
A Variable Neighborhood Search algorithm

for the Multimode Set Covering Problem.

Fabio Colombo∗ Roberto Cordone† Guglielmo Lulli‡

June 29, 2013

Abstract

This paper introduces the Multi-Mode Set Covering Problem, which

consists of a plurality of set covering problems linked by cardinality con-

straints. We propose a Variable Neighbourhood Search algorithm and a

Greedy Randomized Adaptive Search Procedure based on a common local

search routine. This routine applies a penalized relaxation of the covering

constraints, tuned by self-adapting parameters, and visits a sequence of

neighborhoods in a nested strategy. We compare the two heuristics with

each other and with a time-limited run of a general-purpose Integer Linear

Programming solver, on a benchmark set of instances with heterogeneous

structure. Both heuristics outperform the solver, though with interesting

differences with respect to the various classes of instances. In particular,

the Variable Neighbourhood Search algorithm proves more effective and

less dependent on the specific features of the instances.

1 Introduction.

Given a ground set I and a family of subsets, the classical Set Covering Problem
(SCP) associates a cost to each subset and requires to find a collection of subsets
“covering” the ground set, i. e. whose union coincides with I, such that the total
cost of the selected subsets is minimum. The elements of the ground set are
usually denoted as rows and the subsets as columns, because the problem can
be represented on a binary matrix as the search for a group of columns with at
least one nonzero entry overall in each row.

The Multi-Mode Set Covering Problem (MM-SCP) introduces a set of modes
and considers for each mode a SCP instance defined on the same ground set
I. Wlog, we may assume that the collections of subsets associated to the SCP

∗University of Milano, Department of Computer Science, via Comelico 39, 20135 Milano,
Italy, fabio.colombo2@unimi.it

†University of Milano, Department of Computer Science, via Comelico 39, 20135 Milano,
Italy, roberto.cordone@unimi.it

‡University of Milano “Bicocca”, Department of Informatics, Systems and Communication,
viale Sarca 336, 20122 Milano, Italy, lulli@disco.unimib.it

1

instances have the same cardinality. In view of this assumption, each SCP in-
stance has the same number of rows and columns. In the following, we denote
corresponding rows (columns) in the different subproblems as a single row (col-
umn) considered in different modes. In general, a column has different costs
and covers different subsets of rows in each mode. All rows should be covered in
all modes. The set covering subproblems associated to each mode are linked by
cardinality constraints, which impose a limit on the number of modes in which
the same column can be included in the solution. We will denote as I the set
of rows, as J the set of columns and as M the set of modes.

We can now formulate the MM-SCP problem as follows:

min f =
∑

j∈J,m∈M

cjmxjm (1a)

∑

j∈J

aijmxjm ≥ 1 i ∈ I,m ∈ M (1b)

∑

m∈M

xjm ≤ bj j ∈ J (1c)

xjm ∈ {0, 1} j ∈ J,m ∈ M (1d)

where xjm ∈ {0, 1} is the binary decision variable indicating if column j is used
in mode m, or not; aijm indicates if row i is covered by column j in mode m
(indicator function); cjm is the cost of selecting column j in mode m; bj is the
maximum number of modes in which column j can be used.

In the MM-SCP formulation, the covering constraints (1b) state that each
element of the ground set belongs to at least one of the selected subsets for
each mode. The cardinality constraints (1c) limit the number of modes for each
column.

The MM-SCP is a generalization of the SCP. In the last decades, several
studies have been reported on the SCP and its extensions. We will briefly review
these developments and their relations with the MM-SCP.

Taxonomy

The MM-SCP trivially reduces to a SCP when only one mode is considered,
i.e., |M | = 1. An alternative reduction can be obtained setting bj ≥ |M | for all
j ∈ J . Under this assumption, the cardinality constraints are redundant and
they are inactive in correspondence to any optimal solution. As well, the k-set-
covering problem, which consists in computing k disjoint coverings of minimum
total cost [2], is a special case of the MM-SCP in which the number of modes
is equal to k, each column covers the same rows in all modes and bj = 1 for all
j ∈ J .

In addition to the two cited problems, there are several problems of the set
cover family which are related to the multimode version herein studied. For
instance, we can mention the multiple-choice set cover problem, which consists
in finding a cover of all the elements of the ground set I selecting one subset (a

2

choice) from each family (set of possible choices) [1]. With respect to the MM-
SCP, the multiple-choice set covering problem requires to find a single covering,
instead of one for each mode, and has disjunction constraints (bj = 1) instead
of general cardinality constraints.

The set multi-cover problem expects each element of the ground set to be
covered several times [4], but it does not require the solution to consist of |M |
full coverings and it does not impose cardinality constraints. It is therefore a
relaxation of the MM-SCP : a feasible solution of the MM-SCP is also feasible
for the set multi-cover problem. A similar relation holds with the multi-set
version of the multi-cover problem, in which each column can be used several
times to provide multiple coverings [14].

Applications

Sensor Networks. Multiple wireless sensor networks under the administration
of different authorities, but located physically on the same area or close to each
other, have to service a set of clients distributed on the considered region. Each
network must service all customers. Sensors belonging to different networks
cannot be located on the same site [5]. This problem is equivalent to the MM-
SCP with bj = 1 for all j ∈ J .

Computational Biology. The scope of reverse engineering methods is to re-
construct gene regulatory networks from DNA microarray gene expression data,
i.e., to produce a high-fidelity representation of the cellular network topology as
a graph, where nodes represents genes and arcs represent direct regulatory in-
teractions (i.e., influences of gene products upon the expression of other genes),
thus explaining gene expression data [6, 17]. Both the activation and the inhibi-
tion of each gene must be explained as the effect of a minimum set of regulator
genes, each of which must be labelled either as an activator or as an inhibitor.

Binate Covering. A fundamental problem in logic synthesis requires to find
the minimum cost solution of a Boolean equation f (x) = true, where f is a
formula in conjunctive normal form and the assignment of value true to each
Boolean variable is associated to a cost. This problem is known as Binate
Covering Problem [20], and is a generalization of the Satisfiability Problem
(SAT). Each variable should be set either in the true or in the false mode, so
as to satisfy all Boolean clauses at minimum cost.

Structure of the paper

Section 2 discusses the computational complexity and the approximability sta-
tus of the MM-SCP ; it also reviews some basic reduction procedures commonly
adopted for the standard SCP, distinguishing those which can be extended to the
MM-SCP from those which cannot. The following section describes in detail
the two algorithms proposed, which follow, respectively, the Variable Neigh-
bourhood Search (VNS) and the Greedy Randomized Adaptive Search procedure
(GRASP) approach. The two algorithms share a common local search pro-

3

cedure, but restart the search in different ways. Our choice of these two ap-
proaches is motivated by the fact that, according to our previous investigations,
they perform effectively on special cases of the MM-SCP [8, 9]. Moreover, VNS
is characterized by a very small number of parameters, and the reactive form
of GRASP allows an automatic tuning of the parameters. Both algorithms,
therefore, portend a robust implementation and an off-the-shelf application.
Section 4 discusses the computational results, and conclusions close the paper.

