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Overview of the thesis

In this thesis we approach different problems in neurobiology using methods from the-
oretical physics.

The first topic that we studied is the mechanoelectrical transduction at the basis of
touch sensation, i.e. the process by which a mechanical signal conveyed during touch is
transformed into an electric signal that is then interpreted by other parts of the neural
system. A general introduction to the subject is given in Chapter 1. In Chapter 2 we
investigate how the neural response is generated in the worm C. elegans and propose a
channel gating mechanism to explain the activation of touch receptor neurons by me-
chanical stimuli. In Chapter 3 we analyze the mechanics of the worm body, this is a
preliminary work aiming to describe how the mechanics of the body affects the neural
response.

Our ability of orient ourself and navigate in space is based on a specific neural sys-
tem. In the last forty years, this system has been extensively characterized in rats, where
the activity of different types of neurons has been found to be correlated with the spatial
position of the animal. Grid cells in the rat entorhinal cortex are part of this “neural map”
of space; they form regular triangular lattices whose geometrical properties have a mod-
ular distribution among the population of neurons. In Chapter 4 we show that some of
the features observed in the system may be explained by assuming that grid cells provide
an efficient representation of space. Importantly, our model predicts a testable scaling
relation connecting the number of neurons within a module and the spatial period of the
associated grids.

The last problem discussed in this thesis concerns the neurodegenerative Parkinson’s
disease. Limb tremor and other debilitating symptoms caused by the disease are cur-
rently treated by administering drugs and by fixed-frequency deep brain stimulation.
The latter interferes directly with the brain dynamics by delivering electrical impulses
to neurons in the subthalamic nucleus. In Chapter 5 we develop a theory to describe
the onset of anomalous oscillations in the neural activity of the basal ganglia that are
at the origin of the characteristic tremor. On the basis of the results obtained from the
model, we propose a new feedback-controlled stimulation procedure and show that it
could outperform the standard protocol.

Some of the ideas contained in this thesis have appeared in the following publica-
tions:

• Eastwood, A. L., Sanzeni, A., Petzold, B. C., Park, S.-J., Vergassola, M., Pruitt, B.
L., & Goodman, M. B. (2015). Tissue mechanics govern the rapidly adapting and sym-
metrical response to touch. Proceedings of the National Academy of Sciences of the
United States of America, 112(50), E6955-63.
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CHAPTER 1

Introduction

1.1 Brief overview of mechanosensation

Touch is based on somatosensory neurons, which turn the mechanical energy of external
stimuli on the skin into electrical signals within the nervous system. Mammalian skin is
invaded by a multitude of mechanoreceptor neurons that vary in their sensitivity to me-
chanical loads, their response dynamics, and their structure [1, 2]. This diversification
makes touch sensation robust, but it also complicates efforts to decipher its biophysi-
cal, genetic, and molecular basis. In particular, little is currently understood about how
external mechanical loads activate sensory mechanoelectrical transduction (MeT) chan-
nels in any animal. Even less is known about how skin transmits and filters mechanical
energy. In this thesis we approach these problems through theoretical modeling in the
case of the nematode Caenorhabditis elegans. The main motivation of our choice is the
availability of quantitative measurements, indeed the experimental advantages of the
nematode C. elegans (see next Section) made this animal a model organism to investigate
touch sensation.

Adult C. elegans hermaphrodites are known to have five classes of mechanoreceptor
neurons that exhibit surprisingly similar patterns of rapidly adapting and nearly sym-
metrical on and off MeT currents in response to applied mechanical loads (see [3] for
a review). Genetic dissection of these mechanoreceptors showed that no single class of
proteins is responsible for forming sensory MeT channels. Moreover the same kinds of
ion channels also contribute to touch and pain sensation in Drosophila larvae. Collec-
tively, these observations suggest that the properties of rapid adaptation and symmetri-
cal on and off responses are not uniquely linked to a single class of channel proteins.

The earliest insight into mechanisms of rapid adaptation and symmetrical on and off
response emerged from works on the mammalian Pacinian corpuscle in the 1960s [4, 5, 6]
which linked their responses to the onion-like lamellar capsule that encases its special-
ized nerve ending. This multi-layered accessory structure has been shown to function
as a mechanical filter and to be crucial for the response dynamics. However, rapidly
adapting and symmetrical on and off MeT currents are found in other mammalian sen-
sory afferents such as those thought to innervate Meissner’s corpuscles and hair folli-
cles [3, 7]. Moreover, all of the mechanoreceptor neurons in C. elegans lack accessory
structures analogous to the Pacinian corpuscle, yet they still exhibit rapid adaptation
and symmetric response. Thus, rapidly adapting and symmetric neural responses do
not hinge on specialized accessory structures.

In Chapter 2 we propose a gating mechanism to explain how the response to me-
chanical stimulations in these receptors are generated. Even though the mechanism will
be explained using a specific structure, the derived equations correspond to different
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2 1.2 Touch sensation in C. elegans

molecular realizations, hence the model provides a general mechanism for mechanosen-
sation that could be applied to different types of receptors. The key elements of the
model are: the viscoelastic interaction between ionic channels and the surrounding tis-
sues; the possibility to describe the tissues containing the receptors as thin shells. These
two ingredients provide adaptation and symmetry in the response, respectively. A cru-
cial role in the model is played by the mechanics of the worm body; in Chapter 3 we
describe ongoing work aiming to investigate this aspect in more detail. Specifically, we
derive a model describing the worm body mechanics and discuss how it could be used
to investigate the fine structure of the channel gating mechanism.

The theory described here has been tested experimentally using measurements ob-
tained on C. elegans by the group of professor Miriam Goodman at Stanford University.
In the remaining part of this Chapter we describe the properties of C. elegans touch re-
ceptor neurons and the experimental setup that has been used to analyze them.

1.2 Touch sensation in C. elegans

In response to mechanical stimulations C. elegans show an escape behavior that is easy to
characterize and to assay: if the worm is touched in the anterior part, it will start moving
backward, if it is touched in the posterior part it will speed up in the forward direction.
This behavior, combined with standard molecular biology tools that are well developed
in this system, made C. elegans a model organism to study touch sensation. Using this
behavioral assay, molecular biologists have characterized the mechanosensitive neurons
founding the six touch receptor neurons (TRN), sketched in Fig. 1.1, responsible for the
response to gentle touch (forces in the order of 10µN). In what follows we concentrate
on these TRN because we have access to experimental results obtained on them (see next
Section). For completeness we mention that there are other 16 mechanoreceptor neurons
in the worm Hermaphrodite of which two are related to response to harsh stimuli (forces
in the order of 100µN) whilst the remaining neurons are localized close to the mouth of
the animal and are used for foraging. In the male nematode there are additional 46
MRNs, all of which are needed for mating [8].

By looking at mutants and at the behavioral assay the complex of proteins forming
ionic channels (called MEC-4) has been discovered together with a series of proteins
providing accessory structure [9]. The ionic channels have been extensively character-
ized; they are sodium channels which are ameliorate sensitive [9], the distance between
the channels follows a log-normal distribution [10] with mean inter-channel distance of
1.39µm (see Fig. 1.1). As we said before, the activation mechanism of the channels and
the role played by the accessory proteins are not understood yet. Understanding this
process is the main goal of the first part of this thesis.

1.3 Experimental results on C. elegans touch response

In this Section we describe the experimental setup and a series of experimental results
that has been used to investigate the response generated by touch receptor neurons to
mechanical stimulations.

In the experiments the worm is glued on a plate and it is stimulated mechanically on
its top surface with a glass microsphere attached to the tip of an electronically controlled
cantilever (see Fig. 1.2). The device can operate either in displacement clamp, delivering
defined displacements while measuring applied force, or in force clamp, delivering de-
fined forces while measuring applied displacement. During the stimulations the mem-
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Figure 1.1: Structure of touch receptor neurons in C. elegans. Schematic of C. elegans touch
receptor neurons along the longitudinal direction (a) and in a cross-section (b) of the worm
body. Each neurons has several ionic channels that are gated by mechanical stimuli. (c) Po-
sitions of the channels visualized through indirect immunofluorescence [10]. (d) Experimental
inter-channel distance from [10] (green circles) are well described by a log-normal distribution
P (x) = 1/xσ

√
2π exp

(
−(log x− µ)2/2σ2

)
, with µ = 0.06µm and σ = 0.74µm (black line). The

mean and standard deviation of the inter-channel distance are 1.39 µm and 1.40 µm.

brane current in touch receptor neurons is measured in parallel under conditions that
maintained the integrity of the entire touch-sensing system. This setup allows to deliver
very well controlled stimuli and, at the same time, measure the neural response.

As shown in Fig. 1.2, mechanical loads evoke rapidly adapting on and off MeT cur-
rent. In order to understand how adaptation is affected by variations in the mechanics
of the worm’s body, worms have been prepared using two dissection procedures. The
first procedure releases a portion of the gonad and intestines to reduce internal pressure
and ease successful dissection of neuronal cell bodies [11, 12]. The second dissection
procedure better preserves the physical integrity of the nematode by exposing only the
neuronal cell body of interest [13, 14, 15]. The first dissection procedure results in worms
that are approximately 60 to 90% softer than those prepared with the second procedure,
which had an average effective stiffness of 1.1± 0.3 N/m. Because of this observation we
refer to the worms prepared by the first procedure as “soft” and those prepared by the
second procedure as “stiff”. Regardless of the dissection method and body stiffness or of
whether stimuli were delivered under force clamp or displacement clamp, MeT currents
adapt rapidly and activate in response to the application and withdrawal of mechanical
loads (Fig. 1.2).

The channel gating mechanism proposed in Chapter 2 is derived starting from these
experimental observations; the model is further validated by comparing its predictions
with experimental results on the response to different types of mechanical stimuli.
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As shown in Fig. 1.2, the stiff mechanical regime shifts the midpoint of Current-Force
(I-F) curves to higher forces (Fh = 3.0µN and 0.38µN for stiff and soft worms, respec-
tively) and also significantly decreases sensitivity to force. (The slopes, Fs, of the fitted
I-F curves were 0.21µN and 1.55µN in soft and stiff worms, respectively.) In contrast, the
midpoint and slope for Current-Indentation (I-z) curves were indistinguishable between
the two mechanical regimes. (The midpoints, zh, of the fitted functions were 2.4 µm and
2.9 µm in stiff and soft worms, respectively, and the slopes, zs, were 1.4µm and 1.3µm for
soft and stiff worms, respectively.) Thus, MeT current amplitude increases in proportion
to body indentation and not the applied force.

