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We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal
environment to nonclassical stationary states by feedback loops based on weak measurements and conditioned
linear driving. We derive general analytical upper bounds for the single-mode squeezing and multimode
entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal
excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in
the bath allow for larger steady-state squeezing and entanglement if the efficiency of the optimal continuous
measurements conditioning the feedback loop is high enough. We also consider the performance of feedback
strategies based on homodyne detection and show that, at variance with the optimal measurements, it degrades
with increasing temperature.
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I. INTRODUCTION

All quantum technologies hinge on establishing controlled
interactions between different constituents of quantum systems
while reducing unwanted interactions with an environment,
which give rise to decoherence. In dealing with environmental
decoherence, two main paradigms have emerged over the
past 15 years: One may either attempt to decouple the
relevant, logical degrees of freedom from the environment
by various techniques (e.g., decoherence free subspaces [1],
error correction [2], dynamical decoupling [3]) and then
proceed to process the quantum information coherently (e.g.,
in gate-based models of quantum computation, through unitary
operations), or one may try to manipulate the noisy, nonunitary
evolution of the system directly, tailoring it to suit one’s aims.

The second viewpoint, which one might broadly refer to as
the “dissipative” approach to quantum information processing,
has a long tradition, going back to early proposals for reservoir
engineering [4], and has recently been compounded by the
design of a model for dissipative, nonunitary quantum compu-
tation [5]. Hence, it has been repeatedly shown, in various
contexts and settings, that working with the environment
rather than against it may lead to forms of cooperation
whereby the environment contributes to enhance certain
coherent tasks performed on the system, often in a rather
counterintuitive manner [6–27]. Besides such enhancements,
dissipative approaches typically allow for the stabilization of
target quantum resources, which may be a key advantage over
unitary manipulation, depending on the task at hand.

In engineering, a standard way to mold the environ-
ment to improve a system’s performance is the use of
measurement-based feedback control. In quantum mechanics,
where measurements affect the state of the system by inducing
discontinuous jumps, measurement-based feedback control
can be effected by monitoring part of the environment, which
results in a weak measurement on the system, and then
using the classical information contained in the measurement
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outcomes to condition subsequent manipulations of the sys-
tem. Quantum feedback control theory blossomed over the last
10–20 years within the quantum optics, quantum control, and
quantum information communities [28–30], and experiments
are quickly catching up with several successful practical
demonstrations [31].

This paper is the account of notable cases of environmental
cooperation in the setting of controlled dissipative dynamics in
linear Gaussian systems [30,32–35]. The optimized operation
of linear feedback loops to create maximal steady-state
entanglement has been considered over the past few years,
both in loop [36–38] and out of loop [39]. All this body of
work, however, is restricted to zero-temperature environments
manifesting themselves through pure losses and no input
thermal noise. Here, we consider a system of n bosonic modes
subject to a quadratic Hamiltonian and to dissipation in a
thermal environment with average excitation number N and
show that the maximal squeezing and entanglement achievable
by continuous linear feedback control grows with N , that is,
with the temperature of the bath (Sec. III). We apply our results
to various quadratic Hamiltonians, study quantitatively the
role played by the efficiency of the weak measurements that
condition the feedback loop, and also consider the problem
of identifying our optimal measurement strategies, which
are shown to be different from simple homodyne detection
(Sec. IV). The performance of feedback loops based on
continuous homodyne detection will be studied too and shown
to degrade with increasing thermal noise.

Let us remind the reader that continuous variable squeezing
and entanglement (the figures of merit we are considering
in the present study) hold potential for application in preci-
sion measurements [40–42], quantum information processing
[43,44], and quantum communication with continuous variable
quantum systems [45,46].

II. NOTATION AND BACKGROUND

We consider a system of n bosonic modes described by
the vector of canonical operators R̂ = (x̂1,p̂1, . . . ,x̂n,p̂n)T,
with commutation relations encoded by the antisymmetric
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symplectic form �, as per [R̂j ,R̂k] = i�jk (h̄ = 1 throughout
the paper).

Being comprised of Gaussian noise, Gaussian averages,
and Hamiltonian evolutions of the first (“linear driving”) and
second (“canonical,” or “symplectic”) order in the canonical
operators, our dynamics involve only Gaussian states, which
are entirely described by first and second statistical moments
of the canonical operators [47]. The second moments of
a Gaussian state �, in particular, are represented by a
2n × 2n covariance matrix (CM) σ : σjk = Tr({R̂j ,R̂k}�) −
2Tr(R̂j�)Tr(R̂k�), which satisfies the well-known Robertson-
Schrödinger uncertainty relation:

σ + i� � 0. (1)

This is a necessary and sufficient condition for a CM to
represent a physical Gaussian state � [48].

