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Abstract

Purpose

Antarctic residence holds many challenges to human physiology, like increased psycho-

social tension and altered circadian rhythm, known to influence sleep. We assessed

changes in sleep patterns during 13 months of overwintering at the German Stations Neu-

mayer II and III from 2008 to 2014, with focus on gender, as many previous investigations

were inconclusive regarding gender-based differences or had only included men.

Materials & Methods

Time in bed, sleep time, sleep efficiency, number of arousals, sleep latency, sleep onset,

sleep offset, and physical activity level were determined twice per month during seven over-

wintering campaigns of n = 54 participants (37 male, 17 female) using actimetry. Data were

analyzed using polynomial regression and analysis of covariance for change over time with

the covariates gender, inhabited station, overwintering season and influence of physical

activity and local sunshine radiation.

Results

We found overall longer times in bed (p = 0.004) and sleep time (p = 0.014) for women. The

covariate gender had a significant influence on time in bed (p<0.001), sleep time (p<0.001),

number of arousals (p = 0.04), sleep latency (p = 0.04), and sleep onset (p<0.001). Women

separately (p = 0.02), but not men (p = 0.165), showed a linear increase in number of arous-

als. Physical activity decreased over overwintering time for men (p = 0.003), but not for

women (p = 0.174). The decline in local sunshine radiation led to a 48 minutes longer time

in bed (p<0.001), 3.8% lower sleep efficiency (p<0.001), a delay of 32 minutes in sleep

onset (p<0.001), a delay of 54 minutes in sleep offset (p<0.001), and 11% less daily energy

expenditure (p<0.001), for all participants in reaction to the Antarctic winter’s darkness-

phase.
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Conclusions

Overwinterings at the Stations Neumayer II and III are associated with significant changes

in sleep patterns, with dependences from overwintering time and local sunshine radiation.

Gender appears to be an influence, as women showed a declining sleep quality, despite

that their physical activity remained unchanged, suggesting other causes such as a higher

susceptibility to psycho-social stress and changes in environmental circadian rhythm during

long-term isolation in Antarctica.

Introduction
Life and work of humans in high latitudes, i.e. latitudes close to polar regions such as the Arctic
or Antarctic, are often associated with adverse conditions such as very cold climate, changed
circadian cycle and altered exposure to ultra-violet (UV)-light [1–3]. In addition, human stays
in Antarctic research stations may be associated with psycho-social isolation, sensory depriva-
tion and exhaustion [4,5]–a combination of adverse factors, which subsequently may lead to
challenges to hormonal, metabolic and immune functions [6,7]. Polar regions as the Antarctic
receive less intensive solar radiation because the sun’s light hits the Earth at an oblique angle.
In addition, Antarctica’s climate is dominated by seasonal changes. Depending on latitude,
months of complete darkness during the Antarctic winter alternate with months of 24-hours
bright daylight during the Antarctic summer [8], leading to altered lighting conditions known
to negatively affect the circadian cycle of human residents in Antarctica [9]. The nature of stays
in polar regions, such as during long-term isolation in Antarctic research stations, has led to
consider such overwinterings to be viable analogues to long-term spaceflights [10,11].

The environmental and psycho-social influences of long-term stays in the Antarctic seem to
have particular consequences on sleep homeostasis for humans residing there. Several investi-
gations have reported changes in sleep pattern of Antarctic overwinterers [3,12,13], with reduc-
tion in sleep quality, such as decrease in delta sleep phases and rapid eye movement phases as
well as increased sleep latency [14–16]. Reduction in sleep quality has been linked to the influ-
ence of environmental factors as well as psycho-social reactions to the isolation [17,18].
Decreases in sleep time and sleep efficiency, and increased sleep latency, have also been found
to prevail in a modern Antarctic station [19], with reports that application of blue-enriched
light in such a setting may prevent circadian delay during the Antarctic winter [20]. There are,
however, also studies that did not observe changes in sleep pattern during long-term stays in
Antarctica, suggesting that modern research stations in the Antarctic may be less prone to
changes in sleep of their inhabitants [21,22]. The majority of previous studies had reported to
have only included men as their participants [12–17,19,22], thus indicating the need to gather
more information regarding gender-based differences in this field, as has previously been sum-
marized [9].

Germany currently runs the year-long inhabited research station Neumayer III, which is in
operation since February 2009; it replaced the previous station Neumayer II, which operated
from 1992 to 2009 and which had to be abandoned, since its structural integrity, while being
located underground within the ice, could no longer be maintained [23]. Neumayer Stations II
and III served as the sites of the presented study. Their remote location and the very small crew
size of less than 10 persons per overwintering season were considered to lead to a relatively
high degree of isolation, when compared to other Antarctic facilities such as McMurdo Station,
where the winter population can reach around 250 inhabitants [24].
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The aim of this study was to assess changes in sleep parameters in overwinterers of the iso-
lated German Research Stations Neumayer II and III for 13 months during a total of seven
campaigns from 2008 to 2014. In addition, only few previous studies regarding sleep changes
during long-term isolation in Antarctica had included women, some of which had either
yielded inconclusive results [3] or indicated that women have more sleep problems during Ant-
arctic isolation than men with a considerable number of study participants, but were based on
debriefing interviews only [25]. We consider gender-specific investigations to become more
important in the future as gender-barriers fall and more women participate in ventures to
extreme environments such as polar expeditions or space missions [26], fields that used to be
dominated by men in the past. We therefore intended to investigate the influence of gender
since our long-term study included a considerable number of women. Our null hypothesis was
that sleep parameters would not change during the Antarctic winter and that gender, inhabited
station (located below vs. above ground), overwintering season, physical activity, and local sun-
shine radiation would not have a significant influence on the measured sleep parameters.

Materials and Methods

General circumstances
German Antarctic research stations Neumayer Station II and Neumayer Station III, operated
by the “Alfred Wegener Institute for Polar and Marine Research” (Bremerhaven, Germany),
were the location of the investigation. Station II was and station III is located in Atka-bay 70°
40’ S, 8° 16’W on the Ekström-shelf ice [23]. The inhabitants of the Neumayer Stations were
subject to considerable isolation due to the station’s remote location, nature of inaccessibility,
and small crew size per overwintering [23]. Adverse weather conditions during the darkness-
phase made it nearly impossible to reach the station by airplane or ships, which led to complete
isolation of the inhabitants during the months of the Antarctic winter; merely an Internet con-
nection and different satellite communication systems allowed contact with the outside world.
Emergency rescues would have been practically impossible [23].

Stations Neumayer II and III serve to gather data in aerial-chemical, geophysical and meteo-
rological investigations, and, since the beginning of 2000, also for medical and physiological
studies. Station Neumayer II was located underground and consisted of two tube constructions
(90-m in length and 8 m in diameter) connected to each other. Air-conditioned standard
20-foot containers served as laboratories, workshops, sickbay, etc. In a third tube chill camps,
garbage storage as well as the vehicle garage were accommodated [23]. Since February 2009,
the new Neumayer Station III is in operation. This is the first German Antarctic station that
combines human stay and research on a platform above the ice surface, with a garage built
within the ice. This station has the quality to lift itself up according to snow accumulation by
the use of hydraulic technics attached to the supporting feet [23]. Neumayer III offers modern
air-conditioned laboratories and accommodation areas as well as a sauna, a dining room, a
conference room, medical treatment rooms, and storage and technical rooms.

The crews of the Neumayer Stations II and III consisted of employees of different fields and
professions (meteorologists, chemists, geophysicists, electricians, engineers, computer techni-
cians, a cook, and a medical doctor, who also acted as commander of the crew). The members
of each overwintering crew resided at the Antarctic station for 13 months (from December
prior, to January past the respective overwintering year). The recruitment of each crew was car-
ried out by the “Alfred Wegener Institute for Polar and Marine Research” [23]. Aside from
their respective fields of occupation, all crewmembers had to tend to duties associated with sta-
tion maintenance. Due to the risks involved (injuries due to fall, frostbite and hypothermia),
the outside-activity during the Antarctic winter was reduced to a minimum; however, each
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crewmember was equipped with cold-protection clothing and emergency equipment [23]. Sup-
plies were transported to the station once a year by the research vessel "Polarstern". The supply
of food to the Neumayer Stations II and III was conducted in accordance with months of inac-
cessibility. Fresh fruit and vegetables were only available for a short period during summer sea-
son from November until February. A rationing was not performed and no restrictions of
caloric intake were applied [23].

For the purpose of this study, seven overwintering seasons from 2008 to 2014 were investi-
gated (2008 Neumayer Station II and 2009 to 2014 Neumayer Station III). Per overwintering
season, nine adult crewmembers of Caucasian descent lived and worked at the station. The
recruitment process of the “Alfred Wegener Institute” included a medical and psychological
screening and ensured that crew members were of good physical and mental health and were
not taking any medication (except for oral contraceptives by the female participants). During
their recruitment, they were invited to participate in this prospective study. One person each in
2008, 2010, 2011, and 2014 decided not to partake, as did two individuals in 2009, and three in
2012. Thus from a total of 63 participants of the seven overwintering campaigns, a total of 54
(37 male and 17 female) took part in the study. The percentage of women differed between
overwintering seasons and ranged from 22% in 2010 to 44% in 2013. After the subjects were
explained the risks and details of the study, they were given due time to express their desire to
participate, they all gave their written informed consent. The study was approved by the local
Ethics Committee of Charité Universitätsmedizin Berlin. All procedures were conducted in
accordance of the Declaration of Helsinki regarding human subjects.

Environmental factors
The location of the research stations at 70° south determined the amount of sunshine that
reached the surface [8]. As indicated in Fig 1, for a period of about 60 days around midwinter
(21st of June), virtually no sunlight reached locations at that latitude, while for another 20 days
before and after that period the sunshine radiation was very low, which led to periods of com-
plete darkness between the end of May and the end of July. Less than 50 W/m2 of sunshine
radiation were measured between beginning of April until the end of September, and less than
5 W/m2 from the mid of May until the beginning of August, respectively. Sunshine duration
(with the respective low energies) was less than about 5 h/d from mid-April to end of August
and virtually zero from mid-May to the beginning of August. Sunshine from November to Jan-
uary during the Antarctic summer, however, can reach up to 24 h/d with 300 to 450 W/m2

[23,27]. This also led to very low temperatures. At 12:00 p.m., the mean ambient temperature
at the Neumayer Stations between 2008 to 2011 ranged around –2.7 ± 2.0°C (n = 124) and –
25.2 ± 7.2°C (n = 124) in January and July, respectively [23].

Although no continuous measurements were made regarding individual light exposition
that could have been included in this analysis, there was one measurement of illuminance con-
ducted inside the lounge of the Neumayer Station III at five different times over three days in
February 2011 (February 19th at 07:00 p.m., February 20th at 08:00 a.m. and 03:30 p.m., Febru-
ary 21st at 03:45 p.m. and 07:30 p.m.). The local sunshine radiation values at these occasions
were 109, 370, 438, 229, and 52.5 W/m2. The illuminance measurements used the lux meter
MINILUX (MX-ELECTRONIC, Berlin, Germany), which was placed horizontally at 25 differ-
ent positions inside the lounge of Neumayer Station III approximately 1 m above the floor and
2 m away from each other, while all artificial illumination was switched off. The determined
values were in median 330 lux (165 lux 25th percentile, 670 lux 75th percentile) with a mini-
mum of 30 lux and a maximum of 4400 lux. Linear regression analysis between illuminance
(denoted as y in lux) and local sunshine radiation at the respective measurement times
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(denoted as x in W/m2) yielded the following relationship:

y ¼ 1:193 � x þ 257:1; R ¼ 0:263; R2 ¼ 0:07; ðp ¼ 0:003Þ:
No measurements regarding the spectral distribution of sunlight reaching the inside of the sta-
tion nor regarding the quantity and quality of the station’s artificial illumination could be
performed.

Determination of anthropometric data
Anthropometric data of the study participants were gathered using standard equipment (medi-
cal scale and height meter, SECA, Germany) in minimal clothes. Baseline values of percentage
of fat mass from body weight were determined using bioelectrical impedance analysis (BIA
101, AKERN, Italy) for campaigns 2008–2011, using the appropriate prediction formula [28],
and whole body plethysmography (BODPOD, COSMED, USA) for campaigns 2012–2014.
Both are established methods for determining body composition [29,30].