In Chapter 3 we show that this fact reflects the structure of the deformation induced
in the worm body by mechanical stimulations.
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Figure 1.2: MeT current response to mechanical stimuli in C. elegans. (a) The experimental
preparation and integration with the system for simultaneous feedback-controlled mechanical
stimulation and patchclamp recording. Two worm preparations were used: a minimal dissection
that exposes only the anterior touch receptor neuron (ALM) cell body (Left), and a preparation
that exposes the gonad, intestines, and ALM cell body (Center). A micrograph shows the posi-
tion of the microcantilever with respect to the ALM cell body (Right). (b) Schematic drawing of
a cross-section of the worm’s body and position of the TRNs with respect to the cuticle, epider-
mis, and body wall muscle and the microcantilever. (c) Curves show the relationship between
force and indentation for individual worms, body stiffness depends on the dissection procedure.
(d-f) Representative force (F), indentation (z), and membrane current (I) traces for recordings in
a stiff worm evoked by a force-clamped single-step protocol (d) and in a soft worm evoked by a
force-clamped (e) and displacement-clamped single-step protocol (f). (g) Peak current increases
in proportion to force, but the apparent force dependence differs in soft and stiff worms. (h) Peak
current increases in proportion to indentation in both soft (blue) and stiff (red) worms. Smooth
lines in (g) and (h) are Boltzmann functions fit to the data; shaded area shows the 95% confidence
interval for the fit. Fitting coefficients for force dependence in (h) are Fh, the force required for
half-maximal activation, and Fs, the slope of the curve, and have the following values: Fh = 0.38
µN and Fs= 2.13 for soft worms; Fh = 3.0 µN and Fs = 1.55 for stiff worms. Fitting coefficients for
indentation in (g) are zh, the indentation required for half-maximal activation, and zs, the slope of
the curve, and have the following values: zh= 2.9 µm and zs= 1.40 for soft worms; zh= 2.4 µm and
zs= 1.25 for stiff worms.





CHAPTER 2

A gating mechanism for mechano-electrical transduction
channels

In the previous Chapter we described the phenomenology of touch receptor neurons
(TRNs) showing that in different types of receptors touch elicits symmetric activation fol-
lowed by rapid adaptation. In Caenorhabditis elegans, many of the protein partners that
form native mechano-electrical transduction (MeT) channels in these and other types of
somatosensory neurons have been identified. Yet, the biophysical mechanism driving
the response to mechanical stimulation has eluded understanding for decades. In this
Chapter we propose a theoretical model that links external loads to activation of MeT
channels in C. elegans touch receptor neurons. The model reproduces the experimental
findings, predicts that the TRNs function as a band-pass mechanical filter, and provides
a general mechanism for symmetrical and rapidly adapting MeT channel activation rel-
evant to somatosensory neurons across phyla and submodalities.

2.1 Description of the model

In C. elegans the application of mechanical loads to the skin generates time-dependent
strain within the viscoelastic tissues that engulf the TRNs. In this Section we introduce
a model in which a hypothetical gating element links MeT channels to these viscoelas-
tic tissues. For convenience we refer to the gating element as a filament and note that
the role played by this filament could also be fulfilled by interactions between the MeT
channel and the phospholipid bilayer. Differential displacements between MeT chan-
nels and their filaments result in an elongation of the filaments that is proportional to
the velocity of indentation, and such elongation favors channel opening. Once the MeT
channels open, the model asserts that elastic and viscous (friction) forces act to return the
connected filaments to their relaxed conformation, closing the channels and accounting
for rapid adaptation. The dependence of the open probability on the distance between
the channels and the stimulus site is treated by a mean-field approximation as discussed
below.

2.1.1 Dynamics of the channel-anchor filament

We posit that each MeT channel is connected through an elastic filament to a mechan-
ical unit that we refer to as an “anchor”. Applying a force to the surface of C. elegans
produces an indentation of depth ζ(t) and deforms its cuticle, which we treat as a vis-
coelastic medium (Fig. 2.1a). Given that the cuticle is a thin shell, it follows that the dom-
inant component of the elastic stress arises in the plane orthogonal to the indentation for
moderate deformations [16]. For larger deformations, the dominant component of the
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8 2.1 Description of the model

stress remains localized to the plane locally tangential to the surface of the worm, which
changes though as one moves along the surface [17, 18] (Fig. 2.1a). We expect that MeT
channels and their anchors be displaced relative to one another as a result of their differ-
ent viscoelastic properties (Fig. 2.1b). The elastic filaments connecting MeT channels to
the anchor elongate, which we hypothesize increases the probability that channels will
enter their open (conducting) conformation and result in significant mechanoreceptor
currents, as described below.

Figure 2.1: Model of ionic channel gating by mechanical stimulations. (a) Schematic showing
forces orthogonal to the axis of indentation. (b) Schematic showing one possible embodiment of
the model: an MeT channel linked through an elastic filament to an anchor (red ball) that can
move through a viscous extracellular matrix. The system is at rest and the MeT channel is closed
in the top and bottom panels. Moving from the top in a clockwise manner: internal forces gen-
erated from an external deformation induce a lateral shift between the extracellular matrix and
anchor, stretching the filament and activating the channel; viscoelastic forces return the filament
to its relaxed conformation, resulting in MeT channel adaptation and then closure; internal forces
generated from releasing the external deformation induce a lateral shift in the extracellular matrix
and anchor, stretching the filament and activating the channel; finally, viscoelastic forces conclude
the cycle symmetrically.

Specifically, we use Xc,a to denote the position of the channel and the anchor in the
absence of any deformation, xc,a(t) to indicate their respective displacements (which
depend on the original positions Xc,a) and S(X, t) to indicate the displacement of a
generic point X in the viscoelastic medium in which the anchor is embedded. The an-
chor is subject to the action of the elastic filament connecting it to the channel. A general
expression of the corresponding potential V (x) is

V (x) =
k

2
x2 +

k4

4
x4 + . . . , (2.1)

where x = xa − xc is the projection along the direction n̂ of the separation between
the channel and the anchor, which is assumed to be constant throughout the cycle of
stimulation. If the direction were to change rapidly, which will not the case hereafter,
a multidimensional description of the dynamics would be required. In the description
that follows, only the first term in the expansion of Eqn. 2.1 is sufficient, i.e. the spring
is Hookean and the elastic force is proportional to the elongation. We have considered
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nonlinear terms in Eqn. 2.1 and they do not substantially affect the results presented
below.

The action of the spring will move the anchor with respect to the viscoelastic medium
in which it is embedded. Their relative motion is opposed by a friction force F , which in
the simplest approximation takes the form

F = −γ d (xa − S(X ′, t))

dt
' −γ d (xa − S(Xa, t))

dt
. (2.2)

Here, Xa + xa = X ′ + S(X ′, t), i.e. X ′ is the undeformed position of that point in
the viscoelastic medium which is at the current location of the anchor Xa + xa(t). For
the second approximate equality, we assume that the differential displacement between
the channel and the anchor is small compared to the typical length scale of variation
of S. The order of magnitude of the latter is expected to be similar to the radius of
the indenting ball and the thickness of the cuticle, that is micrometers for the situation
considered here. The difference in the Eqn. 2.2 above is rewritten as

xa(t)− xc(t) + xc(t)− S(Xa, t) ' x(t)− χ(Xa)ζ(t) , (2.3)

where x = xa−xc, the differential displacement S(Xa, t)−xc(t) is dimensionally propor-
tional to the indentation ζ(t) and the function χ(Xa) depends on the position at rest Xa

(properly non-dimensionalized). To simplify notation, we omit additional dependencies
of χ on fixed parameters such as the size and the shape of the indenting body, the inter-
nal pressure of the undeformed worm, viscoelastic parameters, etc., and we suppose for
Eqn. 2.4 below that the main component of the time-dependence is well captured by the
linear ζ(t) term.

Effects of inertia are usually negligible in the microscopic molecular world and the
overdamped approximation generally holds [19], which entails equating to zero the sum
of the forces. By using Eqns. 2.1, 2.2 and 2.3, we thus finally obtain the equation for the
elongation x = xa − xc :

dx

dt
+

1

τ
x = χ

dζ(t)

dt
, (2.4)

where τ = γ/k. The left-hand side in Eqn. 2.4 describes the action of a spring in parallel
with a dashpot, which is known as Kelvin viscoelastic module [20, 21]. This simple mod-
ule is already sufficient to capture two main features of the experimental data presented
before (i.e. symmetry and adaptation). First, an external indentation forces an extension
of the filament proportional to dζ(t)

dt , i.e. to the time-derivative of the indentation. A
constant indentation will thus fail to extend the filament while an abrupt change in in-
dentation will extend the filament, which will then relax due to the viscoelastic combined
action of the spring and the friction term in Eqn. 2.4. Since the opening of the channels
is controlled by the extension of the filament (see next section) the model naturally leads
to the property of adaptation. Furthermore, when force is applied to the surface of C.
elegans or relieved, the indentation dζ(t)

dt will be reversed and x(t) will change sign, but
its modulus will be roughly the same. As we discuss in detail in the next section, that
property constitutes the basis for the symmetry in the response to the rapid application
and removal of mechanical loads. Finally, we show in Section 2.2 that the simple model
Eqn. 2.4 (in conjunction with the dynamics of the channels discussed in the next section)
goes beyond qualitative aspects of the response and it does capture main quantitative
aspects as well.
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2.1.2 Dynamics of MeT channel gating

The purpose of this Section is to develop the relationship between the elongation x
in Eqn. 2.4 and the probability that channels occupy open (conducting) states. Single-
channel recording shows that the MEC-4-dependent channels responsible for mechanore-
ceptor currents in touch receptors can occupy closed, fully open, and intermediate or
sub-conducting states [22]. We use here one sub-conducting state only, the agreement
with experimental data being already excellent and generalizations to multiple states
being straightforward. We denote by Pc, Ps and Po the probabilities for the channel to
be in the closed, sub-conductance or open state, respectively ; Rji is the transition rate
from state j to state i. The dynamics of the conformation of the channel is then given by

dPc
dt = −PcRcs + PsRsc ,
dPs
dt = PcRcs − Ps (Rsc +Rso) + PoRos ,
dPo
dt = PsRso − PoRos .