Let us begin by considering the most general time-
independent quadratic Hamiltonian acting on the system:

Ĥ = 1
2 R̂�H R̂,

where the “Hamiltonian matrix” H is a generic symmetric
matrix. We later modify the Hamiltonian to include a time-
dependent linear term which will exert the feedback action
on the system. The most general deterministic dynamics pre-
serving the Gaussian character of the quantum state �, taking
into account the interaction with a Markovian environment, is
given by the Lindblad master equation

d�

dt
= −i[Ĥ ,�] +

L∑
j=1

D[ĉj ]� = L0�, (2)

where

D[O]� = O�O† − (O†O� + �O†O)/2, (3)

and the operators ĉ = (ĉ1, . . . ,ĉL) are linear combinations of
the canonical operators, i.e., ĉ = C̃R̂.

The corresponding “free” (in that no monitoring or feed-
back actions have been introduced yet) dynamics of first and
second moments under such conditions is described by

d〈R̂〉
dt

= A〈R̂〉, (4)

dσ

dt
= Aσ + σAT + D, (5)

where A = �(H + Im[C̃†C̃]) and D = 2�Re[C̃†C̃]�T. If the
system is stable, in the sense of admitting a steady state, it must
be (A + AT) < 0, which we will assume in what follows.

The matrices A and D are usually referred to respectively
as the drift and diffusion matrices and completely characterize
the evolution of Gaussian states. We now assume to monitor
continually the environment on time scales which are much
shorter than the typical system’s response time, by means of
weak measurements. These positive-operator valued measures
(POVMs) are usually referred to as “general-dyne detections”
[30], encompassing all homodyne detections, both direct and
those resorting to ancillary modes (and hence heterodyne
detection too). General-dyne POVMs are the most general,
allowing for a continuous, though stochastically fluctuating,
monitored evolution of the system. In the following, we
distinguish between the conditional state of the system �c,

with CM σ c (here “conditional” refers to the conditioning
due to the knowledge of the weak measurements’ out-
comes), and the time-averaged, “unconditional” state � =
(1/�t)

∫ t+�t

t
�c(s)ds, with CM σ , where �t is an integration

interval much larger than the typical time scale of the stochastic
fluctuations of the measured current [49]. In general the
evolution of the conditional state is described by the stochastic
master equation (SME)

d�c = L0�cdt + dz†(t)�cĉ�c + �c�cĉ†dz(t) (6)

where �cÔ = Ô − Tr[�cÔ], and dz = (dz1, . . . ,dzL)T is a
vector of infinitesimal complex Wiener increments, with van-
ishing expectation values E[dz] = 0. Each stochastic master
equation, determined by the POVM describing the continuous
monitoring, is said to “unravel” the master equation, which is
obtained by averaging over the POVMs’ outcomes (in the case
above, this may be done by just setting to zero all the terms
where Wiener increments occur). Hence, in the literature, a
choice of the continuous monitoring is also referred to as an
“unravelling” (a terminology largely drawn from the quantum
trajectory’s approach to open quantum systems [29,30]).

The correlations between these Wiener increments define
two matrices

dzdz† = �dt, dzdzT = ϒdt, (7)

which can be combined in a single “unravelling” matrix

U = 1

2

(
� + Re[ϒ] Im[ϒ]

Im[ϒ] � − Re[ϒ]

)
. (8)

The unravelling matrix U completely characterizes the
general-dyne detection performed on the environment. Notice
that a proper unravelling matrix has to satisfy U � 0 and
ϒT = ϒ [35].

The continuous monitoring of the output field is recorded
in the general-dyne current

y(t) = C〈R̂〉 + dw
dt

, (9)

where C = (2U )1/2C̄, C̄T = (Re[C̃T,Im[C̃T]), and dw is a
vector of real Wiener increments satisfying dwdwT = 1dt .
One can show that the dynamics of the conditional state �c

is Gaussian, with stochastic fluctuations (depending on the
measured current) affecting the first moments, but an entirely
deterministic evolution for the matrix of second moments
σ c (see Appendix A for details). This fact is essential to
our discussion. In fact, the white-noise fluctuations of the
first moments are so fast that one is left with the average,
unconditional evolution of the quantum state to all practical
purposes, but, as depicted in Fig. 1, the unconditional state is
just a Gaussian state resulting from the average of conditional
Gaussian states with the same CM σ c and different first
moments (centers of their positions in phase space). It is very
easy to see that, under such an average, all the figures of merit
we are going to consider (i.e., entanglement and squeezing) can
only decrease. Hence, for given general-dyne measurement,
the best case scenario for any of our figures of merit would be
one where the fluctuations of the first moments cancel out and
the average unconditional state coincides with the conditional
state. It turns out that such a situation can always be arranged by
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FIG. 1. (Color online) Heuristic phase-space representation of an
optimal linear feedback action. The unconditional state is a Gaussian
average, with CM σ , of conditional Gaussian states with the same CM
σ c and different centers in phase space (a). The optimal Markovian
choice for the linear driving term, represented by gray arrows in
(a) and by u(t) in the Hamiltonian, cancels the first moments of
the conditional state, thus making it coincide with the unconditional
averaged one (b).

adding a linear Markovian feedback action to the Hamiltonian:

Ĥf = −R̂T�By(t), (10)

where y(t) is the general-dyne current and B is a matrix
completely determined by the unravelling matrix U (see
Appendix A for the explicit expression of B). Markovian
feedback is therefore always optimal to our aims and we
hence restrict the following discussion to it. Before proceeding,
let us briefly mention that the dynamics of the averaged,
unconditional second moments under a linear Markovian
feedback action like that of Eq. (10) can still be treated
analytically and is of the form dσ/dt = A′σ + σA′T + D′ (the
modified drift and diffusion matrices are given in Appendix A).

