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Abstract We present a methodology for the construction
of parton distribution functions (PDFs) designed to provide
an accurate representation of PDF uncertainties for specific
processes or classes of processes with a minimal number
of PDF error sets: specialized minimal PDF sets, or SM-
PDFs. We construct these SM-PDFs in such a way that sets
corresponding to different input processes can be combined
without losing information, specifically as regards their cor-
relations, and that they are robust upon smooth variations
of the kinematic cuts. The proposed strategy never discards
information, so that the SM-PDF sets can be enlarged by the
addition of new processes, until the prior PDF set is eventu-
ally recovered for a large enough set of processes. We illus-
trate the method by producing SM-PDFs tailored to Higgs,
top-quark pair, and electroweak gauge boson physics, and
we determine that, when the PDF4LHC15 combined set is
used as the prior, around 11, 4, and 11 Hessian eigenvectors,
respectively, are enough to fully describe the corresponding
processes.
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1 Introduction

Modern sets of parton distributions (PDFs) [1–6] provide
a representation of their associated uncertainties based on
either the Hessian [7] or the Monte Carlo (MC) [8] methods,
supplementing their central PDF member with additional
error members (eigenvectors or MC replicas). The number
of PDF members required for an accurate representation of
PDF uncertainty can be as large as several hundreds, espe-
cially when constructing PDF sets based on the combination
of several underlying PDFs fitted to data: for example, the
recent PDF4LHC 2015 sets [9] are based on a combined
sample of 900 MC PDF replicas.

The usage of such large PDF samples can be computation-
ally unwieldy, and this motivated the development of strate-
gies for reducing the number of PDF members while mini-
mizing accuracy loss. A number of such reduction strategies
have been made available recently. Two of these methods pro-
vide a Hessian representation of the prior PDF set in terms
of a smaller number of eigenvectors: META-PDFs [10] and
MCH-PDFs [11]. A third method uses a compression algo-
rithm to reduce the number of replicas of an underlying MC
PDF prior: CMC-PDFs [12].

These three methods have been extensively benchmarked
in the context of the 2015 PDF4LHC recommendations [9],
where it was found that generally a set of about 100 PDFs is
required in order to represent PDF uncertainties with per-
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centage accuracy for all PDFs in the complete range of
(x, Q) relevant for LHC phenomenology. However, it is well
known [13] that, if one is interested only in the description of
a specific set of cross sections, the number of PDF error mem-
bers can be greatly reduced without significant accuracy loss.

In this work we propose a new strategy to achieve this goal.
Our methodology, which we denote by Specialized Minimal
PDFs (SM-PDFs), is based on the Singular Value Decompo-
sition version of the mc2hessian algorithm, as presented
in the appendix of Ref. [11]. Starting from either a Hessian
or a Monte Carlo prior set and a list of collider processes, the
SM-PDF algorithm leads to a set of eigenvectors optimized
for the description of the input processes within some given
tolerance.

In comparison to existing methods, such as data set diag-
onalization [13], our methodology has the advantage that no
information is lost in the process of the construction of the
specialized set. This is because the specialized set is con-
structed through a suitable linear transformation, whereby
the starting space is separated into a subspace spanned by the
optimized SM-PDF set, and its orthogonal subspace. This
then implies that any given SM-PDF set can be iteratively
expanded in order to maintain a given accuracy for an increas-
ingly large set of processes, and also that SM-PDF sets opti-
mized for different sets of processes can be combined into a
single set, either a priori, at the level of PDFs, or a posteriori,
at the level of cross sections. This, for example, enables the
a posteriori combination of previous independent studies for
a signal process and its corresponding backgrounds, with all
correlations properly accounted for.

This paper is organized as follows: in Sect. 2 we describe
our general strategy and methodology in detail. Then, in
Sect. 3, we apply our method to the most important Higgs
production channels (ggh, ht t̄ and hV , VBF h) as well as
for other standard candles at the LHC, i.e. t t̄ , Z , and W
production. We compute one specific reduced sets for each
of them, as well as a single set for all the processes com-
bined. We validate the results by comparing the predictions
of these reduced sets to the prior input set. We also show that
our method provides an adequate generalization by showing
that the predictions are stable when computing similar pro-
cesses but with different kinematical cuts from those used as
input. In Sect. 4 we show how experimental analyses done
with different SM-PDFs can be combined together. In Sect. 5
we provide an overview of the deliverables of this work, in
particular the code itself which allows one to easily gen-
erate reduced sets with personalized configuration and the
LHAPDF6 [14] sets of SM-PDFs for the processes described
in Sect. 5. Finally, Appendix A presents a graphical illustra-
tion of the regions in PDF space which give the dominant
contribution to various physical processes, and Appendix B
provides some basic instructions for the execution of the SM-
PDF code.

2 Methodology

The SM-PDF methodology is built upon the strategy based on
Singular-Value Decomposition (SVD) followed by Principal
Component Analysis (PCA) described in the appendix of
Ref. [11], in which the MCH method was presented. This
SVD+PCA strategy achieves the twofold goal of obtaining
a multigaussian representation of a starting (prior) Monte
Carlo PDF set, and of allowing for an optimization of this
representation for a specific set of input cross sections, which
uses the minimal number of eigenvectors required in order
to reach a desired accuracy goal. We will now review the
SVD+PCA method, and describe how it can be used for the
construction of specialized minimal PDF sets, optimized for
the description of a specific set of cross sections.

2.1 The SVD+PCA method

The main problem we are addressing is the faithful repre-
sentation of PDF uncertainties, which typically requires a
large number of PDF error or Monte Carlo sets. Here we will
assume the central value to be the same as in the prior PDF
set, from which, if the prior is given as a Monte Carlo, it
is typically determined as a mean (though different choices,
such as the median, are possible and might be advisable in
particular circumstances).

Hence, we are interested in the construction of a multi-
gaussian representation in PDF space: the only information
we need is then the corresponding covariance matrix. This
is constructed starting with a matrix X which samples over
a grid of points the difference between each PDF replica,

f (k)
α (xi , Q), and the central set, f (0)

α (xi , Q), namely

Xlk(Q) ≡ f (k)
α (xi , Q) − f (0)

α (xi , Q), (1)

where α runs over the N f independent PDF flavors at the
factorization scale μF = Q, i runs over the Nx points in the
x grid where the PDFs are sampled, l = Nx (α − 1) + i runs
over all Nx N f grid points, and k runs over the Nrep replicas.
The sampling is chosen to be fine-grained enough that results
will not depend on it.

The desired covariance matrix in PDF space is then con-
structed as

cov(Q) = 1

Nrep − 1
XXt . (2)

The key idea which underlies the SVD method is to rep-
resent the (Nx N f )× (Nx N f ) covariance matrix Eq. (2) over
the Nrep dimensional linear space spanned by the replicas
(assuming Nrep > Nx N f ), by viewing its Nx N f eigenvec-
tors as orthonormal basis vectors in this space, which can
thus be represented as linear combinations of replicas. The
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subsequent PCA optimization then simply consists of pick-
ing the subspace spanned by the dominant eigenvectors, i.e.,
those with largest eigenvalues.

The first step is the SVD of the sampling matrix X , namely

X = USV t , (3)

where U and V t are orthogonal matrices, with dimensions
respectively Nx N f × N (0)

eig and Nrep × Nrep, S is a diagonal

N (0)
eig × Nrep positive semi-definite matrix, whose elements

are the so-called singular values of X , and the initial number
of singular values is given by N (0)

eig = Nx N f . Note that,
because S is diagonal, it can be equivalently viewed as a
N (0)

eig × N (0)
eig matrix, since (with N (0)

eig > Nrep) all its further
entries vanish. This point of view was taken in the appendix
of [11]. In this case, only the N (0)

eig × Nrep submatrix which
actually contributes to the SVD of the matrix V is included.
However, for the procedure to be described below, it is more
convenient to view V as Nrep × Nrep orthogonal matrix.