Determination of sleep parameters and physical activity level
Actimeters are mobile devices designed to measure acceleration data of the wearer, and thus
allow assessment of physical activity, energy expenditure, and sleep parameters [31,32]. Bene-
fits of the use of actimeters are ease of application, low cost, and relatively high acceptance and
compliance on the part of the subjects [33]. Since the 1980s, actimeters are used for assessment

Fig 1. Duration of sunshine at the Neumayer Stations in AntarcticaPlots of extraterrestrial radiation (black), relative sunshine duration (dark grey) and
measured surface radiation (light grey) at the location of the Neumayer Stations The x-axis displays the time in days with “0” representing midwinter (June 21st).

doi:10.1371/journal.pone.0150099.g001
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of sleep in humans. Studies comparing actimetry and polysomnography (PSG) have shown
that an agreement of 91–93% could be achieved [34]. Actimetry allows the distinction between
sleep and wake state and offers sufficiently reliable information regarding sleep habits and
sleep disorders of examined patients [35]. However, inter-individual differences can be very
high and may not allow individual prediction of sleep stages [36]. Further disadvantages are
less precision of measurements taken and the dependence on subject compliance to adhere to
measurement protocol [37].

The actimeters SENSEWEAR (“PRO3” and “MF” versions) used in this study were manu-
factured by BODYMEDIA, Pittsburgh, PA, USA. This type of actimeter has been validated to
reliably measure sleep parameters such as total sleep time, wakes after sleep onset, and sleep
efficiency against PSG measurements [38]. Another study with obstructive sleep apnea patients
found the estimation of sleep by the device to be in high agreement with PSG, while the estima-
tion of wake was less accurate [39]. Sleep measurements with adolescent subjects showed the
device to measure sleep parameters of groups reliably when compared to PSG, however, being
less accurate at an individual level [40,41]. Regarding the estimation of energy expenditure and
physical activity, it was shown that the device reliably measures physical activity levels in vari-
ous settings [42–44]. However, during exercise of high intensities, the device appears to under-
estimate energy expenditure [45]. The device is worn on the back of the right (PRO3) and left
upper arm (MF) respectively and detects physiological data including motion by measurement
of the acceleration, heat flow, skin temperature, near-body temperature, and skin conductance,
according to the manufacturer [46]. Data were averaged and recorded by the device with a fre-
quency of 1/min. Both types (PRO3 and MF) were used simultaneously in our study and
applied always by the responsible crew physician, who had been properly instructed prior to
departure to Antarctica. Measurement data were analyzed using the manufacturer’s software
(professional version 7.0) [46].

All clocks on the Neumayer Stations, and thus all used equipment to measure sleep parame-
ters (actimeters, computers to configure the devices and to readout the measurement data),
were set to follow coordinated universal time (UTC). Changes imposed by daylight saving time
were not applied on neither of the two stations.

The following sleep parameters of the participants were evaluated: time in bed (duration of
time at rest but not at sleep), sleep time (duration of time at sleep), sleep efficiency (ratio
between sleep time and time in bed), number of arousals (number of wake events per night),
sleep latency (duration of time in bed until sleep onset), sleep onset (time of the day of sleep
onset), and sleep offset (time of the day of sleep offset). Data on time in bed and sleep time
were calculated through the proprietary software algorithm. The parameter sleep efficiency
was calculated subsequently from the data on time in bed and sleep time. The number of arous-
als as well as the duration of sleep latency and the times of sleep onset and offset were deter-
mined manually. Sleep onset and offset are reported as values of the time of the day in hours
and minutes, a.m. or p.m. respectively. For the regression analyses of sleep onset, values are
reported as number of minutes with “0” referring to 12:00 a.m. (midnight) of the same day or
the previous day, depending on whether participants fell asleep: before or after 12:00 a.m., e.g.
a sleep onset of 10:00 p.m. would be equal to 1320 min while a sleep onset of 01:00 a.m. would
be equal to 1500 min. Regarding the regression analyses of sleep offset, values are reported as
number of minutes with “0” referring to 12:00 a.m. (midnight) of the same day the participants
woke up, e.g. a sleep offset of 07:00 a.m. would be equal to 420 min.

In addition, we also report the daily physical activity level obtained during the measure-
ments (averaged per 24 hours), measured in MET with one MET representing a metabolic rate
equivalent to an oxygen consumption of 3.5 ml O2 / kg body weight / minute.
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Times of measurement
The measurements were scheduled to be taken twice per month. However, amount and fre-
quency of the measurements varied between overwintering seasons due to different operational
constraints, so that the measurement results were assigned to their nearest two-week time slot
for the purpose of analysis, see Table 1. During the overwintering seasons 2008 to 2011,
24-hour measurements using the SENSEWEAR-devices were conducted by the overwintering-
crews. During the overwintering seasons 2012 to 2014, 48-hour measurements were performed
by the overwintering-crews and the acquired individual data of all measured parameters were
subsequently each averaged to a 24-hour period to be compatible with the 24-hour measure-
ments for further analysis.

According to the “Alfred Wegener Institute”, there were no specific wake up times imposed
on the overwinterers, merely a core work time between 09:00 a.m. and 06:00 p.m on workdays
was laid out. Workdays were considered to be Mondays to Saturdays. Thus, the participants
were free to sleep longer only on Sundays, with a brunch prepared and consumed by the entire
crew usually around 10:00 a.m. There was no mandatory night- or shift-work as all necessary
duties were carried out within the core work time, with the only exception of the meteorologist,
who had to tend to his or her measurement devices until midnight and then again at 06:00 a.m.
With regard to the amount and frequency of Sundays versus workdays during which the mea-
surements took place (more specifically: the days the participants woke up) and their possible
confounding influence, we performed a chi-square analysis. A total of 860 measurements were
conducted with all participants (596 with men and 264 with women). From this number,
122.86 were statistically expected to have taken place on a Sunday with all participants (85.14
with men and 37.71 with women). In reality, measurements took place on 112 Sundays with all
participants (on 90 with men and on 22 with women). Thus, as Table 2 indicates, the number
of Sundays for women was lower than to be expected (58.3%) and among men, the number of
Sundays was slightly higher than to be expected (105.7%). However, chi-square analysis
revealed that there was no significant difference in the number of Sundays compared to work-
days for all participants as well as for men and women separately over the course of the over-
winterings. In addition, a Pearson correlation analysis was performed to reveal any change in
the relative amount of Sundays per measurement point. This analysis yielded non-significant
results (p>0.05 for all participants as well as for men and women separately), indicating that

Table 1. Number of participants and number and times of measurement.

Times of measurement

Campaign n Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan†

2008 8 • • • • • • • • • • • • • • • • • • • • • • •

2009 7 • • • • • • • • • • • • • • • • • • • • • • •

2010 8 • • • • • • • • • • • • • • • • • • •

2011 8 • • • • • • • • • • •

2012 6 • • • • • •

2013 9 • • • • • • • • •

2014 8 • • • • • • • • • • •

n 54 15 13 21 23 29 21 37 27 35 34 34 35 35 33 34 42 14 27 36 29 26 25 12 3 3 6

Number of total participating overwinterers per campaign (column two) and number of respective times of measurement per overwintering season and

month of measurement on a two-week basis according to operational demands of the crews
† denotes the January at the end of the overwintering.

doi:10.1371/journal.pone.0150099.t001
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there was no significant increase or decrease in the relative number of Sundays during which
the measurements took place over the course of the overwinterings.

Statistics
Descriptive data are reported as means and standard deviations as well as median and 25th and
75th percentiles respectively. Anthropometric data were tested for normality and for significant
differences between men and women.

Measurement data of sleep parameters and physical activity level were averaged over over-
wintering time for all as well as for male and female participants separately. T-test and Mann-
Whitney rank sum test respectively were performed with the averaged values to investigate dif-
ferences between men and women.

Analysis of covariance (ANCOVA) for all measurement data was performed with the sleep
parameters being the dependent variable and the parameters gender, inhabited Neumayer Sta-
tion (II or III), and overwintering season (2008 to 2014) being the covariates respectively. Age,
height, body mass, body mass index, percentage of fat mass from body weight as well as physi-
cal activity level were not included as covariates because of the significant differences regarding
these parameters between the sexes to avoid multicovariance.

Measurement data of the investigated parameters were plotted as scatterplots to represent
one period of thirteen months, considering a maximum tolerance range of two-week time,
with respect to exactly when each measurement was taken. Polynomial regression analysis was
performed to track significant main effects for the dependence from overwintering time for all,
as well as for male and female participants separately.

Significant linear (1st order), but not quadratic (2nd order) relationships, were considered to
be more influenced by overall overwintering time, while significant quadratic, but not linear
relationships, were considered to be more influenced by circannual changes of local sunshine
radiation.

For those regression equations that yielded a significant quadratic relationship in the afore-
mentioned regression analysis, the time difference between the maximum or minimum of
these equations and the nadir (midwinter) of the local sunshine radiation (at noon averaged
per two-week time increments measured in W/m2) was calculated. After compensation for this
time difference, a linear regression analysis of these parameters and the values of local sunshine
radiation was performed. Time-adjusted measurement data of these parameters were plotted
as scatterplots as function of local sunshine radiation for all participants. In addition, a rank
sum test was performed between the time-adjusted measurement data of these parameters for
the categories of local sunshine radiation of 300 to 400 W/m2 versus 0 to 100 W/m2.

Table 2. Chi-square test results regarding frequency of Sundays during measurements.

Gender Sundays (observed,
expected)

Workdays (observed,
expected)

Total number of measurements (observed,
expected)

Chi-square
value

p-
value

Both 112 748 860

122.86 737.14 860 1.119 0.981

Male 90 506 596

85.14 510.86 596 0.323 0.999

Female 22 242 264

37.71 226.29 264 7.639 0.266

Chi-square test results regarding the frequency of Sundays versus workdays over the course of all measurements for entire study sample (n = 54, male

n = 37, female n = 17).

doi:10.1371/journal.pone.0150099.t002
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Finally, for those regression equations that only yielded a statistically significant linear, but
no quadratic relationship in the regression analysis regarding the dependence from overall
overwintering time, the same aforementioned linear regression analysis against the values of
local sunshine radiation was performed.

All data were handled through MICROSOFT EXCEL Version 2007 (12.0.4518) and ana-
lyzed using SYSTAT SIGMAPLOT Version 13 (13.0.0.83). A two-sided p-value of below 0.05
was considered to be an indicator for statistical significance.

Results
The overwinterers’ anthropometric data at the beginning of their respective overwintering
campaign are shown in Table 3. For all parameters: age, body mass, height, body mass index,
percentage of fat mass from body weight, we found a significant difference between men and
women.

The average values of the investigated parameters over the entire overwintering time are
represented in Table 4, which indicate that women had overall significantly longer average
time in bed (487.7 min versus 442.7 min, p = 0.004) and longer average sleep times compared
to men (389.4 min versus 355.1 min, p = 0.014).

These results are corroborated by ANCOVA, which reveal that the covariate gender signifi-
cantly affected the values of the dependent variables time in bed and sleep time (both
p<0.001). Although not significantly different regarding comparison of average values through
t-test, ANCOVA yielded a significant difference between the sexes for the parameters number
of arousals (p = 0.04), sleep latency (p = 0.04), sleep onset (p<0.001), and physical activity level
(p<0.001), indicating gender to be a significant covariate influencing these parameters. The
covariate inhabited station (Neumayer II below ground versus Neumayer III above ground)
did not significantly affect the dependent variables (time in bed p = 0.071, sleep time p = 0.054,
sleep efficiency p = 0.975, arousals p = 0.651, sleep latency p = 0.171, physical activity level
p = 0.064). Only the parameters sleep onset and offset were significantly influenced by the

Table 3. Anthropometric parameters.

Parameter Gender Median 25th % 75th % Rank sum test p-value

Age (years) Both 33.0 29.8 40.3

Male 35.0 32.0 45.5 <0.001

Female 30.0 27.0 31.0

Body mass (kg) Both 78.6 67.2 87.6

Male 83.0 76.6 92.8 <0.001

Female 61.4 59.5 68.3

Height (cm) Both 178.0 169.5 184.0

Male 181.0 174.0 185.0 <0.001

Female 168.0 162.0 174.5

Body mass index (kg/m2) Both 24.6 22.5 26.9

Male 25.9 24.4 28.2 <0.001

Female 22.5 20.8 24.7

Fat mass (%) Both 24.8 18.3 27.6

Male 21.6 15.3 27.2 0.008

Female 25.7 24.1 31.7

Anthropometric parameters of the study sample (n = 54, male n = 37, female n = 17) and p-value results of Mann-Whitney rank sum test between male

and female participants; bold-typed results denote significant results.

doi:10.1371/journal.pone.0150099.t003
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covariate inhabited station (both p<0.001). Median sleep onset of all participants on Neu-
mayer II was 11:24 p.m. (10:42 p.m. 25th percentile, 00:32 a.m. 75th percentile) versus 00:40 p.
m. (11:47 p.m. 25th percentile, 01:36 a.m. 75th percentile) on Neumayer III. Median sleep offset
of all participants on Neumayer II was 06:54 a.m. (05:50 a.m. 25th percentile, 07:33 a.m. 75th

percentile) versus 07:27 a.m. (06:52 a.m. 25th percentile, 08:09 a.m. 75th percentile) on Neu-
mayer III. The covariate overwintering season did not affect sleep efficiency (p = 0.177), arous-
als (p = 0.574), sleep latency (p = 0.555), and physical activity level (p = 0.128), but time in bed
(p<0.001), sleep time (p<0.001), sleep onset (p = 0.006), and sleep offset (p<0.001).

