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Abstract The main purpose of this tutorial is to elucidate in details what should be

meant by ensemble of states in quantum mechanics, and to properly address the problem of

discriminating, exactly or approximately, two diÆerent ensembles. To this aim we review the

notion and the definition of quantum ensemble as well as its relationships with the concept of

statistical operator in quantum mechanics. We point out the implicit assumptions contained

in introducing a correspondence between quantum ensembles and the corresponding to single-

particle statistical operator, and discuss some issues arising when these assumptions are

not satisfied. We review some subtleties leading to apparent paradoxes, and illustrate the

role of approximate quantum cloning. In particular, we review some examples of practical

interest where diÆerent (but equivalent) preparations of a quantum system, i.e. diÆerent

ensembles corresponding to the same single-particle statistical operator, may be successfully

discriminated exploiting multiparticle correlations, or some a priori knowledge about the

number of particles in the ensemble.
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1 Introduction

As matter of fact, fundamental postulates of quantum mechanics do not allow
to discriminate two ensembles corresponding the same statistical (density) operator.
Approximate discrimination is also forbidden by fundamental laws of physics, since it
would violate the no-signaling condition imposed by causality. Despite this facts, one
may find some claims in the literature about the possible discrimination of ensembles
corresponding to the same density operator. In particular, specific schemes have been
put forward[1,2,3,4], involving finite set of particles sampled from a given ensemble, or
ensembles prepared with inner correlations.

The main goal of this tutorial is to remove the apparent paradoxes by
addressing in details what should be meant by ensemble of states in quantum
mechanics, and to address properly the problem of discriminating, exactly or
approximately, two diÆerent ensembles. To this purpose, we review the notion and
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the definition of quantum ensemble as well as its relationships with the concept of
statistical operator in quantum mechanics. We point out the implicit assumptions
contained in introducing a correspondence between quantum ensembles and the
corresponding single-particle statistical operator, and review the apparent paradoxes
arising when these assumptions are not satisfied.

As we will see, the paradoxes arise from mixing up the two diÆerent concepts of
single-particle and many-particles statistical operators or to assume a fixed number
of particles in the ensembles[5,6,7]. A detailed analysis of the measurement schemes
mentioned above shows that discrimination is indeed possible, but also that the
involved ensembles correspond to the same single-particle density operator but
diÆerent many-particles ones. In other words, there are no paradoxes unless the
measurement schemes are analyzed in naive way.

The tutorial is structured as follows. In the next Section we review the
definition of ensemble and statistical operator in quantum mechanics, also
emphasizing the implicit assumptions needed to establish a correspondence between
quantum ensembles and the corresponding single-particle statistical operator. In
Section 3 we briefly discuss the connection between the no-cloning theorem and the
impossibility of discriminating ensembles with the same density operator and show
that also approximate approximate quantum cloning machines (AQCM) cannot be
used for this task. In Section 4 we discuss some measurement schemes where
discrimination of seemingly equivalent ensembles is realized and show that this
situation arises when the implicit assumptions contained in introducing a
correspondence between quantum ensembles and the corresponding single-particle
statistical operator, are not satisfied. Section 5 closes the tutorial with some
concluding remarks.

2 The Statistical Operator of a Quantum System

According to the basic postulates of quantum mechanics, the states of a physical
system are described by normalized vectors |√i, h√|√i = 1, of a Hilbert space H.
Composite systems, either made by more than one physical object or by the diÆerent
degrees of freedom of the same entity, are described by tensor product H

1

≠H
2

≠. . . of
the corresponding Hilbert spaces and the overall state of the system is a vector in the
global space. As far as the Hilbert space description of physical systems is adopted we
have the superposition principle, which says that if |√

1

i and |√
2

i are possible states
of a system, then also any (normalized) linear combination Æ|√

1

i+ Ø|√
2

i, Æ, Ø 2 ,
|Æ|2 + |Ø|2 = 1 of the two states is an admissible state of the system.