The matrix Z = US then has the important property that

Z Zt = XXt , (4)

but also that it can be expressed as

Z = XV, (5)

and thus it provides the sought-for representation of the
multigaussian covariance matrix in terms of the original PDF
replicas: specifically, Vkj is the expansion coefficient of the
j th eigenvector over the kth replica. We assume henceforth
that the singular values are ordered, so that the first diagonal
entry of S correspond to the largest value, the second to the
second-largest and so forth.

The PCA optimization then consists of only retaining the
principal components, i.e. the largest singular values. In this
case, U and S are replaced by their sub-matrices, denoted
by u and s, respectively, with dimension Nx N f × Neig and

Neig × Nrep, with Neig < N (0)
eig the number of eigenvectors

which have been retained. Due to the ordering, these are
the upper left sub-matrices. Because s has only Neig non-
vanishing diagonal entries, only the Nrep × Neig submatrix
of V contributes. We call this the principal submatrix P of
V :

Pkj = Vkj , k = 1, . . . , Nrep, j = 1, . . . , Neig. (6)

The optimized representation of the original covariance
matrix, Eq. (2), is then found by replacing V with its principal
submatrix P in Eq. (5). This principal matrix P is thus the
output of the SVD+PCA method: it contains the coefficients
of the linear combination of the original replicas or error
sets which correspond to the principal components, which

can be used to compute PDF uncertainties using the Hessian
method.

Indeed, given a certain observable σi (which could be a
cross section, the value of a structure function, a bin of a dif-
ferential distribution, etc.) its PDF uncertainty can be com-
puted in terms of the original Monte Carlo replicas by

sσi =
⎛
⎝ 1

Nrep − 1

Nrep∑
k=1

(
σ

(k)
i − σ

(0)
i

)2

⎞
⎠

1
2

= 1√
Nrep − 1

‖d(σi )‖ , (7)

where σ
(k)
i is the prediction obtained using the kth Monte

Carlo PDF replica, σ
(0)
i is the central prediction, and in the

last step we have defined the vector of differences

dk(σi ) ≡ σ
(k)
i − σ

(0)
i , k = 1, . . . , Nrep, (8)

with norm

‖d(σi )‖ ≡
⎛
⎝

Nrep∑
k=1

d2
k (σi )

⎞
⎠

1
2

. (9)

Assuming linear error propagation and using Eq. (5), the
norm of the vector {dk(σi )}, Eq. (8), can be represented in
the eigenvector basis:

‖d(σ1)‖ =
∥∥∥dV (σ1)

∥∥∥ (10)

where the rotated vector

dV j (σi ) =
Nrep∑
k=1

dk(σi )Vkj , j = 1, . . . , N (0)
eig (11)

has the same norm as the original one because of Eq. (4).
Replacing V by the principal matrix P in Eq. (11), i.e.,

letting j only run up to Neig < N (0)
eig we get

s̃σi = 1√
Nrep − 1

∥∥∥dP (σi )

∥∥∥ , (12)

where now the vector is both rotated and projected

dP
j (σi ) =

Nrep∑
k=1

dk(σi )Pkj , j = 1, . . . , Neig. (13)

The norm of dP is only approximately equal to that of
the starting vector of differences d:

∥∥dP (σ1)
∥∥ ≈ ‖d(σ1)‖.

However, it is easy to see that this provides the linear combi-
nation of replicas which minimizes the difference in absolute
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value between the prior and final covariance matrix for the
given number of eigenvectors. As the difference decreases
monotonically as Neig increases, the value of Neig can be
tuned to any desired accuracy goal, with the exact equality
Eq. (10) achieved when Neig = N (0)

eig . Note that, of course,
the optimization step can be performed also starting with a
symmetric Hessian, rather than Monte Carlo, prior. In such
a case, the index k runs over Hessian eigenvectors, Eq. (2) is
replaced by cov(Q) = XXt , and the rest of the procedure is
unchanged.

An interesting feature of this SVD+PCA method is that
the matrix V (and thus also the principal matrix P) in Eq. (11)
does not depend on the value of the PDF factorization scale
Q: the scale dependence is thus entirely given by the DGLAP
evolution equation satisfied by the original Monte Carlo
replicas. The result of the SVD thus does not depend on the
scale at which it is performed. Of course, the subsequent PCA
projection may depend on scale if there are level crossings,
but this is clearly a minor effect if a large enough number of
principal components is retained. Because of this property,
the SVD+PCA methodology can be used for the efficient con-
struction [9] of a Hessian representation of combined PDF
sets, even when the sets which enter the combination satisfy
somewhat different evolution equations, e.g., because of dif-
ferent choices in parameters such as the heavy quark masses,
or in the specific solution of the DGLAP equations.

2.2 The SM-PDF method

In the SM-PDF method, this same SVD+PCA optimization
is performed, but now with the goal of achieving a given
accuracy goal not for the full prior PDF set in the complete
range of x and Q2, but rather for the aspects of it which are
relevant for the determination of a given input set of cross
sections, and in such a way that all the information which
is not immediately used is stored and can be a posteriori
recovered either in part or fully, e.g. if one wishes to add
further observables to the input list.

This requires supplementing the SVD+PCA methodology
of Ref. [11] with three additional features: a measure of the
accuracy goal; a way of singling out the relevant part of the
covariance matrix; and a way of keeping the information on
the rest of the covariance matrix in such a way that, if needed,
the full covariance matrix can be recovered at a later stage.

The main input to the algorithm is the set of Nσ observ-
ables which we want to reproduce, {σi }, with i = 1, . . . , Nσ .
Theoretical predictions for the cross sections {σi } are com-
puted using a prior PDF set, which we assume for definite-
ness to be given as a Monte Carlo, though the method works
with obvious modifications also if the starting PDFs are given
in Hessian form. The goal of the SM-PDF methodology is
to evaluate the PDF uncertainties sσi , Eq. (7), in terms of a
reduced number of Hessian eigenvectors,

s̃σi =
⎛
⎝

Neig∑
n=1

(
σ̃

(n)
i − σ̃

(0)
i

)2

⎞
⎠

1
2

, (14)

with the number Neig being as small as possible within a
given accuracy. We thus define a measure TR of the accuracy
goal (tolerance) by the condition

T < TR; T ≡ max
i∈(1,Nσ )

∣∣∣∣1 − s̃σi
sσi

∣∣∣∣ (15)

in other words, TR is the maximum relative difference which
is allowed between the original and reduced PDF uncertain-
ties, s̃σi and sσi , respectively, for all the observables {σi }.

In order to determine the part of the covariance matrix
relevant for the description of the input observables {σi }, we
define the correlation function

ρ (xi , Q, α, σi )

≡ Nrep

Nrep − 1

( 〈X (Q)lkdk(σi )〉rep − 〈
X (Qσi )lk

〉
rep 〈dk(σi )〉rep

sPDF
α (xi , Q)sσi

)
,

(16)

where the matrix of PDF differences X (Q) and the grid index
l = Nx (α − 1)+ i have been defined in Eq. (1); sPDF

α (xi , Q)

is the standard deviation of the PDFs in the prior Monte Carlo
representation, given by the usual expression,

sPDF
α (xi , Q) =

⎛
⎝ 1

Nrep − 1

Nrep∑
k=1

[
f (k)
α (xi , Q) − 〈 fα(xi , Q)〉

]⎞⎠
1
2

,

(17)

and sσi , the standard deviation of the i th observable σi , is
given by Eq. (7). The function Eq. (16) measures the corre-
lation between the observables σi and the lth PDF value (i.e.
fα(xi , Q), with l = Nx (α − 1) + i).

The basic idea of the SM-PDF construction is to apply
the SVD to the subset of the covariance matrix which is
most correlated to the specific observables that one wishes
to reproduce, through a procedure such that information is
never discarded, so observables can be added one at a time,
or at a later stage. This goal is achieved through an iterative
procedure schematically represented in Fig. 1, which we now
describe in detail.

