at which
the event occurs. A sequence of events captured by sensors is represented as:

S = 〈event(E1, t1), event(E2, t2), . . . , event(En, tn)〉 (4.1)

where, the tuple event(Ei, ti) represents an instance of event type Ei ∈ ε
occurred at a timestamp ti ∈ T . We assume that sensor nodes communicate
their sensed events in real time to a gateway.
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4.2.4 Activity boundary detection

An activity consists of multiple simple actions. Note that simple actions are
not always part of an activity. For example, “preparing meal” is an IADL
in which a person can perform a simple action “open fridge door”. However,
it is not necessary that the person always performs this simple action inside
IADL “preparing meal”. For example, the person can “open a fridge door”
to take water for drinking at any time in a day. The stream of sensor events
includes various simple actions and sensor events which either took place
in an activity or independently executed; outside an activity. Therefore, it
is necessary to recognize activities which include several simple actions and
sensor events.

We have defined A = {a1, a2, . . . , ak} as a set of k activities, for example
A = {preparingMeal, EatingMeal, takingMedicine}. Each activity ai ∈ A
exists for a particular duration. The boundary of an activity is defined by
its label and the duration for which it exists. The duration of an activity is
defined by two time instants: the timestamp of the sensor event at which the
activity starts, and the timestamp of the sensor event at which the activity
ends. Thus we can represent an activity with three variables: label, start
time (Ts), and end time (Te).

Human activities are characterized by wide variability due to different
lifestyles, habits, and environmental conditions. A person can adopt various
patterns of actions to perform an activity. Moreover, a smart home layout
depends on multiple factors: furnishings, quantity and quality of multimodal
sensors, deployment scheme, etc. These factors influence sensor activation
during an activity, which results in a significantly different sensor activa-
tion profile for the same activity performed in smart homes with different
layouts. In order to handle such variability, we have exploited techniques
which learn patterns of human activities and then detect their boundaries
from the stream of sensor events. For this purpose, we have experimented
with statistical (supervised machine learning) and hybrid (Markov Logic Net-
work) techniques. The framework based on MLN is called FABER [71] and
the framework based on supervised machine learning techniques is called
SmartFABER [69]. In order to evaluate the proposed frameworks, we have
conducted experiments in two environments: lab environment and real home
environment. In fact, experimental evaluation reveals that FABER does not
recognize activity boundaries with high accuracy in a real home environment.
Therefore, SmartFABER is developed to accurately recognize activities in a
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real home environment. In the following subsection, we will explain the
method used to recognize activity boundaries.

4.2.4.1 FABER: Markov Logic Network (MLN)

As mentioned above, we have considered a hybrid technique –Markov Logic
Network (MLN) – to recognize activities from smart home data. This tech-
nique is explained in this section.

Due to rich expressiveness, symbolic techniques have been widely used for
modeling and reasoning with human activities [68]. However, symbolic tech-
niques do not allow uncertain inference. Therefore, due to this limitation,
symbolic techniques are not appropriate to model many real world scenarios.
This limitation particularly affects modeling human behaviors which involve
temporal sequencing of actions performed in an activity. It is possible that
a temporal sequence of actions can belong to multiple or possibly conflicting
activities. Another important fact is that the sensed observations are noisy
due to inaccurate sensor measurements and unintentional human interaction
with the sensing environment. Considering these facts, we needed a frame-
work which allows us to predict various activities with a level of certainty.
Consider the following example, which reflects a conflict in recognizing ac-
tivities using first-order logic.

Example 3 Suppose the subject wants to consume a prepared
meal. Before eating the meal, the subject performs an activity
“SetTheTable”, and after finishing the meal the subject performs
another activity “ClearTheTable”. In both activities the sub-
ject accessed some repositories to retrieve or return utensils and
silverware. The “silverware drawer” keeps the silverware and
“utensils cabinet” contains utensils such as glasses and plates.
In order to recognize these activities, following first-order logic
rules might be applicable:

∀ si, ti event(si, ti) ∧ event(si+1, ti+1)⇒
currentActivity(a, ti))

(4.2)

∀ t currentActivity(SetTheTable, t)⇒
¬currentActivity(ClearTheTable, t)).

(4.3)
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CurrentActivity(a, t) refers to the fact that an activity a is being
carried out at time t. The first rule states that the observation of a
sequence of two particular sensor events indicates the execution of
a given activity. For example, in case of activity “SetTheTable”,
at a time instant t1 the rule 4.2 can be grounded with the following
events:

event(open silverware drawer, t1)∧
event(open utensils cabinet, t2)⇒
currentActivity(SetTheTable, t1)

(4.4)

Of course, more complex formulas for currentActivity can be de-
fined considering additional combinations of possibly non-consecutive
sensor events. The second rule states that the current activity of
an individual cannot be “SetTheTable” and ”ClearTheTable” at
the same time instant. Referring to the first rule, the same sensor
sequence 〈”open silverware drawer”, ”open utensils cabinet”〉 can
be included in both activities “SetTheTable” and ”ClearTheTable”.
However, the derivation of both activities as instances of cur-
rentActivity at the same time instant ti would violate the second
rule and makes the model inconsistent.

In order to develop a consistent model, we need a technique which allows
us to infer first-order logic rules with a level of certainty, such as Markov
Logic Network (MLN) [72]. MLN is a combined representation of first-order
logic and probabilistic graphical models. The probabilistic graphical model
has the capability to efficiently handle uncertainty, whereas first-order logic
allows us to represent knowledge with rich expressiveness. Thus the main
idea of MLN is to combine probabilistic inference with the rich expressiveness
of knowledge in a single paradigm. MLN allows us to formulate soft first-
order logic rules. The validity of a soft formula is evaluated according to the
probability of being true with respect to gathered facts. Each soft rule is
associated to a weight that represents the confidence of the validity of the
rule. Weights are generally learned from a training set of observations. The
main inference task of MLN reasoning is to determine the most probable set
of axioms representing the reality that can be inferred based on the defined
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rules and a set of observations. Intuitively, rules with higher weight will have
higher inference in deriving these axioms.

In our model, observable predicates correspond to sensor events. Predi-
cate nextEvent(ti, ti+1) indicates that the sensor event occurred at time ti
and the one occurred at time ti+1 are consecutive i.e., the former occurred
before the latter, without having any sensor event between them. In our
proposed architecture, we have ensured that no more than one sensor event
can occur at a given time instant. Hidden predicates correspond to activity
boundaries: startActivity(a, t) states that an activity a begins at time t,
and endActivity(a, t) states that the activity a ends at time t. The approach
used for boundary recognition is to write appropriate soft rules to create a
correlation between windows of n consecutive sensor events and start/end of
activities. For example, in the case of n = 1 following soft rules can be used:

• event(+Ei, t)→ startActivity(+a, t)

• event(+Ei, t)→ endActivity(+a, t)

Note that + symbol before a variable means that a weight is learned for
each grounding of that variable. If we choose n = 2 following soft rules can
be used:

• event(+E1, t1) ∧ event(+E2, t2) ∧ nextEvent(t1, t2)→
startActivity(+a, t1)

• event(+E1, t1) ∧ event(+E2, t2) ∧ nextEvent(t1, t2)→
endActivity(+a, t2)

For a couple of consecutive sensor events, the first rule correlates the first
event with the start of an activity and the second rule correlates the second
event with the end of the activity. In general, the most effective value of
n depends on characteristics of the pervasive system and also on considered
activities. Note that in some cases MLN reasoner may not detect the end
of an initiated activity. This may happen when a person does not complete
that activity due to abnormal behavior. For example, the subject sets up
the table but forgets to consume the meal at dinner; we consider the activity
having dinner incomplete. In this case, we post-process the MLN results and
we consider the activity ended after a maximum time threshold has expired
since it starts. Weights of soft rules are learned by using a training set of
sensor events acquired during the execution of the considered activities.
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4.2.4.2 SmartFABER: Supervised machine learning

We have mentioned above that SmartFABER exploits a state of the art su-
pervised machine learning technique to recognize activities. In fact, Smart-
FABER uses a time-based learning method which assigns activity class to
each pre-processed sensor data instance. We have experimented with several
supervised machine learning techniques to detect boundaries of activities.
However, decision tree classifiers such as random forests [10] produced the
best results for activity recognition. In order to use random forests, we have
considered the feature extraction method proposed in [48]. The algorithm is
based on segmenting time-sequenced sensor data and then using an exponen-
tial function allowing most recent sensor events to contribute more in activity
boundary detection for that segment. A possible way of segmenting sensor
data is to divide sensor events into windows containing equal number of sen-
sor events. An activity consists of multiple actions which are captured by
various sensors at different time instants. The wide spectrum of human ac-
tivities involves varying rate of sensor firings over different spans of time. For
example, the activity “sleeping” involves a few sensor firings over a long span
of time, whereas an activity “leaving home” involves rapid firing of sensor
events over a short span of time. Hence, it is possible that two sensor events,
with a wide temporal gap between them, exist in same window. Intuitively,
the recent sensor events in a window define the context of current activity. If
each sensor event contributes equally in inferring the current activity, then
the unequal distribution of sensor events in various activities can influence
the activity recognition process. This problem can be solved by using a time-
based weighting schema which determines the relative contribution of each
sensor event in the window. In the proposed feature extraction algorithm,
a weight is assigned to each sensor event which is relative to the last sensor
event in that window. In this way the last sensor events contribute more in
defining the label of an activity. Formally, suppose the ith window has the
n number of sensor events with the following sequence:

〈event(ei−n, ti−n, ..., event(ei−1, ti−1), event(ei, ti)〉 (4.5)

An exponential function has been defined to compute weights, which
determine the time-based contribution of a sensor (of a particular type) event
in defining the context of the last sensor event:

C(i, j) = exp(−χ(ti − tk)) (4.6)

47



4.2. THE ARCHITECTURE CHAPTER 4. . . .

Table 4.1: List of extracted features
No. Feature Name Description
1 . . . 5 Repository usage Each of these features measures the

temporally-weighted occurrences of us-
age of an individual repository (fridge,
kitchen cabinet, . . . )

6 Stove usage Measures the temporally-weighted oc-
currences of stove usage events

7 Cooking pot usage Measures the temporally-weighted oc-
currences of cooking pot usage events

8 Food retrieval Measures the temporally-weighted oc-
currences of food retrieval events

9 Medicine retrieval Measures the temporally-weighted oc-
currences of medicine retrieval events

10 Approaching table Measures the temporally-weighted oc-
currences of the event type “approach-
ing kitchen table”

11 Leaving table Measures the temporally-weighted oc-
currences of the event type “leaving
kitchen table”

12 Start time Time of the day of the oldest event in
the sequence S

13 End time Time of the day of the most recent
event in the sequence S

14 Duration Difference between end time and start
time

Where, ti is the time instant at which last event occurs in the ith window, tk
is the time instant at which kth sensor event occurs in the ith window, and
the factor χ determines the decay rate of the influence. Table 4.1 shows the
list of the features which are extracted through this methodology. The value
of feature Fk(S) (with k = 1 . . . 11 ) is computed as:

Fk(S) =
∑

event(Ej ,tj)∈S

w(tj, ti) · fk(event(Ej, tj)) (4.7)

where fk(event(Ej, tj)) is the time-independent contribution of event(Ej, tj)
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to the computation of the Fk value. For instance, when we have consider F3

that measures the number of events in S related to the usage of the fridge,
the value of f3(event(Ej, tj)) is 1 if Ej corresponds to either “open fridge”
or ”close fridge”; it is 0 otherwise. The feature vector computed based on S
is given as an input to a supervised machine learning algorithm to infer the
most probable class of the activity instance carried out at ti. The algorithm
is trained using a dataset of activities and feature vectors.

After recognizing activities, in a post-processing phase, an algorithm an-
alyze classified sensor events and tries to fix mispredictions present in it. For
this purpose, two aggregation techniques have been proposed: naive aggrega-
tion, and smart aggregation. Although these aggregation algorithms are not
the contribution of thesis, we briefly explain these algorithms to understand
the working of SmartFABER.

Naive aggregation The machine learning technique classify sensor events
belonging to various activities. Among these sensor events, some events
are correctly classified, while some instances are mispredicted. The naive
approach aggregates sensor events which occur close in time and predicted
with same activity label. The algorithm is based on a simple aggregation
principle: if the machine learning technique predicts two consecutive events,
occurred respectively at time instants ti and ti+1, with the same activity class
Ai = Ai+1, these are considered as observations generated by the same in-
stance of an activity of class Ai. Otherwise, they are considered observations
generated by different activity instances.

Smart aggregation The naive aggregation technique does not fix mispre-
dictions. In fact, it only aggregates sensor events belonging to same activity.
In order to refine this approach, smart aggregation algorithm is presented
which tries to fix mispredictions. The smart aggregation imposes certain
conditions on predicted class labels. These conditions are derived separately
for each activity. If a predicted class label satisfy imposed conditions, it is
correctly predicted. Otherwise, if the predicted class label does not satisfy
imposed conditions, it is mispredicted and replaced with a temporally closed
correctly predicted class label.
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4.2.5 Abnormal behavior recognition: Knowledge-base
construction

The orignal contribution of this research is the recognition of fine-grained
anomalies found in the daily routine of a smart home resident. We have con-
structed a knowledge-base to recognize these fine-grained anomalies. Typi-
cally, a knowledge-base consists of a set of concepts, instances of concepts,
and relationships between different concepts [28]. These knowledge-base in-
gredients are gathered through various sources: smart environment, subject
who is being monitored through smart home, and domain knowledge related
to the subject and the smart environment. Domain knowledge is the key
ingredient of the knowledge-base and it is either provided by domain experts
or based on commonsense knowledge about the subject and the environment.
We can divide the process of knowledge-base construction into two important
phases: knowledge acquisition and knowledge representation.

