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Abstract:We address the performance of an interferomet-
ric setup in which a squeezed single photon interferes at a
beam splitter with a coherent state. Our analysis in based
on both the quantum Fisher information and the sensitiv-
ity when a Mach-Zehnder setup is considered and the dif-
ference photocurrent is detected at the output. We com-
pare our results with those obtained feeding the interfer-
ometer with a squeezed vacuum (with the same squeez-
ing parameter of the squeezed single photon) and a coher-
ent state in order to have the same total number of pho-
tons circulating in the interferometer.We�nd that for �xed
squeezing parameter and total number of photons there is
a threshold of the coherent amplitude interfering with the
squeezed single photon above which the squeezed single
photons outperform the performance of squeezed vacuum
(showing the highest quantum Fisher information). When
the di�erence photocurrent measurement is considered,
we can always �nd a threshold of the squeezing param-
eter (given the total number of photons and the coherent
amplitude) above which squeezed single photons can be
exploited to reach a better sensitivity with respect to the
use of squeezed vacuum states also in the presence of non
unit quantum e�ciency.

Keywords: interferometry, squeezing, quantum estima-
tion

1 Introduction
The use of nonclassical resources, such as single photons
and squeezed light, can improve the sensitivity to a phase
shift of optical interferometers also in the presence of real
setup and detectors a�ected by losses [1–5]. In particular,

*Corresponding Author: Stefano Olivares: Quantum Technology
Lab, Dipartimento di Fisica,Università degli Studi di Milano, E-mail:
stefano.olivares@�sica.unimi.it
Maria Popovic: Dipartimento di Fisica dell’Università degli Studi di
Milano, I-20133 Milano, Italy
Matteo G. A. Paris: Quantum Technology Lab, Dipartimento di
Fisica,Università degli Studi di Milano, Italy

it is well known that adding squeezing at the input of an
interferometer can lead to theHeisenberg limit [6], namely,
the ultimate bound to precision allowed by the very laws
of quantum mechanics [7]. In particular, in the last years
many e�orts have been made to investigate the ultimate
limits to precisions addressing di�erent scenarios [8–13].
Though squeezed states play a relevant role in practical in-
terferometry, the peculiar features of single-photon states
allow better investigating the fundamental aspects of the
phenomenon [14, 15].

In this paper we consider a squeezed single photon
(SqSPh) and a coherent state (CS) as inputs of the inter-
ferometer andwe study the behaviour of the resulting sen-
sitivity to detect a phase shift. Since a SqSPh can be gen-
erated starting from a squeezed vacuum state (SqVac) by
means of the photon subtraction technique [16, 17], it is
natural to compare the results to case of a SqVac and a CS
as inputs. However, it is worth noting that this is not the
optimal case, which is instead achieved when squeezing
is present at both the input ports of the interferometer [11].
Here, we are interested in comparing the performance of
the two scenarios when the squeezed parameter and to-
tal number of photons circulating in the interferometer are
�xed. First of all we study the quantum Fisher informa-
tion for the two con�gurations (SqSPh+CS and SqVac+CS)
given the constraints and then we evaluate the sensitiv-
ity in the case of Mach-Zehnder interferometer where the
measured quantity is the di�erence between the two out-
put photocurrents.Wealso consider the e�ect of a nonunit
quantum e�ciency.

The paper is structured as follows. In Section 2 we in-
troduce the model of an interferometer and of the Mach-
Zehnder interferometer. We also review the basic elements
of the quantum estimation theory focusing, in particular,
on the Fisher and quantum Fisher information and the
sensitivity of the interferometer consider throughout the
the paper. In Section 3 we show the results concerning the
quantum Fisher information whereas the sensitivity, also
in the presence of non unit quantum e�ciency, is studied
in Section 4. Finally, Section 5 draws some concluding re-
marks.
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Figure 1: (Top) Scheme of the interferometer: the two input states
|ψ〉a ⊗ |α〉b interfere at a 50:50 beam splitter (BS) and one of
the two transmitted beams undergoes a phase shift ϕ. (Bottom)
Scheme of the Mach-Zehnder interferometer: after the phase shift
the two modes are mixed at a BS and the di�erence photocurrent is
recorded.