The iteration loop (contained in the dashed box in Fig. 1)
is labeled by an iteration index j , such that at each iteration an
extra eigenvector is added, thereby increasing the accuracy.
If the accuracy goal is achieved for all observables after j
iterations, then the final reduced Hessian set contains Neig =
j eigenvectors as error sets. These are obtained as a new
principal matrix P , which provides the expansion coefficients
of the eigenvectors over the replica basis: namely, Pkj is the
component of the j th eigenvector in terms of the kth replica.
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Fig. 1 Schematic representation of the SM-PDF strategy

They thus replace the principal matrix of the previous PCA
procedure as a final output of the procedure, and they can be
used in exactly the same way.

To set off the iterative procedure, we select one of the
observables we wish to reproduce from the list, σ1, and com-
pute the correlation coefficient ρ (xi , Q, α, σ1) for all grid
points (xi , α) and for a suitable choice of the scale Q. We
then identify the subset � of grid points for which ρ exceeds
some threshold value:

� = {
(xi , α) : ρ

(
xi , Qσ1 , α, σ1

) ≥ tρmax
}
. (18)

The threshold value is expressed as a fraction 0 < t < 1
times the maximum valueρmax that the correlation coefficient
takes over the whole grid, thereby making the criterion inde-
pendent of the absolute scale of the correlation. The choice
of the scale Q and the threshold parameter t should be taken
as tunable settings of the procedure, and it will be discussed
in Sect. 3 below. For the time being it suffices to say that Q
should be of the order of the typical scale of the observable
(for example, the average value of the factorization scale).

We then construct a reduced sampling matrix X�, defined
as in Eq. (1), but now only including points in the {xi , α}
space which are in the subset �. We perform the SVD of the
reduced matrix

X� = USV t , (19)

and we only keep the largest principal component, i.e. one
single largest eigenvector, which is specified by the coeffi-
cients of its expansion over the replica basis, namely, assum-
ing that the singular values are ordered, by the first row of the
V matrix. We thus start filling our output principal matrix P
by letting

Pkj = V ( j)
k1 , j = 1, k = 1, . . . , Nrep. (20)

Note that j on the left-hand side labels the eigenvector
(Pkj provides expansion coefficients for the j th eigenvector)

and on the right-hand side it labels the iteration (V ( j)
k1 is the

first row of the V -matrix at the j th iteration), which we can
identify because, as mentioned, at each iteration we will add
an eigenvector. The remaining eigenvectors of the principal
matrix span the linear subspace orthogonal to P , and we
assign them to a residual matrix R:

R( j)
km = V ( j)

k(m+1) j = 1,

m = 1, . . . , Nrep − 1, k = 1, . . . , Nrep. (21)

At the first iteration, when there is only one eigenvec-
tor, the principal matrix P has just one row, and it coincides
with the principal component of V . So far, the procedure is
identical to that of the SVD+PCA method, and we can thus
use again Eq. (12) to compute uncertainties on observables,
check whether the condition Eq. (15) is met, and if it is not,
add more eigenvectors. The procedure works in such a way
that each time a new eigenvector is selected, exactly the same
steps are repeated in the subspace orthogonal to that of the
previously selected eigenvectors, thereby ensuring that infor-
mation is never discarded. This is achieved by a projection
method.

Specifically, we project the matrix X and the vector of
observable differences {dk(σi )} on the orthogonal subspace
of P , namely, the space orthogonal to that spanned by the
eigenvectors which have already been selected (as many as
the number of previous iterations). The projections are per-
formed by, respectively, replacing d(σi ) and X by

dR(σi ) = d(σi )R
( j−1), (22)

X R = XR( j−1), (23)

where the first iteration of the residual matrix R(1) has been
defined in Eq. (21).

After the projection, we proceed as in the first itera-
tion. We first determine again the subset �, Eq. (18), of
the projected sampling matrix X R , thereby obtaining a new
sampling matrix X R

�: this is possible because everything is
expressed as a linear combination of replicas anyway. Once
the new matrix X R

� has been constructed, the procedure is
restarted from Eq. (19), leading to a new matrix V R . The
number of columns of the projected matrix X R

� (and there-
fore of V R) is Nrep − ( j − 1), which is the dimension of the
subspace of the linear combinations not yet selected by the
algorithm (that is, Nrep − 1 for j = 2, and so on). We can
now go back to Eq. (20) and proceed as in the previous case,
but with the projected matrices: we add another row to the
matrix of coefficients to the principal matrix by picking the
largest eigenvector of the projected matrix, and determining
again the orthogonal subspace.
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At the j th iteration, this procedure gives

PR ( j)
k = V R ( j)

k1 , k = 1, . . . , Nrep − ( j − 1), (24)

RR ( j)
km = V R ( j)

k(m+1), m = 1, . . . , Nrep − j,

k = 1, . . . , Nrep − ( j − 1). (25)

which, respectively, generalize Eqs. (20) and (21) for j ≥ 1.
The projected row of coefficients PR Eq. (24) can be used
to determine the corresponding unprojected row of coeffi-
cients of the principal matrix and of the residual matrix by
using the projection R matrix in reverse, i.e., at the j th iter-
ation

P( j)
kh =

∑
k′

R( j−1)

kk′ PR ( j)
k′h , (26)

R( j)
kh =

∑
k′

R( j−1)

kk′ RR ( j)
k′h . (27)

We thus end up with a principal matrix which has been
filled with a further eigenvector, and a new residual matrix
and thus a new projection.

In summary, at each iteration we first project onto the
residual subspace, Eq. (22), then pick the largest eigenvector
in the subspace, Eq. (24), and then re-express the results in
the starting space of replicas, Eq. (26), so that P is always
the first row of V in each subspace, and Eqs. (13)–(12)
remain valid as the P matrix is gradually filled. Determin-
ing the correlation and thus � after projection ensures that
only the correlations with previously unselected linear com-
binations are kept. The fact that we are always working in
the orthogonal subspace implies that the agreement for the
observables σi , which had already been included, can only
be improved and not deteriorated by subsequent iterations. It
follows that we can always just check the tolerance condition
on one observable at a time. The procedure is thus unchanged
regardless of whether we are adding a new observable or not.
In any case, the subset � for Eq. (18) is always determined
by only one observable, namely, the one that failed to sat-
isfy the tolerance condition at the previous iteration. The
procedure is iterated until the condition is satisfied for all
observables {σi } in the input list. The number of iterations
j until convergence defines the final number of eigenvectors
Neig.

The output of the algorithm is the final Nrep × Neig prin-
cipal matrix P , which can be used to compute uncertain-
ties on observables using Eqs. (12)–(13). However, for the
final result we wish to obtain a set of Hessian eigenvectors.
These can be obtained by performing the linear transforma-
tion given by P (a rotation and a projection) in the space of
PDFs. The X matrix Eq. (1) then becomes

X̃ ≡
√

1

Nrep − 1
X P, (28)

so, substituting in Eq. (1), the final Neig eigenvectors are
found to be given by

f̃ (k)
α (xi , Q) = f (0)

α (xi , Q) + X̃lk(Q), k = 1, . . . , Neig.

(29)

This is the same result as with the SVD+PCA algorithm
of Sect. 2.1, but now generally with a smaller number of
eigenvectors, namely, those which are necessary to describe
the subset of the covariance matrix which is correlated to the
input set of observables.

2.3 SM-PDF usage and optimization

Upon delivery of the final PDF set, any observable is
computed in terms of the resulting Hessian representation
Eq. (29). As in the case of the original SVD+PCA method-
ology, the final result Eq. (29) determines the PDFs for all
x and Q. Indeed, Eq. (29) determines the SM-PDF Hessian
eigenvectors as linear combinations of replicas, and thus for
all values of x and Q for which the original replicas were
defined.