4.2.5.1 Knowledge acquisition

The knowledge acquisition phase includes all practices and processes that
are carried out to collect knowledge which is used to recognize fine-grained
anomalies. In our model, knowledge is acquired from various sources: do-
main experts (clinicians and neuro-science experts), caregivers, subject, and
commonsense knowledge. Our technique for knowledge acquisition is mainly
based on meetings and discussions with domain experts, caregivers, and sub-
ject. Meetings with domain experts result in a model of abnormal behavior
which is presented in Chapter 5, whereas meetings with caregivers and sub-
ject help us to understand the smart home environment. A brief description
of the type of knowledge provided by these sources is given as:

• Domain experts: provide the model of the abnormal behavior, and
other background knowledge which is important from their point of
view to recognize the abnormal behavior. For example, medical pre-
scriptions include names and timings of medicines.

• Caregiver/subject: provides knowledge about the subject’s personality
traits, his/her preferences in the routine life such as preferred meal-
times, and knowledge about the home environment such as names of
cabinets according to their use.
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• Commonsense: the routine life knowledge such as the food item cannot
be consumed without cooking.

4.2.5.2 Knowledge representation

In order to formally represent domain knowledge in our model, we have
considered first-order logic which is a symbolic language. First-order logic
allows us to construct sentences, formally called rules, using various symbols:
quantifiers, connectives, predicates, functions, and constants. For example,
we can represent a concept that Anna is a person using a predicate per-
son(Anna), an activity brushing teeth using a predicate activity(brushing
teeth), and a simple action open faucet using predicate action(open faucet).
In order to recognize fine-grained anomalies, we have translated natural lan-
guage descriptions of abnormal behavior into first-order logic rules. A rule is
an “IF-THEN” structure which has two parts: a condition, and a conclusion.
The condition part may include several atomic formulas which are connected
through various connectives, conjunction and disjunction, to infer the conclu-
sion. Anomaly recognition rules include several conditions which are based
on indicators of the abnormal behavior provided by domain experts.

Example 4 Maintaining personal hygiene is one of the im-
portant activities performed by humans in their daily routine.
According to neuro-physicians, cognitively impaired persons of-
ten face difficulties in carrying out such activities. Consider a
scenario in which Anna faces difficulties in performing an activ-
ity related to her personal hygiene. Suppose, in a routine life, she
wakes up at 7:00 a.m in the morning. She enters washroom at
7:15 a.m to perform hygiene related activities. At 7:20 a.m she
starts activity brushing teeth with the following actions: takes
her tooth brush, takes tooth paste from the cabinet, brushes her
teeth, turns on faucet, and cleans her mouth. Notice that she
does not turn off faucet due to forgetfulness. We have proposed
the framework with an objective to recognize such fine-grained
anomalies. Our proposed model works in the following way to
recognize such anomaly:

1. Sensors deployed in the smart home collects facts about sim-
ple actions performed by Anna during an activity. In the
given scenario, Anna performs an activity brushing teeth
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consisting of some simple actions. Note that we have used a
symbolic language (first order logic) to represent facts col-
lected from the smart home:

activity: brushing teeth

start

action(take_brush, 7:22:32 a.m)

action(take_toothpaste, 7:22:55 a.m)

action(turnon_faucet, 7:24:10 a.m)

end

2. The activity recognition module in the proposed frame work
recognizes the activity of brushing teeth. We can represent
the recognized using following predicate

activity(brushing teeth, Ts, Te)

The predicate states that activity brushing teeth starts at
Ts = 7 : 22 : 32a.m and ends at Te = 7 : 24 : 10a.m.

3. The anomaly recognition module recognizes anomaly that
faucet is not closed using following rule:

faucet notClosed⇐
activity(brushing teeth, Ts, Te)

∧ action(turnon faucet, T1)

∧ hold(on, faucet, T1, T2)

∧ T2 − T1 > 20minutes

∧ ¬action(turnoff faucet, T2).

(4.8)

The rule states that the subject turns on faucet during the
activity of brushing teeth but it remains on for more than
20 minutes and the subject does not turn it off. The hold()
predicate is used to calculate temporal distance between two
sensor events.
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Chapter 5

Abnormal Behavior
Recognition

In the previous chapter, we presented the proposed overall framework for
abnormal behavior recognition. In this chapter, we will explain the method
we have used to recognize the abnormal behavior. The fine-grained anomaly
recognition method relies on the medical model of abnormal behavior ex-
plained in Chapter 4. The medical model describes the abnormal behavior
in natural language. Our proposed anomaly recognition method relies on a
symbolic technique to formally represent natural language descriptions into
a set of rules. Formally, we have constructed a knowledge-base which con-
tains anomaly recognition rules. These rules automatically infer fine-grained
anomalies from the daily routine of a smart home resident by considering var-
ious types facts such as performed activities, domain knowledge, and contex-
tual information. The rest of the chapter is structures as follows. In Section
5.1, we list down assumptions which have been made to implement the pro-
posed framework. Section 5.2 describes the construction of knowledge-base
for fine-grained abnormal behavior recognition.

5.1 Assumptions to simplify the implementa-

tion of the system

In order to effectively implement the proposed model for recognizing fine-
grained anomalies, we have made some assumptions which are described
below:
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1. The subject lives alone in a smart home. A caregiver regularly vis-
its the subject. We have considered single resident scenario, which is
quite simple and simplifies the implementation of our model. Other-
wise, multi-resident scenario requires a distinction between different
activities performed by different residents.

2. We have not considered interleaved and concurrent activities.

3. The subject is continuously monitored through the proposed system
and it periodically detects fine-grained anomalies, for example at the
end of each day.

4. The stock of consumable items, medicines and food items, is managed
by a caregiver. The caregiver regularly visits the smart home and
ensures every consumable item is kept at right place and he/she also
ensures a continuous supply of these items. The anomaly detection
model relies on the utilization of various food items and medicines
by the subject. The correct working of the proposed system highly
depends on the proper management of these items. Otherwise, the
algorithm produces high number of false positives and false negatives.

5. The subject adheres a medication regiment. In this regard, the subject
has to take N number of medicines per day according to a prescrip-
tion provided by a physician. Each medicine has a unique ID such as
(M1,M2MN).

6. Each medicine is kept in a separate box or bottle. Each blistered
medicine is kept in a box, whereas a syrup medicine is stored in a
bottle. Boxes and bottles are placed inside a “medicine cabinet”. An
RFID tag is attached to each medicine (box/bottle). The “medicine
cabinet” is dedicated for medicines.

7. Food items are divided into two categories: the first is refrigerated
food items, and the second is non-refrigerated food items. Refrigerated
food items (e.g., butter, milk, cheese etc.) are sensitive to tempera-
ture and, therefore, always stored in a refrigerator. Non-refrigerated
food (e.g., pasta, rice, sugar etc.) items are stored in a cabinet la-
beled “non-refrigerated food cabinet”. The cabinet is dedicated for
non-refrigerated food items.
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8. Each food item, refrigerated or non-refrigerated, has a proper packing
or kept in a container. RFID tags are attached with each food item to
track their usage.

9. Food items, either refrigerated or non-refrigerated, are further catego-
rized depending on their way of consumption. All food items which
have to be cooked are categorized as “must be cooked food items”.
This categorization is done to understand the stove utilization for var-
ious food items.

10. Whenever the subject retrieves or returns any consumable item (medicine
or food) from a respective repository, he/she has to swipe it through
an RFID reader. Note that we are using RFID based tracking of con-
sumable items on experimental basis, therefore, it may result in false
positives and false negatives. For example, the subject really takes a
medicine but forgets to swipe it is a case of false positive, in which ac-
tually an anomaly does not occur but our system detects it. Similarly,
the subject can deceive our system by swiping a medicine but actually
not consuming it; it is a false negative, in which our system fails to
detect the actual anomaly. We consider such scenarios as sensing in-
frastructure problems, and not the failure of our anomaly recognition
method. In fact, we assume that sensing infrastructure always detects
a “retrieve” and “return” of a medicine which is actually not true in the
current implementation of the system, however, by using more sophisti-
cated sensing systems, we can achieve such an accuracy in our system.
Hence, we consider it another research topic, in which efforts should be
made to accurately sense “retrieve” or “return” of a medicine: it could
be extended to detect even an intake of a medicine.

11. The subject follows a regular timetable for the daily meals: breakfast,
lunch and dinner.

5.2 Recognizing fine-grained anomalies

In Chapter 4, we have introduced the clinical model of the abnormal behav-
ior which has been developed in collaboration with neuro-science experts.
The modeling of the abnormal behavior results in natural language descrip-
tions of fine-grained anomalies which are usually observed in elderly per-
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sons having MCI. The model presents three types of fine-grained anoma-
lies: omissions, omissions, and additions. Fine-grained anomalies are spe-
cific deviations normally found in activities performed by an MCI patient.
In fact, such deviations are normally not expected in normal aging. Con-
sidering the medical model of abnormal behavior, we have defined L =
{l1, l2, . . . , ln} as a set of n pre-defined set of anomalies (for example, L =
{missedMedicine,missedLunch, repeatMedicine}). Each anomaly li ∈ L
belongs to an activity a which is an instance of a pre-defined set of activities
A. In order to automatically infer these anomalies, we have constructed a
knowledge-base and the process involves three fundamental tasks: knowledge
acquisition, knowledge representation, and formulation of anomaly detection
rules in first-order logic.

5.2.1 The rule formulation

In order to formulate fine-grained anomaly recognition rules, we have con-
sidered various types of facts. The first type of facts relates to activities
A which are performed in the smart environment. Activities are extracted
from sensor data using artificial intelligence techniques which are explained
Chapter 4. Besides recognized activities, we also need facts which provide
us knowledge about the expected normal behavior of the person. The sec-
ond type of facts is based on domain knowledge. The domain knowledge
is mainly based on common sense knowledge and expert knowledge about
the smart home and its resident. It includes a variety of information about
the subject such as his/her personality traits, lifestyle, habits, and house-
hold items used by him/her in the smart home. For example, the subject
has to adhere a medication regimen in this case the domain knowledge is a
prescription which includes names of medicines and their prescribed timings.
The third type of facts relies on contextual information about the environ-
ment in which the person performs activities. Humans perform activities
in a diversity of spatial, temporal, and environmental contexts [14]. Spatial
contexts are related to the location and entities used in the activity. For ex-
ample, rooms, appliances, and other household articles are spatial contexts.
Temporal contexts include information about time and/or duration of an ac-
tivity. Environmental contexts relate to surrounding conditions in which the
activity was performed. Temperature and humidity are examples of environ-
mental contexts. Contextual information is captured through multi-modal
sensors. Figure 5.1 illustrates types of facts which have been considered for
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recognizing anomalies.

Figure 5.1: Types of facts considered for fine-grained anomaly recognition

In order to recognize fine-grained anomalies, natural language description
of abnormal behavior is translated into first-order logic rules. In first-order
logic a classification rule is represented with an expression of syntax:

if (Conditions) then L

In this expression L is the class label, and Conditions are a conjunc-
tion of logical tests which describe properties of class label that have to be
satisfied for a rule to ’fire’. The class label (L) refers to a predefined set of
anomalies. Conditions are used to detect the individual anomalies li ∈ L and
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are derived from various types of facts which are shown in Figure 5.1. The
smart home environment provides contextually rich data. Therefore, instead
of using propositional logic, we considered to formulate rules in first-order
logic. First-order logic is more expressive than propositional logic allows us
to represent objects, relations between different objects, and properties of
the entire collection of objects using Quantifiers. In the knowledge-base,
facts are represented using three types of symbols: constants, predicates,
and functions [75] . In order to formulate first-order logic rules for detect-
ing anomalies, we have to understand the relation between various types of
facts and their logical combinations. The formulated rules are combined to-
gether as a rule-set to automatically infer anomalies. The inference engine
periodically (e.g. end of the day) infers rule-based anomaly definitions.

5.2.2 Logical representation of facts and anomalies

As mentioned earlier, we have considered a symbolic technique — first-order
logic — to formulate fine-grained anomaly recognition rules. For this pur-
pose, various types of facts, related to smart home and its resident, have
been symbolically represented using three types of logical symbols: constants,
predicates, and functions. A constant symbol describes semantics of objects
used by a smart home resident. The resident can use numerous household
objects such as furniture, electrical appliances, and consumable items. A
predicate symbol can be used to describes various characteristics of an object
along with its semantics and its relation with other objects. For example,
the object med1 is a medicine which can be represented by a predicate in
formal logic as isMedicine(med1). The third type of symbols is a function
which describe the function of various objects in the domain.

In order to formally represent various facts, we have developed a vocabu-
lary of symbols. Here, a convention is followed that a constant always begins
with a small letter and a variable always begins with a capital letter. Details
of these symbols is described as follows:

• Since our objective is to recognize fine-grained anomalies, an anomaly is
a consequent in every rule. Each anomaly is represented by a standard
predicate anomaly(A, Type, L,O, Tx), where A represents a pre-defined
set of activities in which a is an individual activity, a ∈ A; Type rep-
resents an anomaly type: critical or non-critical; L is a predefined set
of anomalies in which l is an individual anomaly, l ∈ L; O is an object
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involved in the anomaly (e.g., the name of a repository); T is the time
instant at which the anomaly occurs.

• Some predicates define characteristics of an object. For example, the
predicate isMedicine(M), isFood(F ), and isRepository(R) means M
is a medicine, F is a food item, and R is a repository, respectively.
Note that each variable (capital letter) takes a range of values from its
specific domain.

• A simple action is represented by the predicate action(ACT,O,O′, T ).
The predicate states that a person executes an action ACT on object
O and O′ at a time instant T .