Polynomial regression results are shown in Table 5. Regarding changes over overwintering
time, we found two sets of dependencies: i) significant changes following a linear (1st order)
regression, namely sleep time for all participants (p = 0.036), sleep efficiency for all participants
(p = 0.002) as well as for women separately (p = 0.006), arousals for all participants (p = 0.01)
as well as for women separately (p = 0.02), and physical activity level for all participants
(p<0.001) and men separately (p = 0.003); ii) significant changes following a quadratic (2nd

order) regression, namely time in bed for all participants (p = 0.042) as well as for women sepa-
rately (p = 0.022), sleep efficiency for all (p = 0.002), male (p = 0.015), and female participants
(p = 0.029), sleep onset for all participants (p = 0.01) and for men separately (p = 0.021), sleep
offset for all (p<0.001), male (p<0.001), and female participants (p = 0.006), and physical
activity level for all (p = 0.003) and male participants (p = 0.014). Thus, sleep time significantly
decreased for all participants in a linear fashion (Fig 2) as did sleep efficiency for all and for
female participants separately (Fig 3), number of arousals significantly increased linearly for all
and for female participants separately (Fig 4), and physical activity level significantly decreased
for all and male participants separately in a linear fashion (Fig 5).

Table 4. Average values of measured parameters.

Parameter All participants (n = 54) Male (n = 37) Female (n = 17) t-test p-value ANCOVA p-value

Time in bed (min) 456.9 442.7 487.7 0.004 <0.001

(±54.8) (±54.2) (±45.4)

Sleep time (min) 365.9 355.1 389.4 0.014 <0.001

(±47.9) (±47.7) (±42.0)

Sleep efficiency (%)† 81.1 80.6 81.6 0.867‡ 0.458

(77.1, 85.9) (76.9, 86.1) (77.4, 85.5)

Arousals (n/night) 9.9 9.6 10.3 0.386 0.040

(±2.6) (±2.5) (±2.9)

Sleep latency (min)† 10.6 10.1 12.4 0.301‡ 0.040

(8.6, 13.7) (8.3, 13.8) (9.7, 13.9)

Sleep onset (hh:mm)† 12:24 a.m. 12:31 a.m. 12:04 a.m. 0.324‡ <0.001

(11:56 p.m., 01:18 a.m.) (11:58 p.m., 01:27 a.m.) (11:52 p.m., 12:56 a.m.)

Sleep offset (hh:mm)† 07:21 a.m. 07:15 a.m. 07:44 a.m. 0.514‡ 0.306

(06:58 a.m., 07:57 a.m.) (06:57 a.m., 07:57 a.m.) (07:04 a.m., 07:58 a.m.)

Physical activity level (MET) 1.68 1.72 1.60 0.086 <0.001

(±0.24) (±0.25) (±0.18)

Sleep parameter values and physical activity level averaged over entire overwintering time, values are given as means ±sd. Sleep onset and offset are

reported as times of the day.
† denotes median values and 25th and 75th percentiles.
‡ denotes p-value for conducted Mann-Whitney rank sum test. ANCOVA p-values are given regarding testing of all measurement data for covariate

gender; bold-typed results denote significant results.

doi:10.1371/journal.pone.0150099.t004
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Table 5. Polynomial regression results of measured parameters as function of overwintering time.

Parameter Gender Regression equation Equation order R R2 p-value

Time in bed (min) Both = 448.860 − (0.241 * x) 1st 0.0159 0.0002 0.685

= 415.991 + (6.557 * x) − (0.268 * x2) 2nd 0.1118 0.0125 0.042

Time in bed (min) Male = 441.772 − (0.799 * x) 1st 0.0514 0.0026 0.270

= 417.884 + (4.218 * x) − (0.200 * x2) 2nd 0.0960 0.0092 0.144

Time in bed (min) Female = 470.603 + (0.629 * x) 1st 0.0484 0.0023 0.500

= 410.006 + (12.724 * x) − (0.466 * x2) 2nd 0.2280 0.0520 0.022

Sleep time (min) Both = 369.208 − (1.049 * x) 1st 0.0816 0.0066 0.036

= 361.123 + (0.625 * x) − (0.0660 * x2) 2nd 0.0877 0.0077 0.112

Sleep time (min) Male = 360.751 − (1.165 * x) 1st 0.0876 0.0077 0.060

= 360.636 − (1.141 * x) − (0.000965 * x2) 2nd 0.0876 0.0077 0.184

Sleep time (min) Female = 392.848 − (1.081 * x) 1st 0.0989 0.0098 0.167

= 363.209 + (4.834 * x) − (0.228 * x2) 2nd 0.1628 0.0265 0.106

Sleep efficiency (%) Both = 82.825 − (0.196 * x) 1st 0.1183 0.0140 0.002

= 86.696 − (0.997 * x) + (0.0316 * x2) 2nd 0.1685 0.0284 0.002

Sleep efficiency (%) Male = 82.286 − (0.134 * x) 1st 0.0819 0.0067 0.079

= 86.523 − (1.025 * x) + (0.0355 * x2) 2nd 0.1591 0.0253 0.015

Sleep efficiency (%) Female = 84.055 − (0.333 * x) 1st 0.1967 0.0387 0.006

= 87.412 − (1.004 * x) + (0.0258 * x2) 2nd 0.2184 0.0477 0.029

Arousals (n/night) Both = 8.900 + (0.0825 * x) 1st 0.0987 0.0097 0.010

= 8.811 + (0.101 * x) − (0.000725 * x2) 2nd 0.0988 0.0098 0.069

Arousals (n/night) Male = 8.996 + (0.0523 * x) 1st 0.0642 0.0041 0.165

= 8.371 + (0.184 * x) − (0.00524 * x2) 2nd 0.0758 0.0057 0.246

Arousals (n/night) Female = 8.763 + (0.143 * x) 1st 0.1634 0.0267 0.020

= 9.878 − (0.0800 * x) + (0.00861 * x2) 2nd 0.1741 0.0303 0.078

Sleep latency (min) Both = 11.420 + (0.0182 * x) 1st 0.0094 0.0001 0.804

= 8.779 + (0.564 * x) − (0.0216 * x2) 2nd 0.0714 0.0051 0.067

Sleep latency (min) Male = 12.395 − (0.108 * x) 1st 0.0656 0.0043 0.155

= 9.809 + (0.435 * x) − (0.0216 * x2) 2nd 0.0824 0.0068 0.106

Sleep latency (min) Female = 9.278 + (0.290 * x) 1st 0.1220 0.0149 0.830

= 5.674 + (1.009 * x) − (0.0278 * x2) 2nd 0.1414 0.0200 0.154

Sleep onset (min) Both = 1465.842 + (0.624 * x) 1st 0.0400 0.0016 0.294

= 1425.390 + (8.994 * x) − (0.331 * x2) 2nd 0.1404 0.0197 0.010

Sleep onset (min) Male = 1471.424 + (0.958 * x) 1st 0.0583 0.0034 0.206

= 1428.491 + (9.975 * x) − (0.359 * x2) 2nd 0.1500 0.0225 0.021

Sleep onset (min) Female = 1449.069 + (0.171 * x) 1st 0.0141 0.0002 0.842

= 1416.457 + (6.686 * x) − (0.252 * x2) 2nd 0.1292 0.0167 0.195

Sleep offset (min) Both = 436.322 + (0.260 * x) 1st 0.0200 0.0004 0.609

= 378.321 + (12.257 * x) − (0.474 * x2) 2nd 0.2256 0.0509 <0.001

Sleep offset (min) Male = 434.479 + (0.246 * x) 1st 0.0173 0.0003 0.706

= 377.585 + (12.194 * x) − (0.476 * x2) 2nd 0.2138 0.0457 <0.001

Sleep offset (min) Female = 441.502 + (0.222 * x) 1st 0.0200 0.0004 0.773

= 380.090 + (12.481 * x) − (0.473 * x2) 2nd 0.2692 0.0725 0.006

Physical activity level (MET) Both = 1.799 − (0.00711 * x) 1st 0.1308 0.0171 <0.001

= 1.896 − (0.0272 * x) + (0.000792 * x2) 2nd 0.1594 0.0254 0.003

Physical activity level (MET) Male = 1.838 − (0.00776 * x) 1st 0.1375 0.0189 0.003

= 1.925 − (0.0260 * x) + (0.000727 * x2) 2nd 0.1597 0.0255 0.014

Physical activity level (MET) Female = 1.691 − (0.00452 * x) 1st 0.0959 0.0092 0.174

(Continued)
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For the regression equations that yielded a significant quadratic relationship as function of
overwintering time (i.e. time in bed for all participants as well as for women separately, sleep
efficiency for all participants as well as both for men and women separately, sleep onset for all
participants as well as for men separately, sleep offset for all participants as well as both for
men and women separately, and physical activity level for all participants and for men sepa-
rately), the calculated time delays between the respective maxima and minima to the nadir of
local sunshine radiation (midwinter) are shown in Table 6. The scatterplots with the resulting
negative parabola for time in bed, positive parabola for sleep efficiency, negative parabola for
sleep onset and offset, and positive parabola for physical activity level are displayed in Figs 6–
10. Thus, sleep efficiency not only decreased linearly over overwintering time, but also exhib-
ited a nadir with a time delay compared to midwinter respective to Table 6. The same can be
reported for parameter physical activity level with respect to all participants and men
separately.

Table 5. (Continued)

Parameter Gender Regression equation Equation order R R2 p-value

= 1.810 − (0.0283 * x) + (0.000920 * x2) 2nd 0.1536 0.0236 0.122

Comparison of polynomial regression results; x denotes the time of measurement based on two-week time increments; bold-typed results denote

significant results. Analyses regarding sleep onset and offset are reported as number of minutes.

doi:10.1371/journal.pone.0150099.t005

Fig 2. Scatterplot sleep time over overwintering time – 1st order regression Changes in sleep time as function of overwintering time, scatterplot and 1st

order regression for all participants (black regression line with confidence and prediction intervals extended to axis) and separate for male (dark grey) and
female participants (light grey).

doi:10.1371/journal.pone.0150099.g002
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After compensation of the respective time delays (i.e. through re-advancement of the
respective measurement data that yielded the quadratic regression equations), linear regression
with local sunshine radiation yielded the results shown in Table 7, indicating significant rela-
tionships with local sunshine radiation for the parameters time in bed for all participants
(p = 0.002) and women separately (p<0.001), sleep efficiency for all participants (p<0.001) as
well as both for men (p<0.001) and women separately (p = 0.02), sleep onset for all partici-
pants (p = 0.002) and men separately (p = 0.009), sleep offset for all participants (p<0.001) as
well as both for men (p<0.001) and women separately (p<0.001), and physical activity level
for all participants (p<0.001) and for men separately (p<0.001). Time-adjusted measurement
data of time in bed, sleep efficiency, sleep onset, sleep offset, and physical activity level as func-
tion of local sunshine radiation are displayed as scatterplots for all participants in Figs 11–15.

Results regarding comparison of time-adjusted measurement data of these parameters as
function of local sunshine radiation of category 300 to 400 W/m2 versus 0 to 100 W/m2 are dis-
played in Table 8 with the results of rank sum test. Time in bed increased by 48 minutes for all
participants (p<0.001) and by 73 minutes for women separately (p = 0.01). Sleep efficiency
decreased by 3.8% for all participants (p<0.001) and by 5.2% for men separately (p<0.001).
The decrease in sleep efficiency of 2.2% for women was not statistically significant. Sleep onset
occurred 32 minutes later for all participants (p<0.001) and 42 minutes later for men sepa-
rately (p<0.001). Sleep offset occurred 54 minutes later for all participants, 48 minutes later for
men separately, and 60 minutes later for women separately (all p<0.001). Physical activity
level decreased by 0.2 MET for all participants (p<0.001) and by 0.3 MET for men separately
(p<0.001).

Fig 3. Scatterplot sleep efficiency over overwintering time – 1st order regression Changes in sleep efficiency as function of overwintering time,
scatterplot and 1st order regression for all participants (black regression line with confidence and prediction intervals extended to axis) and separate for male
(dark grey) and female participants (light grey).

doi:10.1371/journal.pone.0150099.g003
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For the measurement data of sleep parameters that only yielded significant 1st order regres-
sion equations, but no 2nd order relationship, as function of overall overwintering time (i.e.
sleep time for all participants and arousals for all participants as well as for women separately,
Table 5), the linear regression analysis of these measurement data as function of local sunshine
radiation yielded no significant results (sleep time for all participants p = 0.137, number of
arousals for all participants p = 0.665, and for women separately p = 0.172).