(2.5)

The standard assumption made on the channels is that they conform to the laws of equi-
librium statistical physics, i.e. the ratio of two probabilities at equilibrium P eqi and P eqj
is given by the Boltzmann factor P eqi /P eqj = exp [−β∆Gij ], where ∆Gij = Gi − Gj is
the free energy difference between the states i and j, β = 1/kBT , T is the thermody-
namic temperature and kB is the Boltzmann constant (see, e.g., [19]). It follows that the
transition rates satisfy the relations :

Rcs
Rsc

= e−β∆Gsc ,
Rso
Ros

= e−β∆Gos . (2.6)

Finally, we obtain for the equilibrium values of the three probabilities Pc, Ps and Po :

P eqs =
1

1 + e−β∆Gos + e−β∆Gcs
, P eqo =

1

1 + e−β∆Gco + e−β∆Gso
, (2.7)

with P eqc = 1 − P eqo − P eqs . To gather a better sense of the role of the various parame-
ters upon the predictions, we also developed a simpler model in which only two states
were considered, open and closed. The equations governing the two populations are
analogous to Eqn. 2.5 and the transition rates respect detailed balance as in Eqn. 2.6.

The currents for the various conformations of the channels are as follows. The current
in the closed state is supposed to vanish. The contribution to the total current of the neu-
ron by the channels in the sub-conductance and open states is Is,o = ns,ois,o. Here, ns,o
and is,o are the number of channels and the ionic currents through an individual chan-
nel in the sub-conductance and open conformations, respectively. For a population of
N identical channels the expected number of elements in the open and sub-conductance
states, their variances and cross correlation are

〈ns〉 = N Ps, 〈no〉 = N Po, σ2
ns = N Ps (1− Ps) ,

σ2
no = N Po (1− Po) , 〈(ns − 〈ns〉) (no − 〈no〉)〉 = −N PoPs .

(2.8)

The expected value and the standard deviation of the current for a neuron with N iden-
tical channels are then

〈I〉 = N [isPs + ioPo] ,

σ2
I = N

[
i2sPs (1− Ps) + i2oPo (1− Po)− 2is ioPsPo

]
.

(2.9)
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Let us finally discuss how the elongation x = xc−xa discussed in the previous Section
affects mechanoreceptor currents. The mean current in Eqn. 2.9 has two fixed parameters
(is and io) while its dependence on the mechanical stimulation stems from two effects :
the number of channels and their probability of taking the various conformations.

The channels which are distributed sparsely along the neurite are actually not iden-
tical, because they differ in their position with respect to the point of stimulation. Ex-
perimental data show that channels are localized in puncta distributed along the neurite
with no apparent basal/apical bias and a distribution between successive puncta that
is approximately lognormal and has an average inter-punctum distance of about 2µm
[10]. It follows that the various channels and their anchors will be subject to different
levels of mechanical stimulation, which are reflected in Eqn. 2.4 via the dependence of
the function χ on the undeformed positionXa.

It remains unknown whether or not the symmetric response to the application and
removal of mechanical loads holds at the level of individual MeT channels or is a macro-
scopic property of the the ensemble of channels that decorate the touch receptor neurons.
For the tether sketch in Fig. 2.1, the former situation would for instance be realized if the
point of attachment of the filament to the channel could slide along the circumference
of the channel. This system would then be essentially analogous to having a trapdoor
occluding the channel and sliding laterally under mechanical stimulation. Conversely,
if the point of attachment of the filaments were fixed, individual MeT channels would
have a preference in their direction of stimulation; the symmetry would be restored only
for the whole neuron due to the random orientation of the channels and their filaments
along the neurite. At the level of the average neuron’s current, the non symmetric case
is analogous to a symmetric one with a lower density of channels along the neurite.

The following approximation (of the mean-field type common in statistical physics
[16]) allows us to capture both of the situations above and to simplify the model. The
dependence of χ on Xa in Eqn. 2.4 is reduced to two possible classes : a set of channels
with a unique non-zero value of χ and the rest of them has χ = 0, e.g. because they are
too far from the point of indentation. The number of active channels (χ 6= 0) depends on
the following factors. Point indentation of an elastic spherical shell leads to profiles of
deformation with an extension scaling as a power law of the indentation, see e.g. [16, 23]
for the case without or with internal pressure, and a similar behavior holds for a ball in-
denting a cylinder with internal pressure. The channels within the typical length scale of
deformation (micrometers) provide an upper estimate of the number of active channels,
which is achieved in response to fast indentations. On the other hand, we physically
expect that if the final deformation is produced slowly, the number of active channels
will be reduced. The number of active channels is therefore expected to increase as the
indentation is varied and decrease over some typical timescales of relaxation compara-
ble to those of the filament dynamics, i.e. to have a behavior similar to |x| as defined in
the previous Section. This remark suggests that, rather than introducing an independent
dynamics with a set of supplementary parameters, we could parsimoniously use |x| as
a proxy for the number of active channels and introduce a logarithmic term to the free
energy difference between closed and open conformations of the channels :

β∆Goc =
xh− | x |

xs
− p log (| x |) , (2.10)

with the (positive) exponent p left as a fitting parameter. The logarithmic term in Eqn. 2.10
introduces a dependence |x|p in the ratio Po/Pc, i.e. it increases the depletion of the
channels in the open state and leaves them closed for weak elongations (small |x|). The
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first term on the right-hand side of Eqn. 2.10 is a standard Boltzmann form that favors
the opening of the channel linearly as the filament gets elongated. The two constants
xh and xs are free parameters that absorb also the term that makes the logarithm non-
dimensional. The dependence of the Boltzmann form is on |x| for the reasons discussed
above, i.e. that we are describing the current of the whole neuron, but we iterate that the
on-off symmetry at the single-channel level is an open issue.

We note that this approach has dramatically reduced the complexity of the problem :
a population of many channels has been replaced by a single typical one, which responds
to the stimuli encoded by the elongation of its attached filament by the effective potential
Eqn. 2.10 that subsumes properties of individual channels and of their entire ensemble.

Finally, the free energy of the sub-conductance state might a priori have a functional
dependence and/or parameters differing from Eqn. 2.10 but, again in order to minimize
free parameters, we make the assumption that its free energy is intermediate between
the closed and the open state

∆Gos = a∆Goc ; ∆Gsc = (1− a) ∆Goc , (2.11)

with the only parameter 0 ≤ a ≤ 1.

2.1.3 Additional viscoelastic models

To improve the quality of theoretical predictions, we present two additional models of
the viscoelastic interaction between body deformation and channel activation. These
models are concerned with fast changes in external loads that should probe the fine
structure of the viscoelastic dynamics. In brief, we find that while refined viscoelastic
models do improve the description of the experimental data, the simpler Kelvin model
already captures the main behaviors.

The friction term introduced in Eqn. 2.2 supposes an instantaneous response of the
medium. In reality, a finite time is usually required and the simplest model capturing
this effect is

F (v(t)) = −γ
∫ t

−∞
K (t− u) v(u)du , (2.12)

where K is the friction kernel and v(t) is the relative velocity of an object moving within
the viscoelastic medium. We show below that a kernel of the form

K (t) =
1

η
e−

t
η , (2.13)

leads to the viscoelastic standard linear model [20, 21] and agrees with our experimental
data. If the memory of the kernel is negligible with respect to the characteristic time of
variation of v, then the friction Eqn. 2.12 reduces to Eqn. 2.2.

With the friction term Eqn. 2.12, Eqn. 2.4 for the elongation x = xa − xc becomes∫ t

−∞
K (t− u)

dx(u)

du
du+

1

τ
x = χ

∫ t

−∞
K (t− u)

dζ(u)

du
du , (2.14)

where τ = γ/k, χ is taken constant as discussed in Section 2.1.2 and the kernel K (t) is
given by Eqn. 2.13. Note that the Laplace transform of the left-hand side in Eqn. 2.14 is(

s
1+sη + 1

τ

)
x̂(s), where s is the argument of the Laplace transform x̂(s) of x(t). That is
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the expression for the Standard Linear Solid model (also known as generalized Maxwell-
Wiechert model, in the simplest version with two elements, a spring in parallel with a
Maxwell module, i.e. another spring in series with a dashpot) [20, 21]. As discussed
above, the Standard Linear Solid model reduces to a dashpot in parallel to a spring, i.e.
a Kelvin module, when the memory of the friction term is negligible [20, 21].

The integral Eqn. 2.14 is solved by introducing the auxiliary variablem(t) =
∫ t
−∞K(t−

u) [x(u)− χ ζ(u)] du, integrating by parts and using the exponential form Eqn. 2.13 to
obtain the differential equations{

dm(t)
dt = − 1

τ+η [m(t) + χ ζ(t)] ,

x(t) = τ
τ+η [m(t) + χ ζ(t)] .

(2.15)

It is verified that the property of adaptation and the on-off symmetry of the response that
were discussed in Section 2.1.1 for Eqn. 2.4 hold for the Linear Solid model Eqn. 2.14 as
well.

Viscoelastic models more complex than the Kelvin module and the Linear Solid model
involve rational functions of higher order in the Laplace variable and generally probe
higher-order time derivatives [20, 21]. As discussed, we also expect that differential dis-
placements and the function χ in Eqn. 2.3 feature some dependence on the speed of
indentation. Predictions could be strongly affected by those additional terms, e.g. for
protocols of stimulation that involve extreme time-variations. In order to gauge those
effects and the robustness of our predictions, we wrote down (and compared results to
previous models) the following general viscoelastic model:

σ1
d2x

dt2
+
dx

dt
+

1

τ
x = χ

(
dζ(t)

dt
+ σ2

d2ζ(t)

dt2

)
, (2.16)

which contains time-derivatives up to the second order. The parameters τ , σ1 and σ2 in
Eqn. 2.16 are three independent time constants. This structure of the Eqn. 2.16 can be
obtained by modeling the viscoelastic interaction between the anchor and the medium
by a dashpot in series with a Kelvin module [20, 21] and replacing Eqn. 2.3 by xa(t) −
S(Xa, t) ∼ x(t) −

(
χ(Xa)ζ(t) + χ1(Xa)dζ(t)dt + . . .