2 Computational complexity and problem prop-

erties

The decision version of the MM-SCP is NP-complete, because it includes, as
a special case, the well-known SCP, obtained by simply restricting the set of
modes to a singleton, i.e., |M | = 1. However, the introduction of additional
modes makes the general MM-SCP much more complex than its single-mode
counterpart. Indeed, it is trivial to determine whether a SCP instance is feasible
or not, and the SCP admits a logarithmic approximation guarantee, though not
a constant one [15, 7]. Approximation results are also available for more general
problems of the set cover family, such as the set multi-cover problem and its
multi-set version as provided in [19]. By contrast, in the following we prove
that, if there are at least two modes, even the feasibility of the MM-SCP is
NP-complete, and no approximation guarantee can be provided. This result is
a consequence of the limit on the number of modes in which the same column
can be included in the solution of MM-SCP.

Theorem 1 It is NP-complete to determine whether a given instance of the
MM-SCP is feasible or not, even if the mode set M has only two elements.

Proof. The proof is by reduction from the satisfiability problem (SAT). Given
n Boolean variables ξj and r Boolean clauses Ci, an instance of SAT requires
to determine whether there exists a truth assignment to the Boolean variables
such that all Boolean clauses are true. In the following, we show that for any
instance of SAT it is possible to build an instance of MM-SCP which is feasible
if and only if the instance of SAT is feasible.

Let the mode set M consist of two modes, representing the affirmation and
negation of the Boolean variables. Since the rows of the MM-SCP need to be
covered in each of the two modes only by columns used in that mode, we first
build an auxiliary SAT instance to bridge the transformation. To that purpose,
we replace each Boolean clause with two clauses obtained as follows: in the
former, we replace each negative literal ξ̄j with an auxiliary affirmative one ξ′j ,
in the latter we replace each affirmative literal ξj with an auxiliary negative one
ξ̄′j . By construction, any satisfying truth assignment of the original instance
identifies one of the new instance, in which the auxiliary variable ξ′j has the
opposite value of ξj . Conversely, any satisfying truth assignment of the auxiliary
instance such that ξj and ξ′j assume complementary values identifies a satisfying
truth assignment for the original instance.

4

The set J of the MM-SCP instance includes one column for each ξj Boolean
variable (namely, columns j = 1, . . . , n) and one for each ξ′j Boolean variable
(namely, columns j = n+ 1, . . . , 2n). The capacity values bj are set equal to 1
for all columns, so that every column can appear in the solution in at most one
mode, corresponding to the fact that the truth assignment must be consistent.
The rest of the construction introduces suitable constraints to impose that each
column is used in one of the two modes, that the columns associated to the ξj
and ξ′j Boolean variables assume complementary values and that each Boolean
clause is satisfied. The first two conditions are guaranteed introducing in set I
one row for each Boolean variable (namely, rows i = 1, . . . , n), and setting ai,i,m
and ai,n+i,m to 1 and all other coefficients to zero for both modes m = 1 and 2.
The resulting covering constraints:

{

xj,1 + xn+j,1 ≥ 1

xj,2 + xn+j,2 ≥ 1
j = 1, . . . , n

can be combined with the cardinality constraints

{

xj,1 + xj,2 ≤ 1

xn+j,1 + xn+j,2 ≤ 1
j = 1, . . . , n

to obtain the desired result. In fact, if xj,1 = 1, necessarily xj,2 = 0, which
implies that xn+j,2 = 1, and xn+j,1 = 0. Conversely, if xj,1 = 0, necessarily
xn+j,1 = 1, which implies that xn+j,2 = 0, and xn+j,1 = 1. Consequently,
xj,1 = xn+j,2 = 1− xj,2 = 1− xn+j,1: in every feasible solution, columns j and
n+ j are complementary in both modes, and the two modes of each column are
complementary.

The satisfaction of the Boolean clauses is imposed introducing in set I one
row for each original Boolean clause Ci−n (namely, rows i = n+ 1, n+ r). Row
i in mode 1 corresponds to the auxiliary clause with only affirmative literals: if
literal ξj occurs in the clause, coefficient ai,j,1 is set to 1; if literal ξ′j occurs in
the clause, coefficient ai,n+j,1 is set to 1; all other coefficients are set to zero.
Similarly, row i in mode 2 corresponds to the auxiliary clause with only negative
literals: if literal ξ̄j occurs in the clause, coefficient ai,j,2 is set to 1; if literal ξ̄′j
occurs in the clause, coefficient ai,n+j,2 is set to 1; all other coefficients are set
to zero. The resulting covering constraints guarantee that each Boolean clause
includes at least one satisfying literal.

So, the xjm variables behave like a consistent truth assignment to Boolean
variables, and the second family of constraints in mode m = 1 requires the truth
assignment to be satisfying. Therefore, if the MM-SCP instance is feasible, the
SAT instance is also feasible.

Conversely, assume that SAT admits a feasible solution: the corresponding
truth assignment can be converted into a MM-SCP solution setting xj,1 =
xn+j,2 = 1 and xj,2 = xn+j,1 = 0 when the variable ξj is true and xj,1 =
xn+j,2 = 0 and xj,2 = xn+j,1 = 1 when it is false. This solution is feasible,
since the capacity constraints are respected, as well as the covering constraints

5

expressing the relation between variables xj,m and xn+j,m and those expressing
the satisfaction of the Boolean clauses.

This NP-completeness proof also implies that no polynomial algorithm can
have an approximation guarantee, unless in the unlikely case that P = NP .
We remind that, given a suitable function α (·), a minimization problem is α (·)-
approximable when it admits a polynomial time algorithm which, applied to
any instance of size d and minimum cost f∗, provides a solution costing at most
α (d) f∗.

Corollary 1 The MM-SCP does not admit any polynomial algorithm with an
approximation guarantee, unless P = NP.

Proof. Given any SAT instance, consider the correspondingMM-SCP instance
built as in Theorem 1. Introduce two additional columns 2n+1 and 2n+2. Set
the costs c2n+1,1 and c2n+2,2 to 1 and all other costs to 0. Set the coefficients
ai,2n+1,1 and ai,2n+2,2 to 1, ai,2n+1,2 and ai,2n+2,1 to 0, for all rows i ∈ I. The
additional pair of variables x2n+1,m and x2n+2,m now behave like an additional
Boolean variable ξn+1, which, when affirmed, satisfies all Boolean clauses at
unitary cost.

The original SAT instance is feasible if and only if the MM-SCP instance
admits a solution of zero cost. A polynomial algorithm solving the MM-SCP
with an approximation guarantee would provide a solution costing at most
α (d) f∗ = 0, that is an optimal solution. Consequently, it would solve SAT
in polynomial time, implying that P = NP .