Discussion
The presented results reveal that substantial changes in sleep parameters during overwintering
at the Neumayer Stations in Antarctica have taken place. Influence through confounding
unequally distributed measurement times (e.g. more measurements on Sundays than on work-
days) could be ruled out through chi-square test; in fact, there were more measurements con-
ducted on workdays than to be expected, especially among the women in our study. In
addition, the relative number of measurements taken on Sundays versus workdays did not
change over the course of the overwintering time.

Regarding anthropometric parameters, we found significant differences between men and
women: age, body weight, height, body mass index, and percentage of fat mass from body
weight as well as a significant influence of gender on the physical activity level; therefore, these
parameters were excluded as covariates from the subsequent analysis of the sleep parameters to
avoid multicovariance.

As the results indicate, there are significant differences between men and women. Female par-
ticipants showed overall significantly longer average times in bed as well as significantly longer

Fig 4. Scatterplot number of arousals over overwintering time – 1st order regression Changes in number of arousals as function of overwintering time,
scatterplot and 1st order regression for all participants (black regression line with confidence and prediction intervals extended to axis) and separate for male
(dark grey) and female participants (light grey).

doi:10.1371/journal.pone.0150099.g004
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average sleep times than the male participants. Average values of number of arousals and dura-
tion of sleep latency were higher among the female participants compared to men; additionally,
women fell asleep earlier than men. These gender-based differences are corroborated by the sig-
nificant results of ANCOVA thus indicating a lower sleep quality among the women.

ANCOVA also revealed the covariate station residence to be a significant influence on sleep
onset and offset as well as the covariate season to be a significant influence on time in bed,
sleep time, sleep onset and offset, which shall be discussed further below.

Regression analysis yielded significant linear relationships between overwintering time and
sleep time (all participants), sleep efficiency (all participants and women separately), number
of arousals (all participants and women separately), and physical activity level (all participants
and men separately), indicating linear changes of these parameters as the overwintering
progressed.

The significant quadratic relationships between overwintering time and time in bed (all par-
ticipants and women separately), sleep efficiency (men separately), sleep onset (all participants
and men separately), and sleep offset (all participants, men and women separately), indicate
that these parameters seemed to be more influenced by local sunshine radiation (and the lack
thereof) than by the overwintering time. Sleep efficiency (all participants and women sepa-
rately) and physical activity level (all participants and men separately) seemed to be influenced
by both local sunshine radiation and overall overwintering time.

Fig 5. Scatterplot physical activity level over overwintering time – 1st order regression Changes in physical activity level as function of overwintering
time, scatterplot and 1st order regression for all participants (black regression line with confidence and prediction intervals extended to axis) and separate for
male (dark grey) and female participants (light grey).

doi:10.1371/journal.pone.0150099.g005
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The quadratic associations with overwintering time found for these parameters were cor-
roborated by the significant linear relationships found for their time-adjusted values with local
sunshine radiation. The influence of overall overwintering time on sleep efficiency for women
appears to be greater than local sunshine radiation, as the results of polynomial regression anal-
ysis and rank sum test for the different local sunshine radiation categories indicate.

Sleep parameters that showed a linear, but no quadratic relationship with overwintering
time (sleep time for all participants and arousals for all participants as well as for women sepa-
rately), also did not yield a significant linear relationship with local sunshine radiation, indicat-
ing that these parameters appear to be more influenced by overall overwintering time and less
by local sunshine radiation.

These striking results indicate that i) overall overwintering time and ii) local sunshine radia-
tion seem to have had different influences on the different investigated parameters during the
overwinterings.

All participants slept less as the overwintering progressed over time with a decrease in sleep
efficiency for all participants as well as separately for women. All participants, as well as
women separately, exhibited an increase in number of arousals as the overwintering progressed
over time. Physical activity level declined for all participants and men separately as the over-
wintering progressed, but with no significant changes among the women.

Time in bed increased for all participants and for women separately and sleep efficiency
decreased for all and for both sexes separately, following a quadratic relationship with

Table 6. Time delay of quadratic regression equations to local sunshine radiation.

Parameter Gender 2nd order regression
equation

1st derivative Time delay of regression maximum or minimum to
nadir of sunshine radiation (midwinter)

Time in bed (min) Both = 415.991 + (6.557 * x) −
(0.268 * x2)

= 6.557 − (0.536 * x) 0.5 weeks

Time in bed (min) Female = 410.006 + (12.724 * x) −
(0.466 * x2)

= 12.724 − (0.932 * x) 3.4 weeks

Sleep efficiency (%) Both = 86.696 − (0.997 * x) +
(0.0316 * x2)

= -0.997 + (0.0632 * x) 7.5 weeks

Sleep efficiency (%) Male = 86.523 − (1.025 * x) +
(0.0355 * x2)

= -1.025 + (0.071 * x) 5.0 weeks

Sleep efficiency (%) Female = 87.412 − (1.004 * x) +
(0.0258 * x2)

= -1.004 + (0.0516 * x) 14.8 weeks

Sleep onset (min) Both = 1425.390 + (8.994 * x) −
(0.331 * x2)

= 8.994 − (0.662 * x) 3.3 weeks

Sleep onset (min) Male = 1428.491 + (9.975 * x) −
(0.359 * x2)

= 9.975 − (0.718 * x) 3.9 weeks

Sleep offset (min) Both = 378.321 + (12.257 * x) −
(0.474 * x2)

= 12.257 − (0.948 * x) 2.0 weeks

Sleep offset (min) Male = 377.585 + (12.194 * x) −
(0.476 * x2)

= 12.194 − (0.952 * x) 1.7 weeks

Sleep offset (min) Female = 380.090 + (12.481 * x) −
(0.473 * x2)

= 12.481 − (0.946 * x) 2.5 weeks

Physical activity
level (MET)

Both = 1.896 − (0.0272 * x) +
(0.000792 * x2)

= -0.0272 + (0.001584 * x) 10.4 weeks

Physical activity
level (MET)

Male = 1.925 − (0.0260 * x) +
(0.000727 * x2)

= -0.0260 + (0.001454 * x) 11.9 weeks

Calculation of time delay of quadratic regression equations (that showed statistical significance as function of overwintering time, see Table 5) to nadir of

local sunshine radiation (midwinter); x denotes the time of measurement based on two-week time increments. Analyses regarding sleep onset and offset

are reported as number of minutes.

doi:10.1371/journal.pone.0150099.t006
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respective time delays to overwintering time and thus indicating a reaction to the decline in
local sunshine radiation (i.e. the darkness-phase of the Antarctic winter). For all participants,
time in bed was in median 48 minutes longer and sleep was 3.8% less efficient during the dark-
ness-phase. The decrease in sleep efficiency was greater for men (5.2%), however, the values for
women during the brightness phase (category 300–400 W/m2) were already 3.5% lower than
those of the men. The values of sleep onset for all participants and men separately, and of sleep
offset for all participants as well as for men and women separately, increased in reaction to the
decline in local sunshine radiation with median delays of 32 minutes for sleep onset and 54
minutes for sleep offset for all participants. Values of physical activity level decreased in reac-
tion to the decline in local sunshine radiation for all participants and men separately. In
median, the physical activity level was 0.2 MET lower in reaction to the darkness-phase, which
is equal to a decline of 11% in daily energy expenditure for all participants. While it could be
argued that the quadratic relationships found in our study might be due to the higher incidence
of measurements fromMarch to August (Table 1), we would expect to see such relationships
for all investigated sleep parameters, which was not the case.

The findings made in this study corroborate and expand many of the previous results
regarding sleep changes during isolation-studies [47,48], long-term overwinterings in the Ant-
arctic [1,3,5,14,16,19,20], and sleep in space [49]. Our findings indicate that changes in sleep pat-
tern appear to prevail in a modern research station, which is in contrast to the results of some
previous studies [21,22]. In addition, however, our results indicate that in the setting we investi-
gated, women appear to be more susceptible to both influences–overall overwintering time and

Fig 6. Scatterplot time in bed over overwintering time – 2nd order regression Changes in time in bed as function of overwintering time, scatterplot and
2nd order regression for all participants (black regression curve with confidence and prediction intervals extended to axis) and separate for male (dark grey)
and female participants (light grey).

doi:10.1371/journal.pone.0150099.g006
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local sunshine radiation–than men as indicated by ANCOVA (time in bed, sleep time, number
of arousals, sleep latency, and sleep onset) and by polynomial regression analysis (quadratic rela-
tionship for time in bed, linear decrease in sleep efficiency, and linear increase in number of
arousals). Strikingly, this investigation is one of few studies [20,25] to report considerable gen-
der-based differences during overwintering in Antarctica. In addition, a great number of studies
regarding sleep in the Antarctic only had men in their study-groups [12–17,19,22,50]. The
decline in sleep quality particularly among the women in our study is in contrast to previous
investigations that had indicated that women generally exhibit a better sleep quality than men,
when studied in a temperate environment without the factors of Antarctic isolation [51,52].

ANCOVA revealed a gender-based difference regarding the physical activity level with
somewhat lower average values among women than men. This could be attributed to a higher
physical activity among the men but also to the fact that the physical activity level expressed in
MET is equivalent to an oxygen consumption (and thus energy expenditure) per kilogram
body weight. As the women showed significantly higher percentages of fat mass from body
weight than men, it is plausible that their average physical activity level was lower compared to
men [53], as fat mass is relatively hypometabolic compared to fat free mass [54]. It is interest-
ing to note that the values of physical activity level show a significant quadratic change in
response to local sunshine radiation and a significant linear decline over the overwintering for
all participants and for the men separately but not for women separately. Exercise and physical
activity in general have been known to positively affect sleep quality [55,56] and may be used

Fig 7. Scatterplot sleep efficiency over overwintering time – 2nd order regression Changes in sleep efficiency as function of overwintering time,
scatterplot and 2nd order regression for all participants (black regression curve with confidence and prediction intervals extended to axis) and separate for
male (dark grey) and female participants (light grey).

doi:10.1371/journal.pone.0150099.g007
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as countermeasure during long-term isolation and confinement to counteract psycho-physio-
logical deconditioning [57]. However, as the physical activity level among the women of our
study did not decline with statistical significance over the overwintering time, we infer that the
marked deteriorations of the various sleep parameters, especially among the women of our
study (increase of time in bed, decline in sleep efficiency, increase in number of arousals), can-
not be attributed to an attenuation of their physical activity level.

Our results therefore suggest that other circumstances inherent to the long-term overwin-
tering in an Antarctic station–such as psycho-social isolation [17,18,58], absence of environ-
mental stimuli [4,59], disruption of circadian rhythm [2,19,50], cold exposure [16,60], reduced
atmospheric pressure in circumpolar regions [61]–may have had a greater impact on the
female participants of our investigation than on the men. Especially, as has been discussed pre-
viously, interpersonal conflict and tension may be a key source of psycho-social stress prevalent
in polar overwinterings [17,18,58] as well as negative affect [17,59,62]. While it has been shown
that women might be more susceptible to psycho-social stress [63,64], which has been reported
to provoke a greater disturbance of sleep in women [65], we would suggest this influence,
which appears to increase as the overwintering progresses, to be an important contributing fac-
tor to the reduction in sleep quality (linear decrease in sleep efficiency and linear increase in
number of arousals over the time of the overwintering), more notably among the female partic-
ipants of our study in Antarctica. This assumption is corroborated by a study that suggested
gender differences with a deteriorated sleep quality in women to be become apparent under the
impression of anxiety and depression [66]. This difference between men and women may be

Fig 8. Scatterplot sleep onset over overwintering time – 2nd order regression Changes in sleep onset (reported as times of the day) as function of
overwintering time, scatterplot and 2nd order regression for all participants (black regression curve with confidence and prediction intervals extended to axis)
and separate for male (dark grey) and female participants (light grey).

doi:10.1371/journal.pone.0150099.g008
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important, when considering life and work, not only in polar research stations, but also during
long-term missions in space [67].

Regarding the marked changes of time in bed, sleep efficiency, sleep onset, sleep offset, and
physical activity level that have exhibited circannual changes as function of local sunshine radi-
ation in our study, it is known for several physiological parameters to follow seasonal variations
during long-duration Antarctic residency, including mood and somatic symptoms [68]. The
observed phase delay of sleep onset and offset may have been caused by an interference of the
natural circadian melatonin response, which has been shown to result in delayed circadian
rhythm in overwinterers in the Antarctic [1,20]. Our results corroborate the findings of these
previous studies and thus indicate the importance of lighting conditions during Antarctic over-
wintering. In addition, we would suggest that a higher workload at the beginning and the end
of each overwintering season (e.g. when the crews had to adjust to the new environment and
then to prepare the transfer to the next crew), with respective longer workdays and the neces-
sity to go to bed and wake up earlier–also known as social jetlag [69]–, may have contributed to
these results.