Observable quantities are described by Hermitian operators X. Any Hermitian
operator X = X†, admits a spectral decomposition X =

P

x

xP
x

, in terms of its real
eigenvalues x, which are the possible values of the observable, and of the projectors
P

x

= |xihx|, P
x

, P
x

0 = ±
xx

0P
x

on its eigenvectors X|xi = x|xi, which form a basis
for the Hilbert space, i.e. a complete set of orthonormal states with the properties
hx|x0i = ±

xx

0 (orthonormality), and
P

x

|xihx| = (completeness, we omitted to
indicate the dimension of the Hilbert space). L(H) is the linear space of (linear)
operators from H to H, which itself is a Hilbert space with scalar product provided
by the trace operation, i.e. upon denoting by |Aii operators seen as elements of L(H),
we have hhA|Bii = Tr[A†B].



Yinxiù Zhan, et al.: Quantum ensembles and the statistical operator ... 243

The probability p
x

of obtaining the outcome x from the measurement of the
observable X and the overall expectation value hXi are given by

p
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] (1)

and hXi = h√|X|√i = Tr [|√ih√|X]. This is the Born rule and it is the fundamental
recipe to connect the mathematical description of a quantum state to the prediction
of quantum theory on the results of an experiment. The state of the system after the
measurement is the projection of the state before the measurement on the eigenspace
of the observed eigenvalue, i.e.

|√
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1
p

p
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|√i

Let us now suppose to deal with a quantum system whose preparation is not
completely under control. What we know is that the system is prepared in the state
|√
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i with probability p
k

, i.e. that the system is described by the statistical ensemble
{p
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i} are not, in general, orthogonal. The
expected value of an observable X may be evaluated as follows
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is the statistical (density) operator of the system under investigation. The |'
n

i’s in
the above formula are a basis for the Hilbert space and we used the trick of suitably
inserting two resolutions of the identity =

P

n

|'
n

ih'
n

|. The formula is of course
trivial if the |√

k

i’s are themselves a basis or a subset of a basis.
Theorem 2.1. An operator % is the density operator associated to an ensemble

{p
k

, |√
k

i} if and only if it is a positive (hence selfadjoint) operator with unit trace
Tr [%] = 1.
Proof: If % =

P

k

p
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| is a density operator then Tr[%] =
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= 1 and
for any vector |'i 2 H, h'|%|'i =
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p
k
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k

i|2 > 0. Viceversa, if % is a positive
operator with unit trace than it can be diagonalized and the sum of eigenvalues is
equal to one. Thus it can be naturally associated to an ensemble. §

As it is true for any operator, the density operator may be expressed in terms of its
matrix elements in a given basis, i.e. % =
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np

%
np
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np
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i is
usually referred to as the density matrix of the system. Of course, the density matrix of
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a state is diagonal if we use a basis which coincides, or includes, the set of eigenvectors
of the density operator, whereas it contains oÆ-diagonal elements otherwise.

DiÆerent ensembles may lead to the same density operator. In this case they
have the same expectation values for any operator and thus are physically
indistinguishable. In other words, diÆerent preparations of ensembles leading to the
same density operator are actually the same state, i.e. the density operator appears
to provide the natural and fundamental quantum description of physical systems[8,9].

How this reconciles with the above postulate saying “physical systems are
described by vectors in a Hilbert space”?

In order to see how it works let us first notice that according to the postulates
above the action of “measuring nothing” should be described by the identity operator
. Indeed the identity is Hermitian and has the single eigenvalues 1, corresponding to

the persistent result of measuring nothing. Besides, the eigenprojector corresponding
to the eigenvalue 1 is the projector over the whole Hilbert space and thus we have
the consistent prediction that the state after the “measurement” is left unchanged.
Let us consider a situation in which a bipartite system prepared in the state |√ABii 2
HA ≠ HB is subjected to the measurement of an observable X =

P

x

P
x

2 L(HA),
P

x

= |xihx| i.e. a measurement involving only the degree of freedom described by
the Hilbert space HA. The overall observable measured on the system is thus X =
X ≠ B, with spectral decomposition X =

P

x

xQ
x

, Q
x

= P
x

≠ B. The probability
distribution of the outcomes is then obtained using the Born rule, i.e.

p
x

= TrAB

h

|√ABiihh√AB|Px

≠ B

i

(2)