)
, which takes into account possible

viscoelastic dependencies on the history of the external stimulation. Equation 2.16 is
then obtained using the overdamped approximation, keeping time derivatives up to the
second order and rescaling out the constant of the first derivative.

To conclude, we anticipate from the comparison between the models of Eqn. 2.4,
Eqn. 2.14 and Eqn. 2.16 that any corrections or improvements to the model would be
relatively minor at least for the stimulation profiles currently available. Thus, it is pre-
mature to consider higher-order and nonlinear effects, which explains the nature of the
model Eqn. 2.16.

2.2 Comparison with experimental data

We evaluated the ability of theoretical models to reconstruct MeT current response dy-
namics as follows. We obtained model predictions by optimizing parameters over the
entire ensemble of stimulations as described below. We then tested the robustness of the
predictions by varying model and parameters, e.g. we asked how well model param-
eters derived from the response to indentation pulses could reproduce the response to
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ramp-and-hold stimuli and sinusoidal stimulation. The most rigorous comparison was
made for two recordings (identified by their laboratory indices 169 and 173) in which a
complete data set was obtained including the response to a series of indentation pulses,
sinusoidal stimuli, and ramp-and-hold stimuli. Thus, we focus on these two data sets
and demonstrate below that the model is sufficiently robust that the parameters derived
from one recording are sufficient to capture the main features of another recording.

2.2.1 Inference of the parameters of the models

For all the viscoelastic models introduced above, the parameter χ can be set to unity by
rescaling x and redefining the parameters xh and xs appearing in Eqn. 2.10. As for the
rates of conformational transitions, a parsimonious form respecting the detailed balance
constraints Eqns. 2.6 and 2.11 is

Rsc = rcse
(1+b)(1−a)β∆Goc ; Rcs = rcse

b(1−a)β∆Goc ;

Ros = rsoe
(1+d)aβ∆Goc ; Rso = rsoe

daβ∆Goc .
(2.17)

Here, rcs (rso) controls the speed of the transitions between the closed and the sub-
conductance states (the sub-conductance and the open states) and the parameters b and
d control their global shift with respect to variations of the free energy difference. Since
the probability of opening the channels is expected to grow with | x |, the parameters b,
d are limited to the range −1 ≤ b ≤ 0.

The parameters of the models are inferred from the comparison with experimental
curves by using a nonlinear least usare fit. The optimization finds the parameters that
best reproduce the data, viz. yield the least-squares distance between the predicted and
the observed current profiles. This procedure gave for the parameters of the various
models the values shown in Tables 2.1 and 2.2 for the recording 169 and 173, respectively.

2.2.2 Results

Predictions for the Standard Linear Solid model Eqn. 2.14 are shown in Figs. 2.2 and
2.3 for the recordings 169 and 173, respectively. A single set of parameters is used to
fit the ensemble of the curves, i.e. ramps, steps and sinusoids, for each one of the two
recordings. The optimal parameters of the model differ between the two recordings,
as expected from the diversity of the response and of the mechanical properties among
individuals. It is important, though, that no fine tuning is needed and the two sets of
parameters are quite close. In view of the multidimensional nature of the set of parame-
ters, the best demonstration is provided by Fig. 2.3, where we computed the response of
the recording 173 using the optimal parameters for the recording 169, and compared the
result to the experimental curves for the recording 173. Even though some discrepancy
is detectible, the overall agreement is very good and confirms the consistency of the two
sets of parameters.

A relevant remark on the curves in Figs. 2.2 and 2.3 is the saturation of the response
at high frequencies, i.e. the fact that the response does not follow the stimulation and
sets to a constant level. That is mainly due to the inertia of the channels as the switches
among the different conformations cannot follow the stimulation when its oscillations
are too rapid. The populations in the conformational states of the channels settle then to
roughly constant values (with noise).

In Fig. 2.4, we show how model parameters derived from the response to indentation
pulses only, could reproduce the response to ramp-and-hold stimuli and sinusoidal stim-
ulation (for the same recording). In other words, we optimize the parameters on a subset
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τ (ms) η (ms) σ1 (ms) σ2 (ms) xh (µm) xs (µm) p Io (pA) Is (pA) 1/rco (ms) 1/rcs (ms) 1/rso (ms) a b d
1.9 / / / 0.009 1.20 1.14 -23.2 / 36 / / / -0.98 /
1.3 / / / 0.042 1.14 1.32 -37.6 -13.3 / 118 71 0.06 -0.98 -0.58
1.2 0.001 / / 0.062 1.09 1.35 -49.5 -9.2 / 142 71 0.06 -0.98 -0.59
1.3 / 0.04 0.1 0.045 1.15 1.33 -23.9 -7.3 / 73.5 200 0.06 -0.98 -0.58

Table 2.1: The optimal parameters obtained by fitting experimental data of the recording 169 to
the various viscoelastic models presented in the text. The models correspond to different rows :
the first and the second to the Kelvin model Eqn. 2.2 with two and three conformational states of
the channels, respectively; the third to the Linear Solid model Eqn. 2.14; finally, the fourth row
corresponds to the second-order model Eqn. 2.16. The parameters of the channels are defined in
Eqns. 2.10 and 2.17. The symbol / indicates that the corresponding parameter does not appear in
the model.

τ (ms) η (ms) σ1 (ms) σ2 (ms) xh (µm) xs (µm) p Io (pA) Is (pA) 1/rco (ms) 1/rcs (ms) 1/rso (ms) a b d
1.7 / / / 0.017 0.36 1.40 -14.7 / 35 / / / -0.98 /
1.3 / / / 0.10 0.24 1.38 -28.0 -1.52 / 58 121 0.05 -0.98 -0.56
1.4 0.065 / / 0.20 0.21 1.37 -30.0 -2.35 / 70 88 0.05 -0.98 -0.57
0.8 / 0.06 0.1 0.83 0.44 0.52 -28.9 -2.38 / 238 151 0.06 -0.98 -0.56

Table 2.2: The optimal parameters obtained by fitting experimental data of the recording 173 to
the various viscoelastic models presented in the text. The structure of the rows and the notation
are as in Table 2.1.

of experimental data and then compare the predicted current for the rest of experimental
stimuli. Even though the global optimization gives a better description, predictions are
clearly compatible with experiments.

We next compare the quality of the predictions for the different models Eqns. 2.2, 2.14
and 2.16. We find that in both recordings the performance of the models are similar and
differences can only be seen in the fine structure of the curves. Some representative plots
are shown in Figs. 2.5 for the recording 169. For clarity we report the SLS results only, as
Kelvin and SLS models in Eqns. 2.2 and 2.14 yield almost identical results. That is con-
sistent with the fact that the inferred memory time η is of the order of 10−5s, i.e. about
two order of magnitude faster than any timescale of the experimental stimulations. The
general second-order model Eqn. 2.16 slightly improves the quality of the predictions.
In particular, we observe that the response to steps better captures abrupt changes in the
stimulation and is closer to the experimental results as compared to the other models.
However, differences are relatively minor and not quite sufficient to characterize quan-
titatively the nature of the corrections to the basic models Eqns. 2.4 and 2.14. That will
require the next-generation experimental set up which is currently under development,
with a more extended dataset for a single recording, higher frequencies of stimulations
and reduced instrumentation noise so as to precisely measure the weak currents gener-
ated by slow stimulations.

Finally, we compare in Figs. 2.6 and 2.7 the results for the Kelvin model with two or
three conformational states. For both recordings 169 and 173, the predictions with three
states give a slightly better fit but the main behavior is already captured by the two-
states model (with less parameters). The bottomline is that the behavior for the various
viscoelastic models is relatively similar and the resulting predictions for the available
profiles of stimulation are robust with respect to details of the models.
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Figure 2.2: Responses of the recording 169 to an ensemble of diverse stimuli. The first and the
third rows show the time course of the indentation applied to the recording. The second and the
fourth rows show the ionic current : Green, the experimental curve; Solid black: the theoretical
prediction from the Standard Linear Solid model Eqn. 2.14; Dashed lines: the expected upper and
lower limits for the predicted current, based on one standard deviation estimated via Eqn. 2.9 and
a typical number of 25 activated channels [9].

2.2.3 TRNs function as a band-pass mechanical filter

General considerations on passive viscoelastic materials suggest that the force needed
to generate a fixed-amplitude indentation of the cuticle should increase with frequency
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Figure 2.3: Diversity of the modeling parameters between different recordings. We show the
experimental stimulation in the first row, the experimental responses of the recording 173 (green)
in the other two rows and compare them to the predictions of the Standard Linear Solid model
Eqn. 2.14 using the optimal parameters for the recording 173 itself (black, second row) and those
for the recording 169 (red, third row), which were used to generate the predictions for Fig. 2.2.
Predictions in the second row (with optimal parameters for the recording 173 itself) are clearly of
better quality, namely the behavior at high frequency is better captured, yet the overall behavior
is consistent even with the parameters optimized for the different recording 169.

at high frequencies [21]. In this scenario the amplitude of the resulting indentations
would be expected to decrease as their frequency increases. This decrease in indentation
amplitude, in combination with the failure of slowly moving stimuli to activate currents,
would produce a band-pass filter response.

Figure 2.8a shows the experimental results together with simulations based on this
scenario. Limitations in the bandwidth of the experimental set up that has been used to
investigate the model predictions prevented a full experimental exploration of the fre-
quency response range of C. elegans TRNs and an experimental testing of whether the
entire system behaves more like a high-pass or band-pass mechanical filter. We investi-
gated numerically how the entire mechanical system operates under conditions in which
the applied peak-to-peak force is independent of the stimulus frequency. As shown in
Fig. 2.8b, this analysis reveals that indentation decreases with frequency and that peak
current and sensitivity reach maximal values at 150 and 725 Hz, respectively. The simu-
lation also reveals that current fluctuates at twice the input frequency and that the am-
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Figure 2.4: Predictions with model parameters derived from the response to indentation pulses
reproduce the response to other profiles of stimulation. We optimized parameters of the Stan-
dard Linear Solid model to reproduce the response to indentation pulses for the recording 169 and
then compared the predictions (with that set of parameters) of the model to experimental data for
the response to ramp-and-hold stimuli and sinusoidal stimulation (for the same recording 169).

plitude of such fluctuations declines with frequency (Fig. 2.8c). One model to explain
this observation is that at high frequencies the channels dwell in open states and rarely
visit the closed states.