A number of reduction procedures are commonly adopted to manipulate
SCP instances so as to produce smaller equivalent instances prior to attacking
them with heuristic or exact algorithms [3]. We briefly extend two of these
procedures to the MM-SCP and provide a simple counterexample for a third
one.

Proposition 1 (Row domination) Let i1, i2 ∈ I be two rows and m ∈ M a
mode such that all columns covering i1 in mode m also cover i2 in the same
mode: ai1jm ≤ ai2jm for all j ∈ J . Then, the constraint on row i2 in mode m
is redundant.

Proof. If ai1jm ≤ ai2jm for all j ∈ J , then
∑

j∈J ai1jmxjm ≤
∑

j∈J ai2jmxjm

for all xjm ∈ {0, 1}, which trivially implies that the constraint on row i1 and
mode m is tighter than that on row i2 and mode m.

Proposition 2 (Column essentiality) Let i ∈ I be a row and m ∈ M a mode
such that a single column j′ ∈ J covers row i in mode m: aij′m = 1 and aijm = 0
for all j 6= j′. In all feasible solutions column j is used in mode m.

Proof. If aij′m = 1 and aijm = 0 for all j 6= j′, then
∑

j∈J aijmxjm = xj′m ≥ 1,
which implies that xj′m = 1.

The column domination property for the SCP states that, given two columns
j1 and j2, such that cj1 ≤ cj2 and all rows covered by j2 are also covered by j1,

6

column j2 can be removed from the instance. This property does not hold for
the MM-SCP, even if the two conditions are imposed on all modes, due to the
cardinality constraint.

Remark 1 The column domination property cannot be extended from the SCP
to the MM-SCP.

Proof. Consider a MM-SCP instance with a column of unitary capacity and
zero cost, covering all rows in all modes: bj = 1, cjm = 0 for all m ∈ M and
aijm = 1 for all i ∈ I, m ∈ M . All other columns are clearly dominated by
column j. However, if the number of modes is larger than one, some of the
other columns are required to obtain a feasible solution.

3 Heuristics for the Multimode Set Covering

Problem

This section describes two local search metaheuristics for the MM-SCP, respec-
tively following the VNS and the GRASP frameworks. The former periodi-
cally restarts the search from solutions generated perturbating the currently
best known one (see Section 3.2); the latter restarts from solutions generated
by a greedy randomized constructive heuristic (see Section 3.3). Both algo-
rithms apply the same basic local search procedure, in which the cardinality
constraints (1c) are strictly enforced, while the covering constraints (1b) can be
freely violated. In order to compare solutions with different degrees of unfea-
sibility, we define the subset of row-mode pairs whose covering constraints are
violated in a solution x as

V (x) =
{

(i,m) ∈ I ×M :
∑

j∈J

aijmxjm = 0
}

and, given two solutions x′ and x′′, we consider x′ better than x′′ when |V (x′) | <
|V (x′′) |, or |V (x′) | = |V (x′′) | and f (x′) < f (x′′).

3.1 The local search procedure

We here describe the local search procedure shared by the two algorithms in
a strictly top-down approach because it is rather sophisticated. We first in-
troduce the several neighborhoods explored and the general structure of the
exploration procedure, then we describe into details how moves are evaluated
and its technicalities.

Neighbourhood hierarchy The use of different neighborhoods allows to en-
rich and strengthen the search. In fact, when the current solution is a local opti-
mum with respect to one of them, it is generally not so for others, and switching
to an alternative neighborhood allows to proceed the search, further improving
the solution [13]. In this work, we consider the following neighborhoods, all of

7

which include only solutions respecting the cardinality constraint (1c), while the
covering constraints (1b) can be freely violated:

• N1: flip the value of one of the xjm variables, thus adding (removing)
column j in mode m to (from) the solution;

• NX : given a column j and two modes m and m′ such that xjm = 1 and
xjm′ = 0, exchange the values of the two variables, thus changing one of
the modes in which the column is used;

• N h
2 : given a mode m and two columns j and j′ whose intersection in

mode m consists of h rows (|{i ∈ I : aijm = aij′m = 1}| = h) and such
that xjm = 1 and xj′m = 0, exchange the values of the two variables, thus
replacing column j with j′ in mode m.

The size of neighborhoods N1 and NX is linear in the number of columns |J |
and modes |M |; the union of all neighborhoodsN h

2 has a linear size with respect
to |M | and a quadratic size with respect to |J |.

The exploration of different neighborhoods is the basis of the Variable Neigh-
bourhood Descent (VND) approach [13]. Adhering to this framework, we explore
the neighborhoods listed above in the following sequence:

N1 → NX → N hmax

2 → N hmax−1
2 , . . . ,N 1

2 (2)

where hmax is the cardinality of the largest intersection between two columns in
the same mode. Given a current solution x̃, the procedure considers its neigbor-
hood N1, evaluates all the neighbor solutions, chooses one of them, denoted by
x′, and decides whether to replace x̃ with x′ or not. If x′ replaces x̃, the search
resumes from the first neighborhood N1 of the new current solution. Otherwise,
the procedure remains centered on x̃ and considers the following neighborhood
in the sequence. This nested strategy is graphically represented in Figure 1.

Notice that, since the aim of the local search is to oscillate between the
feasible and the unfeasible region, in general solution x′ is not chosen as the
best in the current neighborhood and, consequently, solution x̃ is not the best
one found so far, denoted as x∗. The specific strategy used to choose x′ and to
decide whether x′ should replace x̃ or not is described in detail in the following
paragraph.

Move evaluation The solutions of a given neighborhood are estimated by a
weighted sum of their cost f (x) and an auxiliary objective function π (x), which
measures the violation of the covering constraints:

π (x) =
∑

(i,m)∈V (x)

πim (3)

where the coefficients πim are defined in the following.
Since f (x) and π (x) are dimensionally different, and they could have a

different importance during the exploration, we:

8

N1

NX

N2

N2

φ(x') < φ(x)

φ(x') < φ(x)

φ(x') < φ(x)

hmax

1

x := x'

x

x'

x

x'

x

x'

x

x'

yes

no

yes

no

yes no

......

STOP

~

~

~

~

~

~

~

~

Figure 1: Graphical representation of the basic local search procedure

9

• normalize the two functions before combining them, and

• update their relative weights according to the current solution.

The normalization is performed with respect to the best and worst alterna-
tives available in the current neighborhood:

f̄ (x) =
f (x)− fmin

fmax − fmin
π̄ (x) =

π (x)− πmin

πmax − πmin

where fmin and fmax are the smallest and largest costs of the neighbor solutions,
while πmin and πmax are the smallest and largest violations of the neighbor solu-
tions. In this way, both functions assume values in [0; 1], and can be combined
meaningfully.