Previous studies regarding physical activity in the Antarctic indicated that the type of resi-
dence greatly influences energy expenditure (e.g. short or long term residence, local stay or tra-
verse), with the possibility of very high values in energy expenditure [70] and that resting
metabolic rate may undergo seasonal variation with increased values during the Antarctic sum-
mer [71]. Data on Antarctic long-term residence is scarce [72], however, an investigation
regarding long-term isolation and confinement showed that physical activity declined during

Fig 9. Scatterplot sleep offset over overwintering time – 2nd order regression Changes in sleep offset (reported as times of the day) as function of
overwintering time, scatterplot and 2nd order regression for all participants (black regression curve with confidence and prediction intervals extended to axis)
and separate for male (dark grey) and female participants (light grey).

doi:10.1371/journal.pone.0150099.g009
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Fig 10. Scatterplot physical activity level over overwintering time – 2nd order regression Changes in physical activity level as function of overwintering
time, scatterplot and 2nd order regression for all participants (black regression curve with confidence and prediction intervals extended to axis) and separate
for male (dark grey) and female participants (light grey).

doi:10.1371/journal.pone.0150099.g010

Table 7. Linear regression of time-adjusted parameters as function of local sunshine radiation.

Parameter Gender Regression equation R R2 Linear regression with local sunshine radiation p-value

Time in bed (min) Both = 455.499 − (0.0996 * x) 0.120 0.0145 0.002

Time in bed (min) Female = 496.031 − (0.183 * x) 0.247 0.0612 <0.001

Sleep efficiency (%) Both = 79.071 + (0.0116 * x) 0.140 0.0196 <0.001

Sleep efficiency (%) Male = 79.283 + (0.0136 * x) 0.153 0.0235 <0.001

Sleep efficiency (%) Female = 78.031 + (0.0130 * x) 0.165 0.0273 0.020

Sleep onset (min) Both = 1483.678 − (0.102 * x) 0.119 0.0142 0.002

Sleep onset (min) Male = 1494.470 − (0.109 * x) 0.122 0.0149 0.009

Sleep offset (min) Both = 454.951 − (0.158 * x) 0.214 0.0457 <0.001

Sleep offset (min) Male = 452.526 − (0.150 * x) 0.194 0.0375 <0.001

Sleep offset (min) Female = 460.652 − (0.176 * x) 0.279 0.0777 <0.001

Physical activity level (MET) Both = 1.661 + (0.000427 * x) 0.162 0.0263 <0.001

Physical activity level (MET) Male = 1.687 + (0.000453 * x) 0.169 0.0287 <0.001

Linear regression against local sunshine radiation of the measurement data that yielded statistically significant quadratic regression equations as function

of overwintering time, as shown in Table 5, after compensation for their calculated time delays to the nadir of local sunshine radiation (midwinter) as

shown in Table 6; x denotes the local sunshine radiation at noon (W/m2) averaged for two-week time increments; bold-typed results denote significant

results. Analyses regarding sleep onset and offset are reported as number of minutes.

doi:10.1371/journal.pone.0150099.t007
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isolation [73], which we also observed in response to overall overwintering time and lack of
local sunshine radiation. In addition, the marked circannual changes in physical activity we
observed may in part also have been caused by a higher workload at the beginning and the end
of each overwintering season due to the altered operational demands suggested above.

A set of subclinical symptoms, such as impaired cognition, negative mood, and sleep distur-
bances, summarized as winter-over syndrome [74], have displayed circannual variation in pre-
vious investigations [11,50]. Lack of natural sunlight has been shown to lead to disturbances of
sleep and mood in a general office setting that blocks natural sunlight [75]. Furthermore, there
are indications that absence of natural sunlight may lead to a combination of changes in pitui-
tary-ovarian hormones among women [76], known to influence mood and stress response in
women [77]. As we found the women in our study to be more susceptible to the circannual
changes as function of local sunshine radiation, we would like to suggest a possible link to sea-
sonal affective disorder (SAD), which has been reported to be able to lead to changes in sleep
parameters [78,79] and to have a higher prevalence among women [80,81]. Our suggested link
to SAD is corroborated by reports that indicated SAD to be associated with longer sleep times
[82], which were significantly higher among the women in our investigation. In addition to
this possible link with SAD, it was furthermore shown in another previous study that sleep dis-
ruptions may be more detrimental to mood than an otherwise reduced sleep time, e.g. caused
by delayed bedtime [83]. As we found significantly higher values in number of arousals among
the women in our study, this might in turn have had a negative influence on their mood, thus
intensifying the overall negative effect on their sleep. In addition, a previous study had found

Fig 11. Scatterplot time in bed over sunshine radiation – 1st order regression Changes in time in bed as function of average local sunshine radiation,
scatterplot and 1st order regression for all participants (black regression line with confidence and prediction intervals extended to axis).

doi:10.1371/journal.pone.0150099.g011
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symptoms associated with SAD to be prevalent among overwinterers in the Antarctic and that
women were significantly more associated with depressive symptoms [25], which is corrobo-
rated by another study that found women to have significantly lower scores for mental health
during isolation in Antarctica [20].

Although no continuous measurements could be taken regarding the individual light expo-
sition, the measurement results regarding illuminance inside the Neumayer Station III show
that these values were in median 330 lux and that they changed in correlation with the local
sunshine radiation. Even though the presentation of this environmental factor was based only
on a short term measurement over three days in February 2011, the amount of local sunshine
radiation, to which the illuminance values were correlated to, covered very low (52.5 W/m2),
medium (109, 229, and 370 W/m2), and the highest values (439 W/m2) to be measured at this
location, thus allowing a general approximation of the lighting conditions at the station. Possi-
ble reasons that the correlation analysis yielded only a low correlation coefficient might be
attributed to scatter and diffusion from clouds and general overcast [84], as well as reflection
and albedo from the snow surfaces surrounding the station [85].

One interesting aspect in this regard is that the covariate station residence did not signifi-
cantly influence the values of the observed sleep parameters, except for sleep onset and offset,
as the crew on Neumayer Station II fell asleep earlier and woke up earlier than the overwinter-
ing crews on Neumayer III. We also found the covariate overwintering season (2008 to 2014)
to be an influence on time in bed, sleep time, sleep onset and offset, indicating that the values
of these parameters differed between seasons. It should be noted that while the covariate season
influenced these sleep parameters, it did not influence sleep efficiency, number of arousals, and

Fig 12. Scatterplot sleep efficiency over sunshine radiation – 1st order regression Changes in sleep efficiency as function of average local sunshine
radiation, scatterplot and 1st order regression for all participants (black regression line with confidence and prediction intervals extended to axis).

doi:10.1371/journal.pone.0150099.g012
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sleep latency, which appear to have been ascribed a higher relevance when evaluating sleep
quality, such as through a higher number of items in the Pittsburgh Sleep Quality Index [86].
In this sense, it could be argued that parameters thought to more notably reflect sleep quality
were not influenced by overwintering season. We would suggest, that differences in group
norms, different priorities regarding work and rest schedules, cultural and individual influ-
ences on group decisions [59], different styles of leadership [87] as well as the different percent-
ages of women during each season [88], may have led to these differences between seasons.
Likewise, while all other sleep parameters did not significantly differ between stations Neu-
mayer II and Neumayer III, we would attribute the influence of the covariate station residence
on sleep onset and offset to the fact that only one overwintering crew (season 2008) was investi-
gated on station Neumayer II and that this difference might also likely be caused by a sociologi-
cal group effect. Furthermore, as station Neumayer II was located underground, it is
conceivable that different lighting conditions may have contributed to these results as no
24-hour bright daylight reached the inside of that station during the Antarctic summer.

Thus, regarding all parameters that did not significantly differ between stations, irrespective
of the correlation between illuminance and local sunshine radiation at the Neumayer Station
III described above, the results indicate that the observed changes in sleep parameters also
occur at the Neumayer Station II, which was located underground. A possible explanation
could be that the inhabitants of both stations may have spent more time outside the stations
than previously thought or planned, which may have led them to be exposed to the local sun-
shine radiation during the summer months with higher radiation values. In an environment

Fig 13. Scatterplot sleep onset over sunshine radiation – 1st order regressionChanges in sleep onset (reported as number of minutes) as function of
average local sunshine radiation, scatterplot and 1st order regression for all participants (black regression line with confidence and prediction intervals
extended to axis).

doi:10.1371/journal.pone.0150099.g013
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with otherwise low non-photic zeitgebers such as the Antarctic, values of about 200–1000 lux
[89] or even higher values of 2500 lux [1] are discussed to be required to sufficiently influence
the circadian rhythm [90], likely through the suppression of melatonin secretion [91], thus
contributing to the relationships we found as function of local sunshine radiation. The lack of
sunshine radiation during the darkness-phase appears to have not been sufficiently offset by
the use of artificial lighting within both stations, leading to the marked changes we found dur-
ing the darkness-phase–contrary to the influences of artificial lighting previously discussed
[92]. This is also corroborated by our recent findings on the same cohort at the Neumayer Sta-
tions regarding vitamin D serum concentrations, which also showed marked changes in
response to the circannual changes of local sunshine radiation, independent of station resi-
dence [27]. However, as Figs 11–15 show, there is a somewhat larger variability of the values of
the parameters time in bed, sleep efficiency, sleep onset and offset, and physical activity level
during times of very low local sunshine radiation, which might have been caused by the use of
artificial lighting and electronic media and their influence on different chronotypes [93]. To
offset the lack of local sunshine radiation during the darkness-phase of Antarctic residence and
its negative influence on sleep, possible countermeasures in future overwinterings could
include the use of light sources with augmented intensities or adjusted wavelengths (e.g.
increased proportions of lower wavelengths) as a beneficial influence, which has previously
been shown in polar environments [1,20,94].

The effects of the observed decline in sleep quality in our investigation may lead to a
decrease in exercise performance and cognitive function [95], deterioration of immune

Fig 14. Scatterplot sleep offset over sunshine radiation – 1st order regression Changes in sleep offset (reported as number of minutes) as function of
average local sunshine radiation, scatterplot and 1st order regression for all participants (black regression line with confidence and prediction intervals
extended to axis).

doi:10.1371/journal.pone.0150099.g014
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Fig 15. Scatterplot physical activity level over sunshine radiation – 1st order regression Changes in physical activity level as function of average local
sunshine radiation, scatterplot and 1st order regression for all participants (black regression line with confidence and prediction intervals extended to axis).

doi:10.1371/journal.pone.0150099.g015

Table 8. Comparison of time-adjusted parameters as function of local sunshine radiation of categories 300 to 400W/m2 versus 0 to 100W/m2.

Parameter Gender Global sunshine radiation, category 300–
400 W/m2

Global sunshine radiation, category
0–100 W/m2

Rank sum test p-
value

Time in bed (min) Both 405.0 (364.0, 454.0) 453.0 (390.8, 512.2) <0.001

Time in bed (min) Female 414.0 (390.0, 511.0) 487.0 (432.5, 539.5) 0.010

Sleep efficiency (%) Both 85.3 (77.9, 89.1) 81.5 (74.2, 86.9) <0.001

Sleep efficiency (%) Male 86.9 (78.7, 91.8) 81.7 (74.4, 87.1) <0.001

Sleep efficiency (%) Female 83.4 (76.2, 88.6) 81.2 (74.1, 86.5) 0.081

Sleep onset (hh:mm) Both 12:04 a.m. (11:05 p.m., 12:44 a.m.) 12:36 a.m. (11:39 p.m., 01:33 a.m.) <0.001

Sleep onset (hh:mm) Male 12:07 a.m. (11:10 p.m., 01:03 a.m.) 12:49 a.m. (11:43 p.m., 01:56 a.m.) <0.001

Sleep offset (hh:mm) Both 06:40 a.m. (06:03 a.m., 07:09 a.m.) 07:34 a.m. (06:58 a.m., 08:14 a.m.) <0.001

Sleep offset (hh:mm) Male 06:40 a.m. (06:03 a.m., 07:08 a.m.) 07:28 a.m. (06:54 a.m., 08:14 a.m.) <0.001

Sleep offset (hh:mm) Female 06:42 a.m. (06:03 a.m., 07:14 a.m.) 07:42 a.m. (07:12 a.m., 08:13 a.m.) <0.001

Physical activity level
(MET)

Both 1.8 (1.6, 2.0) 1.6 (1.4, 1.9) <0.001

Physical activity level
(MET)

Male 1.9 (1.6, 2.1) 1.6 (1.4, 1.9) <0.001

Time-adjusted values of parameters that yielded a quadratic relationship with overwintering time (Table 5) and a linear relationship with local sunshine

radiation (Table 7), displayed as median values and 25th and 75th percentiles, per category of local sunshine radiation and p-value results of Mann-

Whitney rank sum test between both categories; bold-typed results denote significant results. Sleep onset and offset are reported as times of the day.

doi:10.1371/journal.pone.0150099.t008
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function [96] through a possible disruption of synchronization between circadian cycle and
regulation of the immune system [97], and may negatively affect the development of cardiovas-
cular diseases [98]. Chronically disrupted sleep may also lead to decreased insulin sensitivity,
increased blood glucose levels and may thus lead to a higher prevalence of type 2 diabetes [99].
This interaction may become even more important as we observed a reduced physical activity
in reaction to the darkness-phase, which may further combine with negative metabolic effects
of decreased vitamin d-serum concentrations [100] that we recently found in the same cohort
of overwinterers [27].