Note, however, that in the procedure of Sect. 2.2, in order
to test for the tolerance criterion observables have been com-
puted using Eqs. (12)–(13). This is equivalent to using the
PDFs Eq. (28) by standard linear error propagation, but it
differs from it by nonlinear terms, specifically for hadron
collider processes in which observables are quadratic in the
PDFs. Even though nonlinear corrections are expected to be
small, in principle it could be that the tolerance criterion is
no longer satisfied if Eq. (28) is used instead.

We explicitly check for this, and if it is the case for all
observables σi such that the recomputed tolerance criterion
is not satisfied, we restart the iteration but now replacing the
tolerance with a new value T (new)

R,i given by

T (new)
R,i ≡ TR −

(
Ti − T (lin)

i

)
, (30)

where T (lin)
i is the value of the tolerance that is obtained

within the linear approximation, by computing Eq. (15) with
Eq. (12). Iterating until the criterion with the new tolerances
Eq. (30) is met will be sufficient to ensure that the toler-
ance criterion is satisfied when using the new PDFs, provided
the difference between the linear and exact estimate of Ti is
mostly due to the larger eigenvectors that were selected first
and remains approximately constant upon addition of smaller
eigenvectors in order to correct for this.

In practice, the difference between the linear estimation of
the PDF uncertainty and the exact result is generally small,
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and does not a change the result for target tolerancesTR of 5 %
or bigger. This effect can be more important for observables
affected by substantial PDF uncertainties, or for processes
which depend on a large number of partonic channels (espe-
cially when new channels open up at NLO or NNLO). It is,
however, not an issue for most practical applications.

Note that this final optimization step may become
extremely time consuming if fast grid tools are not available.
In view of this, it is possible to disable this check. How-
ever, fast interfaces can be obtained for any NLO QCD cross
section with arbitrary final-state cuts using the aMCfast
interface [15] to Madgraph5_aMC@NLO [16].

The SM-PDF construction can be generally performed at
any perturbative order, and specifically starting with an NLO
or an NNLO PDF set. The perturbative order enters both in
the choice of starting PDF set, and in the computation of
the list of observables {σi }, specifically used for the deter-
mination of the correlation function ρ defined in Eq. (16).
Because the NNLO-NLO K factors are usually moderate,
for most applications it may be sufficient to compute ρ using
NLO theory even when using NNLO PDFs throughout. An
obvious exception is the case in which the user is explicitly
interested in studying the changes in PDFs when going from
NLO to NNLO.

A final issue is whether results depend on the order in
which the observables are included, and specifically on the
choice of the observable σ1 used to start the iteration. Indeed,
the eigenvectors selected for a specific iteration depend on the
subspace spanned by the previous eigenvectors, and conse-
quently a different ordering will indeed change the particular
linear combinations that are selected. However, this does not
significantly affect the total number of eigenvectors needed,
because the optimal subspace of linear combinations required
to describe all observables with a given accuracy remains the
same regardless of the order they are presented. We have ver-
ified that this is indeed the case, though we observed small
fluctuations by one or two units in the final number of eigen-
vectors due to the discontinuous nature of the tolerance cri-
teria, Eq. (15).

3 Results and validation

We now present the validation of the SM-PDF algorithm
described in the previous section. Using this methodology,
we have constructed four specialized minimal PDF sets for
different representative cases of direct phenomenological rel-
evance at the LHC:

1. Higgs physics.
2. Top quark pair production physics.
3. Electroweak gauge boson production physics.

4. The combination of all processes included in (1), (2), and
(3).

These examples have been chosen since, for each SM-
PDF, there is a strong case for the use of optimized PDF sets
with a greatly reduced number of eigenvectors. For instance,
these SM-PDFs could be of interest for studies of the Higgs
Cross-Section Working Group [17] (case 1), the LHC Top
Working Group (case 2), and the LHC Electroweak Working
Group (case 3), respectively. As an example, the SM-PDFs
for W, Z production could be relevant for the determination
of the W boson mass [18–20], which is a extremely CPU-
time consuming task.

In this section, we will first define the PDF priors and
LHC cross sections that have been used to construct the SM-
PDF sets listed above, then validate the performance of the
algorithm using a variety of figures of merit.

3.1 Input PDFs and cross sections

In order to validate the SM-PDF methodology, we have used
three different prior PDF sets, all of them in the Monte Carlo
representation:

1. The NNPDF3.0 NLO set [6] with Nrep = 1000 replicas,
2. The MMHT14 NLO set [5] with Nrep = 1000 replicas,

obtained from the native Hessian representation using the
Watt-Thorne method [21], and

3. The PDF4LHC 2015 NLO prior set [9], with Nrep = 900
replicas, built from the combination of 300 replicas from
each of the CT14, MMHT14 and NNPDF3.0 NLO sets.
This set is denoted by MC900 in the following.

These three choices are representative enough for the val-
idation of our methodology; they show that the procedure
works regardless of the choice of input PDF set. As already
mentioned in Sect. 2.3 the SM-PDF methodology can be
applied equally to NLO or NNLO PDFs, and NLO PDFs
are chosen here purely for the sake of illustration. Indeed, in
Appendix B we provide an example in which NNLO PDFs
are used.

In order to compute the theoretical predictions for all
input PDF sets and as many cross sections as possible, we
have generated a large number of dedicated APPLgrid
grids [22] using the aMCfast [15] interface to MadGraph
5_aMC@NLO [16]. Cross sections and differential distribu-
tions have been computed for the LHC Run II kinematics,
with a center-of-mass energy of

√
s = 13 TeV. In particular

we have generated fast NLO grids for the following pro-
cesses:

• Higgs production Total cross sections and rapidity and
pT differential distributions for gluon fusion, vector-
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Table 1 LHC processes and the corresponding differential distributions
that have been used as input in the construction of the SM-PDFs ded-
icated to Higgs physics. In each case we also provide the APPLgrid
grid name, the range spanned by each distribution, the number of bins

Nbins, and the kinematical cuts applied to the final-state particles. For
associated production with vector bosons, hW and hZ , we impose basic
acceptance cuts on the charged leptons from the weak boson decays.
All processes have been computed for the LHC 13 TeV

Process Input cross sections for SM-PDFs for Higgs physics

Distribution Grid name Nbins Range Kin. cuts

gg → h incl xsec ggh_13tev 1 – –

dσ/dpht ggh_pt_13tev 10 [0,200] GeV –

dσ/dyh ggh_y_13tev 10 [−2.5,2.5] –

VBF hj j incl xsec vbfh_13tev 1 – –

dσ/dpht vbfh_pt_13tev 5 [0,200] GeV –

dσ/dyh vbfh_y_13tev 5 [−2.5,2.5] –

hW incl xsec hw_13tev 1 – pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dpht hw_pt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dyh hw_y_13tev 10 [−2.5,2.5] pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

hZ incl xsec hz_13tev 1 – pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dpht hz_pt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dyh hz_y_13tev 10 [−2.5,2.5] pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

ht t̄ incl xsec httbar_13tev 1 – –

dσ/dpht httbar_pt_13tev 10 [0,200] GeV –

dσ/dyh httbar_y_13tev 10 [−2.5,2.5] –

boson fusion, associated production with W and Z
bosons and associated production with top-quark pairs.
No Higgs decays are included, since we are only inter-
ested in the production dynamics.

• Top quark pair production Total cross section, pt , and
rapidity distributions of the top and the anti-top quarks,
and invariant mass mtt̄ , pt , and rapidity distributions of
the t t̄ system.

• Electroweak gauge boson production For Z production:
total cross section, pT , and rapidity distributions of the
two charged leptons and of the Z boson, and pT and
invariant mass distribution of the dilepton pair. For W
production: total cross section, pT , and rapidity distribu-
tions of the charged lepton and of the W boson, missing
ET and transverse mass mT distribution. For the W and
Z processes, we apply kinematical cuts to the charged
leptons from the weak boson decay to reflect the typical
acceptance constraints of the LHC experiments.