The combined function used to evaluate the neighbor solutions is

φ (x) = γf̄ (x) + (1− γ) π̄ (x) (4)

where γ ∈ (0, 1) is a suitable coefficient. All solutions in the current neighbor-
hood are evaluated and the one which minimizes function φ, denoted as x′, is
compared to the current solution x̃. If φ (x′) < φ (x̃), then x′ replaces x̃ as the
new current solution. Otherwise, the exploration of the neighborhood termi-
nates, and the search proceeds with the next neighborhood in sequence (2).

Tie-breaking rules For some classes of instances, function φ (x) often as-
sumes the same value for different solutions (in particular, this occurs when
the cost of all columns in all modes is the same). In those cases, the use of
a tie-breaking rule is important to improve the search diversification. In the
experimental result section, we will compare two alternative tie-breaking rules:

• the random selection rule chooses one of the best moves at random using
a uniform distribution;

• the memory-based selection rule chooses the best move which involves the
variables whose value has changed longest ago.

The memory-based rule is inspired by the similar mechanism applied in algo-
rithm HSAT [12] for the SAT problem. In order to apply this rule, we simply
store the iteration in which each variable xjm assumed its current value, and
use it to compare moves yielding the same φ (x).

Self-adaptive tuning of parameter γ The coefficient γ which combines
the normalized values of the total cost and the total violation according to
Equation (4) is obviously a very influential parameter. If γ is too close to 1, the
search evolves towards cheaper, but unfeasible, solutions; if γ is too close to 0,
feasibility is regained, but the solution cost increases. The best value of γ is hard
to estimate, and probably varies during the search. We therefore introduced a
self-adaptive mechanism to tune γ automatically based on the feasibility of the

10

current solution x̃. The procedure sets γ = 0.5 at the beginning of the local
search, and updates it at each iteration according to the following rule:

γ(t+1) =

{

ρ γ(t) + (1− ρ) if x̃ is feasible

ρ zγ(t) if x̃ is unfeasible

The rationale of such a rule is to perform a convex combination of the current
value of γ with 1 when the solution is feasible (and therefore the weight of the
cost function should increase), and with 0 when the solution is unfeasible (and
therefore, the weight of the violation function is underestimated).

Parameter ρ ∈ (0; 1) measures the speed of the update: the closer it is to 1,
the slower is the update. Its value must be specified by the user. Section 4.1 is
devoted to discuss the effect of its value on the quality of the obtained results.

Self-adaptive tuning of coefficients πim According to definition (3), the
value of the violation function π (x̃) in the current solution x̃ is the sum of suit-
able coefficients πim over all the covering constraints violated in x̃. The values
of these coefficients should reflect the hardness to satisfy each single covering
constraint; they are hard to estimate a priori, and probably their correct value
varies during the search. For these reasons, we introduce a self-adaptive tuning
mechanism similar to the one used for parameter γ. Specifically, each coeffi-
cient πim varies within a given range [0; cmax

im], where cmax
im = maxj {aijmcij}

is the largest cost of the columns covering row i in mode m. The procedure
sets πim := cmax

im at the beginning of the local search, and updates it at each
iteration according to the following rule:

π
(t+1)
im :=

{

ρπ
(t)
im + (1− ρ) cmax

im if x̃ does not cover row i in mode m

ρπ
(t)
im if x̃ covers row i in mode m

The rationale is to perform a convex combination of the current value of the
parameter with its largest possible value when the associated constraint is vi-
olated, and with its smallest possible value when it is respected. When πim

assumes its maximum value cmax
im , it is always profitable to cover row i in mode

m by adding a new column. For the sake of simplicity, the coefficient ρ used to
tune the speed of the update is the same used for parameter γ.

Termination conditions The exploration of each neighborhood terminates
as soon as the best neighbor solution x′ proves worse than the current solution
x̃ with respect to the auxiliary function φ. However, since the weight γ and
the coefficients πim used to define the objective function are updated at each
iteration, there is no guarantee that the local search procedure will converge in a
finite number of iterations to a local optimum. Consequently, we also terminate
the search after a given number ℓmax of iterations.

Efficient exploration of the neighborhoods Suitable conditions allow to
improve the efficiency of the exploration, reducing the neighborhoods with little

11

impact on the quality of the best solution found. In particular, neighborhoodN 0
2

is not explored, because any of its moves can be seen equivalently as the sequence
of two moves in N1, respectively setting xjm to 0 and xj′m to 1, that is dropping
column j and adding column j′ in mode m. The authors of [22] investigate the
exploration of N 0

2 for the SCP. Just as we do with auxiliary function (3), they
define a violation function given by the sum of suitable coefficients over all
violated constraints. Their investigation leads to a formal proof that, if a move
in N 0

2 improves the sum of the total cost plus the violation function, then one
of the two elementary moves improves it as well. Hence, if one always explores
neighborhood N1 in the first place, neighborhood N 0

2 can be ignored.
We apply the same restriction to our local search procedure. However, since

the cost and the violation function, instead of being simply summed, are nor-
malized and combined with a self-adapting coefficient, the formal proof of [22]
no longer holds, and the restriction is heuristic, though extensively justified by
the experimental results.

For the same reason, neighborhood NX is explored only in part. In fact, any
of its moves can be seen equivalently as the sequence of two moves in N1, re-
spectively setting xjm′ to 1 and xjm to 0, that is using a column in a new mode
and quit using it in an old one. If the cardinality constraint of column j is non-
active, that is the column is not used in the maximum feasible number of modes
(
∑

m∈M xjm < bj), both moves are feasible, and an improving move in NX

probably implies that one of the two elementary moves in N1 is also improving.
Since we always first explore neighborhood N1, the exploration of neighborhood
NX is restricted to the columns for which the cardinality constraint is tight.

3.2 A Variable Neighbourhood Search algorithm

The Variable Neighborhood Search (VNS) approach extends the concept of sys-
tematic neighborhood change typical of VND from the improvement phase to
the restart phase [13] used by local search based metaheuristics. It involves a
hierarchy of size-increasing neighborhoods and a basic local search procedure
operating on a relatively small neighborhood.