• An activity is represented by the predicate activity(A, Ts, Te), where A
is a pre-defined set of activities, a ∈ A; Ts represents the time instant
at which the activity starts; Te represents the time instant at which the
activity ends.

• We have included domain knowledge in our model which enables us
to capture the deviation of the human behavior from the normal be-
havior. The predicate prescribed(M,Tx, Ty) represents information
provided by domain knowledge. It states that the person has to take a
medicine M between time instants Tx and Ty. Similarly, we have used
domain knowledge to categorize food items. For example, the predicate
mustBeCooked(F ) states that a food item F has to be cooked before
consuming it.

• Temporal conditions are expressed by the hold(S,O, T1, T2) predicate.
The predicate states that the status of an object O has been S from the
time instance T1 to T2. The predicate is used to measure the temporal
distance between two corresponding events, for example the microwave
oven has been on from 11:30 a.m. to 11:55 a.m. The temporal expres-
sions that we have used in our rule-based definitions include various
temporal measurements such as an interval of time during which an
action is performed, the temporal distance between two corresponding
actions, the temporal duration of an activity, the temporal order among
activities.
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5.2.3 Examples of abnormal behavior

Now, we present two scenarios in which the subject exhibits abnormal be-
havior. These examples explain how we have hypothesized the abnormal
execution of an activity. In presented scenarios, Anna performs activities
with some anomalies. Afterwards, we show first-order logic rules which au-
tomatically detect fine-grained anomalies.

Example 5 Anna is living independently in a smart home. A
caregiver regularly visits Anna to check her general health con-
dition and also to maintains household essentials. The house is
equipped with sensors of various modalities. Doors of rooms (e.g
bedroom, living room, kitchen) and repositories (e.g., medicine
cabinet, refrigerator, non-refrigerated food storage cabinet) are
equipped with magnetic sensors to detect “open” and “close” ac-
tions. Based on the contents of food items, these are either placed
in a refrigerator or in a non-refrigerated food storage cabinet.
RFID tags are attached with each food item (both refrigerated
and non-refrigerated) to identify their contents (e.g., rice, milk,
coffee, sugar). These tags are used to track the usage of food
items. RFID readers are deployed in proximity to cabinets and
the refrigerator. RFID readers detect which food item has been
retrieved or returned from respective repositories.

In a normal routine, Anna does breakfast between 8:00 a.m and
9:00 a.m. Suppose that at 8:05 a.m Anna opens a “fridge” and
“retrieves” a “milk” pack from it. After consuming the milk, she
“returns” the pack to a “non-refrigerated food storage cabinet
(nrCabinet)”; instead of returning it to the “fridge”. Based on
sensed events, the following actions, as predicates, are automati-
cally added to the knowledge-base.

action(open,door,fridge,8:05:00 a.m)

action(retrieve,milk,fridge,8:05:07 a.m)

action(close,door,fridge,8:05:13 a.m)

action(open,door,nrCabinet,8:10:10 a.m)

action(return,milk,nrCabinet,8:10:15 a.m)

action(close,door,nrCabinet,8:10:20 a.m)
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Anna commits a critical anomaly, critical replacement, as we can-
not expect in normal circumstances a person can return an item
being retrieved from a fridge to a non-refrigerated food item cab-
inet. We know through common sense knowledge that milk has
to be stored in a fridge. We can represent this knowledge with
the predicate isRefFood(milk) which states that milk is a re-
frigerated food item. Following rule is formulated to detect this
anomaly.

General Rule

anomaly(A, Type, L,O, Tx)⇐
action(return,O,O′, T )∧

isRefFood(O)∧
isNonRefStorage(O′)∧

(5.1)

Note that this rule can be grounded for the above mentioned
scenario:

Grounded Rule

anomaly(preparingMeal, c, replacement,milk, 8 : 10 : 15a.m)⇐
action(return,milk, nrCabinet, 8 : 10 : 15a.m)∧

isRefFood(milk)∧
isNonRefStorage(nrCabinet)∧

(5.2)

Example 6 Consider another scenario in which we monitor
Anna for adherence to a medication regimen. Suppose Anna has
to take some medicines according to a prescription given by her
physician . All medicines are placed in a medicine cabinet, labeled
“medCabinet”, which is dedicated for medicines. Each medicine
is kept in a separate box and an RFID tag is attached to each box.
An RFID reader is deployed in proximity to the “med-cabinet”.
The RFID reader detects the medicine which has been retrieved
or returned. According to the prescription, Anna has to take a
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medicine, labeled “med1”, between 3:00 p.m. and 4:00 p.m. One
day she forgets to take this medicine during the prescribed time.
Therefore, no sensed events are logged in the database about this
activity. However, in order to detect this anomaly, we need the
prescription. The prescription is stored in the knowledge-base
with the following predicates:

prescribed(med1, 3:00 p.m, 4:00 p.m)

isMedicine(med1)

We can formulate the following rule to detect this anomaly:

General Rule

anomaly(A, Type, L,O, Tx)⇐
prescribed(med1, T1, T2)

not((action(retrieve,med1,medCabinet, T )∧
(T > T1)∧

(T < T2))∧
isMedicine(med1)∧

isMedicineCabinet(medCabinet).

(5.3)

Since no actions are found in the database, it is assumed that
the subject has forgotten to take the prescribed medicine. It is
a critical omission (o). The rule can be grounded with factual
information for this particular scenario.

Grounded Rule

anomaly(takingMedicine, c, omission,med1, 4 : 00p.m)⇐
prescribed(med1, 3 : 00p.m, 4 : 00p.m)

not((action(retrieve,med1,medCabinet, T )∧
(T > 3 : 00p.m)∧

(T < 4 : 00p.m))∧
isMedicine(med1)∧

isMedicineCabinet(medCabinet).

(5.4)

62



5.3. KNOWLEDGE-BASE SPECIFICATIONS CHAPTER 5. . . .

Note that in the grounded rule T is a variable and according to
the temporal model defined in Chapter 4 each sensor event occurs
at a unique timestamp. Therefore, T can be any timestamp which
exists between the start of prescribed interval T1 and the end of
prescribed interval T2.

5.3 Knowledge-base specifications

In Section 5.2.1, we have introduced the technique to formulate fine-grained
anomaly detection rules. In this section, we will formally present rules to
infer various anomalies which reflect behavioral changes in the daily be-
havior of the subject. In each rule, antecedents are derived from descrip-
tions of abnormal behavior provided by clinicians and neuro-science experts.
In this work, we have considered three activities recommend by clinicians
from the Institute Fatebenefratelli, Lombardy. These activities are: eating
meal (ADL), preparing meal (IADL), and adherence to a medication regimen
(IADL). In general, for the activity preparing meal the anomaly recognition
system checks the correct execution of activity during regular mealtimes. We
equipped the cooking area with various sensors to detect actions performed
by the subject while preparing a meal. The second activity is eating meal in
which the system recognizes the consumption of regular meals during meal-
times. In case of MCI patients, a common example of abnormal behavior is
skipping regular meals. For example, an anomaly occurs when the subject
prepares a meal, but forgets to consume it. The third activity is compliance
to a medical prescription. In this activity, we construct rules which check
various aspects of compliance such as missing a prescribed medicine, tak-
ing a medicine at a wrong time, and repeating a prescribed medicine within
the prescribed time. Further details of these anomalies are provided within
the rule definitions of anomalies in the following subsections. Table 5.1 de-
scribes all constant and variable symbols which we are used to formulate
rules. These symbols include anomaly types, anomaly labels, activity labels,
actions, names of items, time instants, and intervals. Note that a symbol
beginning with a small letter is a constant, whereas a symbol beginning with
a capital letter is a variable, which takes a range of values from a specific
domain.
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Table 5.1: Constants and variable symbols in anomaly recognition rules
No. Symbol Description

Anomaly types

1 c Critical anomaly
2 nc Non-critical anomaly

Anomaly Labels

3 o Omission
4 rpt Repeat
5 ia Improper activity

Activity Labels

6 tm Taking medicines
7 pm Preparing meal
8 em Eating meal

Actions

9 retrieve The person retrieves an item from a repository
10 return The person returns an item from a repository
11 open The person opens a repository
12 close The person closes a repository
13 turnOn The person turns on a stove burner
14 turnOff The person turns off a stove burner

Items

15 medCab A medicine cabinet dedicated for medicines
16 fridge A refrigerator
17 nrCab A cabinet dedicated for non-refrigerated food items
18 cpCab A cabinet which keeps utensils used for cooking food
19 swCab A cabinet which keeps silverware
20 door The door of a repository
21 stove A stove used in the kitchen for cooking food
22 burner A burner on the stove
23 M A variable takes names of medicines
24 FI A variable takes names of food items

Time instants and intervals

25 Ts The time instant at which an activity starts
26 Te The time instant at which an activity ends
27 Tx The beginning of an interval
28 Ty Th ending of an interval
29 Tr The time instant of a repeating action
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5.3.1 Anomaly detection rule for medication adher-
ence

MCI patients as well as cognitively intact elderly persons often face difficulties
in adherence to a medication regimen. Adherence to the medication regimen
involves cognitive skills which depend on executive function and working
memory [39]. In order to comply with a medication regimen, the person has
to remember names of medicines and their dosage timings. However, due to
the decline in cognitive abilities, the person can forget physician’s instructions
or other related information which may lead to medication non-adherence.
Medication non-adherence is a serious issue as the failure to take a medicine
within the prescribed time can increase the risk of hospitalization in elderly
people or it can be critical in certain chronic diseases such as hypertension.
As mentioned earlier, we have formulated rules to cover various aspects of
medication non-adherence such as missing a prescribed medicine (rule 5.5),
taking a wrong medicine (rule 5.6), and repeating a medicine (5.7). We
have taken into account the prescription, as domain knowledge, to detect the
anomalous behavior of the subject.

Missed medicine The subject forgets to take a prescribed medicine.

anomaly(tm, c, o,M, Ty)⇐
prescribed(M,Tx, Ty)

∧ isMedicine(M)

∧ not((action(retrieve,M,medCab, T )

∧ (T > Tx) ∧ (T 6 Ty))).

(5.5)

Wrong Medicine The subject takes a wrong medicine.

anomaly(tm, c, ia,M, T )⇐
isMedicine(M)

∧ action(retrieve,M,medCab, T )

∧ not((prescribed(M,Tx, Ty)

∧ (T > Tx) ∧ (T 6 Ty))).

(5.6)
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Repeat Medicine The subject repeats a medicine dosage within the pre-
scribed time.

anomaly(tm, c, rpt,M, Tr)⇐
isMedicine(M)

∧ prescribed(M,Tx, Ty)

∧ action(retrieve,M,medCab, T )

∧ action(retrieve,M,medCab, Tr)

∧ (T > Tx) ∧ (T 6 Ty)

∧ (Tr > Tx) ∧ (Tr 6 Ty)

∧ (Tr > T ).

(5.7)

Medicine not returned to repository Besides taking a medicine within
the prescribed time, it is also important that the subject must return a
retained medicine to the medicine cabinet after taking its required dosage.
Otherwise, the subject is unable to find it in the medicine cabinet (medCab)
for the next dosage. We have used hold() predicate to formulate the temporal
distance between a “retrieve” action and its corresponding “return” action
for all items which the subject retrieves (medicine in this case) from their
respective repositories. Based on this temporal distance, we have formulated
following two rules which recognize this anomaly. The first rule 5.10 states
that the subject retrieves a medicine and fails to return it within 30 minutes.
The second rule 5.11 states that the subject fails to return the medicine
within the activity.

holds(isRetrieved,M, T, T )⇐
action(retrieve,M,medCab, T ).

(5.8)

holds(isRetrieved,M,medCab, T1, Tj)⇐
nextevent(Ti, Tj)

∧ holds(isRetrieved,M,medCab, T1, Ti)

∧ not(action(return,M,medCab, Ti)).

(5.9)
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anomaly(tm, c, o,M, Te)⇐
activity(tm, Ts, Te)

∧ isMedicine(M)

∧ holds(isRetrieved,M,medCab, Tx, Ty)

∧ (Tx > Ts) ∧ (Tx 6 Te)

∧ (Ty > Ts) ∧ (Ty 6 Te)

∧ ((Ty − Tx) > 30minutes).

(5.10)

anomaly(tm, c, o,M, Te)⇐
activity(tm, Ts, Te)

∧ isMedicine(M)

∧ holds(isRetrieved,M,medCab, Tx, Ty)

∧ (Tx > Ts) ∧ (Tx 6 Te)

∧ (Ty ≡ Te)

∧ not(action(return,M,medCab, Te)).

(5.11)

5.3.2 Anomaly detection rules for Preparing meal

Taking meals at regular timings ensures a healthy lifestyle. The subject can
consume ready-made meals, however, the activity preparing meal indicates
the level of activeness of a person in old age. The continuous skipping of
this activity may indicate serious issues such as physical health problems,
depression, isolated lifestyle, and most importantly decline in cognitive abil-
ities. For example, it is a high alert for clinicians if an elderly person is not
preparing meal from continuously three days. Similarly, it is also an alert
if the subject is continuously taking cold meals, even at the time of lunch
and dinner when usually people prefer to prepare a hot meal. Therefore, we
have covered different aspects of this activity, which include skipping of the
activity “preparing meal”, stove utilization, and a proper cooking of food
items.
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Missed Preparing meal As mentioned earlier, activities are recognized
from a continuous stream of sensor events. In order to formulate a rule which
detects a missed meal, we have considered different types of facts: domain
knowledge, mealtimes according to the subject’s habits, and recognized ac-
tivities with their start and end timestamps.

anomaly(pm, c, o,meal, Ty)⇐
mealT ime(Meal, Tx, Ty)

∧ not((activity(pm, Ts, Te)

∧ (Ts > Tx) ∧ (Ts 6 Ty)

∧ (Te > Tx) ∧ (Te 6 Ty))).