To strengthen the results presented in this study, future investigations regarding sleep
parameters at the Neumayer Station III could adhere to a more standardized schedule of sleep
measurements, as well as include other outcome measures, e.g. changes in mood, self-perceived
stress, and daytime sleepiness. It would also be desirable to include measurements of individual
light exposure over the entire overwintering period as well as regarding the station’s artificial
illumination to assess the conclusions we infer. In addition, sleep parameters could be mea-
sured using other, more precise means than actimetry such as polysomnography. However,
actimetry proved to be a reliable and accepted means of measurement in our study since cir-
cumstances necessitated that the participants performed the measurements themselves. Fur-
ther research is warranted to investigate the complex interactions occurring during long-term
isolated overwinterings in the Antarctic.

Our findings in conjunction with numerous previous investigations indicate a multifaceted
interaction between physiological, psychological, and social effects of isolation, lack of natural
sunlight, deterioration of sleep quality, and altered energy expenditure during Antarctic over-
wintering, which may be important especially with regard to gender-based differences. Our
findings might be extended to other environments of similar conditions for which Antarctic
residence is considered an analogue, like long-duration space missions [10,11]. In such an
environment, however, further adverse influences like micro-gravity, onboard noise-level,
operational demands, and stress factors in space would add to the effects found in our study
[101–103].

We conclude that in our investigation regarding sleep parameters during long-term Antarc-
tic isolation there are two distinct sets of interaction: i) linear changes as function of increasing
overwintering time (sleep time, sleep efficiency, and number of arousals) and ii) quadratic
changes as function of local sunshine radiation (time in bed, sleep efficiency, sleep onset, and
sleep offset). These influences may have led to conditions inherent to isolated long-term over-
wintering in a modern Antarctic research station–like increased psycho-social stress and
altered circadian rhythm–both to which the women of our study have appeared to be more sus-
ceptible to. Our results could be considered for future overwinterings (e.g. crew selection, mis-
sion planning, countermeasures), especially with regard to women in the light of falling
gender-barriers, which may help to ensure the physical and psychological well-being of over-
winterers in Antarctica.

Acknowledgments
We would like to express our gratitude to the overwinterers of the Neumayer Stations II and III
of the investigated overwintering campaigns 2008 to 2014. We thank the “Alfred Wegener
Institute for Polar and Marine Research”, Bremerhaven Germany, its representatives and
employees, who made this study possible. We would especially like to thank Dr Gert König-
Langlo and Mr Bernd Loose from the Alfred Wegener Institute, who supplied the data of local
sunshine radiation. Furthermore, we would very much like to thank “Kardorff Ingenieure
Lichtplanung”, Berlin Germany for planning the design of the illuminance measurements and

Sleep Quality Changes during Antarctic Overwintering

PLOS ONE | DOI:10.1371/journal.pone.0150099 February 26, 2016 27 / 32



the use of the lux meter. Finally, we also would like to thank Mr Michael Nordine for his help
with the manuscript.

Author Contributions
Conceived and designed the experiments: MS EK AS HCG. Performed the experiments: MS
EK SM AS. Analyzed the data: MS MAM SMOO AS. Wrote the paper: MS EKMAM SMOO
AS HCG. Interpreted results of experiments: MS OO AS HCG. Approved final manuscript:
HCG.

References
1. Broadway J, Arendt J, Folkard S (1987) Bright light phase shifts the humanmelatonin rhythm during

the Antarctic winter. Neurosci Lett 79: 185–189. PMID: 3670728

2. Kennaway DJ, Van Dorp CF (1991) Free-running rhythms of melatonin, cortisol, electrolytes, and
sleep in humans in Antarctica. Am J Physiol 260: R1137–R1144. PMID: 2058741

3. Palinkas LA, Houseal M, Miller C (2000) Sleep and mood during a winter in Antarctica. Int J Circumpo-
lar Health 59: 63–73. PMID: 10850009

4. Rothblum ED (1990) Psychological factors in the antarctic. J Psychol 124: 253–273. PMID: 2189993

5. Palinkas LA, Suedfeld P (2008) Psychological effects of polar expeditions. Lancet 371: 153–163.
S0140-6736(07)61056-3 [pii]; doi: 10.1016/S0140-6736(07)61056-3 PMID: 17655924

6. Reed HL, Silverman ED, Shakir KM, Dons R, Burman KD, O'Brian JT (1990) Changes in serum triio-
dothyronine (T3) kinetics after prolonged Antarctic residence: the polar T3 syndrome. J Clin Endocri-
nol Metab 70: 965–974. PMID: 2318952

7. Shearer WT, Lee BN, Cron SG, Rosenblatt HM, Smith EO, Lugg DJ, et al. (2002) Suppression of
human anti-inflammatory plasma cytokines IL-10 and IL-1RA with elevation of proinflammatory cyto-
kine IFN-gamma during the isolation of the Antarctic winter. J Allergy Clin Immunol 109: 854–857.
S0091674902437761 [pii]. PMID: 11994711

8. Straßl H (1951) Ein Nomogramm für die Dauer von Polartag und Polarnacht bei beliebiger Eklip-
tikschiefe. Polarforschung 21: 40–43.

9. Arendt J (2012) Biological rhythms during residence in polar regions. Chronobiol Int 29: 379–394. doi:
10.3109/07420528.2012.668997 PMID: 22497433

10. Suedfeld P, Weiss K (2000) Antarctica natural laboratory and space analogue for psychological
research. Environ Behav 32: 7–17. PMID: 11542946

11. Palinkas LA, Gunderson EK, Johnson JC, Holland AW (2000) Behavior and performance on long-
duration spaceflights: evidence from analogue environments. Aviat Space Environ Med 71: A29–
A36. PMID: 10993306

12. Gunderson EK (1963) Emotional symptoms in extremely isolated groups. Arch Gen Psychiatry 9:
362–368. PMID: 14045265

13. Joern AT, Shurley JT, Brooks RE, Guenter CA, Pierce CM (1970) Short-term changes in sleep pat-
terns on arrival at the South Polar Plateau. Arch Intern Med 125: 649–654. PMID: 4314525

14. Natani K, Shurley JT, Pierce CM, Brooks RE (1970) Long-term changes in sleep patterns in men on
the South Polar Plateau. Arch Intern Med 125: 655–659. PMID: 4314526

15. Paterson RA (1975) Letter: Seasonal reduction of slow-wave sleep at an Antarctic coastal station.
Lancet 1: 468–469.

16. Angus RG, Pearce DG, Buguet AG, Olsen L (1979) Vigilance performance of men sleeping under arc-
tic conditions. Aviat Space Environ Med 50: 692–696. PMID: 226057

17. Palmai G (1963) Psychological observations on an isolated group in Anarctica. Br J Psychiatry 109:
364–370.

18. Polosatov MV (1973) Effects of the extreme factors of Antarctica on sleep of polar expedition mem-
bers (English translation). Sov Ant Exped Infor Bull 86: 69–74.

19. Bhattacharyya M, Pal MS, Sharma YK, Majumdar D (2008) Changes in sleep patterns during pro-
longed stays in Antarctica. Int J Biometeorol 52: 869–879. doi: 10.1007/s00484-008-0183-2 PMID:
18807075

20. Mottram V, Middleton B, Williams P, Arendt J (2011) The impact of bright artificial white and 'blue-
enriched' light on sleep and circadian phase during the polar winter. J Sleep Res 20: 154–161.
JSR875 [pii]; doi: 10.1111/j.1365-2869.2010.00875.x PMID: 20723022

Sleep Quality Changes during Antarctic Overwintering

PLOS ONE | DOI:10.1371/journal.pone.0150099 February 26, 2016 28 / 32

http://www.ncbi.nlm.nih.gov/pubmed/3670728
http://www.ncbi.nlm.nih.gov/pubmed/2058741
http://www.ncbi.nlm.nih.gov/pubmed/10850009
http://www.ncbi.nlm.nih.gov/pubmed/2189993
http://dx.doi.org/10.1016/S0140-6736(07)61056-3
http://www.ncbi.nlm.nih.gov/pubmed/17655924
http://www.ncbi.nlm.nih.gov/pubmed/2318952
http://www.ncbi.nlm.nih.gov/pubmed/11994711
http://dx.doi.org/10.3109/07420528.2012.668997
http://www.ncbi.nlm.nih.gov/pubmed/22497433
http://www.ncbi.nlm.nih.gov/pubmed/11542946
http://www.ncbi.nlm.nih.gov/pubmed/10993306
http://www.ncbi.nlm.nih.gov/pubmed/14045265
http://www.ncbi.nlm.nih.gov/pubmed/4314525
http://www.ncbi.nlm.nih.gov/pubmed/4314526
http://www.ncbi.nlm.nih.gov/pubmed/226057
http://dx.doi.org/10.1007/s00484-008-0183-2
http://www.ncbi.nlm.nih.gov/pubmed/18807075
http://dx.doi.org/10.1111/j.1365-2869.2010.00875.x
http://www.ncbi.nlm.nih.gov/pubmed/20723022


21. Bogoslovskii MM (1974) Letter: Polar insomnia on the Antarctic continent. Lancet 1: 503–504.

22. Buguet A, Rivolier J, Jouvet M (1987) Human sleep patterns in Antarctica. Sleep 10: 374–382. PMID:
3659735

23. AWI (2012) AlfredWegener Institute for Polar and Marine Research, Bremerhaven Germany.

24. NASA Quest Website (2015) Information For Living in Antarctica—Handbook for McMurdo Station.
Available: http://quest.nasa.gov/antarctica/background/NSF/mc-stay.html.

25. Palinkas LA, Glogower F, Dembert M, Hansen K, Smullen R (2004) Incidence of psychiatric disorders
after extended residence in Antarctica. Int J Circumpolar Health 63: 157–168. PMID: 15253482

26. Shayler DJ, Moule IA (2005) Women in Space—Following Valentina. Chichester, UK: Springer Lon-
don—Praxis Publishing.

27. Steinach M, Kohlberg E, Maggioni MA, Mendt S, Opatz O, Stahn A, et al. (2015) Changes of 25-OH-
Vitamin D during Overwintering at the German Antarctic Stations Neumayer II and III. PLoS One 10:
e0144130. doi: 10.1371/journal.pone.0144130 PONE-D-15-30307 [pii]. PMID: 26641669

28. Sun SS, ChumleaWC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K, et al. (2003) Development
of bioelectrical impedance analysis prediction equations for body composition with the use of a multi-
component model for use in epidemiologic surveys. Am J Clin Nutr 77: 331–340. PMID: 12540391

29. Fields DA, Goran MI, McCrory MA (2002) Body-composition assessment via air-displacement
plethysmography in adults and children: a review. Am J Clin Nutr 75: 453–467. PMID: 11864850

30. Stahn A, Terblanche E, Gunga H-C (2012) Use of Bioelectrical Impedance: General Overview and
Principles. In: Preedy V, editors. The Handbook of Anthropometry: Physical Measures of Human
Form in Health and Disease. New York: Springer. pp. 49–90.

31. Welk GJ, Schaben JA, Morrow JR Jr (2004) Reliability of accelerometry-based activity monitors: a
generalizability study. Med Sci Sports Exerc 36: 1637–1645. 00005768-200409000-00026 [pii].
PMID: 15354049

32. Taraldsen K, Chastin SF, Riphagen II, Vereijken B, Helbostad JL (2012) Physical activity monitoring
by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of
current knowledge and applications. Maturitas 71: 13–19. S0378-5122(11)00369-0 [pii]; doi: 10.
1016/j.maturitas.2011.11.003 PMID: 22134002

33. Jones V, Bults R, deWijk R, Widya I, Batista R, Hermens H (2011) Experience with Using the Sense-
wear BMS Sensor System in the Context of a Health andWellbeing Application. Int J Telemed Appl
2011: 671040. doi: 10.1155/2011/671040 PMID: 21772840

34. Weeß H-G (2009) Diagnostische Methoden. In: Stuck BA, Maurer JT, Schredl M, Weeß H-G, editors.
Praxis der Schlafmedizin. Heidelberg: Springer Medizin Verlag. pp. 23–78.