In view of the above, in order to optimize the steady-state
squeezing or entanglement, one has just to optimize the
relevant figure of merit for the conditional state �c and then
apply the Markovian feedback strategy that ensures � = �c

(see Fig. 1). The optimization over the set of conditional
states does not need to go into the details of the conditional
dynamics but can instead be tackled by resorting to a general
mathematical result: Given drift matrix A and diffusion matrix
D, a CM σ c is a stabilizing solution of the deterministic
conditional dynamics of the second moments if and only if [34]

Aσ c + σ cA
T + D � 0. (11)

In the next section we use this last equation, together with
Eq. (1), to derive the ultimate bounds posed by quantum
mechanics on the achievable squeezing and entanglement by
means of feedback strategies based on continuous general-
dyne detections.

III. BOUNDS ON MAXIMUM ACHIEVABLE SQUEEZING
AND ENTANGLEMENT

In the following we derive analytical bounds on the
Gaussian entanglement and squeezing achievable by means of
any feedback strategy based on general-dyne measurements
and linear driving. We present our main findings as three
lemmas leading to two final propositions.

Lemma 1 (Bound on smallest symplectic eigenvalue). The
smallest partially transposed symplectic eigenvalue ν̃− of a

generic CM σ is bounded from below as follows:

ν̃2
− � λ

↑
1 λ

↑
2 , (12)

λ
↑
1 and λ

↑
2 being the two smallest eigenvalues of σ .

Proof. Notice that this proof can be found in Ref. [50]. We
reproduce it here to make our work self-contained. Henceforth,
|v〉 stands for a unit vector in the phase space 
 and 〈v|
is its dual under the Euclidean scalar product. Also, given
a bipartition of the modes into the “first” l and the “last”
m modes, let us define the matrix T , representing partial
transposition in phase space, as T = 1⊕l

2 ⊕ σ⊕m
z , σz being the z

Pauli matrix. Hence, the partially transposed symplectic form
is defined as �̃ = T �T The squared symplectic eigenvalue
ν̃2

− is the smallest eigenvalue of the matrix σ 1/2�̃Tσ �̃σ 1/2:

ν̃2
− = min

|v〉
〈v|σ 1/2�̃Tσ �̃σ 1/2|v〉.

For each |v〉, one can define the unit vector |w〉 =
�̃σ 1/2|v〉/√〈v|σ |v〉, such that 〈v|σ 1/2|w〉 = 0 (due to the
antisymmetry of �̃) and

ν̃2
− = min

|v〉
〈v|σ |v〉〈w|σ |w〉 � min

|v〉,|w〉
〈v|σ |v〉〈w|σ |w〉 = λ

↑
1 λ

↑
2 .

The last equality is easily verified once 〈v|σ 1/2|w〉 = 0 and
σ > 0 are enforced and completes the proof. �

Next, the uncertainty principle entails the following:
Lemma 2 (Uncertainty relation for CMs’ eigenvalues). Let

{ λ
↑
j } and { λ

↓
j } be, respectively, the 2n increasingly ordered

and decreasingly ordered eigenvalues of an n-mode CM σ .
Then one has

λ
↑
j λ

↓
j � 1 for 1 � j � n. (13)

Proof. Note that the uncertainty relation (1) is equivalent to
the two following conditions [50,51]:

σ 1/2�Tσ�σ 1/2 � 1 and σ > 0. (14)

For any |v〉 ∈ 
 one can define |z〉 = �σ 1/2|v〉/√〈v|σ |v〉,
so that the Robertson Schrödinger inequality (14) can be
recast as

〈v|σ |v〉〈z|σ |z〉 � 1 ∀ |v〉 ∈ 
. (15)

We now denote by |vj 〉 the eigenvectors corresponding to the
increasingly ordered eigenvalues of σ : σ |vj 〉 = λ

↑
j |vj 〉. Let us

consider a vector |v〉 belonging to the subspace, which we
denote 
k , spanned by the k smallest eigenvectors of σ {|vj 〉},
for j � k. Clearly one has 〈v|σ |v〉 � λ

↑
k . The inequality (15)

then leads to

λ
↑
k 〈z|σ |z〉 � 〈v|σ |v〉〈z|σ |z〉 � 1 ∀ |v〉 ∈ 
k,

which must be satisfied by all the vectors |z〉 belonging to the
k-dimensional linear subspace �
k (defined as the subspace
spanned by the k orthogonal vectors �|vk〉):

λ
↑
k 〈z|σ |z〉 � 1 ∀|z〉 ∈ �
k.