On the other hand, since the measurement has been performed only on the system A

one expects the Born rule to be valid also at the level of single system and a question
arises on the form of the object %A which allows one to write p

x

= TrA [%A P
x

] i.e.
the Born rule as a trace only over the Hilbert space HA. Upon inspecting Eq. (2),
one sees that a suitable mapping |√ABiihh√AB|! %A is provided by the partial trace
%A = TrB [|√ABiihh√AB|]. Indeed, for the operator %A defined by the above partial
trace we have TrA[%A] = TrAB [|√ABiihh√AB|] = 1 and, for any vector |'i 2 HA ,
h'A|%A|'Ai = TrAB [|√ABiihh√AB| |'Aih'A|≠ B] > 0. Being a positive, unit trace,
operator %A is itself a density operator according to the definition above. It should be
also noticed that actually, the partial trace is the unique operation which allows to
maintain the Born rule at both level i.e. the unique operation leading to the correct
description of observable quantities for subsystems of a composite system. Let us
state this as a theorem[10]:

Theorem 2.2. The unique mapping |√ABiihh√AB| ! %A = f(√AB) from
HA≠HB to HA for which TrAB [|√ABiihh√AB|Px

≠ B] = TrA [f(√AB)P
x

] is the partial
trace f(√AB) ¥ %A = TrB [|√ABiihh√AB|].
Proof: Basically the proof reduces to the fact that the set of operators on HA

is itself a Hilbert space L(HA) with scalar product given by hhA|Bii = Tr[A†B].
Indeed, let us consider a basis of operators {M

k

} for L(HA) and expand f(√AB) =
P
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M
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f(√AB)]. Since f is the map to preserve the Born rule we have
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and the thesis follows from the fact that in a Hilbert space the decomposition on a
basis is unique. §

The above result can be easily generalized to the case of a system which is
initially described by a density operator %AB and thus we conclude that when we
focus attention to a subsystem of a composite larger system the unique mathematical
description of ignoring part of the degrees of freedom is provided by the partial trace.
It remains to be proved that the partial trace of a density operator is a density
operator too. This is a very consequence of the definition that we write as a little
theorem.

Theorem 2.3. The partial traces %A = TrB[%AB], %B = TrA[%AB] of the
density operator of a bipartite system are themselves density operators for the
reduced systems.
Proof: We have TrA[%A] = TrB[%B] = TrAB[%AB] = 1 and, for any state |'Ai 2 HA,
|'Bi 2 HB,

h'A|%A|'Ai = TrAB [%AB |'Aih'A|≠ B] > 0
h'B|%B|'Bi = TrAB [%AB A ≠ |'Bih'B|] > 0 ,

which prove positivity of both %A and %B. §
It also follows that the state of the “unmeasured” subsystem after the observation

of a specific outcome may be obtained as a partial trace of the projection of the state
before the measurement on the eigenspace of the observed eigenvalue, i.e.

%Bx

=
1
p

x

TrA [P
x

≠ B %AB P
x

≠ B] =
1
p

x

TrA [%AB P
x

≠ B]

where, to write the second equality, we made use of the circularity of the trace and
of the fact that we are in presence of a factorized projector. This is also referred to
as the “conditional state” of system B after the observation of the outcome x from a
measurement of the observable X performed on the system A.

2.1 Discussion

In several textbooks a distinction is made between ensembles coming from the
ignorance about the preparation of a system and those emerging from measurements
performed on bipartite systems. They are usually referred to as ensembles of the
proper and improper kind respectively[11]. Actually, as it emerges clearly from the
derivation reported above, there is no fundamental diÆerence between the two kinds
of ensembles and this classification is somehow artificial (though it has been useful in
the development of the field).

The emerging definition is the following: a quantum ensemble is a collection
of repeated identical preparations of the system, randomly generated according to
a given probability distribution. When this definition is applicable then we have
the fundamental result reported above: two ensembles corresponding to the same
statistical operator cannot be discriminated by any kind of measurement, i.e. they
are physically indistinguishable and do not correspond to diÆerent physical entities[12].