(5.12)

Stove usage It is one of the most common anomalies observed in MCI pa-
tients that they forget to attempt important and familiar steps in an activity
such as forgetting to turn off the stove after using it. Again, we have used
hold() predicate to calculate the temporal distance between the time instant
when the person turns on the stove burner and the time instant when the
person turns it off. holds() predicate initializes a duration starting when the
person turns on the stove burner and continuously updates it until the stove
is not turned off. Formally, the rule 5.15 states that the subject has turned
on the stove burner during the activity “preparing meal”, but forgets to turn
it off after finishing it.

holds(isOn, stove, T, T )⇐
action(turnOn, burner, stove, T ).

(5.13)

holds(isOn, burner, stove, T1, Tj)⇐
∧ nextevent(Ti, Tj)

∧ holds(isOn, burner, stove, T1, Ti)

∧ not(action(turnOff, burner, stove, Ti)).

(5.14)
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anomaly(pm, c, o, stove, Te)⇐
activity(pm, Ts, Te)

∧ holds(isOn, burner, stove, Tx, Ty)

∧ (Tx > Ts) ∧ (Tx 6 Te)

∧ (Ty ≡ Te)

∧ not(action(turnOff, burner, stove, Te)).

(5.15)

Improper preparing meal It is a normal behavior that whenever a person
retrieves a cooking pan along with a food item which has to be cooked then
he/she must use a stove to cook the food item. However, a forgetful MCI
patient may has an intention to cook the raw food item, but due to cognitive
decline the subject forgets to use the stove in the activity. Following rule
5.16 is formulated to detect such a situation.

anomaly(pm, c, o, stove, Te)⇐
activity(pm, Ts, Te)

∧mustBecooked(FI)

∧ action(retrieve, FI, nrCab, T1)

∧ (T1 > Ts) ∧ (T1 6 Te)

∧ not((action(turnOn, burner, stoveT )

∧ (T > Ts) ∧ (T 6 Te))).

(5.16)

5.3.3 Anomaly detection rules for Eating meal

Eating is a vital activity for all human beings. Researchers have indicated
several symptoms of eating disturbances which occur with progression in cog-
nitive impairment. These symptoms include swallowing disturbance, change
of appetite, change of eating habits, consumption of inedible objects, and
difficulty in distinguishing utensils [44]. Eating disturbances may lead to
the habit of skipping meals which result in malnutrition, decline in physical
health, and weight loss. An anomaly “missed eating meal” occurs if a person
forgets to take a meal in the preferred mealtimes. We can get information
about preferred mealtimes from the subject or from his/her caregiver and
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use this domain knowledge to detect the anomalous behavior. However, in
some situations the subject attempts the activity in an improper way. For
example, the subject forgets to take the silverware for eating a meal. The
following rules recognize anomalies related to activity “eating meal”.

Missed eating meal The rule 5.17 states that an anomaly occurs if the
subject fails to take his/her meal in the preferred mealtimes. Note that
variables Tx and Ty represent the beginning and the end of an interval in
which the subject normally takes his/her meals. For example, the subject
normally takes his/her breakfast between 7 : 30am and 9 : 00am. So, in this
case the value of Tx is 7 : 30am and the value of Ty is 9 : 00am.

anomaly(em, c, o,meal, Ty)⇐
∧mealT ime(Meal, Tx, Ty)

∧ not((activity(em, Ts, Te)

∧ (Ts > Tx) ∧ (Ts 6 Ty)

∧ (Te > Tx) ∧ (Te 6 Ty))).

(5.17)

Silverware MCI patients may intend to eat a meal, however, he/she does
not fulfill its basic requirements such as taking silverware for eating the food.
A cabinet (swCab) is dedicated for silverware. The rule 5.18 states that an
anomaly occurs if the subject does not open this cabinet within the activity
“eating meal”.

anomaly(em, c, o, silveware, Te)⇐
activity(em, Ts, Te)

∧ not((action(open, door, swCab, T )

∧ (T > Ts) ∧ (T 6 Te))).

(5.18)

5.3.4 Non-critical anomalies

As discussed earlier, non-critical anomalies are weak indicators of behavioral
modifications. However, it is important to track such anomalies so that clin-
icians can differentiate between normal lifestyle of the person and behavioral
changes. For example, a history of an elderly person tells us that he/she has

70



5.3. KNOWLEDGE-BASE SPECIFICATIONS CHAPTER 5. . . .

a habit to close a repository after retrieving an item from it. It is possible
that he/she occasionally left the repository open due to hastiness and neg-
ligence. However, after some time (possibly months or years) this habitual
trend starts changing and the person is no more careful to close repositories
after using them. This diverging trend can alert clinicians to further inves-
tigate reasons of this behavioral change. The following rules recognize the
non-critical anomaly: the repository is not closed after using it. The rule
5.21 states that an anomaly occurs if the subject opens a repository and
does not close it within 20 minutes. The rule 5.22 detects that the subject
forgets to close a repository in an activity. hold() predicate calculates the
temporal distance between an event open a repository and the corresponding
event close the repository.

holds(isOpen,Repository, T, T )⇐
action(open,Repository, T ).

(5.19)

holds(isOpen,Repository, T1, Tj)⇐
nextevent(Ti, Tj)

∧ holds(isOpen,Repository, T1, Ti)

∧ not(action(close, door,Repository, Ti)).

(5.20)

anomaly(A,nc, o,Repository, Ts)⇐
activity(A, Ts, Te)

∧ holds(isOpen,Repository, Tx, Ty)

∧ (Tx > Ts) ∧ (Tx 6 Te)

∧ (Ty > Ts) ∧ (Ty 6 Te)

∧ ((Ty − Tx) > 20minutes).

(5.21)
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anomaly(A,nc, o,Repository, Ts)⇐
activity(A, Ts, Te)

∧ holds(isOpen,Repository, Tx, Ty)

∧ (Tx > Ts) ∧ (Tx 6 Te)

∧ (Ty > Te)

∧ not(action(close, door,Repository, Te)).

(5.22)
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Chapter 6

Automatic Induction of
Abnormal Behavioral Patterns

In Chapter 5, we have described the specifications of the knowledge-base
used to recognize rule-based descriptions of anomalies. The knowledge-base
relies on factual information gathered through the sensing infrastructure and
domain knowledge. In order to construct the knowledge-base, we have man-
ually translated natural language definitions of the abnormal behavior into
first order logic rules. However, there are some design constraints involved
in the manual construction of the knowledge-base. In this chapter, we will
address those design constraints and introduce a rule learning based method
which automates the process of rule generation for anomaly detection. In
fact, the automatic rule generation for fine-grained anomaly recognition is
the most novel aspect of this thesis. The rest of the chapter is structured as
follows. In Section 6.1, we will explain the importance of rule learning along
with an example which highlights the limitations of manual rule formulation.
In Section 6.2, we present the basic working principle of various rule learning
techniques along with a brief overview of few algorithms. In Section 6.3, we
describe InductiveFABER which is a revised version of FABER and relies on
a rule induction algorithm (RIPPER) for automatic rule generation. Finally,
in Section 6.4, we present rules which have been learned during experiments.
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6.1 Motivation

In order to construct a knowledge-base for recognizing the abnormal behav-
ior, the primary task is to represent knowledge as first order logic rules.
However, the process of rule formulation involves a deep and complex under-
standing of relationships between different types of facts acquired from smart
home and abnormal behaviors exhibited by the subject. These relationships
are influenced by several factors, including the home environment, sensing
infrastructure, personal habits, and physical health status of the senior. It
is not a trivial task for a knowledge engineer to acquire detailed information
of these factors and their influence on the process of rule formulation. For
example, the sensing infrastructure in a smart home involves several design
intricacies such as types of multi-modal sensors used in the design, the quan-
tity of individual sensors deployed in the smart environment, and locations at
which sensors are deployed. Considering all these factors, the process of rule
formulation becomes a challenging and arduous task. Moreover, manual rules
are formulated while considering a specific person and a specific smart home
environment. Thus manually formulated rule-set is not seamlessly portable
to different environments and it makes the overall process more challenging
because the knowledge engineer may has to repeat the whole process for a dif-
ferent person living in a different smart environment. Consider the following
example, which elaborates above mentioned limitations through a practical
scenario.

Example 7 Continuing the example of Anna, who is an elderly
woman living in a smart home and monitored through FABER.
Besides Anna, clinicians are now interested to monitor another
senior citizen, Bob, who also has a tendency of cognitive impair-
ment. Comparing to Anna, Bob has several severe comorbidities
which affects his routine life activities and therefore his lifestyle is
different as compared to Anna. Both subjects live independently
in their own smart homes, which are equipped with different sen-
sors. Due to different smart home layouts and physical condi-
tions, same activity executed by Anna and Bob results in dif-
ferent sensors activation; therefore, different sequences of sensor
events. Hence, the same anomaly may exhibit different patterns
of actions and events, which are very hard to capture manually.
Furthermore, in order to recognize anomalies, the knowledge en-
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gineer has to develop two separate rule-sets, while considering
individual cases of Anna and Bob.

Solution In order to address problems faced in the process of manual rule
formulation, we have revised our methodology of knowledge-base construc-
tion to achieve the following objectives:

• development of a flexible and scalable model.

• portability of the model to other smart environments.

• rapid construction of rule-sets for different environments.

In the revised methodology, we have considered anomaly recognition as
a pattern identification problem and proposed to use adaptive and non-
parametric learning techniques such as rule induction for anomaly recog-
nition. Rule induction techniques are used to learn rules through a set of
distinctive features which are extracted from a dataset. In the following sec-
tion, we will give a brief overview of rule induction methods along with the
basic learning principle followed by different rule learners.

6.2 Rule induction

Rule Induction is a special paradigm of supervised machine learning algo-
rithms. Adistinctive feature of rule induction algorithms is that they auto-
matically generate propositional logic rules to classify data. In order to learn
rules, the data acquired from smart home should be represented in the form
of independent features, which distinctively characterizes each target class.
Rule induction algorithms have been widely used for modeling and analyzing
data in various data mining applications [5], [50]. A few prominent examples
of such application are: medical data for diagnosis of an illness [21], finan-
cial data in banking and fraud detection [9], and policy and claim data in
insurance [4]. Rule induction algorithms are useful in applications involving
classification problems with big data volumes, having distinctive attributes
for each class. In such cases, it is normally difficult for a human expert to
understand relationships between various attributes for classifying data in-
stances. Applications involving the processing of events, detected by a large
number of sensors, for identifying a situation of interest are of similar nature.
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Therefore, we have proposed to use a rule induction algorithm for automatic
rule generation by finding the hidden relationship between different data at-
tributes (or features) extracted from the sensor data and the corresponding
class.

As described earlier, a rule has two parts: the first is condition or an-
tecedent, and the second is conclusion or consequent. The condition part
of a rule is composed of logical conjunctions of different features extracted
from a dataset. A rule learner tests a combination of these features in the
condition part to discern specific properties of a class in a given classification
example. In order to learn a rule, the rule learner generally follows two main
approaches: the first is top-down approach, and the second is bottom-up ap-
proach. In the top-down approach, a rule learner starts with a most general
rule and recursively refines itself by appending more logical conjunctions in
the condition part, until the required classification is achieved. At the end
of each iteration, the new rule is more specific than its earlier version. In the
bottom-up approach, the rule learner starts from the most specific rule and
generates a more general rule by recursively relaxing the conditions. At the
end of each iteration, the new rule is more general than its earlier version.

The working of the most of rule induction algorithms is based on the cov-
ering algorithm. The covering algorithm uses separate-and-conquer approach
to produce a rule-set for classifying instances. The strategy is to divide a
training set into different classes, and learn new rules for each class of train-
ing examples. Suppose, the given training set covers examples of a set of
classes C. The objective is to develop a set of rules which can classify each
member ci ∈ C. The algorithm learns an individual rule Ri, which covers
a part of training examples (a particular class). After Ri has been learned,
the rule learner removes (the separate part), already covered examples from
the training set, and recursively learn a new rule Rj which covers some of
the remaining training examples. The algorithm proceeds in this way until
it covers all training examples or meet any other stopping criteria. The term
separate-and-conquer was introduced by Pagallo and Haussier in 1990 [58].
A variety of rule learning algorithms are available today, which have been
developed over the past few decades. Most of the rule learning algorithms
are based on the covering algorithm. One of the initial works in this domain
is AQ algorithm which is based on covering algorithm [56]. In [15], authors
presented CN2 algorithm which is based on AQ algorithm[56] and ID3 algo-
rithm[63]; a decision tree learning algorithm. Similarly, CN2 algorithm was
the first work which addressed overfitting problem by handling noisy data.

76



6.3. ANOMALY RECOGNITION FRAMEWORK WITH RULE
INDUCTION CHAPTER 6. . . .

Another powerful rule learning algorithm was presented by Cohen which is
called Repeated Incremental Pruning to Produce Error Reduction(RIPPER)
[16] and it solves the problem of overfitting in a more effective way. RIPPER
algorithm is based on Incremental Reduced Error Pruning (IREP) approach
presented in [32]. RIPPER algorithm includes a post processing phase, in
which the algorithm relearns each rule for a refinement. During the relearn-
ing phase, each rule is considered not only in the context of already derived
rules, but also considering subsequent rules to improve the accuracy. In the
current implementation of our method, we used RIPPER algorithm; how-
ever, different rule learning algorithms can be used without modifying the
core of our technique.