By Poincaré inequality [52], a vector |z〉 must exist in �
k for
which 〈z|σ |z〉 � λ

↓
k , such that λ

↑
k λ

↓
k � 1. �

As an immediate corollary of Lemma 2, one obtains

λ
↑
1 λ

↑
2 � 1

λ
↓
1 λ

↓
2

. (16)
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Lemma 3 (Bound on eigenvalues of steady state CMs).
Let σ c be a conditional CM at steady state obtained under
continuous general-dyne measurements, diffusion matrix D,
and a drift matrix A. The product of the two largest eigenvalues
λ

↓
1 and λ

↓
2 of σ c is bounded as follows:

λ
↓
1 λ

↓
2 � (δ↓

1 + δ
↓
2 )2

4 α
↑
1 α

↑
2

, (17)

where {α↑
j } are the (strictly positive) eigenvalues of (−A −

AT ) in increasing order, while {δ↓} are the (strictly positive)
eigenvalues of D in decreasing order.

Proof. Given the condition (11), and given the eigenvectors
of σ c, |λ↓

1 〉 and |λ↓
2 〉 corresponding to λ

↓
1 and λ

↓
2 , we have

λ
↓
1 〈λ↓

1 | − (A + AT )|λ↓
1 〉 � 〈λ↓

1 |D|λ↓
1 〉, (18)

λ
↓
2 〈λ↓

2 | − (A + AT )|λ↓
2 〉 � 〈λ↓

2 |D|λ↓
2 〉. (19)

By defining Ã = −(A + AT ) and multiplying the inequalities,
we have

λ
↓
1 λ

↓
2 〈λ↓

1 |Ã|λ↓
1 〉〈λ↓

2 |Ã|λ↓
2 〉 � 〈λ↓

1 |D|λ↓
1 〉〈λ↓

2 |D|λ↓
2 〉, (20)

then

λ
↓
1 λ

↓
2 � max〈v1|v2〉=0〈v1|D|v1〉〈v2|D|v2〉

min〈v1|v2〉=0〈v1|Ã)|v1〉〈v2|Ã)|v2〉
(21a)

� (δ↓
1 + δ

↓
2 )2

4 α
↑
1 α

↑
2

, (21b)

where we use

min
〈v1|v2〉=0

〈v1|Ã|v1〉〈v2|Ã|v2〉 � α
↑
1 α

↑
2 , (22)

max
〈v1|v2〉=0

〈v1|D|v1〉〈v2|D|v2〉 �
(

δ
↓
1 + δ

↓
2

2

)2

. (23)

�
Further, and more generally, one has the following:
Proposition 1 (Maximal unconditional squeezing). Let σ

be the CM of a steady-state achievable by continuous weak
general-dyne measurements and linear driving in a system
of bosonic modes subject to a drift matrix A and Gaussian
white noise with a diffusion matrix D. The squeezing λ

↑
1 is

bounded by

λ
↑
1 � α

↑
1

δ
↑
1

. (24)

Proof. From Eq. (13) we obtain the relation λ
↑
1 � 1/λ

↓
1 ,

where λ
↓
1 (λ↑

1 ) is the largest (smallest) eigenvalue of a CM σ .
By considering a conditional CM at steady state and following
the same line of reasoning used in Lemma 3, we obtain the
following inequality λ

↓
1 � δ

↓
1 /α

↑
1 , which yields the inequality

λ
↑
1 � 1

λ
↓
1

� α
↑
1

δ
↓
1

. (25)

As explained before, the unconditional state � that we obtain
from our dynamics is a statistical mixture (with Gaussian
profile) of different conditional states �r having the same
CM σ c and different first moments r = 〈R̂〉c, in formulas
� = ∫

dr p(r)�r. As a consequence, the unconditional CM

reads σ = σ c + τ , where τ > 0 is the classical covariance
matrix of the first moments’ distribution p(r). Thus the lowest
eigenvalue of σ is lower bounded by the eigenvalue of σ c

and the bound above is valid for the unconditional state. It is
worth remembering that given an optimal CM σ c which is a
physically stabilizing solution of the conditional dynamics, the
bound is tight, since we can always find a Markovian feedback
strategy such that � = �r=0, that is, such that the unconditional
state has CM σ c and zero first moments. �

Proposition 2 (Maximal unconditional entanglement). Let
� be the CM of a steady-state achievable by continuous weak
general-dyne measurements and linear driving in a system of
bosonic modes subject to a drift matrix A and Gaussian white
noise with a diffusion matrix D. The logarithmic negativity
EN (�) [53] of any 1 versus (n − 1) modes or bisymmetric
bipartition of � is bounded by

EN (�) � max

⎡
⎣0, log2

⎛
⎝ δ

↓
1 + δ

↓
2

2
√

α
↑
1 α

↑
2

⎞
⎠

⎤
⎦ . (26)

Proof. The chain of inequalities (12), (16), and (17)
leads to

ν̃2
− � 4 α

↑
1 α

↑
2

(δ↓
1 + δ

↓
2 )2

, (27)

which, in turn, constrains the maximal logarithmic negativity
achievable for states �r conditioned by Gaussian measure-
ments having a CM σ c. In fact, by using the formula EN =
max[0,− log(ν̃−)], we obtain

EN (�r) � max

⎡
⎣0, log2

⎛
⎝ δ

↓
1 + δ

↓
2

2
√

α
↑
1 α

↑
2

⎞
⎠

⎤
⎦ . (28)