We want to emphasize, however, that the above definition contains two implicit
assumptions that may not be verified in all the physical situation of interest. They
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are: i) the preparations are identical and random, i.e. no correlations are present
within the ensemble, e.g. between subsequent preparations; ii) the number of
preparations is not known or fixed: strictly speaking statistical operators describe
ensembles made of infinite preparations, though this should be intended as large

enough for the advent of the law of large numbers. Whenever the two conditions are
not fulfilled the correspondence between ensembles and (single-particle) statistical
operators is no longer ensured and (apparent) paradoxical situations may arise.

3 Quantum Cloning and Discrimination of Ensembles

Before addressing the issues arising when the above assumptions are not
satisfied, we briefly review and discuss the connections between i) the impossibility
of discriminating ensembles with the same density operator and ii) the impossibility
of perfectly replicating quantum information, i.e. the so-called no-cloning theorem.
We also show that even approximate discrimination is not possible since this would
violate the no-signaling condition imposed by causality. Quite obviously, feasible
(approximate) quantum cloning machines, which have been designed to fulfill this
condition, cannot be employed as well for discriminating ensembles[13,14,15].

Let us start by reviewing the no-cloning theorem in its general form
Theorem 3.1. There is no unitary operation U on HA ≠ HB ≠ HC that for

given |!iB and |AiC is able to implement the transformation U |√iA ≠ |!iB ≠ |AiC =
|√iA ≠ |√iB ≠ |A

√

iC for any |√iA.
From the operational point of view the theorem says that no physical device

(initially prepared in the state |Ai 2 HC) may produce two copies of a generic
quantum state |√iA starting from a single copy and by coupling the system under
investigation to an ancillary system B of the same dimension.
Proof: The proof is based on the sole request of linearity of quantum mechanics.
In fact if we require the device to work for a pair of states |'

0

i and |'
1

i, i.e

U |'
0

iA ≠ |!iB ≠ |AiC = |'
0

iA ≠ |'
0

iB ≠ |A
0

iC

U |'
1

iA ≠ |!iB ≠ |AiC = |'
1

iA ≠ |'
1

iB ≠ |A
1

iC ,

then, by linearity, one has

U (|'
0

iA + |'
1

iA)≠ |!iB ≠ |AiC = |'
0

iA ≠ |'
0

iB ≠ |A
0

iC + |'
1

iA ≠ |'
1

iB ≠ |A
1

iC ,

which is not what we are expecting from a cloning device, since the cloning of a
superposition should correspond to

U
1p
2

(|'
0

iA + |'
1

iA)≠|!iB≠|AiC =
1p
2

(|'
0

iA + |'
1

iA)≠ 1p
2

(|'
0

iB + |'
1

iB)≠|A
01

iC .

In other words, linearity of quantum mechanics forbids the existence of a cloning
machine for any unitary on HA ≠HB ≠HC , i.e. any map on HA ≠HB. §

It is well known from the discussion about Bell’s inequalities that quantum
nonlocality cannot be used to implement any kind of superluminal communication
and, in turn, to violate causality (no-signaling condition), even in conjunction with
the reduction postulate[15]. Let us now give some more details in order to connect
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this fact with the impossibility of quantum cloning and of discrimination of
ensembles corresponding to the same statistical operator. Indeed, it is known as the
no-cloning theorem was triggered as a response to a (wrong) proposal for
superluminal communication named FLASH (first light amplification superluminal
hookup) put forward by N. Herbert in 1982[16].

|Α  >

|ψ> |ψ>

|ω> |ψ>U

|Α> ψ

Figure 1. Schematic diagram of a hypothetical cloning device including the degrees of

freedom of the apparatus. Linearity of quantum mechanics forbids the existence of this

kind of device

The argument goes as follows: Let us assume that Alice and Bob share an
entangled state of the form |√ii = 1p

2

(|00ii+ |11ii), where |jjii = |ji ≠ |ji and we
employ the standard basis made of eigenstates of æ

3

in both Hilbert spaces. If Alice
performs a measurement of the spin in a generic direction æ

¡

she may obtain one of
the two possible outcomes ±1 with equal probability p = 1

2

and, correspondingly,
Bob’s state is projected onto one of the two possible conditional states
|0i

¡

= cos ¡|0i + sin ¡|1i and |1i
¡

= cos ¡|0i + sin ¡|1i. Of course, if Bob does not
know the result of Alice’ measurement his conditional state is given by
%
(1)