We note that these speculations about mechanical filtering in soft animals do not
take into account active mechanisms for modulating body stiffness during touch stim-
uli, which have been observed in other animals (e.g. Ref. [24]) and which would provide
organism-level mechanisms for regulating the frequency-dependence of touch sensa-
tion.

2.3 Discussion

The response dynamics presented here are shared by other rapidly adapting mechanosen-
sory neurons, including C. elegans and Drosophila nociceptors [9, 25, 26, 27, 28] and the
neurons that innervate Pacinian and Meissner corpuscles and hair follicles in mammals
(reviewed in Refs. [7, 29]). The fact that similar response dynamics are found across
phyla and in sensory neurons that diverge radically in their morphology strongly sug-
gests that this property arises from a common physical mechanism. Importantly, the
model presented and validated here only requires a channel that responds and adapts
to its environment through viscoelastic dynamics. Several molecular embodiments are
compatible with our model, such as a single or multiple elastic filaments tethered di-
rectly to the MeT channel or to a structure that occludes the ion permeation pathway that
is pushed aside laterally by deformations of the skin. Furthermore, such filaments might
be anchored to the extracellular matrix or to the cytoskeleton. Presently, experimental
data make a direct linkage between the MeT channel and the microtubule cytoskeleton
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Figure 2.5: Comparison between the currents for the recording 169 predicted by different mod-
els. We show the responses to a set of stimulations and compare them to the predictions of the
three viscoelastic models discussed in the text. The predictions obtained by using the Standard
Linear Solid model Eqn. 2.14 (black lines) (which essentially coincide with those of the Kelvin
model, data not shown) only slightly differ from the prediction given by Eqn. 2.16 (red line) that
gives the best fit. As explained in the text this comes from the inclusion of higher-order derivatives
of the indentation that better capture rapid variations in the dynamics.

in TRNs unlikely [10, 30]. However, such a connection has been proposed and char-
acterized for campaniform sensilla in Drosophila adults and multidendritic nociceptors
in larvae [31, 32]. Finally, the viscoelastic dynamics we propose might arise from the
plasma membrane itself, which suggests a proteinaceous tether to the MeT channel may
not be a required element for gating under physiological conditions. Identifying the
microscopic and molecular nature of the mechanical unit will require targeted experi-
ments to identify the viscoelastic elements and determine how such elements interact
with MeT channels in situ. The findings and methods reported here provide the tools
to manipulate key proteins and observe their effects on mechanics and adaptation. The
mechanism that we propose establishes an unexpected connection between two differ-
ent mechanical senses: touch and hearing. The elastic filament system is reminiscent of
similar models originally proposed for hair cells [33], though with one major difference.
Fast adapting afferents respond symmetrically to touch, at both the onset and offset of a
stimulus. Conversely, the response of hair cells is asymmetric with respect to the appli-
cation of force, e.g. responses are only seen at the onset of stimulations pointing toward
the kinocilium of the hair bundle. The asymmetry is due to the controlled geometry
of the tip links and less pronounced in immature hair cells when multiple tip links are
present and their directions are still randomly oriented [34]. The symmetry observed in
C. elegans TRNs relates to the thinness of the worm cuticle and the ensuing strain in the
filaments that occurs at both the onset and offset of stimulation in opposite directions yet
with comparable amplitudes. However, whether symmetry holds at the level of individ-
ual MeT channels or whether it is only retained at the level of the whole mechanorecep-
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Figure 2.6: The comparison between the Kelvin model Eqn. 2.2 with two vs. three conforma-
tional states of the channels. The curves for the two-state (open and closed, with no transitional
state) model are shown in red while the predictions for the three-state model are in black. The
curves refer to experiments on the recording 169.

Figure 2.7: The comparison between the Kelvin model Eqn. 2.2 with two and three conforma-
tional states of the channels. The colors and the curves are as in Fig. 2.6 but refer to experimental
data obtained for the recording 173.

tor neuron remains an open question. For the schema shown in Figure 2.1, individual
MeT channels would show symmetric on-off responses if, for instance, the attachment
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Figure 2.8: Experimental and computational study of the frequency response of tactile sensa-
tion in soft animals. (A) Simulations using parameters optimized to fit responses to mechanical
stimuli reproduce experimental responses to sinusoidal stimuli in a representative recording from
a soft worm. Table 2.1 (third row) lists the parameters for the SLS model. Shown are (top to
bottom) applied force (peak-to-peak), resulting indentation (peak-to-peak), peak current, and sen-
sitivity (pA/µm). Solid black lines show experimental results from a representative recording;
solid blue lines show results pooled across four recordings; dashed black lines show simulations;
and shaded areas indicate the errors in measurement and simulation. Applied force declines with
frequency due to limitations in the experimental set up. (B) Simulation of the mechanical and
physiological response to applied force up to 3 kHz. Model parameters as in A. Shown are (top to
bottom) applied force (peak), resulting indentation (peak), peak current, and sensitivity (pA/µm).
Indentation declines with frequency as a result of the properties of the mechanical system, despite
a constant amplitude of applied force. (C) Simulations of the indentation and currents evoked by
sinusoidal force stimuli. Model parameters as in A and B. As found experimentally, the current
varies at approximately twice the frequency of the stimulus, except at high frequencies where large
current fluctuations decline.

of the filament to the channel could slide along the circumference of the channel. This
system would then be essentially analogous to a trapdoor occluding the channel and
sliding laterally under mechanical stimulation. Conversely, if the point of attachment
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of the filaments were fixed, individual MeT channels would have a preference in their
direction of stimulation, and on-off symmetry would be a macroscopic property of the
whole neuron due to the random position of the channels and their putative filaments
along the neurite [10, 30]. Thus, in the absence of symmetry-breaking structures such as
those found in vertebrate hair cells, insect bristles or mammalian guard hairs [35, 36],
we expect that systems characterized by somatosensory neurons embedded within thin
tissues will generally feature on-off symmetry in their touch responses. How might C.
elegans use sensitivity to strain, velocity, and vibration? It has long been known that C.
elegans TRNs are involved in sensing both gentle touch to the body and non-localized
mechanical taps (reviewed in Ref. [37]). Worms reverse in response to anterior touch, an
avoidance behavior that allows them to escape from predatory fungi [12]. Our results
suggest that a robust response from C. elegans TRNs requires a brief contact of sufficient
indentation depth. This temporal and spatial threshold may ensure that TRNs do not
interpret small particles like bacteria as aversive and back away from a potential food
source. Filtering low frequencies may also enable TRNs to ignore body movements,
which involve undulation frequencies on the order of 0.5 Hz when crawling on stan-
dard growth plates in the absence of food (e.g. Ref. [13, 15]). Thus, the fine-tuning of
the system may help TRNs focus on responding to aversive mechanical stimuli, while
leaving stimuli such as those produced by substrate texture and self-movement to other
mechanoreceptor neurons.



CHAPTER 3

The mechanics of C. elegans body

In the previous Chapter, we proposed that the gating of channels in C. elegans touch re-
ceptor neurons is driven by local deformations in the nematode body. In order to obtain
predictions on the current response to mechanical stimulations, we used an effective
description for the extension and the intensity of the stimulation produced by the in-
dentation of the body. The scope of this Chapter is to describe preliminary work aimed
at going beyond that mean-field description and at quantitatively characterizing body
deformations in mechanical stimulation experiments.

3.1 Definition of the model and its parameters

In this Section we characterize the mechanical response of the body of C. elegans in terms
of a model of pressurized thin shell. We show that the model quantitatively accounts
for the experimentally observed force-indentation relation and the deformation profiles.
Furthermore, the analysis provides an estimate of the internal pressure and the bulk
modulus, both of them in agreement with previous measurements appeared in the liter-
ature.

C. elegans body consists of an outer tube separated from an inner tube by a fluid-filled
pseudocoelom. The cuticle, hypodermis, excretory system, neurons, and longitudinal
muscles comprise the outer tube or shell, and the pharynx, intestine, and gonad form the
inner tube. Because of this structure, we shall describe the worm as a cylindrical elastic
shell with internal pressure, as previous works in the literature [38]. The observation that
the interior of a nematode is under pressure was first documented for Ascaris in Ref. [39].
The model accounts for the common observation that a healthy C. elegans worm bursts
when the cuticle is punctured. The elasticity of the shell is meant to provide an effective
description of the mechanical properties of the different elements in the nematode outer
tube. The pressure is effectively generated by the internal organs and by the fluid-filled
pseudocoelom.

Typical experimental conditions feature a worm glued upon a plate and a spherical
bead of radius ∼ 5µm indenting the body of the worm down to a maximum depth of
∼ 10µm (see Fig. 3.1). The maximum experimental indentation can therefore be almost
half of the radius of the shell, and is comparable and even bigger than the shell thick-
ness, whose value is ∼ 1µm. The qualitative consequence of these remarks is that the
displacements of material points in the shell are not a priori small. However, the strain
within the material is not necessarily large and the simplest assumption is to account for
large displacements but still maintain a Hookean, i.e. linear, relation between stress and
strain [16, 17, 18]. In other words, the strain in the material is still small yet deformations
of the material are not. The most conspicuous consequence is that the linear expression

23
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of the strain is not appropriate and must be replaced by the nonlinear Green-Lagrange
expression. That leads to the appearance of nonlinear terms in the equations, which are
usually neglected in the simpler linear theory where both strain and deformations are
small [16, 17, 18].

A general mathematical description of the dynamics described above is provided by
the equations of three-dimensional (3D) elasticity [16, 17, 18]. The equations are :

∂j

[
σij + σkj

∂ui
∂xk

]
= 0 , (3.1)

where ∂j denotes the partial derivative with respect to the spatial coordinate xj (with
j = 1, 2, 3), the tensor σij is the stress tensor (Piola-Kirchoff of the second type), ui is the i-
th component of the displacement and the convention of the sum over repeated indices is
used. As it will be discussed below, the equation (3.1) is supplemented by the boundary
conditions expressing the action of the internal pressure p and of the external forces,
namely by the structures within the internal tube of C. elegans and by the indenting ball
for mechanical experiments.