6.3 Anomaly recognition framework with Rule

induction

As a review, the architecture of FABER is based on two main modules: ac-
tivity recognition, and anomaly recognition. The activity recognition module
acquires sensor data and process it to detect simple actions (e.g., opening
a repository door). Simple actions are processed to detect the start- and
end-time of activities. The activity recognition module is based on super-
vised learning. The inference of the activity recognition module, along with
sensor data, is delivered to the anomaly recognition module, which adopts
rule-based reasoning to infer occurred anomalies. In FABER, we have man-
ually translated natural language description of anomalies into first order
logic rules. In Section 6.1, we have described difficulties and limitations in-
volved in the manual construction of knowledge-base. In this section, we
describe the revised version of FABER with rule induction, which is called
InductiveFABER. InductiveFABER exploits a rule learning technique to au-
tomatically generate rules for fine-grained anomaly recognition. The overall
methodology of fine-grained anomaly recognition remains the same in Induc-
tiveFABER with the exception of using a rule induction algorithm to learn
fine-grained anomaly definitions.

Figure 6.1 shows the block diagram of InductiveFABER [42]. The revised
version relies on the same clinical model of the abnormal behavior which has
been discussed in Chapter 2. As shown in the block diagram, both subjects
live independently in their smart homes and perform routine life activities.
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Figure 6.1: Anomaly recognition for different persons living in different
homes

In order to generate a training set for a rule learner, a human observes the
behavior of subjects while they perform activities and takes necessary an-
notations for various activities and anomalies executed by them. Domain
knowledge is acquired from various sources: the expert knowledge which is
based on clinical knowledge, such as prescriptions and details of anomalies;
caregivers provide personal knowledge about their subject, such as preferred
mealtimes; and technicians provide knowledge about the sensing infrastruc-
ture, such as types of multi-modal sensors deployed in the smart environment.
The domain knowledge along with the training data is provided to a knowl-
edge engineer who uses it to generate fine-grained anomaly recognition rules
for the knowledge-base.

The classification rule learner takes training data as input and generates
rules satisfying the training data. Note that each smart home produces its
own training data for the subject living in it. Typically, a smart home train-
ing data are represented as a feature set (data attributes) and corresponding
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feature values (instances) to train a rule learner. For the training purpose,
instances of the feature set are labelled with a known class label using anno-
tations made by an observer. The training data include a set of both positive
and negative examples. A dataset of positive examples includes all instances
for which it is known that they belong to the target class. A dataset of
negative examples includes all instances for which it is known that they do
not belong to the target class. In our model, the target class is an individual
fine-grained anomaly li which belongs to the predefined set of fine-grained
anomalies L.

After the training session, the rule learner generates separate rule-sets
for individual subjects living in separate homes. Each rule-set should have
two basic properties: (1) it should uncover the hidden relationship between
different feature instances and corresponding target classes; (2) it should be
generalized and able to classify previously unseen examples.

Figure 6.2: A’s home: kitchen map with sensors

Example 8 In order to further explain the importance of rule
learning, consider a scenario in which Anna and Bob performs
an activity preparing meal in their smart homes. Suppose their
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Figure 6.3: B’s home: kitchen map with sensors

kitchens are equipped with various multi-modal sensors to detect
fine-grained anomalies. Layouts of both smart environments are
shown in Figure 6.2(Ann’s home) and Figure 6.3 (Bob’s home).
Details of the sensing infrastructure is given as:

• RIF tags: a single RFID tag is attached with each food item
to identify their contents for cooking. For example, rice has
to be cooked before consuming it, whereas a fruit juice does
not need cooking.

• Motion: several sensors are deployed to detect the presence
of the subject in various regions of the kitchen (for e.g., near
the stove). Motion sensors are labelled with a capital letter
“P” in layouts.

• Door: several switch sensors are deployed on doors of cab-
inets and fridge to detect open/close events. Door sensors
are labelled with a capital letter “D” in layouts.

• Temperature: Anna has a gas stove in her kitchen, so a
temperature sensor is deployed on her stove to detect the
stove usage. The sensor is labelled with a capital letter “T”
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in the layout.

• Current: Bob has an electric stove in his kitchen, so a current
sensor is deployed on the plug of his electric stove to detect
its usage. The sensor is labelled with a capital letter “C” in
the layout.

In order to recognize activities and fine-grained anomalies, the
smart home data has been annotated to get a training set for the
rule induction algorithm. For automatic rule induction, we have
to provide a feature set to the rule learner. Referring to the gen-
eral architecture of FABER shown in Figure 4.1 in Chapter 4, note
that the input of the anomaly recognition module is recognized
activities: their start and end time instants along with simple
actions and sensor events bounded by these time instants. There-
fore, for automatic rule induction, we have extracted a feature set
from sensor data which belong to recognized activities. In fact,
activity labels along with their start and end time instants are
individual features. Having the sensing infrastructure described
above, we can extract some other unique features: a count of indi-
vidual motion sensor events, for example total events P1, total
event p2, and so on; a count of individual door sensor events, for
example total events D1, total events D2, and so on; and
stove usage, for example stove usage=yes/no. Suppose both the
subjects commit same anomaly i.e, forget to retrieve a cooking
pan in the activity “preparing meal”. The scenario is elaborated
below:
The subjects retrieve a food item that must be cooked. After-
wards they turned on the stove, but forgot the cabinet in which
cooking pans are placed. They search for cooking pans, but
could not find it and at last they left the activity incomplete.
In this scenario, the activity recognition module detects the per-
formed activity is “preparing meal”. Considering extracted fea-
tures, the rule induction algorithm generates individual rules for
both smart environments by finding the hidden relationship be-
tween the anomaly label and corresponding features extracted
from the sensor data. The rules are shown as:
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Rule for Anna’s home:

cookingPan notRetrieved⇐
isRetrieved mustBeCookedFood = yes

∧isUsed stove = yes

∧total events D9 ≡ 0

∧total events D10 ≡ 0

∧total events P5 ≡ 0

(6.1)

Rule for Bob’s home:

cookingPan notRetrieved⇐
isRetrieved mustBeCookedFood = yes

∧isUsed stove = yes

∧total events D5 ≡ 0

∧total events P6 ≡ 0

(6.2)

In case of Anna’s home, the learned rule 6.1 shows that the
anomaly occurs because she did not open cabinet doors D9 and
D10 (D9 = 0andD10 = 0) during the activity of “preparing
meal” and on investigation it is revealed that these are the doors
of cooking pan cabinet. Similarly, the induced rule for Bob’s
home 6.2 shows that he did not open door D5 during the activity
of “preparing meal” and on investigation it is revealed that D5
is the door of cooking pan cabinet.

6.3.1 Learning process

We have divided the learning process into the following two steps:

6.3.1.1 Feature extraction

The rule induction algorithm learns the rules from a set of N distinctive
features. We can represent a feature set as F = {f1, f2, . . . , fN}. We con-
sider the facts collected from various sources: sensing infrastructure, activity
recognition module, and domain knowledge. We assume that an activity in-
stance χ is composed of a sequence of κ actions, which correspond to given

82



6.3. ANOMALY RECOGNITION FRAMEWORK WITH RULE
INDUCTION CHAPTER 6. . . .

Table 6.1: List of extracted features for rule learning
No. Feature Name Description
1 Activity Label The activity label output by the activity

recognition module.
2-6 Repository use Each of these features refers to a single repos-

itory (fridge, kitchen cabinet, etc.). Each fea-
ture has a binary value. The value is 1 if the
repository has been used at least once; 0 oth-
erwise.

7 Total repository events The cumulative sum of the number of access
events (open / close) of repositories.

8 Repository status difference Difference between the total number of close
events and the total number of open events
over all repositories.

9 Maximum duration reposi-
tory left open

The maximum time duration during which a
repository remained open.

10 Stove usage A binary feature: true if the stove was used;
false otherwise

11 Retrieval of a food item that
must cooked

A binary feature: true if at least one food
that needs to be cooked has been retrieved;
false otherwise.

12 Presence in dining area A binary feature: true if the person has been
in the dining area; false otherwise.

13 Maximum duration a
medicine is retained

The maximum time duration between
retrieving and returning a particular
medicine (used during the activity of taking
medicines).

14 Anomalies The label identifying the anomaly occurred
during the activity; its value is null if no
anomaly occurred.

sensor events. We define E as the set of all the considered event types (e.g.,
E = {FridgeDoorIsOpened, FridgeDoorIsClosed, . . .}), and T as the set of
time instants at which the events can occur. We represent each activity χ as
the temporal sequence of the occurred events:
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χ = 〈event(Es, ts), ..., event(Ee, te)〉

where Ei ∈ E, ti ∈ T , ts and te are the time instants of start and end of
χ, respectively. For each temporal sequence χ we extract an N-dimensional
feature vector Fχ:

Fχ =< f1(χ), f2(χ), ..., fN(χ) >,

where fi(χ) is the value of the i-th feature, extracted applying a statistical
or boolean function fi to χ. Table 6.1 shows the list of features used in
our testbed. For example, the boolean feature value f2(χ) returns 1 when χ
includes at least one event of type “open fridge” or “close fridge”; it returns
0 otherwise:

f2(χ) =


1 if ∃ event(Ei, ti) ∈ χ : Ei = “open fridge”
∨ Ei = “close fridge”;

0 otherwise.

While constructing the training set, each feature vector extracted from rec-
ognized activities is labeled either with a null class value (if no anomaly
occurred during the execution of that activity) or with an anomaly label li
belonging to a predefined set of anomalies L. In the training phase, the rule
induction algorithm takes the feature set as input and learns a set of rules
for anomalies in L.

6.3.1.2 Rule induction

The rule induction algorithm finds a rule for an anomaly by heuristically look-
ing for a conjunction of conditions on feature values that provides a reliable
prediction rate for that anomaly. In order to execute this function, different
existing rule induction methods can be used [37]. The general representation
of a learned rule is:

a⇐ cj1
(
fi1(χ)

)
∧ ... ∧ cjk

(
fik(χ)

)
,

where fil(χ) is the value of the feature fil ∈ F computed on χ, cjl is a
condition on the value of fil(χ), and a ∈ A is a specific kind of anomaly.
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6.4 Learned rules

In this section, we will list down rules which have been learned through a
dataset acquired from our implementation of a smart home lab prototype.
The prototype of sensing infrastructure is explained in Chapter 7.

Food is not cooked Rule 6.3 states that the subject has retrieved a food
item which has to be cooked, however, the subject has never used the stove
in the activity, preparing meal, to cook the food item.

foodNotCooked⇐
isRetrieved mustBeCooked FoodItem ≡ yes

∧Stove used ≡ no

(6.3)

Medicine is not returned Rule 6.4 states that the subject has retrieved a
medicine from the medicine cabinet and retains it for more than 30 minutes.
If the medicine is not returned within 30 minutes after its retrieval then it is
assumed that the subject forgets to return the medicine.

isNotReturned medicine⇐
medicine retained max duration > 30minutes

∧activity label ≡ takingMedicines

(6.4)

Silverware is not retrieved Silverware is kept in a drawer which is ded-
icated for it. Rule 6.5 states that if during the activity “eating meal”, the
total repository access events are 0, then the subject has forgotten to retrieve
silverware.

isNotRetrieved Silverware⇐
total Repository Access events ≡ 0

∧activity label ≡ eatingMeal

(6.5)

Cooking pan is not retrieved Suppose the subject retrieves a food item
from the cabinet which contains non-refrigerated food items. The cabinet
only contains food items that must be cooked. The subject also turns on
the stove burner, however, there is no event of accessing a cooking pan from
the corresponding cabinet. Rule 6.6 detects an anomaly because the person
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initiated the activity “preparing meal” but forgets to retrieve the cooking
pan.

isNotRetrieved CookingPan⇐
isUsed NonRefrigeratedFoodItemCabinet ≡ yes

∧isUsed CookingPanCabinet ≡ no

∧isUsed Stove ≡ yes

(6.6)

Repository door is not closed In normal circumstances, it is expected
that the subject should close a repository after retrieving an item from it.
Rule 6.7 states that if 20 minutes have been passed and the repository door
is still open then the person has forgotten to close the door.

anomaly = isNotClosedRepository Door ⇐
Maximum duration Repository left open > 20.31minutes

∧total Difference Repository Open Close events > 0

(6.7)
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Chapter 7

Experiments and Framework
Evaluation

In order to evaluate the proposed framework, we have performed experi-
ments in a lab setup and also in a real patient’s home. We have acquired two
large annotated datasets for both normal and abnormal behaviors. The first
tesbed is a smart home kitchen lab environment in which data is acquired
through 21 volunteer actors who simulated the behavior of cognitively im-
paired and cognitively intact persons. The second testbed is a real home
kitchen environment in which an elderly woman, an MCI patient, performs
her routine life activities. In this chapter, we will describe the approach
that we have used to evaluate our proposed framework. Section 7.1 explains
the sensing infrastructure which we have developed for the experimentation.
Section 7.2 describes the datasets which we have acquired from the sensing
infrastructure after performing the experiments. In Section 7.3, we present
the experimentation results along with discussion on these results.

7.1 Prototype development

The smart home prototype testbeds have been developed within the SE-
CURE project. The construction of prototype involves several tasks which
have been carried out by different academic and industrial partners working
in SECURE project. A brief description of these tasks is given as follows:

87



7.1. PROTOTYPE DEVELOPMENT CHAPTER 7. . . .

7.1.1 The sensing infrastructure

The sensing infrastructure has been implemented using various off-the-shelf
sensor motes available in the market. These sensing motes having multi-
modal sensors detect human actions and deliver the data to a local database
using Zigbee protocol. In particular, we have considered Waspmotes from
Libelium 1 which offers a wide range of low power sensing devices. Libelium
sensing devices are programmed in C/C++ and can be deployed easily in a
home environment. Libelium also offers a multi-protocol router and gateway
named Meshlium. Meshlium collects data from sensing motes using Zigbee
protocol and it also has a Wifi interface enabling to conveniently transfer
acquired data to a local server.