B = 1

2

(|0i
¡¡

h0| + |1i
¡¡

h1|) = 1

2

. Analogously, if Alice performs the measurement
of æ

3

, then the reduction occurs on the states |0i and |1i but, without the knowledge
of Alice’s results, the overall conditional state of Bob is %

(3)

B = 1

2

(|0ih0| + |1ih1|) =
1

2

. Being %
(3)

B = %
(1)

B the impossibility of discriminating the two ensembles is
equivalent to the impossibility for Bob to infer which measurement has been
performed by Alice, i.e. it is not possible to exploit nonlocal correlations of
entangled states to transmit information. The same argument may be easily
repeated for any choice of the pair of measurements performed by Alice. In order to
make the two ensembles distinguishable, at least partially, Alice should send to Bob
some piece of information about the results of her measurement, using some
traditional communication channel, thus “saving causality”.

Let us now assume that Bob has at disposal a perfect quantum cloning machine
and use it, in a scheme like the right part of Fig. 2, whenever Alice performs a
measurement. If Alice measures æ

¡

then the state that Bob is inserting into the
cloning machine is either |0i

¡

or |1i
¡

with probability p = 1

2

. The overall state at
disposal of Bob, at the output of the cloning machine and without knowing the result
of Alice’s measurements, is thus given by

R
(¡)

B =
1
2

[|0i
¡¡

h0|≠ |0i
¡¡

h0| + |1i
¡¡

h1|≠ |1i
¡¡

h1|] .

If Alice measures æ
3

the line of reasoning is the same and the state at disposal of Bob
is described by the operator

R
(3)

B =
1
2

[|0ih0|≠ |0ih0| + |1ih1|≠ |1ih1|] .
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Since R
(¡)

B 6= R
(3)

B it would be possible for Bob to discriminate the two states and,
in turn, to infer which measurement has been performed by Alice just by looking at
his local state. However, this is a clear violation of the no-signaling condition and,
in fact, the no-cloning appeared soon after as a rebuttal of the FLASH proposal.
Or, to say the same in other words, a perfect cloning machine would turn ensembles
corresponding to the same statistical operators into ensembles with diÆerent statistical
operators, making them distinguishable by measurements[17,18,19].

A

φ|ψ  >>

A B

|ω>

QCM RB

φ|ψ  >>

B

Figure 2. (Left): Alice and Bob share an entangled state. (Right): Schematic diagram of

a hypothetical superluminal communication scheme exploiting a quantum cloning machine.

The use of a cloning device would allow Bob to discriminate which measurement has been

performed by Alice just by looking at his local state RB

3.1 Approximate cloning and discrimination of ensembles

As we have seen in the previous Section, the no-signaling condition forbids
quantum cloning and, at the same time, both exact and approximate discrimination
of ensembles with the same statistical operator. On the other hand, since
approximate cloning machine fulfilling the no-signaling condition have been
suggested, one may wonder whether this class of devices may permit approximate
discrimination of ensembles corresponding to the same statistical operator. As we
will see the answer is negative, thus showing the full equivalence of the no-signaling
condition, the no-cloning theorem and the impossibility of discriminating ensembles
with the same statistical operator.

Assuming the reader familiar with the impossibility of perfect quantum cloning
from now on we will speak about “quantum cloning machine”, (QCM) dropping
the obvious specification “approximate” (from time to time we will forget also the
term “quantum”). A generic N ! M quantum cloning machine for pure states is a
device involving a unitary operation, an ancillary system and an apparatus system,
implementing a transformation of the form

|√i≠N ≠ |!i≠(M°N) ≠ |AiC

U°! |™i ,

and for which the partial traces %
j

= Tr 6=j

£

|™ih™|
§

possesses some similarity to the
input state |√i. In the above formulas |√i≠N = |√i≠. . .≠|√i denotes the N -fold tensor
product of the state |√i and Tr 6=j

[. . .] the partial trace over all the systems except the
j-th one. In other words, one assumes to start with N quantum system identically
prepared in the state |√i and aims to end up with M quantum systems prepared in
some states %

j

, j = 1, . . . , M , each being as close as possible to |√i according to some
figure of merit quantifying the similarity between a pair of quantum states.