The stress tensor σij in (3.1) is energy conjugate to the Green-Lagrange strain tensor
2εij = (∂iuj + ∂jui) + ∂iuk∂juk, i.e. the variation of the elastic energy δEel upon a defor-
mation is given by δEel =

∫
σij δεij dV . Note that the equations above are appropriate

for large deformations, as witnessed by the second nonlinear term appearing in (3.1) and
by the quadratic term in the Green-Lagrange strain tensor. The relevant parameters of
the elastic model are : the radius of the middle surface of the shell R, the length L of the
worm, the thickness t of the shell, the internal pressure p, the Young’s modulusE and the
Poisson’s ratio ν of the shell. A schematic representation is given in Fig. 3.1 and typical
known values for the length and the external radius are L ' 1mm and R+ t/2 ' 25µm,
respectively.

The elastic parameters E and t are effective quantities that subsume the different el-
ements in the nematode outer tube. They enter the dynamics via the relation between
stress and strain tensors : σij = E

1+ν

(
εij + ν

1−2ν εkkδij

)
. Diverse estimates of those pa-

rameters (and the pressure p) are present in the literature, which will be discussed in
Section 3.2.2. Our approach to determine the value of those parameters will be to com-
bine modeling with data from indentation experiments.

A notable limit of the three-dimensional equations of elasticity (3.1) is provided by
the shallow thin shell equations [17, 18]:{

B∇4w +∇2
kφ− [φ,w] = p− F (x, z) ,

1
S∇4φ−∇2

kw = − 1
2 [w,w] ,

(3.2)

which we shall use below for analytical estimates. The brackets and derivatives appear-
ing in (3.2) are defined as

[f, g] =
∂2f

∂x2

∂2g

∂z2
− 2

∂2f

∂x∂z

∂2g

∂x∂z
+
∂2g

∂x2

∂2f

∂z2
, ∇2

k =
1

R

∂2

∂z2
.

As shown in Fig. 3.1, the variables y = y(x, z) and w = w(x, z) represent the middle
surface and the deformation field of the cylindrical shell, respectively. The deformed
surface is expressed as y+w and we choose the axes so as to have the plane y = 0 tangent
to the top of the cylinder. The Airy stress function φ is the single scalar function needed
for the parametrization of the in-plane components of the stress tensor : σxx = ∂2

zzφ,
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σzz = ∂2
xxφ and σxz = −∂2

xzφ. The reduction in the number of independent components
is physically due to the thinness of the shell and the resulting smallness of the vertical
components of the stress tensor. The parameters B = Et3/12(1− ν2) and S = Et are the
bending and stretching stiffness, respectively. Finally, p and F are the internal pressure
and the external force applied by the indenter. In the limit where the radius R becomes
infinite and the ∇2

k term can be neglected, the equations (3.2) reduce to the Föppl-von
Karman equations for a thin plate [17, 18].

Eqs. (3.2) provide a good approximation of the original full equations (3.1) if the shell
is thin and the surface is shallow (see [17, 18]), conditions that are expected a priori to
be satisfied for the nematode in our experimental conditions. The nonlinear structure
of (3.2) reflects the fact that displacements are not small, which was mentioned above.
The resulting nonlinear effects are usually called geometric because they relate to the
deformation of the shape of the surface and their dynamics has a strong connection with
the geometry of surfaces [17, 18].

3.2 Results

3.2.1 Numerical simulations

The nonlinear structure of the 3D nonlinear elasticity equations (3.1) (or its 2D limit (3.2))
makes the problem notoriously difficult for full analytical solutions. Therefore, we de-
cided to attack the problem numerically by finite-element numerical methods (see [40]
for an introduction). Numerical simulations of the 3D nonlinear elasticity equations (3.1)
were performed using the open-source program code-aster [41]. The simulations use con-
ventional hexahedral element with 8 standard nodes (HEXA8), and a mesh sensitivity
study was performed to ensure that the results are minimally sensitive to the element
size.

As for the boundary conditions, the volume of the glue that attaches the worms
onto the plate of the experimental set-up, strongly limits the vertical displacement of
the lower half of the body of the worm. To describe this feature in our simulations we
chose two different boundary conditions and compared results.

For the first boundary condition, we consider the lower half of the body of the worm
as vertically rigid. Specifically, the cylindrical shape of the worm is divided into an
upper half and a lower one by a dissecting plane that is parallel to the plate onto which
the worm is glued. Upper and lower halves have equal volume. The upper half is free
to move while the lower half is allowed to move only parallel to the dissecting plane.

For the second type of boundary condition, we consider that the lower half is com-
pletely fixed and is not allowed to move, neither vertically nor laterally.

We checked the dependency on these two boundary conditions and did not find ma-
jor differences in the results reported below.

We used boundary conditions with the force acting on the two sides equal to zero.
The effect of introducing plugs at the lateral sides is discussed in Section 3.2.4.

Finally, for the dynamics of the internal pressure p, we shall make the simplest pos-
sible hypothesis that p holds constant when the rigid bead of the cantilever is displaced
and the indentation in the body of the worm modifies. Active mechanisms of read-
justment of the internal pressure can be accommodated within our formulation of the
problem but the agreement reported below does not seem to require them.
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Figure 3.1: Parameters of our elastic model are determined by a comparison between experi-
mental and simulated deformation profiles under indentation. (A-B) Schematic of an indenta-
tion of 10µm applied at the center of the worm, together with the three-dimensional cross section
of the system without (A) and with (B) indentation. One quarter of the cylinder is shown for clarity.
(C) The experimental and the numerical deformation profiles of the worm along the longitudinal
axis, i.e. the generatrix of the cylinder. (D) The experimental and the numerical force-indentation
relationships. The best description of the data is obtained by setting p/E = 0.01 and p = 40kPa.
Other parameters in the simulations areL = 600µm, ν = 0.3. In these simulations, as well as in the
following ones, we performed a mesh sensitivity study to ensure that the results were minimally
sensitive to the element size of the numerical integration scheme.

3.2.2 Inference of the parameters of the model

An image of the shell prior and after the indentation as obtained from numerical sim-
ulations, is shown in Fig. 3.1. Note that the size of the indenter is not negligible with
respect to other dimensions of the problem and the region of contact with the cylinder is
expected to change with the indentation depth [42]. To simulate the response of a pres-
surized shell, a uniform internal pressure was first applied to a cylinder with no stress,
of appropriate length, thickness and radius. The variation of these quantities upon the
application of the internal pressure can be calculated analytically . The resulting formu-
lae are used to choose the initial values that lead to the appropriate sizes of the worm
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under pressure.

Dimensional analysis dictates that shell deformations for a given indentation depend
on p andE only through their ratio p/E. The thickness of the shell t can be rescaled out as
discussed below, in Section 3.2.3, and all the other geometrical quantities of the problem
are fixed. The resulting prediction for the dependence of the deformation profile on the
ratio p/E is shown in Fig. 3.1. The vertical indentation along the longitudinal axis is
minimum at the center of indenting ball and decays to zero away from it. The extension
of the deformation field decreases with p/E and the best (least squares fit) description of
the experimental data is obtained for p/E = 0.01.

Using the previous value, we can determine the internal pressure p by analyzing the
force-indentation relation and comparing it to the experimental data. The force displace-
ment relation increases roughly linearly with pressure (data not shown). Pressures in the
range p = 32− 47kPa provide good agreement with experimental data, with the best fit
obtained for p = 40kPa. This value of the pressure p is consistent with the value of
2-30 kPa for the hydrostatic pressures that was directly measured in the nematode As-
caris lumbricoides [39]. The corresponding value of the Young’s modulus is of the order
E ∼ 102p = 3− 5MPa. This value is about two orders of magnitude smaller than the 380
MPa estimated in [38] but agrees with the 1.3 MPa obtained in [43]. In [38] the value of
the Young’s modulus was derived from indentation experiments using formulae from
the theory of elasticity. However those formulae are meaningful only if the deforma-
tions are small compared to the thickness of the shell and our analysis shows that this
assumption is not valid in indentation experiments. Conversely, the estimate obtained
in [43] is based on measurements of the bending stiffness of the whole nematode.

We conclude this Section by an independent validation of our model. In a recent
experiment [44], the mechanical response of C. elegans to changes in the external pressure
was measured. The nematode shows a uniform change in volume that increases linearly
with pressure. The ratio between the relative change in volume ∆V/V0 and in pressure
∆p is called the bulk modulus:

κ =
∆p

∆V
V0 . (3.3)

The expected change in volume induced by a change in pressure can be estimated ana-
lytically and numerically, as described above. The resulting estimate for the bulk mod-
ulus is κ = 150 − 230kPa, which is in sensible agreement with the experimental value
κ = 140 ± 20kPa. This agreement is quite significant because the prediction of a global
mechanical property like κ was obtained by using parameters inferred from local mea-
surements.

3.2.3 Shell bending is small compared to stretching ; stiffness is dominated by inter-
nal pressure

The mechanical response of pressurized shells to external stimulations is determined
by the interplay between elastic energy (both bending and stretching) of the shell and
the internal pressure. In C. elegans, contrasting results have been obtain, see [44], and
it is unclear at this stage what is the balance among the previous factors in controlling
the mechanical response. In this Section we show that the deformation profile observed
experimentally is the signature of a shell where the bending energy is globally small
with respect to the stretching energy. Furthermore, we show that the indenting ball does
most of his work against the internal pressure, i.e. the stiffness of the shell is mostly due
to the internal pressure generated within the inner tube of the worm.
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To investigate the relative contributions of bending and stretching, we computed
numerically the deformation profiles for different values of p/E and t using the approach
presented in the previous Section. To quantify the extension of the deformation field we
introduce the quantity zh, defined as the distance along the longitudinal direction from
the center of the bead (where the vertical deformation is maximum) to the point where
the deformation field reaches half of its maximum value. Fig. 3.2 shows zh for different
values of p/E and t. It is observed that zh decreases, i.e. the deformation field is more
localized, when p/E increases. Conversely, the dependence on the shell thickness t has
two different behaviors : the deformation field is wider for thinner shells if p/E . 10−5

but it is narrower if p/E & 10−5 .