A more detailed description of these processes, includ-
ing binning and the kinematical cuts applied, is provided in
Tables 1, 2, and 3. We also indicate the names of the (pub-
licly available) APPLgrid grids generated for the present
validation study. Producing fast NLO grids for additional pro-
cesses, or with a different binning or set of analysis cuts, is
straightforward using the aMC@NLO/aMCfast framework.
We adopt the default choice of renormalization and factor-
ization scales in aMC@NLO, namely μF = μR = HT /2,

with

HT ≡
∑
i

√
p2
T,i + m2

i , (31)

the scalar sum of the transverse masses of all final-state par-
ticles at the matrix-element level.

Clearly, some of these cross sections contain overlapping
information, so our list is partially redundant. For instance, if
differential distributions are reproduced, this will also be the
case for total inclusive cross sections. Similarly, the rapidity
distributions of the W and Z bosons are closely related to
the rapidity distributions of the leptons from their decay, so
including both distributions will lead to a certain degree of
redundancy.

This redundancy can be used to provide a non-trivial check
of our methodology. For instance, we have verified that by
beginning with the total cross sections, only the most extreme
bins of the differential distributions, which contribute less to
the cross section, might require extra eigenvectors in order
to be reproduced to the desired tolerance. Conversely, if we
begin the algorithm using differential distributions as input,
no additional eigenvectors are required to describe the cor-
responding total cross sections.

3.2 Choice of settings

The SM-PDF method is fully determined by the choice of
kinematic region �, Eq. (18), which in turn is fully speci-
fied by the correlation function and tolerance TR . The only
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Table 2 Same as Table 1 for the SM-PDFs dedicated to top-quark pair production physics

Process Input cross sections for SM-PDFs for t t̄ physics

Distribution Grid name Nbins Range Kin. cuts

t t̄ incl xsec ttbar_13tev 1 – –

dσ/dpt̄t ttbar_tbarpt_13tev 10 [40,400] GeV –

dσ/dyt̄ ttbar_tbary_13tev 10 [−2.5,2.5] –

dσ/dptt ttbar_tpt_13tev 10 [40,400] GeV –

dσ/dyt ttbar_ty_13tev 10 [−2.5,2.5] –

dσ/dmtt̄ ttbar_ttbarinvmass_13tev 10 [300,1000] –

dσ/dptt̄t ttbar_ttbarpt_13tev 10 [20,200] –

dσ/dyt t̄ ttbar_ttbary_13tev 12 [−3,3] –

Table 3 Same as Table 1 for the SM-PDFs dedicated to electroweak gauge boson production physics. The kinematical cuts are applied to the
charged leptons from the weak boson decays

Process Input cross sections for SM-PDFs for electroweak boson production physics

Distribution Grid name Nbins Range Kin. cuts

Z incl xsec z_13tev 1 – pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dpl
−
t z_lmpt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dyl
−

z_lmy_13tev 10 [−2.5,2.5] pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dpl
+
t z_lppt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dyl
−

z_lpy_13tev 10 [−2.5,2.5] pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dpzt z_zpt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dyz z_zy_13tev 5 [−4,4] pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dmll z_lplminvmass_13tev 10 [50,130] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dpllt z_lplmpt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

W incl xsec w_13tev 1 – pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dφ w_cphi_13tev 10 [−1,1] pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dEmiss
t w_etmiss_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dplt w_lpt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dyl w_ly_13tev 10 [−2.5,2.5] pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dmt w_mt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dpw
t w_wpt_13tev 10 [0,200] GeV pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

dσ/dyw w_wy_13tev 10 [−4,4] pT (l) ≥ 10 GeV, |ηl | ≤ 2.5

tunable parameters are thus the scale Q used for the eval-
uation of correlations in Eq. (16) and the threshold value
t . As the choice of the scale Q, we adopt the mean value
of the factorization scale μF at which the PDFs are eval-
uated by the corresponding APPLgrid grids, that is, the
event-by-event weighted average of the value of μF used in
the calculation of each specific cross section or differential
distribution.

The only remaining free parameter is then the threshold
t , which specifies according to Eq. (18) which points are
included in the reduced matrix X |�: low values of t lead
to the inclusion of a wider region in phase space, and con-
versely. Clearly, if � is too wide, the reduction will not be
very effective and the ensuing number of eigenvectors will

be large. On the other hand, if the region � is too small, the
number of eigenvectors will be small, but it might be lead to
a result which is unstable upon small changes of the input
observables.

In order to determine a suitable value of t , we use the
full set of cross sections listed in Tables 1, 2, and 3. We will
henceforth refer to this specific set of observables (and the
associate SM-PDF set) as the “ladder”. In Fig. 2 (left) we
plot the number of eigenvectors Neig, which we obtained as
a function of the parameter t when the SM-PDF methodology
is applied to the MC900 prior set, for a fixed tolerance TR =
5 %. We show the results for the Higgs, EW and the “ladder”
set of input processes.
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Fig. 2 Left final number of eigenvectors Neig obtained applying the
SM-PDF algorithm to the MC900 NLO PDF set with 900 Monte Carlo
replicas, as a function of the threshold parameter t Eq. (18) for fixed
tolerance TR = 5 %. We show the results for three choices of input
cross sections: Higgs (Table 1), electroweak gauge boson production

(Table 3), and “ladder” (all processes in Tables 1, 2, and 3). Right cor-
relation Eq. (16) between all the PDFs and the total cross section for
Higgs production in gluon fusion, as a function of x (solid blue lines).
The value ρ = 0.9ρmax is shown as a dashed line and the region in
which the correlation exceeds the threshold is shown as a shaded band

As expected, Neig decreases as the value of t is raised, since
in this case fewer points in the (α, x) grid are selected. While
the specific position of the minimum of the Neig(t) curve
depends on the input set of cross sections, we see from Fig. 2
that the curve reaches its minimum around t ∼ 0.9 for all
processes. Note that, as discussed at the end of Sect. 2.3, the
value of Neig(t) can fluctuate, typically by one or two units,
depending on the specific ordering of the input processes. We
therefore choose t = 0.9: this means that we adopt the small-
est value of t (i.e. the widest kinematic region) compatible
with having the smallest possible number of eigenvectors.

In Fig. 2 (right) we show the value of the correlation coef-
ficient Eq. (16) between the MC900 prior set and the inclu-
sive cross section for Higgs production in gluon fusion, as
a function of x and for the seven independent PDF flavors,
evaluated at the average scale Q of the grids. The value of
the correlation ρ = tρmax corresponding to t = 0.9 is shown
as a dashed red line in the plots; the points for which the
correlation coefficient (blue curve) is larger in modulus than
the threshold are shown as a shaded region.

We observe that, for this specific cross section, the algo-
rithm in the first iteration will include in the region � for
Eq. (18) only the gluon PDF for x � 10−2, which corre-
sponds to the region that dominates the total cross section
for Higgs production in gluon fusion. In Appendix A we
provide additional correlation plots, similar to Fig. 2 (right)
but for other Higgs production channels, as well as the corre-
lation plots for subsequent iterations, j ≥ 2, of the algorithm,

illustrating how the selected regions in the (x, α) grid vary
along the iteration.

3.3 Results and validation

We now present the results of applying the SM-PDF proce-
dure to the PDF sets and cross sections described in Sect. 3.1.
In Table 4 we show the results for the number of eigenvec-
tors Neig obtained, for each input PDF set, using the three
different groups of LHC processes that we consider: Higgs,
t t̄ , and W/Z production. In addition, for the Higgs produc-
tion processes, we have also studied the results of applying
our methodology to each of the Higgs production channels
individually, as summarized in Table 5. The algorithm has
been applied for two different values of the tolerance TR ,
namely 5 and 10 %. We also indicate in the bottom row the
results for the “ladder” SM-PDF (i.e. including all the above
processes.)

Several comments on Table 4 are in order.

• Results are reasonably stable upon a change of toler-
ance, with differences smaller with the MMHT14 prior,
which has smaller underlying number of parameters than
NNPDF3.0.