The standard figure of merit, employed to assess the performances of a cloning
machine is the so-called single-clone fidelity, i.e. F

j

= h√|%
j

|√i. A quantum cloning
machine is said universal: if the fidelities F

j

do not depend on the input state |√i,
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and symmetric: if F
j

= F , 8j. A suitable figure of merit to globally assess a cloning
machine is then the average of single-clone fidelities, i.e. F = 1

M

P

j

R

S

d√ F
j

(√),
where summing over j implements the average over the clones and the integral (being
d√ a formal notation to denote a suitable parametrization for the signals) over the set
S of possible input signals. For symmetric QCM we may avoid the averaging over the
clones, and for universal the one over the signals. A quantum cloning machine is said
optimal: if the average fidelity is maximal, consistently with the constraints imposed
by quantum mechanics. The proof that a given QCM is optimal may be obtained in
conjunction with fundamental constraints. As for example an optimal QCM could
be a device giving a fidelity which is the maximum possible without violating the
no-signaling condition.

The so-called Buzek-Hillery 1 ! 2 optimal cloning machine for qubit is realized
by a three-qubit unitary transformation, which acts on the signal basis as follows (we
omit to explicitly indicate the tensor product)

|0iA|!iB|AiC

U°!
r

2
3
|0iA|0iB|1iC °

r

1
3
| æ1p

2

iiAB|0iC

|1iA|!iB|AiC

U°! °
r

2
3
|1iA|1iB|0iC +

r

1
3
| æ1p

2

iiAB|1iC . (3)

Explicit unitaries may be written for any choice of ! = 0, 1 and A = 0, 1. Using the
above transformations it is straightforward to see that the generic qubit state evolves
as

|√iA|!iB|AiC

U°!
r

2
3
|√iA|√iB|√?iC °

r

1
6

h

|√iA|√?iB + |√?iA|√iB

i

|√iC ,

where h√|√?i = 0. Upon taking the partial traces over the systes BC and AC
respectively one arrives at the following (identical) expression for the density
operator of the two clones

%A = %B =
5
6
|√ih√| + 1

6
|√?ih√?| ,

which says that the Buzek-Hillery cloning device is symmetric and universal and that
the fidelity is given by F = 5

6

.
Optimality of this QCM may be proved in connection with the no-signaling

condition, i.e. by proving that a larger fidelity would allow superluminal
communication. To this aim let us consider the Bloch sphere representation of the
generic input state |√ih√| = 1

2

( + r · æ) and of the corresponding clones from a
universal and symmetric QCM, i.e. %A = %B = 1

2

( + r0 · æ). Since for qubits
F = Tr [|√ih√| %A] = 1

2

(1 + r · r0) we may write r0 = ¥r where we have introduced
the so-called “shrinking factor” 0 6 ¥ 6 1, which accounts for the degradation of the
clones. The fidelity rewrites as F = 1

2

(1 + ¥) and for the Buzek-Hillery QCM we
have ¥ = 2

3

. Is this the maximum possible values? The answer is positive as it may
be proved by imposing the no-signaling condition to any scheme as the one in the
right panel of Fig. 2 which employs a universal and symmetric QCM. The proof
proceeds as follows: if Alice measures either æ

1

or æ
3

and Bob use a cloning machine
on his conditional state the output states will be of the form R

1

= 1

2

(R1

1

+ R0

1

) and
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R
3

= 1

2

(R1

3

+ R0

3

). If we impose that the R’s should be compatible with being the
output of a symmetric and universal QCM i.e. such that Tr A[R] = Tr B[R] =
1

2

( + ¥ r · æ) and the no-signallign condition, then we end up with the condition
¥ 6 2

3

. The very same threshold ensures that R
1

= R
3

, i.e. approximate cloning do

not turn single-qubit ensembles corresponding to the same statistical operators into
two-qubit distinguishable ensembles.

4 Discrimination of Seemingly Equivalent Ensembles

In this section we review some measurement schemes where discrimination of
seemingly equivalent ensembles is realized, thus leading to an apparent contradiction.
As mentioned above, these seemingly paradoxical situations arise when the implicit
assumptions contained in introducing a correspondence between quantum ensembles
and the corresponding single-particle statistical operator, are not satisfied.