On the other hand, the unconditional (Gaussian) state reads
� = ∫

dr p(r)�r; this implies that � can be obtained from
the Gaussian state �r=0 (having CM σ c and vanishing first
moments) by local operations and classical communication
alone, because first moments can be arbitrarily adjusted
by local unitary operations. Since the log negativity is an
entanglement monotone [54], we have EN (�) � EN (�r);
that is, the bound above is valid also for the unconditional
state and can be achieved by means of optimal Markovian
feedback. �

A. Remarks on the bounds

A noticeable feature of both our bounds is that they
increase (somewhat loosely, we refer to λ

↓
1 getting smaller

as an “increase” in the squeezing) if the largest eigenvalues
of the diffusion matrix D increase, which characterizes a
noisier environment. As we see in the following section, if one
considers a simple thermal environment, the diffusion matrix
reads D = ⊕n

j=1(1 + 2Nj )12, and thus δ
↓
1 = δ

↓
2 = 1 + 2N

↓
1 ,

where N
↓
1 is the largest number of thermal excitations in

an environmental degree of freedom. As already proven in
Ref. [38] in the special case of pure losses, our bounds are
actually tight for several important dynamics, where they
represent the actual maximal values achievable. Exact general
conditions for the tightness of the bounds are presented in
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FIG. 2. (Color online) Heuristic phase space picture of the noise
enhancement of the optimal feedback action. The feedback squashes
the thermally broadened unconditional steady state CM σ th, turning
it into the squeezed CM σ . By Heisenberg principle, the squashing
is limited by the inverse of the thermal uncertainty in the orthogonal
quadrature, which increases with increasing noise.

Appendix B, while specific important instances are treated in
Sec. IV.

Hence, our findings show that the maximal achievable
entanglement increases with the temperature of the bath.
This apparently counterintuitive behavior can be illustrated
and understood by considering the feedback action on the
squeezing of the unconditional state of a free single bosonic
mode [55]. As we shall see, in this case the optimal procedure
to obtain squeezing consists in monitoring the environment
through a specific general-dyne POVM, also known as a
specific “unravelling,” along a given phase-space direction
(in the sense that the average of the general-dyne current
coincides with the expectation value of the quadrature along
that direction in phase space) and then in systematically driving
the expectation value of the monitored quadrature to zero. As
illustrated in Fig. 2, this produces an uncertainty contraction
for that quadrature, while the conjugate, orthogonal quadrature
is entirely unaffected. Hence, by the Heisenberg principle, the
achievable squeezing is ultimately limited by the inverse of
the uncertainty in the orthogonal quadrature, which clearly
increases with the available thermal energy of the bath. In a
sense, this is a case of reservoir engineering where the effect
of the bath is “squashed” [56], rather than squeezed, by means
of continuous measurements.

If one is interested in optimal squeezing, this thermal
enhancement can be obtained by measuring and acting locally
on a single quadrature, while the generation of optimal
entanglement will generally require nonlocal measurements.
However, it should be noted here that linear feedback does al-
low for an increase in steady-state unconditioned entanglement
even with local measurements, if the Hamiltonian couplings
between the modes are strong enough [38]. It should also
be noted that whenever the bound is achievable, the optimal
steady state is pure, because the saturation of the uncertainty
relation (1) is implied. In such cases, the optimal feedback
strategy not only maximizes a figure of merit but also stabilizes
a pure state, regardless of how noisy the environment may be.

We should also note that the squeezing and entanglement
optimized in our analysis are in-loop, rather than out-of-loop,
resources. Depending on the specifics of the considered
setup, in practice one might get around this problem by
(i) turning off the control such that the resources (squeezing
and entanglement) of the system will be transferred to output
fields on sufficiently short time scales (see, e.g., Ref. [57]), and
(ii) including the additional systems that have to exploit the

quantum resources in the feedback loop, as was suggested
in Ref. [58]. For a treatment focusing on the out-of-loop
entanglement transferable to traveling modes, encompassing
the effect of delays and losses at zero temperature, see
Ref. [39].

IV. OPTIMAL AND HOMODYNE-BASED
FEEDBACK STRATEGIES

In this section we evaluate the bounds for some cases
with direct experimental relevance and contrast optimal per-
formances with what can be obtained with readily available
homodyne detection.

We focus on the case of a finite temperature Markovian
environment, in which case Eq. (2) can be rewritten as

d�

dt
= Lth� (29a)

= −i[Ĥ ,�] + κ

n∑
j=1

[(Nj + 1)D[âj ]� + NjD[â†]�],

(29b)

where κ is the loss rate of the system and Nj represents the
number of the thermal excitations in the bath of mode j [59].
The drift and diffusion matrices then read

Ath = (�H − κ12n)/2, (30)

Dth =
n⊕

j=1

(1 + 2Nj )12. (31)

In the following we calculate the bounds on squeezing and
entanglement and present both the stochastic master equation
corresponding to the optimal strategies saturating the bounds,
as well as the ones based on homodyne linear feedback.