• The most dramatic reduction in number of eigenvectors
is seen for the production of top pairs, or Higgs in gluon
fusion, where only Neig � 4 eigenvectors are needed.
This can be understood as a consequence of the fact that in
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Table 4 Number of eigenvectors Neig obtained by applying the SM-
PDF procedure, starting from each of the three input prior PDF sets, to
the three families of processes summarized in Tables 1, 2, and 3: Higgs
production, t t̄ production, and W/Z production physics. The final row

is based on the inclusion of all the three families of processes, in the
same order as they are listed. Results are shown for two different values
of the tolerance threshold TR , 5 and 10 %, respectively

Process Neig

MC900 NNPDF3.0 MMHT14

TR = 5 % TR = 10 % TR = 5 % TR = 10 % TR = 5 % TR = 10 %

h 15 11 13 8 8 7

t t̄ 4 4 5 4 3 3

W, Z 14 11 13 8 10 9

ladder 17 14 18 11 10 10

Table 5 Same as Table 4, now for the case where the separate Higgs production channels as used as input to the SM-PDF algorithm

Process Neig

MC900 NNPDF3.0 MMHT14

TR = 5 % TR = 10 % TR = 5 % TR = 10 % TR = 5 % TR = 10 %

gg → h 4 5 4 4 3 3

VBF hj j 7 5 10 5 4 3

hW 6 5 6 4 6 3

hZ 11 7 6 4 8 5

ht t̄ 3 2 4 4 3 2

Total h 15 11 13 8 8 7

both cases the dominant contribution to the cross section
arises from the gluon distribution in a narrow region of
x .

• Total cross sections and differential distributions for all
the Higgs production modes can be reproduced, in the
case of the MC900 prior, with 11 to 15 eigenvectors
(depending on the choice of tolerance TR).

• The number of eigenvectors required is largest for the
Higgs and the W/Z family of processes, as one would
expect given that in both cases several PDFs in a wide
kinematic range are required.

• All the processes that we are including can be described
with a SM-PDF set, the “ladder”, which includes about
the same number of eigenvectors as needed for the Higgs
or for the Drell–Yan and W/Z family of processes. This
“ladder” SM-PDF, with only Neig � 15 eigenvectors, can
be used reliably for a large number of LHC cross sections,
including those not included in its construction.

Next, in Fig. 3 we show the total number of eigenvectors
Neig, which are required, for a tolerance of TR = 5 %, as more
and more processes are sequentially included, until the com-
plete list of processes in Tables 1, 2, and 3 has been exhausted.
This plot demonstrates the robustness and flexibility of the
SM-PDF algorithm, in that it shows how more processes can
be added without information loss to a reduced PDF set,
thereby allowing for a study of the information brought in by

each process. In Fig. 3 results are presented for the three input
PDF sets, MC900, NNPDF3.0 and MMHT14. As already
seen in Table 4, a smaller number of eigenvectors is required
in order to describe the MMHT14 set, which has a smaller
underlying number of parameters than the NNPDF3.0 set; the
combined MC900 set requires roughly the same number of
eigenvectors as NNPDF3.0, which is contained in it. Inspec-
tion of Fig. 3 indicates which processes bring in new informa-
tion in comparison to those already included. For instance,
the fact that the number of eigenvectors is unchanged when
adding all the observables related to top-quark pair produc-
tion shows that SM-PDFs based on Higgs processes also
describe top production.

In Figs. 4, 5, 6 we compare various cross sections and dif-
ferential distributions computed with the MC900 prior PDF
set and with the corresponding SM-PDFs for some of the
cases discussed above, normalized to the central value of the
prior. In the upper plots of Fig. 4, we show the Higgs pT and
y distributions in gluon fusion production, comparing with
the Higgs SM-PDF. In the lower plots of Fig. 4, we show the
top-quark pair invariant massmtt̄ and top rapidity yt distribu-
tions, comparing with the t t̄ SM-PDF. In Fig. 5 we compare
various differential distributions in weak gauge boson pro-
duction with the W, Z SM-PDFs, and finally in Fig. 6 we
compare the “ladder” SM-PDFs with various total inclusive
cross sections.
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Fig. 3 Total number of
eigenvectors Neig required by
the SM-PDF algorithm to
describe a sequentially
increasing number of input cross
sections and distributions, for a
tolerance TR = 5 %. Results are
presented for the three prior
PDF sets, namely MC900,
NNPDF3.0, and MMHT14

In these comparisons, results are shown for two values of
the tolerance, TR = 5 % and TR = 10 %. PDF uncertainties
are shown as one-sigma confidence intervals; for the MC900
prior, the central 68 % confidence intervals are also shown
(inner ticks). In all cases we observe excellent agreement
between the prior and the corresponding SM-PDF sets, which
provides a further validation of the reliability of the method.

We have also verified that SM-PDFs reproduce well PDF
correlations, even though the tolerance criterion Eq. (15)
is only imposed on diagonal PDF uncertainties. The PDF-
induced correlation between two cross sections computed
using a Monte Carlo PDF set is given by

ρ(σi , σ j ) =

〈
σ

(k)
1 σ

(k)
2

〉
rep

−
〈
σ

(k)
1

〉
rep

〈
σ

(k)
2

〉
rep

sσ1sσ2

, (32)

while for a Hessian set it is

ρ(σi , σ j ) =
∑Neig

k=1

(
σ̃

(k)
i − σ

(0)
i

) (
σ̃

(k)
j − σ

(0)
j

)

s̃σ1 s̃σ2

. (33)

In Fig. 7 we show the difference between the correlations
determined using the MC900 prior (from Eq. (32)) and the
“ladder” SM-PDF set (from Eq. (33)), with TR = 5 %, for all
the total inclusive cross sections used as input to the “ladder”
SM-PDF set. We find that the deviation in correlation is at
the few percent level or better for most cases, and anyway
never worse than 20 %.

An additional validation test can be performed by compar-
ing the predictions for a given SM-PDF outside the kinematic
range of the input processes. To illustrate this point, in Fig. 8
we compare the pt and rapidity distributions in Higgs produc-

tion via gluon fusion using the Higgs SM-PDF (which uses
as input the processes in Table 1) but now with an extended
kinematical range: the rapidity distribution now includes
y ∈ [−5, 5], rather than the range y ∈ [−2.5, 2.5] used
as input, and the pt distribution covers now pt ∈ [0, 400]
GeV as compared to the original input pt ∈ [0, 200] GeV.
In both cases, we show both the standard deviation (left) and
the full probability distribution obtained with the prior and
the two compressed sets with TR = 5 % and TR = 10 %;
the smoothened probability distributions are obtained using
the using the Kernel Density Estimation (KDE) method dis-
cussed in Ref. [12]. The good agreement seen in all cases
demonstrates the robustness of the SM-PDF method: namely,
SM-PDF sets are stable upon variations of kinematic cuts and
binning of the input cross sections.

While the SM-PDFs are stable upon extrapolation, they
will not provide accurate predictions when used for pro-
cesses dominated by PDFs in an altogether different kine-
matic range. To illustrate this point, in Fig. 9 we show predic-
tions for inclusive jet distributions obtained using the Higgs
and ladder SM-PDF sets, compared to the result obtained
using the MC900 prior. Specifically, we show the pjet

t distri-
butions in the most forward rapidity bin (3.6 ≤ |yjet| < 4.4)
of the ATLAS 2010 inclusive jet measurement [23]; bins are
ordered in increasing pT . Clearly, the agreement deteriorates
at large pT , where results depend on the large-x quarks and
gluon, which are weakly correlated to the processes included
in the construction of both the Higgs and the “ladder” SM-
PDF sets. This also suggests that good agreement, with a
marginally larger number of eigenvectors, could be likely
obtained by just widening the range of some of the inputs
to the “ladder”, such as, for instance, including the Higgs
transverse-momentum distribution up higher values of pt .
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Fig. 4 Upper plots comparisons of the predictions for the pt (left) and
rapidity (right) differential distributions in Higgs production in gluon
fusion between the prior MC900 and the corresponding Higgs SM-
PDFs for two different values of the tolerance TR , 5 and 10 %. Results
are shown normalized to the central value of MC900. Lower plots same

comparison, now for the t t̄ SM-PDFs, showing the invariant mass of
the t t̄ pair mtt̄ (left) and the top-quark rapidity yt (right). See Tables 1
and 2 for the details of the binning and the kinematical cuts in each case

In fact, we have explicitly checked [24] that the “ladder”
PDF set provides comparable accuracy to the PDF4LHC15
30 eigenvector set when used for the determination of all
the hadronic observables included in the NNPDF3.0 PDF
determination [6], despite having almost half the number of
eigenvectors.