A VNS algorithm alternatively runs the basic local search procedure and a
shaking procedure, which generates a new starting solution for the following ap-
plication of local search, extracting it at random from one of the neighborhoods
of the best known solution x∗. At the first run, the new solution is extracted
from the smallest neighborhood; in the following ones, the choice of the neigh-
borhood depends adaptively on the result of the previous local search: if this
has not improved the best known result, the shaking procedure switches to the
immediately larger neighborhood; otherwise, it goes back to the smallest one.
The rationale of the approach is to first generate new starting solutions close to
the best known result, so as to intensify the search in a promising region of the
solution space. If such a restart fails, intensification is deemed less profitable,
and starting solutions are generated farther and farther away from the current
best known one, so that diversification replaces intensification. As soon as a new
best result is found, the approach switches back to intensification, and solutions

12

are generated again near the best known one.
Usually, the basic local search explores the smallest neighborhood in the

hierarchy. Our VNS algorithm for the MM-SCP, on the contrary, adopts differ-
ent neighborhoods for the basic local search and the shaking procedures. The
former uses the refined VND approach described in Section 3.1, while the latter
uses another family of neighborhoods which has been proposed in the literature
on set covering problems (see for example [16]). In particular, neighborhood N ′

k

includes all the solutions which can be generated by selecting k column-mode
pairs (j,m) used in the current solution (xjm = 1), removing them (i. e. setting
xjm = 0) and regaining feasibility with respect to the covering constraints (as
much as possible) with a deterministic greedy heuristic. The size of neighbor-
hood N ′

k is therefore in O
(

|J |k|M |k
)

.
As a greedy heuristic, we apply an adaptation of the classical heuristic pro-

posed by Chvátal [7] for the SCP. Each step of the greedy heuristic considers
all column-mode pairs (j,m) such that: a) they are not used in the current
partial solution (xjm = 0), b) they have not been set to zero by the removal
procedure, c) they can be added without violating the cardinality constraint
(
∑

m∈M xjm < bj), d) they decrease the number νjm (x) of violated covering
constraints, if added to x. For each of these column-mode pairs, the heuristic
evaluates the ratio cjm/νjm (x), finds the minimum one, and sets to 1 the corre-
sponding variable xjm. When no column-mode pair satisfies the four conditions,
the procedure terminates. In some classes of instances, in particular those where
the cost of all columns is the same in all modes, we adopt the same tie-breaking
rule described in Section 3.1 for the choice of the best solution in the current
neighborhood: among the column-mode pairs with the minimum ratio, either
we choose one at random (random strategy), or we choose that which has been
added to the solution longest ago (memory strategy).

The N ′

k neighborhoods exhibit features somehow complementary with re-
spect to those used in the VND procedure, besides being much larger. In fact,
the covering constraints are respected as much as possible, instead of freely vi-
olated; several variables can be flipped by a single move, instead of one or two;
the selection of the column-mode pairs to be added to the solution is greedy,
instead of exhaustive.

Figure 2 reports a pseudocode of the VNS algorithm. The procedure builds
an initial solution x with the greedy heuristic, and saves it as the best one found
so far, x∗. The neighborhood index k is set to 1, which is its minimum possible
value. Each run of the VND procedure provides an improved solution xo. If
this is better than x∗, index k is set back to 1 and xo replaces x∗. Otherwise, k
increases. When k exceeds the number of column-mode pairs contained in x∗,
we set k back to 1, given that further increases are useless. Finally, procedure
Shaking extracts from N ′

k the solution x which will be used for the following
restart. The algorithm terminates after Rmax restarts.

13

Algorithm VNS MMSCP(a, b, c, Rmax, ρ, ℓmax)
x := Greedy(a, b, c);
x∗ := x;
k := 1;
for r := 1 to Rmax do

xo := VND(x, a, b, c, ρ, ℓmax);
{Update the starting solution and possibly the best known one}
if (|V (xo)| < |V (x∗)|) or (|V (xo)| = |V (x∗)| and f(xo) < f(x∗)) then
k := 1;
x∗ := xo;

else

k := k + 1;
if k > Card(x∗) then k := 1;

end if

x := Shaking(x∗ , k, a, b, c);
end for

return x∗;

Figure 2: Pseudocode of the VNS algorithm

3.3 A Greedy Randomized Adaptive Search procedure

GRASP is a multi-start metaheuristic which alternatively builds starting so-
lutions and improves them with local search [10]. The construction phase of
our implementation for the MM-SCP uses a randomized version of the greedy
heuristic described above (see Section 3.2). The improvement phase uses the
VND procedure described in Section 3.1.

The pseudocode of the construction phase is reported in Figure 3. It starts
from an empty solution (xjm = 0 for all j ∈ J and m ∈ M). At each step,
it builds a candidate list CL containing all the column-mode pairs such that:
a) they are not used in the current partial solution (xjm = 0), b) they can
be added without violating the cardinality constraint (

∑

m∈M xjm < bj), c)
they decrease the number νjm (x) of violated covering constraints, if added to
x. Then, procedure Restrict shrinks CL to a restricted candidate list RCL,
keeping only the elements with the smallest values of δ = cjm/νjm (x). At the
end of each step, the heuristic selects from RCL one of the candidate moves,
and sets the corresponding variable to 1.

We have considered two alternative implementations of procedure Restrict :

1. cardinality-based : the cardinality of the RCL is fixed to ⌈α · |CL|⌉, remov-
ing all the elements with the largest values of δ := cjm/νjm (x);

2. quality-based : the RCL contains all the (j,m, δ) triplets such that δ falls
within [δmin; δmin+α(δmax−δmin)], where δmin and δmax are the minimum
and maximum value of δ.

In both implementations, parameter α ∈ (0; 1] is tuned by a reactive mecha-

14

Algorithm GreedyRandomized MMSCP(a, b, c, α)
for each (j,m) ∈ J ×M do xjm := 0;
repeat

CL := ∅;
for all (j,m) ∈ J ×M do

if xjm = 0 and
∑

m∈M xjm < bj and νjm (x) > 0 then

δ := cjm/νjm (x);
CL := CL ∪ {(j,m, δ)};

end if

end for

RCL := Restrict(CL,α);
(j∗,m∗, δ∗) := RandomlyExtract(RCL);
xj∗m∗ := 1;

until CL = ∅;
return x;

Figure 3: Pseudocode of the greedy randomized heuristic.

nism [18].
The overall GRASP algorithm is summarized in the pseudocode of Figure 4.

At each restart, it calls procedure GreedyRandomized MMSCP, choosing α at
random from a user-defined set {αi}, with suitable probabilities {pi}. Then, it
improves the resulting solution with the VND procedure, and possibly updates
the best solution found so far. The probability pi of each value αi is uniform
for the first Rα restarts. After each sequence of Rα restarts, it is replaced by
pi = (f∗/fi) /

∑

i (f
∗/fi), where f∗ is the value of the best known solution and

fi the average value of the solutions found with α = αi. Accordingly, the values
of α that lead to better solutions will be used more frequently in the following
restarts. As in [18], we define set {αi} = {0.1, 0.2, . . . , 1.0} and Rα = 100. The
GRASP algorithm terminates after a total number of Rmax iterations.

4 Computational Experience

In this section we present the computational results of the proposed algorithms,
which have all been coded in C++, compiled by gcc 4.4.3 and run on a PC
equipped with an Intel Core2 Quad-core 2.66 GHz and 4 GB of RAM. We have
considered three benchmark sets of random instances: the first one is composed
of small instances, that have been used exclusively for the fine tuning of the
algorithm parameters; the other two, composed of instances of medium and
large size, that proved to be challenging for the commercial solver CPLEX 12.4,
have been used to evaluate the computational performance of the proposed
algorithms.