Figure 7.1: Libelium event sensor board

Figure 7.1 shows an event sensor board from Libelium. It has several
sockets which are used to connect different sensors. Our objective is to
develop a sensing infrastructure which can detect atomic steps performed
in an activity. In order to achieve this objective, we have considered the
following sensors which connect with a Waspmote event sensor board and
detect atomic steps when a person interacts smart environment.

1Libelium: www.libelium.com/
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• Hall effect: It is a magnetic switch sensor based on hall effect princi-
ple. The switch remains in a close state in the presence of magnetic
field, otherwise it is in an open state.The sensor can be deployed on
doors (or drawers) of various repositories (e.g., medicine cabinet, fridge,
silverware drawer) to detect the open and close events.

• Presence: It is a Passive Infra-Red (PIR) sensor and detects movements
of a person in its range. We are using this sensor to detect movements
of a person in the dinning area during the activity of eating meal.

• Pressure: It is a Flexiforce pressure sensitive resistive sensor. The re-
sistance between terminals varies when a force (or pressure) is exerted
on it. The pressure sensor can be deployed on a dinning chair to detect
sitting events during the activity eating meal. A sitting event is de-
tected if the measured pressure is above than a certain threshold value.
The threshold value can be obtained empirically.

• Temperature: It is an analog sensor and it measures the temperature
of surrounding environment. It converts a measured environmental
temperature value into a proportional analog value. The temperature
sensor can be used to detect stove related events during the activity of
preparing meal. The sensor can be deployed near a stove burner. When
a person turns on a stove burner, the temperature of its surroundings
rises and we can detect a stove usage. Similarly, when the person turns
off the stove burner the temperature drops and we can detect that the
person has stopped using the stove.

• RFID: RFID readers can be deployed in proximity to repositories. The
RFID tags can be attached with medicines and food items. We ex-
pect the person swipes RFID tagged item every time he/she retrieves
or returns a tagged item from the respective repositories. During ex-
periments, we have given instructions to the elderly about using RFID
technology. Although it is obtrusive for an elderly person to swipe a
tagged item, we are looking for more sophisticated sensing technologies
which can eliminate such swiping. For example, we can alternatively
use active RFID tags with a longer range so that the subject can con-
veniently perform a “retrieve” and “return” actions.
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7.1.2 Software implementation

A prototype implementation of the whole system has been done within the
activities of SECURE project. Since a mobile device runs FABER (as an
application) at the subject’s home, core software modules have been imple-
mented in Java for Android platform. Figure 7.2 shows FABER running on
a mobile phone. In order to implement the technique for activity recogni-
tion, we have used machine learning libraries of Weka2. For the evaluation
of rule-based definitions of fine-grained anomalies, we have used Java APIs
of TuProlog [27]; a lightweight Java implementation of an inference engine
for the well-known Prolog logic programming language.

7.1.3 Data logging

In the prototype implementation, sensor data is continuously acquired through
a smart home and logged in a local sever database through the Wifi interface
of Meshlium gateway. Each sensor event is stored with multiple fields: a
unique event ID, an event label, sensor state (binary sensors), and a unique
timestamp at which the event occurs. A C++ application running on the
gateway is in charge of these tasks: receiving data from the sensing infrastruc-
ture, assigning unique timestamps, locally storing the data in a PostgreSQL
database, and periodically communicating data to the Android application.

7.1.4 Dashboard

A web-based dashboard has been developed with in SECURE project. Ac-
tivities and anomalies are periodically recognized from sensor data in a fixed
time window. In our current implementation, the window size is one day
i.e., starting from one mid-night to the succeeding mid-night. Recognized
activities and anomalies are displayed on the dashboard with their labels
and timestamps. The dashboard is accessible by clinicians and caregivers
who can visualize the history and trends of performed activities and corre-
sponding fine-grained anomalies, and then accordingly intervene to assist the
subject. Figure 7.3 shows a snapshot of the dashboard which presents fine-
grained anomalies and recognized activities from the real-patient dataset.
Types of fine-grained anomalies (Red, Green, and Yellow) will be explained
later in this chapter.

2http://www.cs.waikato.ac.nz/ml/weka/
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Figure 7.2: FABER android application
[69]
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Figure 7.3: FABER dashboard for clinicians
[69]

7.2 Datasets

In order to experimentally evaluate the proposed model, we have acquired
two datasets from the smart home prototype testbeds. One dataset has
been acquired from a smart home laboratory, and the other dataset has been
acquired from the instrumented home of a senior having MCI.
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(a) Magnetic sensor attached to a
drawer

(b) Presence sensor above the
kitchen table

(c) RFID reader for medicine boxes and
food items

Figure 7.4: Some sensors used in the smart home lab.

7.2.1 Smart home lab dataset

The lab dataset has been acquired through voluntary actors who simulated
the daily routine of 21 elderly persons residing in a smart home. Volunteers
have considered the clinical model to simulate the abnormal behavior of
both cognitively intact and cognitively impaired elderly persons. The clinical
model has been explained in Chapter 2. The data is acquired for two groups:
7 healthy seniors (group 1), and 14 elderly persons with early symptoms
of MCI (group 2). We assume that individuals of both groups live alone
and independently in their respective homes. During their one-day routine,
individuals in group 1 do not execute any critical anomaly, but may execute
a few non-critical ones. Individuals in group 1 are mainly used to evaluate
the number of false positives produced by our anomaly recognition method.
Group 2 individuals may perform several non-critical and critical anomalies
during the day.

93



7.2. DATASETS CHAPTER 7. . . .

During the execution of the daily routines, we have acquired the times-
tamped data coming from sensors deployed in the smart home and manually
annotated the dataset with the start- and end-time of specific activities and
anomalies. We have selected the following activities to validate our proposed
method:

• Preparing meal: the subject has to prepare daily meals (breakfast,
lunch, dinner) at appropriate times.

• Eating meal: when the subject prepares a meal, he/she has to consume
it within a reasonable time period.

• Taking medicines: the subject has to take prescribed medicines in the
due time. We assume that no smart dispenser is used; instead, we
assume that the subject keeps all medicines in a dedicated cabinet.

We have considered the following fine-grained anomalies:

• Non-critical anomalies: These anomalies happen when the subject:
(NC1) forgets to close a repository; (NC2) does not return a medicine
to its cabinet; (NC3) retrieves a food item which must be cooked, but
does not use a stove burner; (NC4) does not prepare a meal.

• Critical anomalies. These anomalies happen when the subject: (C1)
does not retrieve a prescribed medicine in the due time; (C2) takes a
medicine that is not prescribed; (C3) takes a prescribed medicine in
the due time, but multiple times, resulting in an inappropriate dosage;
(C4) does not turn off the stove burner after preparing a hot meal;
(C5) does not take silverware before consuming meal; (C6) does not
consume a prepared meal; (C7) turns on a stove burner, but does not
take any cooking pan.

Overall, our dataset contains 21 days of activities and fine-grained anoma-
lies. Group 1 individuals did 7 non-critical and 0 critical anomalies; group 2
individuals did 24 non-critical anomalies and 36 critical anomalies.

7.2.1.1 Real home dataset

As a first step towards the evaluation of our proposed method in the actual
home of elderly persons, we have taken an advantage of our cooperation with
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(a) Magnetic contact sensor on the fridge door (b) Passing a tagged medicine
box over the RFID reader

(c) A board with tempera-
ture sensor over the stove

(d) Passive infrared presence
sensor over the kitchen table

Figure 7.5: Part of the sensors deployed at the elderly’s home
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a medical institution and a tele-medicine company as partners in SECURE
project, and deployed our prototype inside a home of an elderly woman aged
74, who lives alone, with a diagnosis of MCI and medical comorbidities.
We will call her Mary in the following text. Details about the technical
implementation of the system in Mary’s home are reported in [70].

We have acquired a dataset consisting of 55 days of activities performed by
Mary. In that period of time, we have collected data for about 200 instances
of activities. We have considered same type of activities as for the smart
home lab dataset. For this experimentation, clinicians provided us with a set
of fine-grained anomalies to be detected, together with Mary’s prescriptions
for meals (i.e., breakfast, lunch, and dinner) and medicines. According to
the recommendations of clinicians, we have divided fine-grained anomalies
into three levels of seriousness:

• Green anomalies (low level). This type of anomalies occurs when the
individual: prepares (G1) or consumes (G2) a meal at a different time
than prescribed mealtime.

• Yellow anomalies (medium level). This type of anomalies occur when
the individual: misses to consume (Y1) or prepares (Y2) a meal; takes
a prescribed medicine outside the prescribed time (Y3); consumes (Y4)
or prepares (Y5) the same meal multiple times during the same day.

• Red anomalies (high level). This type of anomalies occur when the
individual: takes a medicine that was not prescribed (R1); does not
take a prescribed medicine (R2).

Totally, 605 anomalies were detected during experiments, most of them being
green and yellow ones. For the sake of this project, it was not feasible to
directly observe the execution of activities, except for limited periods of time
during the setup of the system, due to obvious privacy reasons. Hence, we
manually labeled most of activities offline, based on the observation of raw
sensor data; it was possible since the considered activities are relatively easy
to distinguish by a human observer based on the collected sensor readings.
We labeled anomalies by executing their respective rule-based definitions on
the dataset of sensor events and labeled activities.
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7.3 Experimental results

As described earlier, the proposed framework for abnormal behavior recogni-
tion is based on two main modules: activity recognition and anomaly recog-
nition. In fact, the performance of anomaly recognition module directly de-
pends on the performance of activity recognition. It means that if proposed
method detects activity boundaries with high accuracy, consequently the
anomaly recognition rate will also increase. In this section, we will present
results of activity and anomaly recognition methods. First we describe the
evaluation method and the metrics used to represent results.

7.3.1 Validation method

We have used supervised machine learning methods in our model, therefore,
we have evaluated the performance of modules (activity and anomaly recog-
nition) through unseen examples. In this regard, we have divided acquired
data into two parts: a training dataset, and a testing dataset. The training
dataset is used to learn an unknown model by training a supervised ma-
chine learning algorithm through examples, and the testing dataset is used
to predict the accuracy of the learned model. We have considered k-fold cross
validation to define the testing dataset. In k-fold cross validation, the dataset
is randomly partitioned into k equal sized parts.The process of validation is
then repeated for k times, and in each iteration exactly one part serves as
testing data, while rest k− 1 parts are used for training purpose. At the end
of all iterations, a single estimation of a particular parameter is calculated by
taking the average of predicted values from all iterations for that particular
parameter. In our case, we have divided the dataset into equal sized parts in
which one part is the smart home data acquired in one day. In this way, in
each iteration, exactly one day of the acquired data serves as testing dataset
and the rest of the days serves as training data.

7.3.2 Evaluation metrics

The quality of prediction’s is evaluated in terms of three standard measures:
precision, recall, and f-measure(F1). In general, precision measures the ex-
actness or quality of the predicted values, recall measures the completeness
or quantity of the predicted values, and f-measure is a relation between pre-
cision and recall values. These measures are calculated using the following

97



7.3. EXPERIMENTAL RESULTS CHAPTER 7. . . .

equations:

precision (p) =
TP

TP + FP

recall (r) =
TP

TP + FN

F1 =
2 · p · r
p+ r

In above equations, TP , FP , and FN are defined as true positive, false
positive, and false negative, respectively. These are standard measurements
used in classification tasks, which compare predicted values with actual val-
ues. In our model, a TP value represents the number of activities (and
anomalies) which are correctly recognized by the proposed framework; an
FP value represents the number of activities (and anomalies) which are not
annotated by an observer, but recognized by our proposed framework; and
an FN value represents the number of activities (and anomalies) which are
annotated by an observer, but our proposed framework fails to recognize
them.

As we have mentioned earlier, the proposed framework predicts activity
boundaries in terms of three parameters: the label of an activity, the start
time of the activity (Ts, and the end time of the activity (Te). Since the
model involves temporal predictions, it is possible that values of Ts and Te
are predicated approximately, and there may exist a small time difference
between predicated values and actual values; when the activity was actu-
ally started or ended in annotations. For this reason, we have introduced
a flexibility factor α in these measurements, which reduces the rate of false
predictions and allows us to see the real performance of the proposed model.
For instance, in these predictions, the factor α approximates the actual start
time as Ts − α and Ts + α. It means that an activity is considered to be
correctly recognized if the predicted Ts value of an activity lies within the
range defined by the flexibility factor α. The same concept of flexibility fac-
tor is also applied on the end time of an activity Te. For the sake of these
experiments, the value of α is taken as 15 minutes.
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Figure 7.6: A comparison of precision values for activity boundary detection
using supervised machine learning algorithm on real home dataset

7.3.3 Fine-grained anomaly recognition

The architecture of the proposed model has been presented in Chapter 4. As
discussed earlier in Chapter 4 and Chapter 5, the performance of anomaly
recognition method strongly depends on the performance of activity recogni-
tion method. Therefore, first we briefly discuss the results of activity recog-
nition method which helps us to understand the performance of anomaly
recognition method. We have already mentioned in Chapter 4 that two ap-
proaches have been adopted to recognize activity boundaries: Markov logic
network (MLN) and supervised machine learning. Table 7.1 shows results
of MLN based activity recognition method used in FABER. The variable n
represents the window size and its value is based on the temporal sequence
of the most recent sensor events used for recognizing an activity. In case of
smart home lab dataset, MLN performs well and the highest recognition rate
is achieved with n = 3 (f-measure=0.968). The value of n shows that the
temporal sequence of the 3 most recent sensor events can reliably detect the
start and the end time of an activity. On the other hand, MLN shows a poor
performance on real home dataset and the highest recognition rate is achieved

99



7.3. EXPERIMENTAL RESULTS CHAPTER 7. . . .

Figure 7.7: A comparing of recall values for activity boundary detection using
supervised machine learning algorithm on real home dataset

with n = 4 (f-measure=0.617). It is possibly due to the variability involved
in the real life human activities, which of course is not present in the smart
home lab dataset. In order to improve the activity recognition rate, we have
considered supervised machine learning techniques. We have experimented
with various supervised machine learning techniques to select the one which
produces highest activity recognition rates in our model. Results of these
experiments are shown in terms of precision, recall, and f-measure in Figure
7.6, Figure 7.7, and Figure 7.8, respectively. As we can see in these results,
on average Random Forest [10] performs the best on the real home dataset.
To further improve the activity recognition rate, two algorithms have been
developed and names as naive aggregation and smart aggregation. These al-
gorithms are described in [69] and this improved version of FABER is called
SmartFABER. Table 7.2 shows the activity recognition results using naive
aggregation. The performance of naive aggregation (f -measure = 0.966 and
n = 3) and MLN is almost the same for the smart home lab data set, whereas
naive aggregation performs significantly better than MLN for the real home
dataset with f -measure = 0.716 and n = 3. Table 7.3 shows results of activ-
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Figure 7.8: A comparison of f-measure values for activity boundary detection
using supervised machine learning algorithm on real home dataset

ity recognition using smart aggregation in SmartFABER. Again, in the case
of smart home lab dataset, results show that the activity recognition rates of
smart aggregation are comparable with MLN. However, in case of real home
dataset, the smart aggregation outperforms both naive aggregation and MLN
with f -measure = 0.802 and n = 3.