4 A posteriori combination of SM-PDFs

So far, we considered the construction of a PDF set tailored
to a given list of input cross sections. However, one may
also encounter the situation in which two SM-PDF sets con-
structed using different processes as input are already avail-

able, and wishes to use them simultaneously, without having
to produce a new dedicated SM-PDF set using as input the
two processes at the same time. A typical application is a
computation in which one of these processes is the signal
and the other to a background. The SM-PDF methodology
also allows one to deal with this situation: we first discuss
how this is done, and then we present an example of an appli-
cation.

4.1 General method

In Sect. 2 we have shown how, starting from a Monte Carlo
PDF prior, Xlk , Eq. (1), we can construct a specialized min-
imal Hessian representation, X̃lk , Eq. (28), in terms of a rea-
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Fig. 5 Same as Fig. 4 for representative differential distributions in W and Z production, comparing the MC900 prior with the W, Z SM-PDFs

sonably small number of eigenvectors. The result of the SM-
PDF algorithm can be expressed as a regular Hessian PDF
set, with the error parameters given by Eq. (29). Alterna-
tively, one can directly use the final matrix of Hessian coef-
ficients P to express the cross sections computed with each
of the replicas of the prior set, Eq. (8), as linear combina-
tions of cross sections computed with the final eigenvector
sets, Eq. (13). The two results are equivalent by linear error
propagation.

However, we can also read Eq. (13) in reverse: if we define

dMC
k (σi ) = √

Nrep − 1

Neig∑
j=1

Pkjd
P
j (σi ),

k = 1, . . . , Nrep, i = 1, . . . , Nσ , (34)

we can view the set of Nrep differences dMC
k (σi ) (for each of

the Nσ observables σi ) as a Monte Carlo set of cross sections,

containing the same information as the reduced SM-PDF set.
In other words, the Nrep values

σ
(k)
i = √

Nrep − 1

Neig∑
j=1

Pkjd
P
j (σi ) + σ

(0)
i ,

k = 1, . . . , Nrep, i = 1, . . . , Nσ , (35)

of the observable σi can be viewed as “pseudo-Monte Carlo”
replicas, to be used to compute uncertainties and correlations
using the standard Monte Carlo procedure.

If two sets of SM-PDFs corresponding to different pro-
cesses are available, we can then combine the information
contained in them by first turning the predictions obtained
from them into replicas using Eq. (35), and then viewing the
set of Monte Carlo replica predictions obtained in each case
as our best approximation to the Monte Carlo set of predic-
tions for that process obtained with the original PDF replica
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Fig. 6 Same as Fig. 4 for the “ladder” SM-PDF, now comparing with the total ggH , t t̄ , Z , and W inclusive cross sections

set. These sets of prediction replicas can then be used in order
to compute any quantity which depends on both processes
using the standard Monte Carlo methodology, by just making
sure that each process is computed using its corresponding
replicas.

4.2 Validation

We illustrate and validate the methodology presented in
Sect. 4.1 with an example. We use as input prior the
NNPDF3.0 NLO set with Nrep = 1000 replicas and then
generate two SM-PDFs for a fixed choice of the tolerance
TR = 5 %. The first SM-PDF takes as input the t t̄ processes
from Table 2, while the second is constructed from the W, Z
processes of Table 3.

We now use these two SM-PDF sets to calculate the PDF
uncertainties on the t t̄ and the W total inclusive cross sec-

tions. This can be done both with the original representation,
Eq. (7), or with the new SM-PDF Hessian representation. As
shown in Table 4, we find Neig = 5 for the t t̄ SM-PDF and
Neig = 13 for the W, Z SM-PDF. We obtain the following
results for the total cross sections: for the t t̄ cross section
with t t̄ SM-PDFs

σt t̄ (prior) = 671.12 ± 12.0 pb, (36)

σt t̄ (smpdf−tt) = 671.12 ± 11.9 pb, (37)

and for the W cross section with W, Z SM-PDF

σW (prior) = 23867 ± 419 pb, (38)

σW (smpdf−wz) = 23867 ± 417 pb. (39)

Now suppose that we want to compute a quantity which
depends both on the t t̄ and the W cross sections, such as the
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Fig. 7 Differences in the correlation coefficients between the MC900
prior and the “ladder” SM-PDFs with TR = 5 %, computed for all the
inclusive cross sections that enter the construction of the latter

ratio between the two, σt t̄/σW . In the computation of the PDF
uncertainty on this ratio, it is essential to properly account
for the cross-correlations between the two processes. This
can be achieved by recasting the results of the two different
SM-PDFs into corresponding Monte Carlo sets of predictions
through Eq. (35).

Namely, the PDF uncertainty on the cross-section ratio is
given by

s σt t̄
σW

= 1

Nrep − 1

⎛
⎜⎝

Nrep∑
k=1

⎛
⎝σ

(k)
t t̄

σ
(k)
W

−
〈

σ
(k)
t t̄

σ
(k)
W

〉

rep

⎞
⎠

2
⎞
⎟⎠

1
2

, (40)

where σ
(k)
t t̄ and σ

(k)
W have been obtained using Eq. (35) with

the P matrix that corresponds, respectively, to the t t̄ and
W, Z SM-PDF sets.

Using Eq. (40) we get

s σt t̄
σW

= 6.66497 × 10−4, (41)

to be compared to the result obtained from the NNPDF3.0
prior, using the Nrep = 1000 original replicas,

s σt t̄
σW

(prior) = 6.66503 × 10−4, (42)

which is identical for all practical purposes.
It is important to realize that while Eq. (42) requires the

calculation of 2Nrep = 2000 cross sections, Eq. (41) only
requires the knowledge of the Neig cross section differences
d̃ j (σi ) for the two observables, which is equal to the sum of

the number of eigenvectors in the two sets which are being
combined; in our case, NWZ

eig + Ntt̄
eig = 18, with great com-

putational advantage.
As a further cross-check, we have recomputed the same

cross section ratio by using the methodology of Sect. 2,
namely, by constructing a dedicated SM-PDF set using as
input the two families of processes, t t̄ and W, Z , simultane-
ously.

This new SM-PDF has now 17 eigenvectors for the case
of a tolerance TR = 5 % and leads to

s σt t̄
σW

(combined)
= 6.655 × 10−4. (43)

This shows that the advantage of constructing a dedi-
cated set in comparison to combining the pre-existing sets
is marginal, as the accuracy is the same, and the total number
of eigenvectors Neig has only decreased by one unit.

5 Delivery

Building upon our previous MC2H methodology for the con-
struction of reduced Hessian representations of PDF uncer-
tainties [11], we have presented an algorithm for the con-
struction of a minimal Hessian representation of any given
prior PDF set, specialized to reproduce a number of input
cross sections. We have shown that the algorithm can be
used to construct specialized minimal PDF sets which repro-
duce with percent accuracy the central values and PDF uncer-
tainties for all input observables in terms of a substantially
smaller number of eigenvectors as compared to the prior PDF
set. A remarkable advantage of the SM-PDF methodology is
that the complete information contained in the original prior
set is kept at all stages of the procedure. As a consequence,
it is possible to add new processes to any given SM-PDF set
with no information loss. Also, it is possible to combine a
posteriori SM-PDF sets corresponding to different processes
without any new computation.