Guided by the applications described in Section 1, we have generated several
types of instances. A first classification is into square and rectangular instances.
For the former type, the number of columns |J | is equal to the number of rows

15

Algorithm GRASP MMSCP(a, b, c, Rmax, Rα, {αi} , ρ, ℓmax)
InitializeProbabilities({pi});
for r := 1 to Rmax do

α := Extract({αi} , {pi});
x := GreedyRandomized MMSCP(a, b, c, α);
xo := VND(x, a, b, c, ρ, ℓmax);
{Possibly update the best known solution}
if (|V (xo)| < |V (x∗)|) or (|V (xo)| = |V (x∗)| and f(xo) < f(x∗)) then
x∗ := xo;

end if

if (r mod Rα) = 0 then UpdateProbabilities({pi});
end for

return x∗;

Figure 4: Pseudocode of the GRASP algorithm

|I|: 100 rows and columns for the small instances, 500 for the medium ones
and 1 000 for the large ones. This type of instances arises in computational
biology and k-set-covering problems. For the rectangular type, the number of
columns per mode is larger than the number of rows. More specifically, in this
computational analysis, the number of columns |J | has been set to ten times
the number of rows |I|: 50 rows and 500 columns for the small instances, 100
rows and 1 000 columns for the medium ones, 500 rows and 5 000 columns for
the large ones.

In addition to the column-row ratio and to the number of rows, each instance
is also characterized by the following parameters: the number of modes, the right
hand side of the cardinality constraints (capacity), the cost and the covering
pattern of each column. As for the number of modes, we generated instances
with |M | = 2 modes and instances with |M | = 3 modes. All of the former
have capacity bj = 1 for all j ∈ J , whereas for the latter we generated tighter
instances with bj = 1, and looser ones with bj = 2. As for the cost column
cost, we generated unweighted instances, with unitary costs for all columns in
all modes, and weighted instances, with random costs drawn from a uniform
distribution in the set {1, . . . , 10}. Finally, the covering pattern of a column in
different modes can be the same, i. e. the column covers the same rows in all
the modes, or different. The first class of instances are named uniform mode
instances, as opposed to their counterpart that we name assorted mode instances.
For each combination of the parameters listed above, we have generated a pool
of 5 randomly generated instances: the set of rows covered by each column is
extracted from a uniform distribution imposing a 5% density1. In order to avoid
“easy instances”, we imposed in each mode that each column should cover at
least one row and that each row should be covered by at least two columns.
Overall, we generated 120 instances for each benchmark set.

1The density or coverage degree of a subset is the number (%) of elements of the ground
set included in the subset, i.e., the number (%) of rows covered by the column.

16

4.1 Parameter tuning

A first computational campaign has been devoted to tuning the parameter ρ
that controls the updating mechanisms of the local search procedure, which is
the core routine of both the VNS and the GRASP algorithms. In addition,
we compare two different implementations of the tie-breaking rule (random and
memory) for both the metaheuristics, and two different reactive implementa-
tions of the Restricted Candidate List (RCL) for the GRASP (value-based and
cardinality-based).

This campaign has been executed on small size instances for which the op-
timal solution has been computed by CPLEX solver, in a computational time
ranging from one second to twenty seconds.

For all the implementations considered, we adopt as termination criteria the
number of shakings/restarts that has been limited to Rmax = 1 000 (with a max-
imum number of local search iterations per shaking/restart set to ℓmax = 200).
These two values guarantee to obtain stable results on most of the benchmark
instances in a reasonable computational time. Moreover, the stopping criterium
allows to evaluate the quality of each implementation neutralizing the possible
effect of computing better solutions due to a larger number of shaking/restarts.

The diagrams reported in Figure 5 and Figure 6 summarize the tuning phase
for the VNS and the GRASP metaheuristics respectively. Both the figures dis-
play the gap of the metaheuristic’s solutions with respect to the corresponding
optimal ones for each value of the local search parameter ρ (reported on the
abscissa). The gap is the average value computed over all the 120 benchmark
instances considered in this phase. Figure 5 displays the results of the ran-
dom and the memory implementation of VNS. More specifically, the results of
the random implementation are reported with a solid line while those of the
memory implementation are displayed with a dashed line. By and large, the
memory implementation provides better results than the random implementa-
tion, especially in correspondence to the optimal value of ρ that is equal to
0.98. In order to estimate whether the difference among the performance of
these settings may be deemed significant, we apply the Wilcoxon matched-pairs
signed-ranks test [21]. Referring to the tuning of the local search parameter ρ,
the test suggests that the differences among the results obtained setting ρ in
the range [0.96; 0.98] are not statistically relevant, whereas the results obtained
out of this range are significantly worse. As well, comparing the random and
the memory implementation with ρ = 0.98, though the second one provides the
best average gap, the difference proves not statistically relevant. In the follow-
ing experiments, however, we will adopt the parameter setting yielding the best
average performance, that is ρ = 0.98 and the memory-based tie-breaking rule.

Figure 6 reports the computational results of GRASP. We consider four im-
plementations of the algorithm, obtained combining the tie-breaking rule and
the RCL implementations, here listed: 1) cardinality-memory displayed with
a dotted line; 2) cardinality-random represented with a dashed-dotted line; 3)
value-memory represented with a solid line; 4) value-random represented with a
dashed line. The diagrams reported in Figure 6 clearly show that the cardinality-

17

0.9 0.925 0.95 0.96 0.97 0.98 0.99

0.
0

0.
4

0.
8

1.
2

1.
6

2.
0

A
ve

ra
ge

 g
ap

 (
%

)
w

.r.
t.

op
tim

al
 s

ol
ut

io
ns

ρ

MEMORY
RANDOM

Figure 5: Comparison of the random and memory implementation of the VNS.

based RCL outperforms the value-based RCL for each of the two tie-breaking
rules and for all the values of ρ tested. Moreover, the cardinality-based im-
plementation of the RCL is more robust with respect to the variations of pa-
rameter ρ, meaning that the performances of this implementation of GRASP
deteriorates less strongly by varying the parameter ρ. The dominance of the
cardinality-based implementation over the value-based one is statistically sig-
nificant according to Wilcoxon’s test. In fact, the probability that the discrep-
ancies observed between the two series of results obtained are due to a random
fluctuation is smaller than 6 · 10−23.

As for the implementation of the tie-breaking rule, the memory implementa-
tion is better than the random one and this difference is statistically significant,
too. According to Wilcoxon’s test, the probability that the discrepancies ob-
served between the two series of results are due to a random fluctuation is
smaller than 10−10.