A. Free system

Let us start with the simple case where no Hamiltonian is
present (H = 0, which in practice corresponds to considering
a system in the rotating frame and to having all the mea-
surements’ phase references rotate accordingly). Henceforth,
we always set δ

↓
1 = δ

↓
2 = 1 + 2N

↓
1 (phase-insensitive thermal

noise). Without any feedback action, the steady state clearly
corresponds to a thermal state without squeezing or entan-
glement. On the other hand, the bounds on the squeezing
and logarithmic negativity achievable via feedback read,
respectively [60],

λ
↑
1 � 1/(1 + 2N

↓
1 ), (32)

EN � log2(1 + 2N
↓
1 ). (33)

As regards single-mode squeezing, one can show that the
bound is achievable if one implements a continuous measure-
ment on the environment described by the following stochastic
master equation:

d�c = Lth�c dt +
√

N
↓
1 + 1H[âeiφ]�c dw1

+
√

N
↓
1 H[â†e−iφ]�c dw2, (34)
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where â represents the mode that we want to squeeze,
interacting with the bath having N

↓
1 thermal photons, dwj

are Wiener increments that satisfy dwjdwk = δjk , and

H[Ô]� = Ô� + �Ô† − Tr[�(Ô + Ô†)]. (35)

The strategy is based on a POVM parametrized by two real
continuous values with respective currents both proportional
to the average value of the quadrature 〈x̂φ〉 that we intend to
squeeze. The corresponding Markovian feedback strategy is
straightforwardly based on driving the orthogonal quadrature
by means of these currents. The practical realization of such a
a continuous measurement is a different problem that should
be addressed separately.

One may wonder what the result is if a simple continuous
homodyne measurement of the bath is performed, described
by the SME

d�c = Lth�c dt + 1√
2N

↓
1 + 1

{(N↓
1 + 1)H[âeiφ]

−N
↓
1 H[â†e−iφ]}�c dw, (36)

where a single real Wiener increment dw is present. It is easy
to prove that in this case the steady-state covariance matrix
of the conditional state (that one obtains unconditionally by
means of Markovian feedback) is σ = Dth. No squeezing can
be produced and the feedback action does not bear any effect on
the steady state. Direct comparison of Eqs. (34) and (36) shows
that homodyne detection coincides with the optimal strategy at
zero temperature, where N

↓
1 = 0 (which is uninteresting since

the steady state is just the vacuum in such a case).
As for the entanglement, we can show that in the two-mode

(n = 2) case, if the two baths have the same temperature N ,
the bound can be saturated. One of the optimal unravellings is
described by the SME

d�c = Lth�c dt +
√

N + 1

2
H[â + b̂]�c dw1

+
√

N

2
H[â† + b̂†]�c dw2

+
√

N + 1

2
H[i(b̂ − â)]�c dw3

+
√

N

2
H[i(â† − b̂†)]�c dw4, (37)

where, as usual, dwjdwk = δjk . This corresponds to a
nonlocal strategy with four currents, such that the average
of two of the four components of the current vector y(t)
are proportional to the expectation value 〈x̂a − x̂b〉, and the
remaining two correspond to 〈p̂1 + p̂2〉. The entangled steady
state can be obtained unconditionally by driving respectively
the quadratures (p̂1 − p̂2) and (x̂a + x̂b).

One can also analytically include an efficiency parameter η

for the continuous measurements performed, with 0 � η � 1.
This is incorporated by assuming the loss of a portion (1 − η)
of the amplitude hitting each detector (equivalent to the
action of a beam splitter with transmittivity η before the
detectors). The logarithmic negativity achieved for efficiency
η is given by EN = log2(1 + 2N

↓
1 ) − log2[1 + 4N

↓
1 (1 − η) +

4N
↓
1 (1 − η)]. By inspecting this equation one observes that,

for a given temperature N , one can define a threshold value
ηth = 1+2N

2(1+N) such that entanglement is obtained only for
efficiencies η > ηth. We notice that ηth is always greater than
1/2 and monotonically increases with temperature towards the
maximum value corresponding to a perfect measurement. One
could, for example, consider the practical consequences, in
systems where very few thermal excitations are the dominant
source of noise, as could be the case at terahertz frequencies in
solid-state and optical systems at room temperature [61,62]:
If N � 1 (corresponding to about 4 THz), then the threshold
value is ηth = 0.75. The optimal efficiency raises very quickly
to 1, being already η � 0.9 for N � 5 (around 1 THz).

It is possible to contrast these findings with the effect of a
(nonlocal) continuous homodyne detection of the quadratures
x̂a − x̂b, and p̂1 + p̂2, described by the SME

d�c = Lth�c dt + 1√
2N + 1

{
N + 1√

2
H[â + b̂]

− N√
2
H[â† + b̂†]

}
�c dw1

+ 1√
2N + 1

{
N + 1√

2
H[i(b̂ − â)]

− N√
2
H[i(â† − b̂†)]

}
�c dw2, (38)

accompanied by the linear driving of the conjugated quadra-
ture. As we saw above for a single homodyne detection, no
action on the steady state is obtained in such a case, being
the corresponding covariance matrix σ = Dth. Like for the
single-mode case, direct comparison of Eqs. (37) and (38)
show that homodyne detection is optimal for N

↓
1 = 0 (which

is uninteresting since the steady state is just the vacuum in
such a case).