The SM-PDF code is publicly available from the reposi-
tory
https://github.com/scarrazza/smpdf/

The code is written in Python using the numerical imple-
mentations provided by the NumPy package. Customized
interfaces to APPLgrid and LHAPDF6 are also included.
The package also includes the APPLgrid grids for all the
processes listed in Tables 1, 2, and 3, and additional processes
can be easily generated upon request.

The input of the SM-PDF code is the prior PDF set and the
list of cross sections {σi } to be reproduced. The code settings
can be modified by the user by means of a steering card. The
cross sections can be provided either by indicating the name
of the APPLgrid or by means of a text file (for predictions
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Fig. 8 The pt and rapidity distributions for Higgs production in gluon
fusion, computed with the MC900 prior and with the Higgs SM-PDFs,
for two values of the tolerance TR , this time in a kinematic range that
doubles that of the input processes in Table 1 (see text). In the left plot

we show the standard deviation in each bin, while in the right plot we
show the full probability distributions per bin, reconstructed using the
Kernel Density Estimate (KDE) method

computed with external codes). An example steering card for
the code is presented in Appendix B.

The output of the code is then the corresponding SM-
PDF set, directly in the LHAPDF6 format, as well as the
corresponding direct and inverse Hessian parameter matri-
ces, P and Pt , respectively as a CSV file. These rotation
matrices allow one to easily transform the computed cross
sections back and forth from any SM-PDF representation
to the prior representation, as well as transforming between
different SM-PDF representations, as explained in Sect. 4.

Together with this, a number of additional validation fea-
tures are included in the SM-PDF package. In particular,
comparisons at the level of the input cross sections as those
presented in Figs. 2, 4, and 7 can be generated automatically

by filling the appropriate options in the YAML configuration
file, without the need of writing additional code. The user is
encouraged to refer to the documentation for a more extensive
description of the different features available. In addition, a
web interface to similar to that of APFEL Web on-line PDF
plotter [25,26] is currently under consideration.

Finally, the SM-PDFs constructed in Sect. 3 are also avail-
able from the same webpage in the LHAPDF6 format. Users
can produce the SM-PDFs that more suitable for specific
applications by generating the suitable cross section theory
calculations and then running the SM-PDF code. However,
users are encouraged to contact the authors for support if
assistance is needed. Additional SM-PDFs can be added to
this webpage upon request.
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Fig. 9 Same as Fig. 8, but now for the ATLAS inclusive jet pT distribution in the forward region, and using the “ladder” SM-PDF set
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Appendix A: PDF correlations

In this appendix we illustrate graphically the selection of the
region � Eq. (18) by the SM-PDF algorithm.

In Fig. 10 we plot as a function of x the value of the
correlation Eq. (16) between PDFs and the total cross section
for Higgs production in vector-boson fusion (VBF) and in
association with a t t̄ pair, determined using MC900 NLO
PDFs. The � region is that in which the correlation exceeds
the value ρ = 0.9ρmax, shown as a dashed line in the plots,
and it is highlighted with a gray band.

The corresponding comparison for Higgs production in
gluon fusion was shown in Fig. 2. We see that � includes
the gluon around x � (0.05, 0.1) and the strangeness s, s̄
around x � 10−2, while for ht t̄ production it includes the
gluon for x � 0.1.

The corresponding comparisons for Higgs production in
association with W and Z bosons is shown in Fig. 11. In this
case, for hW the � region includes the ū, d̄ and d quark PDFs
for x � 10−2, and for hZ production the same region, but
for the u and d quark PDFs.

The regions shown in Figs. 10 and 11 are selected at the
first iteration of the SM-PDF algorithm. These are therefore
the regions which are needed in order to determine the most
important eigenvector. At the subsequent iteration, further
regions are selected in the orthogonal subspace. The regions
selected at the second and third iterations for Higgs produc-
tion in VBF and hZ production are, respectively, shown in
Figs. 12 (to be compared to the first iteration, shown in left
plot of Fig. 11) and 13 (to be compared to the first iteration,
shown in left plot of Fig. 11).

For VBF in the second iteration � contains the d PDF
at x � 0.2 and the third the d PDF at x � 0.02, and the
up and strange PDFs at x � 0.2. For hZ , it contains the
strange PDFs around x � 10−2 at the second iteration, and
at the third iteration the ū and d̄ PDFs for x � (0.01, 0.05).
In each case, there is no overlap between regions selected in
subsequent iterations, as it must be because of the projection.
The hierarchy in selection shows which regions and PDFs are
increasingly less important in determining the given cross
section.
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Fig. 10 Correlation Eq. (16) between the PDFs and the cross section
for Higgs production in vector-boson fusion (left) and associated with a
t t̄ pair (right), as a function of x , computed using the MC900 NLO PDF

set. The threshold value ρ = 0.9ρmax is shown as a dashed line, and
the region in which the correlation coefficient exceeds the threshold,
ρ ≥ 0.9ρmax, is shown as a shaded band

Fig. 11 Same as Fig. 10 for associated production of Higgs bosons with W (left) and Z bosons (right)
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Fig. 12 Same as the left plot of Fig. 10, but now at the second (left) and third (right) iteration of the SM-PDF algorithm

Fig. 13 Same as Fig. 12, but now, in this case, the results for the first iteration of the algorithm were shown in the right plot of Fig. 11
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Appendix B: Basic usage of the SM-PDF code

While we refer the user to the documentation bundled in with
the SM-PDF code, which will be updated over time, here we
provide an annotated example of a basic YAML configuration
file that can be used to define the inputs to the code. In par-
ticular, the following example of the steering card is the one
used to generate the Higgs SM-PDF set, constructed using
all the processes in Table 1 as input. In addition, the main
executable also produces a number of validation plots such
as those presented in Sect. 3.

Following installation, the SM-PDF code can be executed
using the following command:

smpdfhiggs.yaml − −use − db

where the steering card should contain the following infor-
mation:

# higgs .yaml
# Global parameters that are used unless overwritten by parameters
# inside the action groups
observables : # Indicate the paths to the APPLgrids, and specify the

# perturbative order in which they have been calculated
# Higgs
# Total xsec for Higgs in gluon fusion
− {name: ’data /higgs /ggh_13tev . root ’ , order : NLO}
# ggHiggs differential distributions
− {name: ’data /higgs /ggH_y_13tev. root ’ , order : NLO}
− {name: ’data /higgs /ggH_pt_13tev. root ’ , order : NLO}
# Total xsecs for Higgs + W or Z
− {name: ’data /higgs /hw_13tev. root ’ , order : NLO}
− {name: ’data /higgs /hz_13tev . root ’ , order : NLO}
# Total xsecs for Higgs in association with a ttbar pair
− {name: ’data /higgs / httbar_13tev . root ’ , order : NLO}

pdfsets :
− MC900_nnlo # LHAPDF6 PDF set to be used as prior in the algorithm

actions :
− smpdf # Generate the SM−PDF sets from prior PDF set and input

observables
− installgrids # Instal l the generated sets in the LHAPDF path

#The specification of the actions to actually be performed
#using the above as default
actiongroups :

− prefix : H05_ #Begin al l exported filenames with this prefix
smpdf_tolerance : 0.05 #Set T to 5% and execute the default

#actions above

− prefix : H10_
smpdf_tolerance : 0.10 #Set T to 10% and execute the default

#actions .

− prefix : compall
pdfsets : #Change the PDFsets for this actiongroup

− MCH_nnlo_100
− H05_smpdf∗ #Wildcard expansion is supported .
− H10_smpdf∗
− MC900_nnlo

actions : #Perform plots and save the data of the convolution .
− violinplots
− obscorrplots
− ciplots
− savedata

base_pdf : MC900_nnlo #Plot values relative to this PDF.

No additional settings need to be modified. By default, the
code will also output the generated SM-PDF set directly in
the LHAPDF6 format.
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