Finally, it is important to note the congruence of the optimal setting of the lo-
cal search parameter ρ in the two tuning phases. The best performances of both
the metaheuristics are obtained for ρ = 0.98, and the only alternative setting
which is statistically not dominated is ρ = 0.97. In the following experiments,
we will adopt the parameter setting yielding the best average performance, that
is ρ = 0.98 and the memory-based tie-breaking rule.

18

0.9 0.925 0.95 0.96 0.97 0.98 0.99

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

A
ve

ra
ge

 g
ap

 (
%

)
w

.r.
t.

op
tim

al
 s

ol
ut

io
ns

ρ

VALUE MEMORY
VALUE RANDOM
CARDINALITY MEMORY
CARDINALITY RANDOM

Figure 6: Comparison of the implementations of the GRASP.

4.2 Comparison

We here compare the computational performance of the VNS with the memory-
based tie-breaking rule, the reactive GRASP with the cardinality-based RCL
and the memory-based tie-breaking rule, and version 12.4 of the commercial
solver CPLEX. Table 1 and Table 2 summarize the computational results ob-
tained by the proposed algorithms within a time limit of 10 minutes. More
specifically, the tables report on each row the average gap computed on a pool
of 5 instances with the same features. The gap refers to the best known solution
obtained with one of the three proposed methods; for the smaller instances, it
refers to the optimal solution, computed by CPLEX. The first five columns of
both tables report the settings of the instance parameters. In particular, the
fifth column (A/U) distinguishes the assorted mode instances (denoted with A)
from the uniform mode instances (denoted with U).

Table 1 reports the results for the weighted version of the MM-SCP. By and
large, it appears that VNS provides the best computational performance, with
an average gap computed on all the instances (last row of the table) that is equal
to 0.60%. Moreover, VNS is more reliable than GRASP and CPLEX, mean-
ing that its performance does not deteriorate strongly on any specific group of
instances. Indeed, the largest average gap on all groups of instances is 2.65%.
By contrast, GRASP and CPLEX show a larger variability across the group of
instances: both hit worse results on the larger instances. This trend is partic-
ularly evident for GRASP. Finally, it should be noted that CPLEX computed
the optimal solution on the medium size rectangular instances (gaps reported

19

| I | | J | | M | b A/U CPLEX VNS GRASP

500 500 2 1 A 0.00% 1.06% 3.18%
500 500 2 1 U 0.31% 0.63% 2.79%
500 500 3 1 A 0.19% 0.75% 4.77%
500 500 3 1 U 0.00% 1.16% 4.04%
500 500 3 2 A 0.21% 0.90% 4.43%
500 500 3 2 U 0.00% 0.60% 4.68%
100 1000 2 1 A 0.00% 0.00% 0.83%
100 1000 2 1 U 0.00% 0.43% 3.04%
100 1000 3 1 A 0.00% 0.81% 5.08%
100 1000 3 1 U 0.00% 2.65% 7.01%
100 1000 3 2 A 0.00% 0.86% 4.57%
100 1000 3 2 U 0.00% 1.76% 7.46%

1000 1000 2 1 A 0.00% 0.17% 6.18%
1000 1000 2 1 U 0.68% 0.50% 8.34%
1000 1000 3 1 A 2.52% 0.00% 9.77%
1000 1000 3 1 U 0.77% 0.21% 8.60%
1000 1000 3 2 A 1.37% 0.54% 10.62%
1000 1000 3 2 U 0.79% 0.55% 10.91%
500 5000 2 1 A 1.45% 0.29% 16.57%
500 5000 2 1 U 3.83% 0.00% 16.41%
500 5000 3 1 A 1.75% 0.00% 21.10%
500 5000 3 1 U 3.12% 0.19% 21.01%
500 5000 3 2 A 1.75% 0.19% 22.05%
500 5000 3 2 U 2.93% 0.19% 21.36%

TOTAL AVG 0.90% 0.60% 9.37%
TOTAL VAR 0.027% 0.009% 0.470%

Table 1: Computational results on medium and large size instances for the
weighted version of MM-SCP.

20

in bold in Table 1).

| I | | J | | M | b A/U CPLEX VNS GRASP

500 500 2 1 A 3.59% 0.00% 0.30%
500 500 2 1 U 5.94% 0.30% 0.89%
500 500 3 1 A 4.90% 0.20% 0.00%
500 500 3 1 U 4.82% 0.19% 0.97%
500 500 3 2 A 4.56% 0.20% 0.80%
500 500 3 2 U 4.94% 0.78% 0.60%
100 1000 2 1 A 1.38% 0.00% 1.38%
100 1000 2 1 U 0.69% 0.00% 0.69%
100 1000 3 1 A 1.81% 0.00% 0.91%
100 1000 3 1 U 2.22% 0.43% 1.76%
100 1000 3 2 A 1.36% 0.45% 1.36%
100 1000 3 2 U 1.82% 0.00% 1.82%

1000 1000 2 1 A 3.93% 0.25% 0.73%
1000 1000 2 1 U 5.10% 0.49% 0.00%
1000 1000 3 1 A 4.85% 0.32% 0.16%
1000 1000 3 1 U 22.46% 0.16% 0.48%
1000 1000 3 2 A 3.40% 0.32% 0.16%
1000 1000 3 2 U 3.41% 0.97% 0.00%
500 5000 2 1 A 1.46% 0.36% 0.00%
500 5000 2 1 U 1.81% 0.36% 0.36%
500 5000 3 1 A 0.95% 0.00% 0.24%
500 5000 3 1 U 41.12% 0.00% 0.48%
500 5000 3 2 A 0.96% 0.72% 0.24%
500 5000 3 2 U 1.19% 0.00% 0.00%

TOTAL AVG 5.36% 0.27% 0.60%
TOTAL VAR 1.458% 0.003% 0.010%

Table 2: Computational results on medium and large size instances for the
unweighted version of MM-SCP.

Table 2 reports the computational results for the unweighted version of the
MM-SCP. The performance of CPLEX on this class of instances is poor. In-
deed, CPLEX is unable to compute the best known solution for any group
of instances and the largest average gap rises as high as 41.12%. VNS pro-
vides the best computational results also on this class of instances, hitting the
lowest average gap (see last row of Table 2), with a value below 1% for each
group of instances. The variance of the gap distribution is also the smallest
one (0.003). On the unweighted instances, also GRASP provides good quality
solutions, outperforming CPLEX on most of the groups of instances. Moreover,
its computational performance is very competitive on the larger instances.

So far, in Table 1 and Table 2 we have focused on the comparison of the
proposed algorithms with respect to weighted and unweighted instances of the

21

CPLEX VNS GRASP

Rectangular 2.98% 0.41% 6.49%
Square 3.28% 0.47% 3.48%
Unweighted 5.36% 0.27% 0.60%
Weighted 0.90% 0.60% 9.37%
b = 1, | M |= 2 1.89% 0.30% 3.86%
b = 1, | M |= 3 5.72% 0.44% 5.40%
b = 2, | M |= 3 1.79% 0.57% 5.69%
Assorted modes 1.77% 0.35% 4.81%
Uniform modes 4.50% 0.52% 5.15%

Table 3: Summary of the computational results for specific features of the MM-
SCP instances.