2 The interferometer and quantum
estimation theory

In our analysis we address two possible couples of states
|ψ〉a ⊗ |α〉b for the two input modes a and b (with
[b, b†] = [a, a†] = I, [a, b] = 0), where the mode b is
excited in a coherent state, whereas |ψ〉a can be either
the SqSPh S(r) |1〉a or the SqVac S(r) |0〉a, where S(r) =
exp

[
1
2 r(a

†2 − a2)
]
is the squeezing operator, as depicted

in the top panel of Fig. 1. The input modes interfere at a
50:50 beam splitter (BS), let aBS = (a + b)/

√
2 and bBS =

(b− a)/
√
2 be the Heisenberg evolution of the initial mode

operators a and b, after the passage through BS. Then one
of the modes, say aBS, undergoes a phase shift of amount
ϕ, described by the operator U (ϕ) = exp

(
iϕ a†BSaBS

)
, we

want to estimate. To this aim we �rst choose a suitable
measurement, usually described by a positive-operator-
valued measurement {Πx}, whose outcomes x depend on
the parameter ϕ and are distributed according to the con-
ditional probability p(x|ϕ) =

〈
Ψϕ
∣∣Πx

∣∣Ψϕ
〉
,
∣∣Ψϕ

〉
being

the two-mode state coming from the interferometer (see
the top panel of Fig. 1). Starting from the data, we de�ne
an estimator, namely, a function providing the value of the
ϕ and its variance ∆2ϕ.

In classical estimation theory the Cramér-Rao imposes
a lower bound to variance (we drop for the sake of simplic-
ity the statistical scaling):

∆2ϕ ≥ 1
F (ϕ)

F (ϕ) being the Fisher information:

F (ϕ) =
∫

Λ

p(x|ϕ)
[
∂ϕ log p(x|ϕ)

]2 dx,

where Λ is the data sample space. However, the Cramér-
Rao refers to the actual chosen measurement. Using the
tools of quantum estimation theory [18], we can look for
the optimal measurement minimising the uncertainty or,
equivalently, maximising the Fisher information. There-
fore, we can introduce the so-called quantum Fisher infor-
mation [19, 20]:

QF (ϕ) = Tr
[
ρϕ L2ϕ

]
,

where ρϕ =
∣∣Ψϕ

〉 〈
Ψϕ
∣∣ and Lϕ is the symmetric logarith-

mic derivative, ∂ϕρϕ = (Lϕρϕ + ρϕLϕ)/2. By de�nition,
QF (ϕ) ≥ F (ϕ), thus we obtain the quantum Cramér-Rao
bound [21, 22]:

∆2ϕ ≥ 1
QF (ϕ)

.

Sincewe are addressing a family of pure stateswhich come
to depend on the parameter ϕ through a unitary operator
of the form Uϕ = exp(−iϕG), where G = a†BSaBS is the Her-
mitian generator, the quantum Fisher information can be
evaluated as [18]:

QF = 4 〈Ψin| ∆2G |Ψin〉 , (1)

|Ψin〉 = |ψ〉a ⊗ |α〉b being the quantum state entering the
interferometer (see the top panel of Fig. 1), which is thus
independent of ϕ.

Up to now we have considered the optimal scenario
based on the optimal measurement. However, in practice
one should choose a particular detection scheme, accord-
ing to the current technology. In the bottom panel of Fig. 1
we depict a typical Mach-Zehnder interferometer, where
during the measurement stage the two modes interfere at
a second BS before a photodetection process, which mea-
sures the di�erence photocurrent between the two output
modes aout and bout, namely:

O(ϕ) = 〈Ψin|N(out)
a − N(out)

b |Ψin〉 , (2)

withN(out)
k = k†outkout, k = a, b. It is worth noting that given

a small �uctuation δϕ, we can write:

O(ϕ + δϕ) ≈ O(ϕ) + ∂ϕO(ϕ) δϕ,

and, thus, we have the following change of the photocur-
rent di�erence:

O(ϕ + δϕ) − O(ϕ) ≈ ∂ϕO(ϕ) δϕ.
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In order to detect such a di�erence we should require
that

[
O(ϕ + δϕ) − O(ϕ)

]2
& ∆2O(ϕ) or, equivalently,

|∂ϕO(ϕ) δϕ| &
√
∆2O(ϕ). Therefore, there is a minimum

value that can be detected by the apparatus, which is the
sensitivity of the interferometer given by:

s (ϕ) =
√
∆2O(ϕ)∣∣∂ϕO(ϕ)

∣∣ . (3)

It is possible to show [13] that the sensitivity is lower
bounded by the inverse of the Fisher information associ-
ated with the measurement, and we have:

s (ϕ) & 1√
F (ϕ)

>
1√
QF

. (4)

In the following we will evaluate the quantum Fisher
information and the Fisher information considering as in-
put states a SqSPh or a SqVac and a CS and we will com-
pare the performance of the interferometer.