35. Sadeh A, Hauri PJ, Kripke DF, Lavie P (1995) The role of actigraphy in the evaluation of sleep disor-
ders. Sleep 18: 288–302. PMID: 7618029

36. Conradt R, Brandenburg U, Ploch T, Peter JH (1997) [Actigraphy: methodological limits for evaluation
of sleep stages and sleep structure of healthy probands]. Pneumologie 51 Suppl 3: 721–724. PMID:
9340625

37. Chae KY, Kripke DF, Poceta JS, Shadan F, Jamil SM, Cronin JW, et al. (2009) Evaluation of immobil-
ity time for sleep latency in actigraphy. Sleep Med 10: 621–625. S1389-9457(08)00217-7 [pii]; doi:
10.1016/j.sleep.2008.07.009 PMID: 19103508

38. Shin M, Swan P, Chow CM (2015) The validity of Actiwatch2 and SenseWear armband compared
against polysomnography at different ambient temperature conditions. Sleep Sci 8: 9–15. doi: 10.
1016/j.slsci.2015.02.003 S1984-0063(15)00009-7 [pii]. PMID: 26483937

39. O'Driscoll DM, Turton AR, Copland JM, Strauss BJ, Hamilton GS (2012) Energy expenditure in
obstructive sleep apnea: validation of a multiple physiological sensor for determination of sleep and
wake. Sleep Breath. doi: 10.1007/s11325-012-0662-x

40. Soric M, Turkalj M, Kucic D, Marusic I, Plavec D, Misigoj-Durakovic M (2013) Validation of a multi-sen-
sor activity monitor for assessing sleep in children and adolescents. Sleep Med 14: 201–205. S1389-
9457(12)00405-4 [pii]; doi: 10.1016/j.sleep.2012.11.003 PMID: 23238268

41. Roane BM, Van RE, Hart CN,Wing R, Carskadon MA (2015) Estimating sleep frommultisensory arm-
band measurements: validity and reliability in teens. J Sleep Res 24: 714–721. doi: 10.1111/jsr.
12317 PMID: 26126746

42. King GA, Torres N, Potter C, Brooks TJ, Coleman KJ (2004) Comparison of activity monitors to esti-
mate energy cost of treadmill exercise. Med Sci Sports Exerc 36: 1244–1251. 00005768-200407000-
00024 [pii]. PMID: 15235333

Sleep Quality Changes during Antarctic Overwintering

PLOS ONE | DOI:10.1371/journal.pone.0150099 February 26, 2016 29 / 32

http://www.ncbi.nlm.nih.gov/pubmed/3659735
http://quest.nasa.gov/antarctica/background/NSF/mc-stay.html
http://www.ncbi.nlm.nih.gov/pubmed/15253482
http://dx.doi.org/10.1371/journal.pone.0144130
http://www.ncbi.nlm.nih.gov/pubmed/26641669
http://www.ncbi.nlm.nih.gov/pubmed/12540391
http://www.ncbi.nlm.nih.gov/pubmed/11864850
http://www.ncbi.nlm.nih.gov/pubmed/15354049
http://dx.doi.org/10.1016/j.maturitas.2011.11.003
http://dx.doi.org/10.1016/j.maturitas.2011.11.003
http://www.ncbi.nlm.nih.gov/pubmed/22134002
http://dx.doi.org/10.1155/2011/671040
http://www.ncbi.nlm.nih.gov/pubmed/21772840
http://www.ncbi.nlm.nih.gov/pubmed/7618029
http://www.ncbi.nlm.nih.gov/pubmed/9340625
http://dx.doi.org/10.1016/j.sleep.2008.07.009
http://www.ncbi.nlm.nih.gov/pubmed/19103508
http://dx.doi.org/10.1016/j.slsci.2015.02.003
http://dx.doi.org/10.1016/j.slsci.2015.02.003
http://www.ncbi.nlm.nih.gov/pubmed/26483937
http://dx.doi.org/10.1007/s11325-012-0662-x
http://dx.doi.org/10.1016/j.sleep.2012.11.003
http://www.ncbi.nlm.nih.gov/pubmed/23238268
http://dx.doi.org/10.1111/jsr.12317
http://dx.doi.org/10.1111/jsr.12317
http://www.ncbi.nlm.nih.gov/pubmed/26126746
http://www.ncbi.nlm.nih.gov/pubmed/15235333


43. Welk GJ, McClain JJ, Eisenmann JC, Wickel EE (2007) Field validation of the MTI Actigraph and
BodyMedia armband monitor using the IDEEAmonitor. Obesity (Silver Spring) 15: 918–928. 15/4/
918 [pii]; doi: 10.1038/oby.2007.624

44. Almeida GJ, Wasko MC, Jeong K, Moore CG, Piva SR (2011) Physical activity measured by the Sen-
seWear Armband in women with rheumatoid arthritis. Phys Ther 91: 1367–1376. ptj.20100291 [pii];
doi: 10.2522/ptj.20100291 PMID: 21719635

45. Jakicic JM, Marcus M, Gallagher KI, Randall C, Thomas E, Goss FL, et al. (2004) Evaluation of the
SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc 36:
897–904. 00005768-200405000-00024 [pii]. PMID: 15126727

46. BodyMedia, Inc. (2010) SenseWear Armband and Display Manual. Pittsburgh, PA, USA: BodyMe-
dia, Inc.

47. Kraft NO, Inoue N, Mizuno K, Ohshima H, Murai T, Sekiguchi C (2002) Physiological changes, sleep,
and morning mood in an isolated environment. Aviat Space Environ Med 73: 1089–1093. PMID:
12433232

48. Zavalko IM, Rasskazova EI, Gordeev SA, Palatov SI, Kovrov GV (2013) [Effects of long-term isolation
and anticipation of significant event on sleep: results of the project "Mars-520"]. Fiziol Cheloveka 39:
45–52. PMID: 25509171

49. Barger LK, Flynn-Evans EE, Kubey A, Walsh L, Ronda JM, WangW, et al. (2014) Prevalence of sleep
deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observa-
tional study. Lancet Neurol 13: 904–912. S1474-4422(14)70122-X [pii]; doi: 10.1016/S1474-4422
(14)70122-X PMID: 25127232

50. Yoneyama S, Hashimoto S, Honma K (1999) Seasonal changes of human circadian rhythms in Ant-
arctica. Am J Physiol 277: R1091–R1097. PMID: 10516249

51. Kobayashi R, Kohsaka M, Fukuda N, Honma H, Sakakibara S, Koyama T (1998) Gender differences
in the sleep of middle-aged individuals. Psychiatry Clin Neurosci 52: 186–187. doi: 10.1111/j.1440-
1819.1998.tb01021.x PMID: 9628142

52. Goel N, Kim H, Lao RP (2005) Gender differences in polysomnographic sleep in young healthy sleep-
ers. Chronobiol Int 22: 905–915. G23LK6P567785053 [pii]; doi: 10.1080/07420520500263235
PMID: 16298775

53. Illner K, Brinkmann G, Heller M, Bosy-Westphal A, Muller MJ (2000) Metabolically active components
of fat free mass and resting energy expenditure in nonobese adults. Am J Physiol Endocrinol Metab
278: E308–E315. PMID: 10662716

54. Nelson KM,Weinsier RL, Long CL, Schutz Y (1992) Prediction of resting energy expenditure from fat-
free mass and fat mass. Am J Clin Nutr 56: 848–856. PMID: 1415003

55. Sherrill DL, Kotchou K, Quan SF (1998) Association of physical activity and human sleep disorders.
Arch Intern Med 158: 1894–1898. PMID: 9759685

56. KredlowMA, Capozzoli MC, Hearon BA, Calkins AW, Otto MW (2015) The effects of physical activity
on sleep: a meta-analytic review. J Behav Med 38: 427–449. doi: 10.1007/s10865-015-9617-6 PMID:
25596964

57. Schneider S, Brummer V, Carnahan H, Kleinert J, Piacentini MF, Meeusen R, et al. (2010) Exercise
as a countermeasure to psycho-physiological deconditioning during long-term confinement. Behav
Brain Res 211: 208–214. S0166-4328(10)00220-2 [pii]; doi: 10.1016/j.bbr.2010.03.034 PMID:
20346985

58. Palinkas LA (1992) Going to extremes: the cultural context of stress, illness and coping in Antarctica.
Soc Sci Med 35: 651–664. PMID: 1439916

59. Palinkas LA (1989) Sociocultural influences on psychosocial adjustment in Antarctica. Med Anthropol
10: 235–246. doi: 10.1080/01459740.1989.9965970 PMID: 2747453

60. Cattermole TJ (1999) The epidemiology of cold injury in Antarctica. Aviat Space Environ Med 70:
135–140. PMID: 10206932

61. Moyer DB (1976) Acclimatization and high altitude medical problems in Antarctica. US Navy Med 67:
19–21. PMID: 1076901

62. Palinkas LA, Houseal M, Rosenthal NE (1996) Subsyndromal seasonal affective disorder in Antarc-
tica. J Nerv Ment Dis 184: 530–534. PMID: 8831642

63. Hanninen V, Aro H (1996) Sex differences in coping and depression among young adults. Soc Sci
Med 43: 1453–1460. 0277953696000457 [pii]. PMID: 8923617

64. Hankin BL (2009) Development of sex differences in depressive and co-occurring anxious symptoms
during adolescence: descriptive trajectories and potential explanations in a multiwave prospective
study. J Clin Child Adolesc Psychol 38: 460–472. 912960622 [pii]; doi: 10.1080/
15374410902976288 PMID: 20183634

Sleep Quality Changes during Antarctic Overwintering

PLOS ONE | DOI:10.1371/journal.pone.0150099 February 26, 2016 30 / 32

http://dx.doi.org/10.1038/oby.2007.624
http://dx.doi.org/10.2522/ptj.20100291
http://www.ncbi.nlm.nih.gov/pubmed/21719635
http://www.ncbi.nlm.nih.gov/pubmed/15126727
http://www.ncbi.nlm.nih.gov/pubmed/12433232
http://www.ncbi.nlm.nih.gov/pubmed/25509171
http://dx.doi.org/10.1016/S1474-4422(14)70122-X
http://dx.doi.org/10.1016/S1474-4422(14)70122-X
http://www.ncbi.nlm.nih.gov/pubmed/25127232
http://www.ncbi.nlm.nih.gov/pubmed/10516249
http://dx.doi.org/10.1111/j.1440-1819.1998.tb01021.x
http://dx.doi.org/10.1111/j.1440-1819.1998.tb01021.x
http://www.ncbi.nlm.nih.gov/pubmed/9628142
http://dx.doi.org/10.1080/07420520500263235
http://www.ncbi.nlm.nih.gov/pubmed/16298775
http://www.ncbi.nlm.nih.gov/pubmed/10662716
http://www.ncbi.nlm.nih.gov/pubmed/1415003
http://www.ncbi.nlm.nih.gov/pubmed/9759685
http://dx.doi.org/10.1007/s10865-015-9617-6
http://www.ncbi.nlm.nih.gov/pubmed/25596964
http://dx.doi.org/10.1016/j.bbr.2010.03.034
http://www.ncbi.nlm.nih.gov/pubmed/20346985
http://www.ncbi.nlm.nih.gov/pubmed/1439916
http://dx.doi.org/10.1080/01459740.1989.9965970
http://www.ncbi.nlm.nih.gov/pubmed/2747453
http://www.ncbi.nlm.nih.gov/pubmed/10206932
http://www.ncbi.nlm.nih.gov/pubmed/1076901
http://www.ncbi.nlm.nih.gov/pubmed/8831642
http://www.ncbi.nlm.nih.gov/pubmed/8923617
http://dx.doi.org/10.1080/15374410902976288
http://dx.doi.org/10.1080/15374410902976288
http://www.ncbi.nlm.nih.gov/pubmed/20183634


65. Birchler-Pedross A, Schroder CM, Munch M, Knoblauch V, Blatter K, Schnitzler-Sack C, et al. (2009)
Subjective well-being is modulated by circadian phase, sleep pressure, age, and gender. J Biol
Rhythms 24: 232–242. 24/3/232 [pii]; doi: 10.1177/0748730409335546 PMID: 19465700

66. Voderholzer U, Al-Shajlawi A, Weske G, Feige B, Riemann D (2003) Are there gender differences in
objective and subjective sleep measures? A study of insomniacs and healthy controls. Depress Anxi-
ety 17: 162–172. doi: 10.1002/da.10101 PMID: 12768650