Also note that, in the most general case, when N
↓
1 = N

↓
2 ,

the bound cannot always be saturated. However, we were able
to find an unravelling similar to the one in Eq. (37), where
N has to be replaced by N

↓
2 and the steady state is a pure

two-mode squeezed state with logarithmic negativity EN =
log2(1 + 2N

↓
2 ), which still highlights a thermally enhanced

performance.

B. Parameteric Hamiltonians

We now move on to consider the case of degenerate
parametric down-conversion, which can be described, in
interaction picture, by the quadratic Hamiltonian

Ĥ = χ (x̂1p̂2 + p̂1x̂2)

between two modes at the same frequency [63], such that the
average number of thermal excitations in the two modes are
the same and set equal to N , yielding

A = −14

2
+ χ

2

(
0 σz

σz 0

)
, (39)

Dth = (1 + 2N )14, (40)

where σz is the Pauli z matrix. We impose stability by bounding
the interaction strength: χ < 1/2. This set of dynamical
parameters allows for the perfect saturation of the bound on
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the entanglement, and thus for the analytical optimisation of
the achievable logarithmic negativity, which is given by

EN � log2(1 + 2N ) − log2(1 − 2χ ),

to be compared with the free steady-state value

E
(0)
N = log2(1 + 2χ ) − log2(1 + 2N )

that would be obtained in the absence of monitoring and
feedback action. This is possibly the most apparent example
of noise-enhanced performance in our study: While the
free steady-state logarithmic negativity decreases with the
temperature, as one would expect, its optimized counterpart
increases with N . Closed-loop general-dyne control is in
principle capable of retrieving information from the output
channel and turning the phase-insensitive thermal energy into
correlations between the modes. The optimal feedback strategy
can be determined in this case as well: It corresponds to a
continuous measurement described by the SME in Eq. (37),
followed by driving the quadratures (x̂1 + x̂2) and (p̂1 − p̂2)
with the currents obtained by monitoring the conjugated
squeezed quadratures (p̂1 + p̂2) and (x̂1 − x̂2), respectively. In
this case, too, a perfect measurement is required and one should
hence consider the effect of the efficiency η on the achievable
optimal entanglement. The conditions on the measurement
efficiency for the feedback loop to be able to improve the
generation of entanglement are rather strict and become steeper
as the noise increases. For χ = 0.3 and N = 1, where the
steady state in absence of feedback is unentangled, η � 0.8
is needed to generate any entanglement between the two set
of modes. This threshold increases to 0.92 for N = 2.5 and
to 0.98 for N = 10. These are hence the typical values of
excitations where linear feedback control might really make
a difference in the generation of pure entangled states of
continuous variable systems.

Once again, we can contrast this result with a feedback
strategy based on the weak, continuous homodyne detection of
the quadratures (p̂1 + p̂2) and (x̂1 − x̂2), described by Eq. (38).
In the case of zero temperature, the two approaches coincide,
as already shown in Ref. [38]. For nonzero temperature, the
entanglement achievable by homodyne detection of the bath
is instead equal to

EN (�) = max{0,− log2[(1 + 2N )(1 − 2χ )]}. (41)

The steady-state entanglement attainable by homodyne detec-
tion decreases with increasing temperature. Moreover, one can
define a threshold value

χt (N ) = N

1 + 2N
,

such that entanglement can be obtained only for values of the
coupling constant χ > χt (N ).

V. CONCLUSIONS

In this paper, we have derived bounds on single-mode
squeezing and two-mode Gaussian entanglement achievable
by means of continuous measurement and feedback on a
bosonic quantum system interacting with a Markovian thermal
environment. We have shown that these bounds improve

by increasing the temperature of the bath and derived op-
timal continuous unravelling, in terms of stochastic master
equations, to attain such bounds in the cases of parametric
interactions and free systems. We have also shown that
by restriction to homodyne continuous measurements, the
expected dependence on temperature of the achievable figures
of merit are recovered. Optimal performances correspond
to homodyne measurements only in the zero-temperature
limit.

The implementation of the optimal unravellings introduced
here, which are able not only to stave off the effect of thermal
noise and achieve pure steady states [64,65] but also to, in a
sense, convert the thermal energy of the bath into enhanced
squeezed or entangled resources, will be the object of future
inquiry.
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APPENDIX A: LINEAR QUANTUM SYSTEMS AND
OPTIMAL UNRAVELLINGS

In this Appendix we provide the reader with details about
the evolution of Gaussian quantum states under continuous
quantum measurements and linear feedback.

We start by considering the SME in Eq. (6) describing con-
tinuous general-dyne measurements. For the conditional state,
we obtain a diffusive equation with a stochastic component
for the first moments 〈R̂〉c and a deterministic equation for the
CM σ c. In formulas

d〈R̂〉c = A〈R̂〉cdt + (σ cC
T + 
T)dw, (A1)

dσ c

dt
= Aσ c + σ cA

T + D − (σ cC
T + 
T)(Cσ c + 
), (A2)

where dw is a vector of real Wiener increments satisfying
dwdwT = 12n dt [66], 
 = (2U )1/2SC̄� and

S =
(

0 1n

−1n 0

)
.