3 Quantum Fisher information
In order to have the same squeezing factor and total num-
ber of photons Ntot ≥ 1, we rewrite the two two-mode input
states as follows (without loss of generalitywe can assume
the squeezing parameter r and the CS amplitude γ to be
real):
∣∣∣Ψ (SqSPh)

in

〉
= S(r) |1〉a ⊗

∣∣∣∣
√
Ntot − (cosh2r + sinh2 r)

〉

b
,

(5a)
∣∣∣Ψ (SqVac)

in

〉
= S(r) |0〉a ⊗

∣∣∣∣
√
Ntot − sinh2 r

〉

b
, (5b)

or:
∣∣∣Ψ (SqSPh)

in

〉
= S(r) |1〉a ⊗ |γ〉b , (6a)

∣∣∣Ψ (SqVac)
in

〉
= S(r) |0〉a ⊗

∣∣∣
√

γ2 + cosh2r
〉
b
, (6b)

where we introduced the (real) coherent amplitude γ, so
that Ntot = γ2 + cosh2r + sinh2 r. The second parametrisa-
tion can be more useful since, in a typical setup, one �xes
the squeezing parameter r and the CS amplitude γ (note
that in order to have the same Ntot the CS which interferes
with the SqVac should have a larger energy than the one
interfering with the SqSPh).

Exploiting Eq. (1) and Eqs. (6), we can compare the
quantum Fisher information in the two cases, namely
Q(SqSPh)
F (γ, r) and Q(SqVac)

F (γ, r). Though the calculation is
quite straightforward, the analytical results are cumber-
some and they are not explicitly reported here; we just ob-
serve that the quantum Fisher information is maximised
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Figure 2: Plot of the threshold γth(r): for γ > γth(r) we have
Q(SqSPh)
F (γ, r) ≥ Q(SqVac)

F (γ, r) (shaded region). See the text for de-
tails.
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Figure 3: Plots of the of Q(SqSPh)
F and Q(SqVac)

F as functions of Ntot
(lower horizontal axis) or r (upper horizontal axis) for two values of
the coherent amplitude: γ = 1.0 (top panel) and γ = 10.0 (bottom
panel). Note that increasing Ntot corresponds to add squeezing to
the system. As expected from Fig. 2, we can identify a low energy
regime where Q(SqSPh)

F ≥ Q(SqVac)
F . As Ntot gets larger the Heisenberg

scaling∝ N2
tot is reached. For comparison, we also show the quan-

tum Fisher information Q(Ch)
F = 2Ntot (orange lines) referring to a

single coherent state mixed with the vacuum (in this case the upper
axis is meaningless). See the text for details.

for ϕ = π/2 and this will be our working point through-
out the rest of the paper. In Fig. 2 we plot the region of the
rγ–plane for which Q(SqSPh)

F (γ, r) ≥ Q(SqVac)
F (γ, r): given the
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Figure 4: Plot of the threshold γ̃th(η): for γ ≤ γ̃th(η) we have
s(SqVac)(γ, r; η) ≥ s(SqSPh)(γ, r; η) (shaded regions). The colors refers
to di�erent values of the quantum e�ciency. Note that the lower
is the quantum e�ciency, the larger is the region in which SqSPh
performs better than SqVac. See the text for details.

squeezing parameter r there is a threshold value

γth(r) =
1
2e
−r√2 + sinh4r,

such that for γ > γth(r) the SqSPh outperforms SqVac. It
is worth noting that for each point in Fig. 2 the quantum
Fisher information Q(SqSPh)

F (γ, r) and Q(SqVac)
F (γ, r) refer to

states with the same Ntot according to the parametrisation
in Eqs. (6). In Fig. 3 we plot the two quantum Fisher infor-
mation as functions of Ntot (or r) and �xed value of the co-
herent amplitude γ. In these caseseswehave the following
asymptotic behaviour in the high number of photons limit
Ntot � 1 (or large squeezing parameter r):

Q(SqSPh)
F ≈ 2

3N
2
tot, (7)

Q(SqVac)
F ≈ 10

9 N
2
tot, (8)

respectively, that is in both the cases we �nd the Heisen-
berg scaling as one may expect [7, 11]. It is worth noting
that, at least in the presence of the optimal measurement,
the squeezing resource allows outperforming the coher-
ent light. This is clear form Fig. 3, where we also show the
behaviour of the quantum Fisher information Q(SqSPh)

F =
2Ntot for a coherent state mixed with the vacuum.

4 Sensitivity
In this section we address the sensitivity of the Mach-
Zehnder interferometer setup sketched in the bottom
panel of Fig. 1. As in the case concerning the quantum
Fisher information, also the calculation of the sensitivity,
as de�ned in Eq. (3), can be straightforwardly obtained

� = 1.0

� = 10.0

� = 0.0

s(SqSPh)

s(SqSPh)

s(SqSPh)

s(SqVac)

s(SqVac)

s(SqVac)

1.0 10.05.02.0 3.01.5 7.0

1.00

0.50

0.30

1.50

0.70

0. 0.5 0.8 1. 1.2 1.3

Ntot

s

r

10.05.02.0 3.0 7.0

1.00

0.50

2.00

0.30

1.50

0.70

0. 0.5 0.8 1. 1.2 1.3

Ntot

s

r

s(Ch)