MM-SCP. In Table 3, we extend the comparison of the algorithms with respect
to different features of the instances. The results of Table 3 strengthen our
comments and observations reported above. VNS is quite stable in terms of
computational results across all the groups of instances, showing a modest vari-
ability of the gap, whose values are in the range [0.27%; 0.60%]. By contrast,
the computational performances of CPLEX, besides being strongly affected by
the cost function, is also sensitive to the ratio b/|M | and to the covering pat-
tern (assorted versus uniform). Its sensitivity to the ratio b/|M | is most likely
due to the combinatorial structure of the problem: a tighter capacity constraint
increases the number of variables with fractional values in correspondence to
the optimal solution of the continuous relaxation, thus increasing the number
of branch-and-bound nodes required to solve the instance. The sensitivity to
the covering pattern might be justified by the intrinsic symmetry characterizing
uniform mode instances. Finally, GRASP, besides being affected by the cost
function, seems to be also sensitive to the shape of the instances, i.e., rectangular
and square.

5 Conclusion

In this paper, we have presented the Multi-Mode Set Covering Problem MM-
SCP. In addition to complexity and nonapproximability results, we have pre-
sented two metaheuristics: a VNS and a GRASP algorithm. The VNS algo-
rithm provides the best computational performance and does not show a relevant
downturn for any class of instances. Moreover, it does not exhibit statistically
significant differences between the memory-based and the random-based imple-
mentation of the tie-breaking rule used in the local search procedure, and it is
robust with respect to the tuning of the local search parameters. We believe
that this has an important implication for the practical use of the algorithm.
By contrast, GRASP, though it adopts a more complex and finer tuning phase,

22

has a computational behavior more strongly dependent on the class of instances
considered. Both heuristics, anyway, outperform a time-limited run of an ILP
solver.

References

[1] U. Aickelin, K. A. Dowsland (2000) Exploiting problem structure in a ge-
netic algorithm approach to a nurse rostering problem. Journal of Schedul-
ing, Vol. 3, Iss. 3, pp. 139-153.

[2] M. Ashouri, Z. Zali, S. R. Mousavi, M. R. Hashemi (2012) New optimal
solution to disjoint set K-coverage for lifetime extension in wireless sensor
networks. IET Wirel. Sens. Syst., Vol. 2, Iss. 1, pp. 31-39.

[3] J. E. Beasley (1987) An algorithm for Set Covering problems. European
Journal of Operational Research, Vol. 31, pp. 85–93,

[4] P. Berman, B. DasGupta, E. Sontag (2007) Randomized approximation
algorithms for set multicover problems with applications to reverse engi-
neering of protein and gene network. Discrete Applied Mathematics, Vol.
155, Iss. 6-7, pp. 733-749.

[5] K. Bicakci, I. E. Bagci, B. Tavli, Z. Pala (2013) Neighbor Sensor Networks:
Increasing Lifetime and Eliminating Partitioning Through Cooperation.
Computer Standards & Interfaces, Vol. 35, Iss. 4, pp 396 - 402.

[6] T. Chen, V. Filkov, S. S. Skiena (2001) Identifying gene regulatory networks
from experimental data. Parallel Computing, Vol. 27, pp 141–162.

[7] V. Chvátal (1979) A greedy heuristic for the set covering problem. Mathe-
matics of Operations Research, Vol. 4, pp. 233-235.

[8] R. Cordone, G. Lulli (2013) An integer optimization approach for reverse
engineering of gene regulatory networks. Discrete Applied Mathematics,
Vol. 61, Iss. 4- 5, pp. 580- 592.

[9] R. Cordone, G. Lulli (2012) A GRASP metaheuristic for microar-
ray data analysis Computers & Operations Research, [in press: DOI:
10.1016/j.cor.2012.10.008]

[10] T. A. Feo, M. G. C. Resende (1989) A probabilistic heuristic for a compu-
tationally difficult set covering problem Operations Research Letters, Vol.
8, pp. 67-71.

[11] M. R. Garey, D. S. Johnson (1979) Computers and Intractability: A Guide
to the Theory of NP-completeness. W. H. Freeman and Company, New
York.

23

[12] I. P. Gent, T. Walsh, (1993) Towards an understanding of hill-climbing
procedures for SAT. In Proceedings of the 11th National Conference on
Artificial Intelligence (AAAI’93) pp. 28-33.

[13] P. Hansen, N. Mladenoviç, J. A. Moreno Pérez (2010) Variable Neighbour-
hood Search: Methods and Applications. Annals of Operations Research,
Vol. 175, pp. 367–407.

[14] Q.-S. Hua, D. Yu, F. C. M. Lau, Y. Wang (2009) Exact Algorithms for Set
Multicover and Multiset Multicover Problems. In Proceedings of ISAAC
Conference 2009, Y. Dong, D.-Z. Du, and O. Ibarra (Eds.), LNCS 5878,
pp. 34-44.

[15] D. S. Johnson (1974) Approximation Algorithms for Combinatorial Prob-
lems. Journal of Computer and Systems Sciences, Vol. 9, pp. 256-278.

[16] G. Lan, G. W. DePuy, G. E. Whitehouse (2007) An effective and simple
heuristic for the set covering problem. European Journal of Operational
Research, Vol. 176, pp. 1387-1403.

[17] G. Lulli, M. Romauch (2009) A Mathematical Program to Refine Gene
Regulatory Networks. Discrete Applied Mathematics, Vol. 157, pp. 2469–
2482.

[18] M. Prais, C. C. Ribeiro (2000) Reactive GRASP: An Application to a
Matrix Decomposition Problem in TDMA Traffic Assignment. INFORMS
Journal on Computing, Vol. 12, Iss. 3, pp. 164-176

[19] A. Srinivasan (2006) An Extension of the Lovász Local Lemma, and its
Applications to Integer Programming. SIAM Journal on Computing, Vol.
36, Iss. 3, pp. 609-634.

[20] T. Villa, T. Kam, R. K. Brayton, A. L. Sangiovanni-Vincentelli (1997) Ex-
plicit and implicit algorithms for binate covering problems. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, Vol.
16, Iss. 7, pp. 677-691.

[21] F. Wilcoxon (1945) Individual Comparisons by Ranking Methods. Biomet-
rics, Vol. 1, pp. 80–83.

[22] M. Yagiura, M. Kishida, T. Ibaraki (2006) A 3-Flip Neighborhood Local
Search for the Set Covering Problem. European Journal of Operational Re-
search, Vol. 172, Iss. 2, pp. 472-499.

24