Figure 3.2: The mechanical stiffness of the worm is dominated by the internal pressure. (A) zh
vs p/E for diverse values of the thickness t, where zh is defined as the distance from the center of
the bead (where the vertical deformation is maximum) to the point where the deformation reaches
half of its maximum value. The qualitatively different behaviors at small and large values of p/E
are due to the contributions of bending to the elastic energy. (B) zh as a function of p/Et. Curves
corresponding to different values of t are expected to collapse if the coefficient of the bending
term is small (see the text). In the region p/Et & 10−2µm−1, the collapse of the curves is indeed
observed and the value of zh found experimentally (black line) is well inside that region. (C)
The ratio between the elastic energy and the work done by the indenter. The ratio reduces as
the internal pressure increases and for p/E ∼ 0.01 (the value relevant for C. elegans, see Fig. 3.1),
the ratio is of the order of 1%, which shows that the work of the external forces is mostly spent
to counter the internal pressure. In the simulations the length of the worm L = 600µm and the
radius of the indenting bead Rb = 5µm.

To gain insight on the consequences of the results in Fig. 3.2, we can use the shell
equations (3.2). As in the case of spheres [23], it is convenient to rescale variables as
z = γz z̃ , x = γxx̃, etc., where

γw =
pR2

S
, γz = γx =

√
Rγw , γφ = Sγ2

w , γf = p . (3.4)

These transformations reduce (3.2) to a non-dimensional form and the bending term
proportional to B is multiplied by the factor 1/τ2 ≡ E2t4/p2R4, where we have used the
expressions of S and B given after (3.2). If τ � 1, the coefficient of the bending term is
small, and (with the possible exception of boundary layer regions) internal pressure and
stretching of the shell provide the dominant balance in (3.2). Then, the only dependence
on t which is left is via S, i.e. the dependence on E and t is through the combination
Et. This observation suggests to plot zh as a function of p/Et and Fig. 3.2 shows that
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curves with different t indeed collapse for large values of p/Et, which are those relevant
for experiments.

We next analyzed the balance between elastic forces in the shell, the internal pressure
and external forces that indent the body of the worm. We measured the elastic energy
associated with the deformation generated by the indenter and compared it to the work
by the external forces. Results of the simulations are shown in Fig. 3.2C. As intuitively
expected, the ratio between the elastic energy of the shell and the work of the external
forces reduces as p/E increases. The nontrivial quantitative point is that the ratio reduces
quite rapidly : at p/E = 10−2, the contribution of the elastic energy is of the order of 1%,
showing that the dominant contribution comes from the internal pressure.

3.2.4 Influence of the boundary conditions at the lateral sides of the shell on its me-
chanical response

In the Section 3.2.2 we showed that the mechanical response of C. elegans can be de-
scribed by modeling the nematode body as a pressurized cylindrical shell with free lat-
eral sides. In this Section we analyze how the previous findings are modified if the lateral
sides of the shell are closed with plugs. The goal of this analysis is to understand the role
of the stress induced by lateral plugs of the nematode on its mechanical response.

We computed numerically the response of a closed pressurized cylindrical shell to
an indentation experiment. The numerical procedure implemented is analogous to the
one described in Section 3.2.2. The only difference consists of a different deformation
induced by the internal pressure on the cylinder with no stress that can be calculated
analytically. The action of the pressure on the plugs produces a longitudinal force on
the shell whose magnitude does not depend on their structure (with the exception of a
boundary layer next to the lateral sides). Without loss of generality we performed our
simulations using semispherical plugs. Results of the simulations are shown in Fig. 3.3.

The introduction of the plugs influences the deformation profile which, for a given
value of p/E, is larger with respect to that obtained in the case of cylinder with free
lateral sides (Fig. 3.3A). Since the associated change in volume is bigger and the stiffness
is dominated by internal pressure, the corresponding mechanical stiffness of the shell
is larger (Fig. 3.3B). Our interpretation of these results is that the observed change in
the mechanical behavior is produced by the longitudinal stress introduced by the plugs
in the shell. In agreement with this interpretation we find that the difference between
the response of the closed and the open cylinder decreases with the internal pressure
(Fig. 3.3A, B).

The extension of the deformation profile increases with p/E but is wider than the one
measured experimentally in all our simulations (p/E ∈ [0, 0.02]). The relative variation
in the deformation profile becomes smaller as p/E increases and by extrapolation we ex-
clude that for higher values of p/E the model prediction could match the experimental
data. Moreover, even if for very large values of p/E the model could describe the exper-
imental deformation profile, the corresponding prediction of the bulk modulus would
be incompatible with data from [44].

The previous point can be shown as follows. If for a larger value of p/E the defor-
mation profile matches the experimental measurements, the corresponding estimate for
the internal pressure would be equal to that of Section 3.2.2 because it depends only on
two experimentally determined quantities: the deformation profile and on the force in-
dentation relation. Hence for every value of p/E that has not been simulated we derived
the corresponding predictions of the Young’s modulus and the bulk modulus assum-
ing p = 40kPa; results of the estimations are shown in Fig. 3.3D. The bulk modulus



30 3.2 Results

predicted by the model is always smaller than the experimental value. Since it is a de-
creasing function of p/E we conclude that also for larger values of p/E the prediction is
not compatible with the experiments.

In summary, we showed that the description of the nematode body as an elastic shell
with closed lateral sides cannot reproduce experimental results on the mechanics of C.
elegans. Conversely, the same elastic model without plugs describes well the response of
the nematode. Our results suggest that the longitudinal stress generated by the plugs is
somehow relaxed in the worm, which most probably can be implemented through the
annular structure of the cuticle.

3.2.5 Dependence on the size of the bead

Experimental results obtained in [9] show that the ionic current depends on the size of
the indenting bead. This suggests that the bead size should influence the deformation
profile. The goal of this Section is to test and validate this hypothesis.

Results for numerical experiments with indenters of different size are shown in Fig. 3.4.
The bead size is indeed found to influence both the force-indentation relation (Figs. 3.4A-
B) and the deformation profile (Fig. 3.4C) for p/E in the range of parameters relevant for
biological experiments. Conversely, the effect of the bead size tends to vanish as p/E
reduces, confirming again the crucial role of the internal pressure for the mechanics of
the worm. As p/E increases, the relation force vs indentation w0 is well described by a
power law F = fwα0 , with f ≈ 0.9 and α ≈ 1.2. Notice that this behavior is different
from the linear relation found in [45]. The difference stems from the finite size of the
indenter and a linear relationship is valid only in the limit of very small bead sizes.

The differences at large and low pressures that are visible in Figs. 3.4B-C are intuited
as follows. The curvature of the deformation field at the indentation point increases
with p/E until it matches the radius of the indenter. For bigger values of p/E, the shell
cannot become any steeper as the bead is rigid : the deformation field adapts to the shape
of the bead in the contact region, and the resulting region of contact enlarges with the
radius of the ball Rb. The effects are clearly visible in the deformation profiles shown in
Fig. 3.1C for different values of p/E. The radius Rb also controls the deformation field
outside the contact region, as shown by the various profiles in Fig. 3.4C. In particular, Rb
controls the mid-maximum extension of the deformation field, which is indeed found to
scale as zh ∼ R as shown in Fig. 3.4D. Conversely, as p/E reduces, the deformation field
becomes shallower and shallower at the indentation point and the role of the radius of
the ball tends to vanish (see Fig. 3.1C).

The modification of the deformation field that we just discussed is also reflected in the
force-indentation relationship. Indeed, Figs. 3.4C-D show that the volume of the body to
be deformed increases with the radius of the indenting ball and it takes then more force
and work to achieve a given level of maximum indentation w0. In formulae : the work
Fdw0 done by the indenter roughly balances the contribution of the internal pressure
−pdV (the elastic energy is small, as discussed previously) and the force-indentation
relation is then given by F ∝ −pdV/dw0. The larger volumes of deformation associ-
ated with balls of bigger radius enter the previous relationship and yield the nonlinear
dependence shown in Fig. 3.4B.

3.2.6 Mechanics of soft vs stiff worms

Experimental investigations of C. elegans touch response are performed on dissected an-
imals to reach the body of the touch receptor neurons and measure the ionic currents.



The mechanics of C. elegans body 31

Figure 3.3: Boundary conditions at the lateral sides of the shell influence model predictions.
(A-B) Comparison of the mechanical response of an open (dash-dot line) and closed (continuous
line) cylinder. For a given value of p/E the deformation profile is larger (A) and the shell more
stiff (B) if the lateral sides are closed. The difference between the results obtained with the two
models increases with p/E. (C) Experimental and numerical deformation profiles of the worm
along the longitudinal axis. Predictions of the closed cylinder (colored line) are not able to capture
the experimental data for all the values of p/E simulated (p/E ∈ [0, 0.02]). (D) Experimental and
theoretical bulk modulus. The value predicted by the cylinder with closed lateral sides decreases
with p/E and is smaller than the experimental value for every p/E for which we did not compute
the deformation profile. The results obtained in the case of free later sides for the deformation
profile and the bulk modulus are shown for comparison. Parameters of the simulations are as in
Fig. 3.1.
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Figure 3.4: The effect of the size of the indenting bead on the mechanical response (A) The
relation force-indentation for different values of p/E and a fixed size of the bead Rb = 5µm :
as p/E increases, the behavior approaches the asymptotic scaling F ∝ w1.2

0 . (B) The relation
force-indentation for fixed p = 40kPa and different radii Rb of the indenting beads. In strongly
pressurized shells, the relation between the force F and the indentation w0 (colored dots) follows
a power law F = fwα0 (solid lines) with the parameters f and α that depend on the radius of the
bead, the internal pressure and the geometry of the shell. The exponent 1.2 in panel (A) is obtained
forRb = 5µm. For shells with no internal pressure, the force-indentation relation does not depend
on Rb and the curves for the various Rb all collapse onto a unique curve (black dots). (C) Defor-
mation fields produced by beads of different size. In pressurized shells, the deformation profile
depends on the size of the bead (colored lines); conversely, in shell with no internal pressure, the
deformation is the same for different values of the indenter size (black line). (D) The extension of
the deformation field, as determined by the parameter zh defined in the main text and in Fig. 3.2,
scales proportionally to Rb.

As discussed in Chapter 2, two different dissection procedures were employed : parts of
the gonad and the intestines were either released or not, thus better preserving the in-
tegrity of the body. The former dissection procedure yields softer worms in comparison
to those produced by the latter procedure, as shown by the force-indentation experimen-
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tal curves in Fig. 3.5. Worms prepared with the two dissection procedures were therefore
called soft and stiff, respectively. The aim of this Section is to analyze the mechanical
properties of the two types of worms.