4.1 Single- and many-particle density operator

Let us consider a spin system made of N particles prepared randomly way. The
state of the system is thus described the statistical operator:

Ω
N

=
1

2N

X

j1,...,jN

P
j1 ≠ · · ·≠ P

jN ¥ 1
2N

I
2

N (4)

where I
2

N is the identity operator in the space of dimension 2N , j
k

= ±1 8k and P
jk

are projectors onto the subspace describing the spin of the particle j
k

, e.g. eigenvectors
of the Hamiltonian describing the spin of the single particle. Complete randomness is
equivalent to the fact that all projectors contribute with the same weight in the density
matrix. Let us now consider the two following ensembles of N particles: the ensemble
E

1

contains particles with spin directed as z ° axis while E
2

contains particles with
spin along x° axis. In formula

E
1

:|1i|0i|0i|0i · · · random (5)
E

2

:| "i| #i| "i| "i · · · random . (6)

The two ensembles are equivalent and correspond to the same density operator Ω =
1

2

N I
2

N . If we look at the same systems as a collection of preparations of states of
m-particle with m < N then the density operator describing the two systems is given
by the partial trace of Ω

N

, i.e. Ω
m

= I2m

2

m . In particular, for ensembles of states of
single-particle we have Ω

1

= I1
2

and thus it is not possible to discriminate the two
ensembles neither by single-particle measurements, nor by collective ones.

Suppose now to prepare the ensemble of N particles as follows: we prepare the
first particle with spin up, the second in the state with spin down and so on, and
we separate two successive preparations by a time ø in order to label each particle.
We then consider the following two ensembles: E

3

made of particles with spin along
z ° axis, and E

4

, with spin along the x° axis. Explicitly

E
3

:|1i
0

|0i
ø

|1i
2ø

|0i
3ø

· · · random (7)
E

4

:| "i
0

| #i
ø

| "i
2ø

| #i
3ø

· · · random . (8)
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If we see these two ensembles as preparations of single-particle states, they are
equivalent, and correspond to statistical operator I

2

. However, if we look at the two
ensembles as describing preparations of many-particle states, then they can be
discriminated by measuring some collective observable, e.g. ß

z

= æ
z

≠ I≠ · · · + · · ·
+ I ≠ · · · ≠ æ

z

. In the following, we show this explicitly two- and three-particle
observables. Eventually, we will generalize for case of N-particles.

If we look at the two ensembles E
3

and E
4

as describing a two-particle system,
we immediately realize that they correspond to diÆerent pure states: |1i

t

|0i
t+ø

and
| "i

t

| #i
t+ø

. The observable ß
z

for two particles, in the canonical basis (eigenvectors
of æ

z

and I) corresponds to the matrix ß
z

= Diag(2, 0, 0,°2) and thus we have

hß
z

i
E3 = 0 hß2

z

i
E3 = 0 (9)

hß
z

i
E4 = 0 hß2

z

i
E4 = 2 , (10)

making the two ensemble easily distinguishable looking at the fluctuations of ß
z

.
If we see the two ensembles E

3

and E
4

as preparations of three-particles system,
then they correspond to the statistical operators

Ω
E3 =

1
2

≥

|1ih1|≠ |0ih0|≠ |1ih1| + |0ih0|≠ |1ih1|≠ |0ih0|
¥

(11)

Ω
E4 =

1
2

≥

| #ih# |≠ | "ih" |≠ | #ih# | + | "ih" |≠ | #ih# |≠ | "ih" |
¥

(12)

leading to

hß
z

i
E3 = 0 hß2

z

i
E3 = 1 (13)

hß
z

i
E4 = 0 hß2

z

i
E4 = 3 , (14)