Then, we consider the addition of a linear time-dependent term
to the Hamiltonian:

Ĥf = −R̂T�By(t), (A3)

where y(t) is the current obtained from the continuous
measurement in Eq. (9) and the matrix B defines the Markovian
feedback action exerted on the system. In this case, the
evolution equation for the unconditional state covariance
matrix σ is still of the form (dσ )/dt = A′σ + σA′T + D′,
where

A′ = A + BC, (A4)

D′ = D − CTBT − BC + 2BBT, (A5)

and C = 2(U )1/2C̄.
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A CM σ c is a physical stabilizing solution of the conditional
dynamics if it satisfies the two following conditions [see
Eq. (A2) and notice that the second term on the right-hand
side is always positive]:

σ c + i� � 0 (physicality condition), (A6)

Aσ c + σ cA
T + D � 0 (stabilising condition). (A7)

As derived by Wiseman and Doherty [34], given a stabilizing
CM σ c, an optimal unravelling Uopt such that σ c can be
obtained at steady state, always exists. In particular a (not
necessarily unique) optimal unravelling Uopt can be obtained
by solving the equation

2ETUE = D + Aσ c + σ cA
T, (A8)

where E = C̄σ c + SC̄�. The Hamiltonian term in Eq. (A3)
is then chosen so as to cancel out the first moments and make
the average unconditional state coincide with the conditional
state. It can be shown that the matrix Bopt achieving this, for a
given steady-state CM σ c, reads

Bopt = −σ cC
T − 
T. (A9)

APPENDIX B: NECESSARY CONDITIONS FOR THE
TIGHTNESS OF THE BOUNDS

In this Appendix, by considering how our bounds were
derived and working backward, we determine sharp conditions
on the matrices A and D for the bounds to be achievable. In
order to express such conditions, let us define the eigenvectors
|α↑

j 〉 and |δ↓
j 〉 associated, respectively, with the j th smallest

eigenvalue of Ã = −A − AT and j th largest eigenvalue of D.
This leads to the following two additional propositions:

Proposition 3 (Conditions for maximal squeezing). A
continuously measured and linearly driven Gaussian system
is able to saturate the bound (24) if and only if

|α↑
1 〉 = |δ↓

1 〉. (B1)

Proof. The inequality λ
↓
1 � δ

↓
1 /α

↑
1 [analogous of rela-

tion (21b) for the squeezing case] is only saturated if the
eigenvector associated to the largest eigenvalue of σ coincides

with |α↑
1 〉 and |δ↓

1 〉, hence our condition (B1), in that it is always
possible to construct a physical σ with largest eigenvalue along
a particular direction. �

Proposition 4 (Conditions for maximal entanglement). A
continuously measured and linearly driven Gaussian system
is able to saturate the bound (29) if and only if the following
relationships are satisfied:

|α↑
1 〉 = |δ↓

1 〉 ∓ |δ↓
2 〉√

2
, (B2)

|α↑
2 〉 = |δ↓

1 〉 ± |δ↓
2 〉√

2
, (B3)

|α↑
2 〉 = �T�̃�, (B4)

〈α↑
1 |T |α↑

1 〉 = 0 (B5)

[where ∓ and ± mean that if Eq. (B2) has a minus sign then
Eq. (B3) has a plus, and vice versa, and that either choice is a
valid condition].

Proof. Equations (B2) and (B3) are necessary for the
saturation of inequality (21b), along with the choices |λ↓

1 〉 =
|α↑

1 〉 and |λ↓
2 〉 = |α↑

2 〉. Then, inspection of the proof of Lemma
2 for k = 1, k = 2, and, by induction, for any k, reveals that the
condition λ

↓
k λ

↑
k = 1 is saturated if and only if |λ↑

k 〉 = �|λ↓
k 〉

(where the eigenvectors associated to λ
↓
k and λ

↑
k have been

denoted with |λ↓
k 〉 and |λ↑

k 〉). Now, in order to saturate the
bound, this additional condition can only be imposed if the
two eigenvectors |λ↓

k 〉, already determined by relations (B2)
and (B3), are orthogonal to �|λ↓

k 〉 (so that the latter can also
be eigenvectors of σ ), that is,

〈λ↓
2 |�|λ↓

1 〉 = 〈α↓
2 |�|α↓

1 〉 = 0. (B6)

Further, inspection of Lemma 1 shows that, for inequality (12)
to be saturated, it must be |λ↑

2 〉 = �̃|λ↑
1 〉 which, by the con-

ditions |λ↓
1 〉 = |α↑

1 〉, |λ↓
2 〉 = |α↑

2 〉 and |λ↑
k 〉 = �|λ↓

k 〉 imposed
at previous steps, becomes |α↑

2 〉 = �T�̃�|α↑
1 〉, which proves

condition (B4). Finally, by inserting Eq. (B4) into Eq. (B6),
and noting that �T�̃�� = −T , one can recast condition (B6)
in terms of |α↑

1 〉 alone as condition (B5). �
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