Table 7.1: Evaluation of FABER for activity boundary detection using MLN
method on smart home lab dataset and real home dataset

Smart home lab dataset Real home dataset

Window size (n) Recall Precision F-measure Recall Precision F-measure
1 0.658 0.739 0.693 1 0 0
2 0.785 0.799 0.79 0.883 0.209 0.338
3 0.965 0.974 0.968 0.734 0.425 0.539
4 0.968 0.962 0.964 0.749 0.525 0.617

Fine-grained anomalies are recognized using the knowledge-base presented
in Chapter 5. The knowledge-base takes the temporal sequence of sensor
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Table 7.2: Evaluation of smartFBER for activity boundary detection using
naive aggregation method on smart home lab dataset and real home dataset

Smart home lab dataset Real home dataset

Window size Recall Precision F-measure Recall Precision F-measure
1 0.864 0.987 0.921 0.499 0.954 0.655
2 0.941 0.985 0.963 0.558 0.942 0.7
3 0.947 0.985 0.966 0.59 0.91 0.716
4 0.915 0.98 0.946 0.576 0.901 0.702
5 0.934 0.966 0.95 0.545 0.854 0.665

Table 7.3: Evaluation of smartFABER for activity boundary detection using
smart aggregation method on smart home lab dataset and real home dataset

Smart home lab dataset Real home dataset

Window size Recall Precision F-measure Recall Precision F-measure
1 0.957 0.984 0.97 0.826 0.731 0.775
2 0.957 0.989 0.973 0.843 0.743 0.791
3 0.956 0.989 0.972 0.862 0.75 0.802
4 0.956 0.974 0.965 0.855 0.771 0.811
5 0.959 0.963 0.961 0.841 0.766 0.802
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events as input along with the detected activity boundaries and infers fine-
grained anomalies which reflects the abnormal behavior. In order to recognize
anomalies, we have conducted experiments on both datasets using activity
recognition techniques implemented in FABER (MLN) and SmartFABER
(naive and smart aggregation) with an optimum value of n. The recognition
results of each anomaly are described using three parameters: true positive
(TP), false positive (FP), and false negative (FN). The TP number rep-
resents anomalies which are correctly recognized by the system; annotated
anomalies. The FP number represents anomalies which are recognized by the
system, but these anomalies were not actually occurred. The FN number
represents anomalies which were actually occurred during experiments, but
the system fails to recognize them. Fine-grained anomaly recognition results
of both dataset are explained in the following subsections.

Table 7.4: Smart home lab dataset. Accuracy of abnormal behavior recogni-
tion with FABER

ANOMALY
GROUP 1 GROUP 2

TP FP FN TP FP FN

NC1: Repository left open 5 0 2 18 0 0

NC2: Medicine not returned 0 0 0 4 0 0

NC3: Food item not cooked 0 0 0 2 0 0

NC4: Meal not prepared 0 2 0 0 1 0

C1: Missed a prescribed medicine 0 2 0 10 0 0

C2: Took a wrong medicine 0 0 0 7 0 0

C3: Repeated medicine intake 0 0 0 3 0 0

C4: Stove burner left on 0 0 0 0 0 0

C5: Had meal with no silverware 0 0 0 7 0 0

C6: Prepared meal not consumed 0 0 0 1 1 0

C7: Burner turned on by mistake 0 0 0 8 0 0

TOTAL 5 4 2 60 2 0

7.3.3.1 Fine-grained anomaly recognition using smart home lab
dataset

Tables 7.4 and 7.5 show results of experiments which have been conducted on
smart home lab dataset using FABER and SmartFABER, respectively. Each
row in these tables corresponds to a specific fine-grained anomaly which is
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Table 7.5: Smart home lab dataset. Accuracy of abnormal behavior recogni-
tion with SmartFABER and smart aggregation

ANOMALY
GROUP 1 GROUP 2

TP FP FN TP FP FN

NC1: Repository left open 7 0 0 18 1 0

NC2: Medicine not returned 0 0 0 4 0 0

NC3: Food item not cooked 0 0 0 2 0 0

NC4: Meal not prepared 0 0 0 0 0 0

C1: Missed a prescribed medicine 0 0 0 10 0 0

C2: Took a wrong medicine 0 0 0 7 0 0

C3: Repeated medicine intake 0 0 0 3 0 0

C4: Stove burner left on 0 0 0 0 0 0

C5: Had meal with no silverware 0 0 0 7 0 0

C6: Prepared meal not consumed 0 0 0 1 0 0

C7: Burner turned on by mistake 0 0 0 8 1 0

TOTAL 7 0 0 60 2 0

Table 7.6: Smart home lab dataset. Results of fine-grained abnormal behav-
ior recognition based on different boundary detection methods

TECHNIQUE PRECISION RECALL F1 SCORE

FABER (MLN) 0.915 0.97 0.942

SmartFABER-SmartAggregation 0.971 1 0.985

either critical (C) or non-critical(NC). As described earlier, the smart home
dataset includes two groups of individuals: group 1 includes cognitively intact
elderly persons, and group 2 includes cognitively impaired elderly persons.
As expected, cognitively intact persons execute less anomalies which include
few non-critical anomalies and no non-critical anomaly. In total, individuals
in group 1 executed 7 non-critical anomalies: repository left open. Among
them 5 anomalies are correctly recognized by FABER (TP = 5) and it fails
to recognize 2 anomalies (FN = 2). In fact, FABER fails to recognized
these anomalies because the activity recognition technique fails to detect
boundaries of activities in which these anomalies occurred. There are 4
anomalies which are recognized by FABER (FP = 4), but do not occur in
reality. Two of these anomalies are “meal not prepared” and the other two
are “missed a prescribed medicine”. The false positives show that the MLN
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based activity recognition algorithm fails to recognize the relevant activities
i.e., two times the activity “preparing meal” is not recognized and two times
the activity “taking medicine” is not recognized by the system. Comparing
results of FABER with SmartFABER for group 1, SmartFABER with smart
aggregation recognizes all anomalies correctly without producing any FP and
FN . It clearly shows that SmartFABER with smart aggregation recognizes
activities with more accuracy.

In group 2, cognitively impaired individuals executed several anomalies;
both critical and non-critical anomalies. Considering FABER, in total 60
anomalies were executed by cognitively impaired individuals in 14 days and
all of these anomalies are correctly recognized by FABER i.e, FN = 0.
Similarly SmartFABER with smart aggregation also recognizes all anoma-
lies.However, both FABER and SmartFABER recognizes 2 extra anomalies
(FP = 2). Again, the reason of these false positives is the same i.e., mispre-
dictions by activity boundary detection technique.

Note that, results of SmartFABER with naive aggregation are identical
to SmartFABER with smart aggregation. In conclusion, this dataset (group
1 and 2 together) contains 150 activity instances with 67 anomalies in 21
days. FABER correctly recognizes 65 anomalies, whereas it produces 2 false
negatives and 6 false positives. It clearly shows that FABER recognizes
anomalies with less precision but higher recall. On the other hand, Smart-
FABER with smart aggregation correctly recognizes all of the 67 anomalies
while producing only 2 false positives. Thus the overall performance of both
frameworks is comparable which is probably due to the absence of variability
and noise present in the real home dataset. Table 7.6 presents a summary
of these results. Since the performance of both techniques is same in case of
smart home lab data, we cannot generalize these results to conclude which
technique is better to handle variability and noise. Therefore, the difference
in these results does not seem to be statistically significant.

7.3.3.2 Fine-grained anomaly recognition using real home dataset

For this dataset, our objective is to recognize three types of anomalies: Green,
Yellow, and Red. These color codes represent the seriousness level of an
anomaly and also help clinicians to conveniently visualize and differentiate
between recognized anomalies. Like smart home lab dataset, we have con-
ducted experiments with FABER and SmartFABER using optimum values
of n.
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Table 7.7: Real home dataset. Accuracy of abnormal behavior recognition
with FABER

ANOMALY CODE TP FP FN PREC. REC. F1

Prepared meal at un-
usual time

G1 37 10 68 0.787 0.352 0.487

Meal eaten at unusual
time

G2 36 21 51 0.632 0.414 0.5

Meal not eaten Y1 60 46 7 0.566 0.896 0.694

Meal not prepared Y2 41 69 0 0.373 1 0.543

Took a medicine outside
prescribed time

Y3 73 4 15 0.948 0.83 0.885

Repeated preparing
meal

Y4 1 3 5 0.25 0.167 0.2

Repeated eating meal Y5 0 2 0 0 /0 /0

Took a wrong medicine R1 29 4 14 0.879 0.674 0.763

Missed a prescribed
medicine

R2 164 16 4 0.911 0.976 0.943

TOTAL 441 175 164 0.716 0.729 0.722

Tables 7.7, 7.8, and 7.9 show anomaly recognition results of MLN, naive
aggregation, and smart aggregation, respectively. According to these results:
around 74% of fine-grained anomalies are correctly recognized using MLN-
based FABER, around 87% of fine-grained anomalies are correctly recog-
nized using naive aggregation based SmartFABER, and around 81% of fine-
grained anomalies are correctly recognized using smart aggregation based
SmartFABER. Although naive aggregation technique has correctly recog-
nized more anomalies as compared to smart aggregation technique, the naive
aggregation technique produces large number of false positives as compared
to smart aggregation technique. In fact, naive aggregation technique has
produced around 48% more false positives as compared to smart aggregation
technique. Hence, these facts prove that the naive aggregation technique
is less precise than the smart aggregation technique. Table 7.10 shows the
overall performance of three techniques in terms of precision, recall, and
f-measure values. It can be clearly seen that SmartFABER with smart ag-
gregation produces the highest f-measure score i.e., 0.785 with precision and
recall measures are well balanced. In case of naive aggregation technique,
the precision and recall measures are less balanced which is obviously due
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Table 7.8: Real home dataset. Accuracy of abnormal behavior recognition
with SmartFABER and naive aggregation

ANOMALY CODE TP FP FN PREC. REC. F1

Prepared meal at un-
usual time

G1 81 22 24 0.786 0.771 0.779

Meal eaten at unusual
time

G2 64 54 23 0.542 0.736 0.624

Meal not eaten Y1 57 9 10 0.864 0.851 0.857

Meal not prepared Y2 29 8 12 0.784 0.707 0.744

Took a medicine outside
prescribed time

Y3 84 3 4 0.966 0.955 0.96

Repeated preparing
meal

Y4 5 182 1 0.027 0.833 0.052

Repeated eating meal Y5 0 40 0 0 /0 /0

Took a wrong medicine R1 40 1 3 0.976 0.93 0.952

Missed a prescribed
medicine

R2 167 3 1 0.982 0.994 0.988

TOTAL 527 322 78 0.621 0.871 0.725

to large number of false positives. It means that naive aggregation produces
several false predictions about anomalies, when these anomalies are actually
not occurred. It can be particularly observed in the case of anomalies related
to the repetition of activities (Y4 and Y5).

7.3.4 Fine-grained anomaly recognition using rule in-
duction

Table 7.11 shows results of fine-grained anomalies recognized using rule in-
duction method (RIPPER). This rule induction based version of FABER is
called InductiveFABER and the technique has been discussed in Chapter 6.
In order to validate InductiveFABER, we have conducted experiments with
smart home lab dataset and used MLN technique for activity boundary de-
tection. For experiments, we have considered 5 anomalies, a subset of all
anomalies present in smart home lab dataset. In the subset, 3 anomalies
are non-critical, and 2 anomalies are critical. We have selected a subset of
anomalies to conduct experiments with InductiveFABER because the rule in-
duction method requires sufficient number of positive and negative examples
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Table 7.9: Real home dataset. Accuracy of abnormal behavior recognition
with SmartFABER and smart aggregation

ANOMALY CODE TP FP FN PREC. REC. F1

Prepared meal at un-
usual time

G1 70 59 35 0.543 0.667 0.598

Meal eaten at unusual
time

G2 47 38 40 0.553 0.54 0.547

Meal not eaten Y1 60 17 7 0.779 0.896 0.833

Meal not prepared Y2 32 17 9 0.653 0.78 0.711

Took a medicine outside
prescribed time

Y3 75 6 13 0.926 0.852 0.888

Repeated preparing
meal

Y4 0 0 6 /0 0 /0

Repeated eating meal Y5 0 0 0 /0 /0 /0

Took a wrong medicine R1 39 0 4 1 0.907 0.951

Missed a prescribed
medicine

R2 167 17 1 0.908 0.994 0.949

TOTAL 490 154 115 0.761 0.81 0.785

Table 7.10: Real home dataset. Results of fine-grained abnormal behavior
recognition based on different boundary detection methods

TECHNIQUE PRECISION RECALL F1 SCORE

FABER (MLN) 0.716 0.729 0.722

SmartFABER-SimpleAggregation 0.62 0.871 0.725

SmartFABER-SmartAggregation 0.76 0.81 0.785

of each anomaly class for an effective learning. The smart home lab dataset
includes only 21 individuals (one individual per day) in which the domain
knowledge of activities changes frequently such as prescription of medicines
and mealtimes. Due to the lack of stability in the domain knowledge, we
have dropped some anomalies which depends on domain knowledge for their
recognition. In this way, we can accurately evaluate the performance of In-
ductiveFABER.