More generally, looking at the two ensembles as preparations of m-particle systems,
then we have

hß
z

i
E3 = 0 hß2

z

i
E3 = 1 (15)

hß
z

i
E4 = 0 hß2

z

i
E4 = m, (16)

when m is odd, and

hß
z

i
E3 = 0 hß2

z

i
E3 = 0 (17)

hß
z

i
E4 = 0 hß2

z

i
E4 = m, (18)

if m is even.
Looking naively at the above measurement scheme, one may conclude that it

may be used to discriminate two equivalent ensembles, even if m ! 1. This is
definitely not the case: no single-particle measurement may be used to reveal
diÆerences between the two ensemble, in agreement with the fact that they are
described by the same single-particle density operator. On the other hand, the two
ensembles are prepared with inner correlations, i.e. correlations between subsequent
preparations and thus they are more properly described by many-particle density
operators, which are no longer identical, thus leaving room for discrimination.
Implications of these findings on the conclusion that there is no quantum
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entanglement in the current nuclear magnetic resonance quantum computing
experiment[20] have been discussed[7].

4.2 Finite ensembles

Let us now address a situation involving polarization of photons and consider
two ensembles describing photons prepared either with linear or circular polarization.
In particular, we consider two equivalent ensembles made of N randomly prepared
photons such that we know that exactly 1

2

N photons are prepared in one of the two
states (say linear vertical or clockwise circular) and 1

2

N in the complementary one
(linear horizontal or anticlockwise circular). If we take a photon from these ensembles
we have probability 1

2

of finding a vertical/clockwise polarized photon and 1

2

of finding
a horizontal/anticlockwise polarized photon. Given a photon, we do not know the
state in which the photon is, but we know only the probability to find a photon in a
state. The state of the system is thus described by the two ensembles

E5 :
n1

2
, |0i; 1

2
, |1i

o

(19)

E6 :
n1

2
, |+i; 1

2
, |°i

o

(20)

where |±i = 1p
2

(|0i± |1i). The two ensembles are equivalent, i.e. correspond to the
same statistical operator 1

2

I, and thus they cannot be discriminated by single-particle
measurements.

Assume to make the following experiment[3]: take a filter that let only photons
polarized in |0i to pass. For photons prepared according to the ensemble E

5

we have
that 1

2

N particles pass the filter while the rest will be blocked. For the ensemble E
6

,
each photon has probability 1

2

to pass through filter, and thus the number of photons
that will pass is governed by the following statistics:

P (N, m, p) =
µ

N

m

∂

pm(1° p)N°m (21)

where m is the number of photons after the filter and p the survival probability for
each photon, p = 1

2

in this case. In order to make the two ensembles indistinguishable,
the number of photons after the filter should be 1

2

N also for E
6

, i.e., according to
(21)

P (N,
1
2
N, 1/2) =

µ

N
1

2

N

∂ µ

1
2

∂

N

N¿1'
r

2
ºN

. (22)

Eq. (22) shows that the probability of having 1

2

N particles after the filter decreases
with N and thus the probability of discriminating the two ensembles increases with
the number of particles.

The mistake in this case is slightly harder to find. After all, one may say, in this
case we have prepared the system randomly and we have not imposed any specific
succession of states for the photons. However, what we have used to discriminate the
two ensembles is the fact that we know that exactly half of photons are in a state
and half in the other, and not just half in average as it would have been from the
knowledge of the single-particle density matrix only. This is equivalent to assume the
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presence of correlations within the ensemble, such that the preparation of the system
cannot be properly described by single-particle statistical operator.

5 Conclusions

We have reviewed in details the concepts of quantum ensemble and statistical
operator, emphasizing the implicit assumptions contained in introducing a
correspondence between quantum ensembles and the corresponding single-particle
statistical operator. We have then discussed some issues arising when these
assumptions are not satisfied, illustrating some examples of practical where diÆerent
(but equivalent) preparations of a quantum system, i.e. diÆerent ensembles
corresponding to the same single-particle statistical operator, may be successfully
discriminated exploiting multiparticle correlations, or some a priori knowledge about
the number of particles in the ensemble. Besides, we have briefly discussed the
connection between the no-cloning theorem and the impossibility of discriminating
equivalent ensembles and shown that also approximate approximate quantum
cloning machines cannot be used for this task. Overall, it appears that
discrimination of equivalent preparations is indeed possible, but also that the
involved ensembles correspond to the same single-particle density operator but
diÆerent many-particles ones. In other words, there are no paradoxes unless the
measurement schemes are analyzed in naive way.
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