100 1000500200 300150 15007000.02

0.05

0.10

0.20

0.50
0. 1.7 2.3 2.7 3. 3.3 3.4 3.6 3.7

Ntot

s

r

s(Ch)

Figure 5: Plots of the sensitivity s(SqSPh) (green lines) and s(SqVac)

(blue lines) as functions of Ntot (lower horizontal axis) or r (upper
horizontal axis) for two values of the coherent amplitude (γ = 1.0
(top panel) and γ = 10.0 (bottom panel)) and di�erent values of
the quantum e�ciency: η = 1.0 (solid lines), η = 0.8 (dashed
lines) and η = 0.4 (dot-dashed lines). Note that increasing Ntot
corresponds to add squeezing to the system. As expected from
Fig. 4, we can identify a high energy regime where s(SqSPh) ≤ s(SqVac)
(SqSPh performs better). As Ntot gets larger the shot-noise scaling
∝ N−1/2tot is reached. For comparison, we also plotted the sensitivity
s(Ch) = (ηNtot)−1/2 (orange lines) referring to a coherent state mixed
with the vacuum (in this case the upper axis is meaningless). See
the text for details.

starting from the input states (6). The analytical results are
clumsy and they are not reported explicitly.

In Fig. 4 we plot the sensitivities s(SqSPh)(γ, r; η) and
s(SqVac)(γ, r; η), where η is the quantum e�ciency of the
photodetectors [23]; the comparison is obtained for �xed
total number of photons Ntot (we recall that γ is the am-
plitude of the CS interfering with the SqSPh, therefore, in
general, the two con�gurationshave the same total energy,
same squeezing parameter r but di�erent coherent ampli-
tude).With respect to the quantumFisher information (see
Fig. 2), we can see that for �xed r now we have a thresh-
old γ̃th of the coherent amplitude below which SqSPh out-
performs SqVac. Moreover, as the quantum e�ciency be-
comes lower, the actual value of γ̃th increases: losses at the
detection aremore detrimental for a setupbased onSqVac.
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Figure 6: Plots of the sensitivity s(SqSPh) (green lines) and s(SqVac)

(blue lines) as functions of Ntot (lower horizontal axis) or r (upper
horizontal axis) for γ = 0.0 and di�erent values of the quantum
e�ciency: η = 1.0 (solid lines), η = 0.8 (dashed lines) and η = 0.4
(dot-dashed lines). Note that we have s(SqSPh) = s(Ch) = (ηNtot)−1/2.

InFig. 5weplot s(SqSPh) and s(SqVac) for two�xedvalues
of γ. In the same plots we also report s(Ch) = (ηNtot)−1/2,
that is the sensitivity obtained when a coherent state with
amplitude

√
Ntot and the vacuum state are considered as

inputs. In this case we �nd the following scaling for the
high photon number regime Ntot � 1 (or large squeezing
parameter r):

s(SqSPh) ≈ 1√
η Ntot

≡ s(Ch), (9)

s(SqVac) ≈

√
3(3 − 2η)
η Ntot

, (10)

respectively, that is in both the case we �nd the shot-noise
limit ∝ N−1/2tot : in this limit the SqSPh performs better that
SqVac.

Inspecting Fig. 4, it is interesting to note when the
SqSPh is mixed with the vacuum (γ = 0), there is a min-
imum value of the squeezing parameter r above which a
SqSPh allows reaching a better sensitivity than a setup
exploiting SqVac mixed with a suitable CS in order to
have the same Ntot (see also Fig. 6). However, in this last
case one have s(SqSPh) = s(Ch) = (ηNtot)−1/2, namely, the
squeezed single photon performs as a coherent state with
the same energy.

5 Conclusions
In this manuscript we have investigated the performance
of a SqSPh as a probe to detect some optical phase shift.
We have carried out our analysis comparing the results
from the interference of the SqSPh with a CS and with the
results obtained addressing a SqVac. In particular we fo-

cused on the case of �xed squeezing parameter (assumed
to be the same for the SqSPh and the SqVac) and �xed total
number of photons. Addressing both the quantum Fisher
information and the Mach-Zehnder interferometer (based
on photodetectors), we have found the regimes in which
a SqSPh can outperform a SqVac as input. Our results
show thatwhereas in the optimal case, i.e., the case involv-
ing the optimal measurement associated with the quan-
tumFisher information, both the inputs allow reaching the
Heisenberg scaling in the high energy (or squeezing) limit
(though SqVac performs better), when themeasurement of
the di�erent photocurrent is considered the interferometer
exploiting a SqSPh exhibits a better sensitivity. Eventually,
we also presented some results (see the top panel plots
of Figs. 5 and 6) based on parameters that can be exper-
imentally reachable considering the small amount of the
total energy (up ten photons) and the reasonable amount
of squeezing (below 12 dB corresponding to r ≈ 1.38.) [3].
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