For the sake of generalization, we have merged same types of anomalies
into one class. For example, in an activity “preparing meal”, the subject
can forget to close three repositories: fridge, cooking pan cabinet, and food
cabinet. In this case, we assume only one anomaly i.e, “Repository left open”;
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Table 7.11: Fine-grained anomaly recognition using rule induction
InductiveFABER FABER

Anomaly TP FP FN TP FP FN
NC1: Repository door left open 17 1 3 18 0 2
NC2: Medicine not returned 2 0 2 4 0 0
NC3: Food item not cooked 2 0 0 2 0 0
C1: Had meal without silverware 7 0 0 7 0 0
C2: Stove burner turned on by mistake 7 0 1 8 0 0
Total 35 1 6 39 0 2

Table 7.12: Comparing the performance of inductiveFABER with FABER
Technique Precision Recall F-measure

inductiveFABER 0.972 0.854 0.909
FABER 1 0.95 0.974

instead of considering three anomalies for three different repositories in the
same activity. This strategy particularly affects the number of cases of the
anomaly “Repository left open”, which are reduced to 20 from 25 (Table 7.4).

Table 7.11 compares the performance of InductiveFABER with FABER.
In FABER, anomaly recognition rules are manually formulated. Results show
that we have correctly recognized most of anomalies using InductiveFABER.
In case of first anomaly “Repository left open”, InductiveFABER produces
3 false negatives. Note that, FABER also produces 2 false negatives for
this anomaly. While investigating the reason of these false negatives, it is
revealed that InductiveFABER fails to recognize same 2 anomalies which
FABER fails to recognize, and its reason is same i.e., activity boundaries are
not recognized by the system in these cases. Hence, practically, in this case
InductiveFABER fails to recognize only 1 anomaly. The second anomaly
“Medicine not returned” produces 2 false negatives in the case of Induc-
tiveFABER, whereas in the case of FABER all anomalies of this class are
correctly recognized. This anomaly involves learning of a threshold time;
duration for which the medicine is being retained by the subject. In fact,
InductiveFABER produces 2 false negatives due to the lack of sufficient num-
ber of training examples for this anomaly. The sufficient number of training
examples is necessary for learning such threshold values. For the rest of
anomalies, InductiveFABER performs like FABER with the exception of 1
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false negative for anomaly “Stove burner turned on by mistake”.
Table 7.12 presents a summary of these results which are comparable;

InductiveFABER f-measure value is 0.909 and FABER f-measure value is
0.975. Naturally, f-measure value of FABER is higher because it involves
manual rule formulation. In conclusion, we have achieved almost the same
accuracy of anomaly recognition from InductiveFABER as it is achieved from
FABER with key advantages of the revised model such as flexibility, scala-
bility, portability, and a time in expensive solution.
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Chapter 8

Conclusion

In this chapter, we will present the summary of the main contributions of
this thesis, lessons learned from our experiences, and future work directions.

8.1 Technical contributions

The recognition of abnormal behavior is a challenging problem. Due to
the large scope of the project, it was divided into various sub-tasks which
were completed by a team of researchers and industry partners within SE-
CURE1 project. In SECURE project, contributions of this thesis work in-
cludes proposing a sensing solution, evaluating the performance of various
supervised machine learning techniques for activity boundary detection, fine-
grained anomaly recognition, and using rule induction methods to automate
the process of rule generation for fine-grained anomaly recognition. Various
types of anomalies have been identified by domain experts within SECURE
project, which are categorized as omissions, commissions, and additions. Do-
main experts provided us natural language descriptions of these anomalies
which are used to construct the knowledge-base.

Unlike existing researches in the domain, we focused on fine-grained
anomaly recognition which is the major novelty of this work. In order to
infer fine-grained anomalies, knowledge is represented as a set of first order
logic rules. In particular, rules are formulated by translating natural lan-
guage descriptions of anomalies into first-order logic rules. The rule-based

1The project details along with the list of industrial partners are available at: http:

//secure.ewlab.di.unimi.it/
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system involves time-based reasoning and infers anomalies periodically, for
example at the end of each day. Various types of facts are represented in the
knowledge-base which include contextual information, domain knowledge,
and recognized activities.

We evaluated the proposed framework using two different smart environ-
ments: the smart home lab environment, and real home environment. Both
smart spaces were developed within SECURE project, in collaboration with
industrial partners. The lab environment enables us to discern potential
shortcomings of the proposed framework, before experimenting with it in a
real home environment. We experimented with several supervised machine
learning techniques to improve the accuracy of activity recognition which
ultimately results in an improved anomaly recognition.

Results show that we have successfully recognized most of fine-grained
anomalies with a high accuracy in both environments. According to the
directions of clinicians, the system infers anomalies at the end of each day.
Inferred anomalies provide necessary information to clinicians such as the
name of the activity in which anomaly occurred, time at which anomaly
occurred, objects involved in the anomaly, and its level of seriousness using
three color codes: Green, Yellow, and Red. A Green anomaly has a least level
of seriousness, whereas a Red anomaly has a highest level of seriousness.

In FABER, anomaly recognition rules are manually formulated. Manual
rules are formulated for a specific environment, hence these are not seamlessly
portable to other environments. We realized that due to manual rule formu-
lation, the overall process of rule-formulation becomes time expensive and
arduous. To address these problems, we proposed InductiveFABER, which
aims to provide a flexible, scalable, portable, and time inexpensive solution.
In InductiveFABER, we automated the process of rule formulation by using
a rule induction method (RIPPER), which learns rules from an annotated
dataset. InductiveFABER with its potential benefits shows a comparable
performance with FABER for the same set of anomalies.

8.2 Lessons learned

We experienced some difficulties during implementation and evaluation phases.
In this section, we will briefly discuss those difficulties and lesson learned from
our experience.
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8.2.1 Sensing infrastructure

The performance of FABER highly depends on the quality of data acquired
from the sensing infrastructure. We list down some factors which influence
the quality of sensed data in FABER.

• Calibration: a precise calibration of sensors is very important to ac-
quire a good quality data. For example, we used PIR sensors to detect
movements and the presence of a person in various regions of the home.
An imprecise calibration of PIR sensor results in a false detection of a
human presence in a particular region which may change semantics of
a sensed event, and ultimately may result in false anomaly detection.

• Environmental conditions: stable environmental conditions are highly
demanded in a smart home to accurately detect various events. The
instability in environmental conditions can directly influence measure-
ments of some sensors such as temperature sensor. We used temper-
ature sensor to detect the stove usage. It is deployed above a stove
burner, however, ambient temperature variations can influence its mea-
surements and we may not be able to accurately detect lightning up
and blowing out events of the stove burner.

• Improper deployment: an improperly deployed sensor may not detect
an event. For example, we used a pressure sensor to detect a “sitting”
action on a chair. The pressure sensor measures the load when the force
is exerted on it. The pressure sensor may give false measurements if it
is deployed on a soft material on chair.

• Sensing range: the sensing range is very important in case of RFID
based monitoring. For example, we attached RFID tags with various
food items and medicines. we used passive RFID tags with limited
range (upto 5cm). The subject has to bring the tagged item in the spe-
cific reading range of the RFID reading module, otherwise, the reader is
unable to detect the retrieved item. A failed RFID tag reading leads to
an ambiguity; the subject has really retrieved the required item (food
or medicine) or RFID tag on the item is not properly swiped. This in
turn results in a false anomaly detection
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8.2.2 Annotations

We need an annotated dataset to train the supervised machine learning al-
gorithm and to evaluate the validity of recognized activities and anomalies.
In case of real home experimentation, due to privacy reasons, it was difficult
to observe the subject to get annotations. In fact, we got few opportunities
to observe the subject while performing activities. Thus we considered com-
monsense knowledge based technique to annotate the dataset. Therefore, a
privacy friendly and reliable annotation method is very important to improve
the performance of FABER.

8.2.3 Anomaly recognition

Currently, the anomaly recognition method is based on non-probabilistic
rules that impose strict criteria on a set of observation for inferring anoma-
lies. The strict criteria influence the performance of anomaly recognition,
which may result in an increased number of false detection. The rules cover
some temporal aspects with fixed temporal threshold values which are de-
rived from domain knowledge. A hard rule fires even if there is a slight
difference between the temporal observations and fixed temporal threshold
values. For example, consider the case of taking a prescribed medicine, a
missed medicine rule fires if the person takes a prescribed a few seconds
before or after the prescribed time interval. Furthermore, the noise in the
sensed data also reduces the accuracy of predicted anomalies. In conclusion,
a confidence factor is required with each anomaly which defines the accuracy
and reliability of detected anomaly.

8.2.4 Concurrent and interleaved activities

For the sake of simplicity, we did not consider concurrent and interleaved
activities, which definitely affected the anomaly recognition results in case
of real home experimentation. In routine life activities, the subject can start
an activity and then switch to another activity and afterwards switch back
to the original activity. We observed several such cases in the real home
dataset; particularly taking medicine in between preparing meal or eating
meal. Thus, the inability of handling concurrent and interleaved activity
results in an increased number of false predictions.
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8.3 Research directions

We have achieved certain objectives which we set for this research, however,
this work can be refined or extended with the following research directions.

8.3.1 Alternative sensing solution

We have already listed some factors which influence the performance of
FABER by affecting the quality of sensed data. Considering these factors,
we propose to use more reliable sensing infrastructure. Due to intricacies in-
volved in human activities, it is necessary to understand that how can we de-
tect human actions with more contextual information. In fact, adding more
sensors generate more contextual information which in turn increases the
quality and reliability of sensed data. For example, in the current implemen-
tation we used PIR sensor to detect the subject’s presence near dinning table
and use this contextual information to recognize the activity: eating meal.
However, we have not used any body worn sensor such as an accelerometer
to detect the hand and wrist movements. The body worn sensors adds more
contextual information in the system, but at the cost of increased obtrusive-
ness. Therefore, a detailed research is required to understand the acceptance
level of body worn sensors for an elderly person. Off course, the acceptance
level varies from person to person, however, such research will help us in the
selection of more accurate sensing solution.

The object based fine-grained anomaly recognition needs a very reliable
sensing for object detection. Considering our experience with passive RFID
tags, we do not propose to use them in such researches. In fact, by using
passive RFID tags, we cannot differentiate between two cases: 1) the subject
really forgets to retrieve a required item (food or medicine) ; 2) the subject
retrieves the required item, but do not properly swipe it. Therefore, we pro-
pose to use more sophisticated sensing technologies such as active RFID tags
or Bluetooth low energy (BLE) beacons. In particular, we are experimenting
with the BLC due to their properties such as miniaturization and low power
consumption.

8.3.2 Predictive anomaly recognition

The inherent inaccuracy of sensor readings, especially in real-world deploy-
ments, needs for reasoning methods taking into account uncertainty. Cur-
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rently, sensor data provided as facts to our activity recognition algorithm are
not associated with confidence values. To solve this limitation, context facts
should be provided as probabilistic axioms to the activity recognition mod-
ule.Also, the current anomaly recognition method is non-probabilistic which
cannot handle the small variations occurs in the human daily routine. For
example, it’s not necessary that every day the subject takes the prescribed
medicine during prescribed time. Due to personal reasons, sometimes the
subject can delay (or advance) the activity with minor time difference. How-
ever, the non-probabilistic reasoning detects this situation as an anomaly.
Although, we added time margins in our rules, but still the time margins do
not reflect the exact seriousness level of the anomaly.

8.3.3 Monitoring additional behaviors

Besides cognitive impairments, the abnormal behaviors are also observed in
other clinical conditions such as stress, schizophrenia, and parkinson’s dis-
ease. In fact, we can use the proposed model (with certain modifications)
to detect the disorder and help the person to live a quality life. Some data,
such as sleep quality, could be acquired by simply integrating off-the-shelf
devices into our system. Other behavioral data are more challenging to ac-
quire. Measures of psychomotor agitation and aberrant motor behavior could
be acquired monitoring the mean number of exits per day, the average time
spent outside per day, the mean number of crossing domestic doors, the time
spent idle and the walking speed. Measures of motor activity in the home
could be estimated based on the number of sensor firings. A relevant reduc-
tion over time of the amount of motor activity compared to the usual activity
patterns of the patient may be associated with non-cognitive symptoms, in-
cluding depressive symptoms, apathy, early fatigue, psychomotor slowness,
reduced attentional resources. Conversely, a significant enhancement in the
amount of activities may be associated with psychomotor agitation, aggres-
sion, disinhibition, irritability, aberrant motor behavior. Of course, those
measures are strongly influenced by the personal habits and the social life of
the senior. Since many MCI patients are still socially active, those measures
should be considered in correlation with the seniors activities and situation,
and should be monitored over time
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