67. Goel N, Bale TL, Epperson CN, Kornstein SG, Leon GR, Palinkas LA, et al. (2014) Effects of sex and
gender on adaptation to space: behavioral health. J Womens Health (Larchmt) 23: 975–986. doi: 10.
1089/jwh.2014.4911

68. Ikegawa M, Kimura M, Makita K, Itokawa Y (1998) Psychological studies of a Japanese winter-over
group at Asuka Station, Antarctica. Aviat Space Environ Med 69: 452–460. PMID: 9591614

69. Wittmann M, Dinich J, Merrow M, Roenneberg T (2006) Social jetlag: misalignment of biological and
social time. Chronobiol Int 23: 497–509. TP463290637N5735 [pii]; doi: 10.1080/
07420520500545979 PMID: 16687322

70. Stroud MA, CowardWA, Sawyer MB (1993) Measurements of energy expenditure using isotope-
labelled water (2H2(18)O) during an Arctic expedition. Eur J Appl Physiol Occup Physiol 67: 375–
379. PMID: 8299607

71. Duncan R (1988) Variations in resting metabolic rates of men in Antarctica. Eur J Appl Physiol Occup
Physiol 57: 514–518. PMID: 3396566

72. Simpson A (2010) The effect of Antarctic residence on energy dynamics and aerobic fitness. Int J Cir-
cumpolar Health 69: 220–235. 1027 [pii]. PMID: 20519091

73. Belavy DL, Gast U, Daumer M, Fomina E, Rawer R, Schiessl H, et al. (2013) Progressive adaptation
in physical activity and neuromuscular performance during 520d confinement. PLoS One 8: e60090.
doi: 10.1371/journal.pone.0060090 PONE-D-12-31008 [pii]. PMID: 23555896

74. Strange RE, Youngman SA (1971) Emotional Aspects of Wintering Over. Antarct J US 6: 255–257.

75. Harb F, Hidalgo MP, Martau B (2015) Lack of exposure to natural light in the workspace is associated
with physiological, sleep and depressive symptoms. Chronobiol Int 32: 368–375. doi: 10.3109/
07420528.2014.982757 PMID: 25424517

76. Kauppila A, Kivela A, Pakarinen A, Vakkuri O (1987) Inverse seasonal relationship betweenmelatonin
and ovarian activity in humans in a region with a strong seasonal contrast in luminosity. J Clin Endocri-
nol Metab 65: 823–828. doi: 10.1210/jcem-65-5-823 PMID: 3667880

77. Albert K, Pruessner J, Newhouse P (2015) Estradiol levels modulate brain activity and negative
responses to psychosocial stress across the menstrual cycle. Psychoneuroendocrinology 59: 14–24.
S0306-4530(15)00173-0 [pii]; doi: 10.1016/j.psyneuen.2015.04.022 PMID: 26123902

78. Tsuno N, Besset A, Ritchie K (2005) Sleep and depression. J Clin Psychiatry 66: 1254–1269. PMID:
16259539

79. Lee HJ, Rex KM, Nievergelt CM, Kelsoe JR, Kripke DF (2011) Delayed sleep phase syndrome is
related to seasonal affective disorder. J Affect Disord 133: 573–579. S0165-0327(11)00213-8 [pii];
doi: 10.1016/j.jad.2011.04.046 PMID: 21601293

80. Magnusson A, Boivin D (2003) Seasonal affective disorder: an overview. Chronobiol Int 20: 189–207.
PMID: 12723880

81. Oginska H, Oginska-Bruchal K (2014) Chronotype and personality factors of predisposition to sea-
sonal affective disorder. Chronobiol Int 31: 523–531. doi: 10.3109/07420528.2013.874355 PMID:
24397301

82. Lucht M, Kasper S (1999) Gender differences in seasonal affective disorder (SAD). ArchWomens
Ment Health 2: 83–89.

83. Finan PH, Quartana PJ, Smith MT (2015) The Effects of Sleep Continuity Disruption on Positive Mood
and Sleep Architecture in Healthy Adults. Sleep 38: 1735–1742. sp-00003-15 [pii]; doi: 10.5665/
sleep.5154 PMID: 26085289

84. Kokhanovsky AA (2006) Cloud Optics. Dortrecht, The Netherlands: Springer.

85. Serreze MC, Barry RG (2005) Surface Albedo. In: The Arctic Climate System. Cambridge: Cam-
bridge University Press. pp. 120–124.

86. Buysse DJ, Reynolds CF III, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality
Index: a new instrument for psychiatric practice and research. Psychiatry Res 28: 193–213. 0165-
1781(89)90047-4 [pii]. PMID: 2748771

87. Biersner RJ, Hogan R (1984) Personality Correlates of Adjustement in IsolatedWork Groups. Journal
of Research in Personality 18: 491–496.

Sleep Quality Changes during Antarctic Overwintering

PLOS ONE | DOI:10.1371/journal.pone.0150099 February 26, 2016 31 / 32

http://dx.doi.org/10.1177/0748730409335546
http://www.ncbi.nlm.nih.gov/pubmed/19465700
http://dx.doi.org/10.1002/da.10101
http://www.ncbi.nlm.nih.gov/pubmed/12768650
http://dx.doi.org/10.1089/jwh.2014.4911
http://dx.doi.org/10.1089/jwh.2014.4911
http://www.ncbi.nlm.nih.gov/pubmed/9591614
http://dx.doi.org/10.1080/07420520500545979
http://dx.doi.org/10.1080/07420520500545979
http://www.ncbi.nlm.nih.gov/pubmed/16687322
http://www.ncbi.nlm.nih.gov/pubmed/8299607
http://www.ncbi.nlm.nih.gov/pubmed/3396566
http://www.ncbi.nlm.nih.gov/pubmed/20519091
http://dx.doi.org/10.1371/journal.pone.0060090
http://www.ncbi.nlm.nih.gov/pubmed/23555896
http://dx.doi.org/10.3109/07420528.2014.982757
http://dx.doi.org/10.3109/07420528.2014.982757
http://www.ncbi.nlm.nih.gov/pubmed/25424517
http://dx.doi.org/10.1210/jcem-65-5-823
http://www.ncbi.nlm.nih.gov/pubmed/3667880
http://dx.doi.org/10.1016/j.psyneuen.2015.04.022
http://www.ncbi.nlm.nih.gov/pubmed/26123902
http://www.ncbi.nlm.nih.gov/pubmed/16259539
http://dx.doi.org/10.1016/j.jad.2011.04.046
http://www.ncbi.nlm.nih.gov/pubmed/21601293
http://www.ncbi.nlm.nih.gov/pubmed/12723880
http://dx.doi.org/10.3109/07420528.2013.874355
http://www.ncbi.nlm.nih.gov/pubmed/24397301
http://dx.doi.org/10.5665/sleep.5154
http://dx.doi.org/10.5665/sleep.5154
http://www.ncbi.nlm.nih.gov/pubmed/26085289
http://www.ncbi.nlm.nih.gov/pubmed/2748771


88. Rosnet E, Jurion S, Cazes G, Bachelard C (2004) Mixed-gender groups: coping strategies and factors
of psychological adaptation in a polar environment. Aviat Space Environ Med 75: C10–C13. PMID:
15267070

89. Middleton B, Stone BM, Arendt J (2002) Human circadian phase in 12:12 h, 200: <8 lux and 1000: <8
lux light-dark cycles, without scheduled sleep or activity. Neurosci Lett 329: 41–44.
S0304394002005748 [pii]. PMID: 12161258

90. Duffy JF, Wright KP Jr (2005) Entrainment of the human circadian system by light. J Biol Rhythms 20:
326–338. 20/4/326 [pii]; doi: 10.1177/0748730405277983 PMID: 16077152

91. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secre-
tion in humans. Science 210: 1267–1269. PMID: 7434030

92. Wright KP Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED (2013) Entrainment of the
human circadian clock to the natural light-dark cycle. Curr Biol 23: 1554–1558. S0960-9822(13)
00764-1 [pii]; doi: 10.1016/j.cub.2013.06.039 PMID: 23910656

93. Carvalho FG, Hidalgo MP, Levandovski R (2014) Differences in circadian patterns between rural and
urban populations: an epidemiological study in countryside. Chronobiol Int 31: 442–449. doi: 10.
3109/07420528.2013.846350 PMID: 24397277

94. Corbett RW, Middleton B, Arendt J (2012) An hour of bright white light in the early morning improves
performance and advances sleep and circadian phase during the Antarctic winter. Neurosci Lett 525:
146–151. S0304-3940(12)00854-3 [pii]; doi: 10.1016/j.neulet.2012.06.046 PMID: 22750209

95. Fullagar HH, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T (2015) Sleep and athletic perfor-
mance: the effects of sleep loss on exercise performance, and physiological and cognitive responses
to exercise. Sports Med 45: 161–186. doi: 10.1007/s40279-014-0260-0 PMID: 25315456

96. Lorton D, Lubahn CL, Estus C, Millar BA, Carter JL, Wood CA, et al. (2006) Bidirectional communica-
tion between the brain and the immune system: implications for physiological sleep and disorders with
disrupted sleep. Neuroimmunomodulation 13: 357–374. 000104864 [pii]; doi: 10.1159/000104864
PMID: 17709958

97. Bollinger T, Bollinger A, Oster H, SolbachW (2010) Sleep, immunity, and circadian clocks: a mecha-
nistic model. Gerontology 56: 574–580. 000281827 [pii]; doi: 10.1159/000281827 PMID: 20130392

98. Reitz CJ, Martino TA (2015) Disruption of Circadian Rhythms and Sleep on Critical Illness and the
Impact on Cardiovascular Events. Curr Pharm Des 21: 3505–3511. CPD-EPUB-68570 [pii]. PMID:
26144940

99. Nedeltcheva AV, Scheer FA (2014) Metabolic effects of sleep disruption, links to obesity and diabe-
tes. Curr Opin Endocrinol Diabetes Obes 21: 293–298. doi: 10.1097/MED.0000000000000082
PMID: 24937041

100. Wacker M, Holick MF (2013) Sunlight and Vitamin D: A global perspective for health. Dermatoendocri-
nol 5: 51–108. doi: 10.4161/derm.24494 2013DE0239 [pii]. PMID: 24494042

101. Roosli M, Mohler E, Frei P, Vienneau D (2014) Noise-related sleep disturbances: does gender mat-
ter? Noise Health 16: 197–204. NoiseHealth_2014_16_71_197_137036 [pii]; doi: 10.4103/1463-
1741.137036 PMID: 25033784

102. Steinach M, Gunga H-C (2012) Circadian Rhythm and Stress. In: Choukér A, editors. Stress Chal-
lenges and Immunity in Space: FromMechanisms to Monitoring and Preventive Strategies. Berlin /
Heidelberg: Springer Verlag. pp. 87–106.

103. Gunga H-C (2015) Space. In: Gunga H-C, editors. Human Physiology in Extreme Environments. Lon-
don: Academic Press Elsevier. pp. 273–311.

Sleep Quality Changes during Antarctic Overwintering

PLOS ONE | DOI:10.1371/journal.pone.0150099 February 26, 2016 32 / 32

http://www.ncbi.nlm.nih.gov/pubmed/15267070
http://www.ncbi.nlm.nih.gov/pubmed/12161258
http://dx.doi.org/10.1177/0748730405277983
http://www.ncbi.nlm.nih.gov/pubmed/16077152
http://www.ncbi.nlm.nih.gov/pubmed/7434030
http://dx.doi.org/10.1016/j.cub.2013.06.039
http://www.ncbi.nlm.nih.gov/pubmed/23910656
http://dx.doi.org/10.3109/07420528.2013.846350
http://dx.doi.org/10.3109/07420528.2013.846350
http://www.ncbi.nlm.nih.gov/pubmed/24397277
http://dx.doi.org/10.1016/j.neulet.2012.06.046
http://www.ncbi.nlm.nih.gov/pubmed/22750209
http://dx.doi.org/10.1007/s40279-014-0260-0
http://www.ncbi.nlm.nih.gov/pubmed/25315456
http://dx.doi.org/10.1159/000104864
http://www.ncbi.nlm.nih.gov/pubmed/17709958
http://dx.doi.org/10.1159/000281827
http://www.ncbi.nlm.nih.gov/pubmed/20130392
http://www.ncbi.nlm.nih.gov/pubmed/26144940
http://dx.doi.org/10.1097/MED.0000000000000082
http://www.ncbi.nlm.nih.gov/pubmed/24937041
http://dx.doi.org/10.4161/derm.24494
http://www.ncbi.nlm.nih.gov/pubmed/24494042
http://dx.doi.org/10.4103/1463-1741.137036
http://dx.doi.org/10.4103/1463-1741.137036
http://www.ncbi.nlm.nih.gov/pubmed/25033784