Since the dissection of gonad and intestines in soft worms is performed away from
the stimulation point, it is reasonable to assume that the dissection mostly affects the
internal pressure and has smaller effects on the properties of the external shell. This
suggests to analyze our model by keeping the Young’s modulus E and the thickness t
fixed and modifying the internal pressure p. Results of the corresponding simulations
are shown in Fig. 3.5.

The slope of the force-indentation relation decreases with the internal pressure and
the value that better describes experimental data for soft worms is p = 2kPa, i.e. pressure
is reduced to about 5% of the value found previously for stiff worms. We also observe
that the dissection procedure results in a higher level of variability with respect to stiff
worms, with a range of pressures going from 0.4 to 8 kPa. Consistently with this obser-
vation, fluctuations in the touch receptor currents in stiff worms were indeed found to
be weaker than in soft worms (see Chapter 1).

The current in touch receptor neurons is different for soft and stiff worms if expressed
as a function of the pulse force yet it is approximatively invariant if expressed in terms
of the indentation depth (see Chapter 1). The results of our simulations rationalize this
observation in terms of the mechanical stimulation. Indeed, Figs. 3.5B-C show that the
deformation profiles produced by a fixed-force pulse changes substantially with the in-
ternal pressure whilst variations are much weaker if the indentation depth is fixed.

Figure 3.5: Comparison of the mechanical response of stiff and soft worms (A) Experimental
(dots) and theoretical (lines) force-indentation relations. An internal pressure p = 2kPa gives the
best description of the pooled data for soft worms. The strong variability in the experimental data
corresponds to cylindrical shell with internal pressures that range from 0.4 to 8 kPa. (B) and (C) :
Predicted deformations to stimulations with fixed force and fixed indentation, respectively.
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3.2.7 The gluing of the nematode onto the plate influences its mechanical response

The nematode body is glued on a plate during indentation experiments. As mentioned
in Section 3.2.1, the volume of the glue strongly limits the displacement of the body in the
region in which the glue is applied. In the previous Sections we assumed that the glue
was applied to the whole lower half of the body. The goal of this Section is to analyze
how measurements on mechanical properties of the worm are modified by changing the
way in which the nematode is glued. The corresponding predictions could be tested by
indentation experiments.

We consider the case in which only the line of contact with the plate is glued, i.e.
the opposite situation with respect to the case previously investigated. In the model this
corresponds to a boundary conditions in which only the south pole of the cylinder (the
line of contact with the plate when the cylinder is not indented) is clamped. Using this
boundary condition we computed numerically the response of the shell to an indenta-
tion experiment, results are shown in Fig. 3.6. The shell stiffness is smaller whilst the
longitudinal deformation is larger respect to the case where the lower half of the cylin-
der is clamped. The fact that the stiffness is smaller even if the longitudinal deformation
profile is larger can be understood by looking at the deformation along the orthogonal
direction (Fig. 3.6C). The shell shows a global deformation that features an expansions of
the whole lower half of the body. This mode of deformation is forbidden with previous
boundary conditions where the worm was glued over its entire lower half.

The prediction is that the stiffness of the worm should decrease with the region of
the nematode body that is glued to the plate.

3.2.8 Mutations in the cuticle effects on the mechanical response of C. elegans

Mutations in the cuticle have been used to investigate experimentally its role in the me-
chanical properties of C. elegans [38, 44]. In this Section we use our model to characterize
the effects of those mutations and analyze the diverse experimental results that have
been reported in the literature.

We shall describe the effects of mutations in the cuticle through variations in the
stretching stiffness S, which is the only relevant parameter of the model related to the
properties of the external layers of the nematode. We assume that mutations do not
affect the internal pressure of the nematode. As pointed out in [38], this is reasonable
because the genes involved, e.g. the genes dpy-5 and Ion-2 discussed below, do not af-
fect transport proteins likely to regulate osmotic pressure. In the model the size of the
pressurized shell is obtained by starting from an unpressurized shell that is stretched
by the internal pressure. We shall assume that the size of the unpressurized shell is the
same for all mutants. In the biological system it is possible that mutations in the cuticle
affect the development of the nematode and hence its body structure. In the model this
could result in unpressurized shells of different size but we will neglect this effect in
these notes.

We analyzed numerically and analytically the dependency on S of different mechan-
ical properties; results are shown in Fig. 3.7.

We first studied the effects of variations in S on the geometry. Mutations change both
the length and the radius of the shell; the radius increases whilst the length decreases
with S (Fig. 3.7A). This is due to the fact that the internal pressure deforms the shell by
increasing (decreasing) its radius (length) with respect to the unpressurized condition
and the amplitude of the deformation decreases with the stretching stiffness S. Note that
in the case where the lateral sides of the shell are closed with plugs, both the length and
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Figure 3.6: Influence of the experimental set up on the mechanical response of the worm. We
computed numerically the mechanical response of the shell with two different boundary condi-
tions corresponding to two different way of attaching the nematode onto the plate of the experi-
mental set-up. In the first case (blue) the lower half of the cylinder is clamped whist in the second
case (red) only the line of contact with the plate (south pole) is clamped. (A) Force indentation
relation (empty dots) obtained for the two boundary conditions investigated. The relation follows
a power law F = fwα0 (dash-dotted lines) with best fit parameters f = 0.89, α = 1.21 (blue),
f = 0.80, α = 1.08 (red). The shell stiffness is greater when the lower half of the shell is con-
strained. The deformation profiles along the longitudinal (B) and orthogonal (C) directions are
wider when only the south pole of the shell is fixed. Note that in this case also the lower half of
the shell is deformed in the orthogonal direction. The undeformed geometry (black dash-dotted
line) is shown for comparison.

the radius are increasing functions of S (Fig. 3.7A). This is due to the fact that the force
exerted by the internal pressure on the plugs stretches the shell along the longitudinal
direction of the cylinder.

Mutations in the cuticle affect the stiffness of the cylinder in response to indentation
experiments. Numerical results on the dependency on S of the stiffness parameters f
and α (introduced in Section 3.2.5) are shown in Fig. 3.7. It is observed that the stiffness
of the shell increases with S. This behavior is due to two contributions which influence
the deformation field and hence the change in volume that drives the stiffness. First,
if the external radius of the pressurized shell is kept constant the deformation field is
wider (see Fig. 3.1C). Second, the radius of the shell becomes smaller as S increases (see
Fig. 3.7C) which leads to a larger deformation field.

Finally, we found analytically that the bulk modulus increases with S (Fig. 3.7B).
The parameter S is not measured during the experiments. Hence, in order to com-

pare the model predictions with experimental results, we use the external radius of the
pressurized shell as a proxy to differentiate mutants. In this formulation the model pre-
dicts that every mutation in the cuticle which increases the worm radius decreases its
length, stiffness and bulk modulus. This features are in qualitative agreement with what
has been observed experimentally [38, 44]. We point out that if the lateral sides of the
shell are closed with plugs, the length of the shell is an increasing function of its radius;
this qualitative discrepancy provides another evidence that the stress induced by the
lateral sides of the cylinder on its external layer must somehow be relaxed in the real
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worm.
It is observed that the deformation measured in the length of the mutants in [38]

is always larger than our prediction. This quantitative discrepancy could be explained
by taking into account that in the biological system the Young’s modulus is likely not
isotropic; in particular because of the annular structure of external layers of the body
we expect that the stiffness should be smaller in the longitudinal direction respect to the
orthogonal direction. Another possibility is that the discrepancy comes from the above
mentioned effects of mutations on the development of the worm.

We note that the radius of Ion-2 mutants in [38] is about 25% smaller respect to the
wild type. In our model for every modification in S the radius cannot become smaller
than the radius of the unpressurized shell, which corresponds to a decrease in the radius
of about 20%. In [38] the size of the wild type worm is smaller than what we assumed in
deriving the model parameters here (13 µm vs 25 µm), however this cannot explain the
discrepancy because the relative change in radius becomes smaller as the radius of the
shell decreases. The discrepancy could be explained by a fluctuation in p/E, since the
relative change in radius grows with p/E, or also by the previously mentioned effects in
the development of the worm that we have neglected.

In Fig. 3.7C-D we compare theoretical predictions on shell stiffness and bulk modulus
with experimental data from [38, 44]. The measurements are in quantitative agreement
with theoretical predictions. Moreover, the model predicts that a bulk modulus mea-
sured in Ion-2 mutants should show a significant difference respect to the wild type.

In the literature experiments on the mechanical response of C. elegans have led to con-
flicting interpretations [38, 44]. On the one hand, the shell stiffness is found to depend
on the properties of the cuticle [38] ; on the other hand, measurements of the bulk modu-
lus seem invariant with respect to mutations in the cuticle [44]. Our analysis shows that
mutations in the cuticle should affect the mechanical response of the nematode both in
the response to indentation experiments and in the bulk modulus. Our model suggests
that in [44] no effect of mutations in the cuticle has been found to affect the bulk modulus
only because of the type of genes that have been investigated.

3.3 Discussion

A fundamental step toward the understanding of the sense of touch is to discover the
molecular basis of the single channel gating mechanism. In principle the model de-
scribed in Chapter 2 could be used to investigate this aspect since different hypothesis
on the molecular basis result in different predictions on the neural current. However,
because of the mean field approximation used, the model entangles effects of single
channel and population properties. For instance the symmetry in the neural response
could be a property of the single channel or be realized at the population level. In order
to investigate single channel properties a description beyond mean field of the stimulus
acting on the channels is needed. In this Chapter we discussed some preliminary work
aiming to obtain this beyond mean field prediction.

The worm body is described as a pressurized elastic cylindrical shell. Parameters of
the elastic model were inferred using experimental data on the deformation profile and
the force-displacement relation in stiff worms. The model were validated by the pre-
diction of the values of the bulk modulus and the internal pressure, which are both in
agreement with independent experimental measurements. We found that the deforma-
tion field produced by a prescribed force depends strongly on the internal pressure of
the worm. Conversely, worms with different internal pressure have similar deformation
fields when the indentation is fixed. This observation is consistent with experimental



The mechanics of C. elegans body 37

Figure 3.7: Changes in the nematode mechanical properties with respect to the wild type, which
are caused by mutations in the cuticle. Mutations in the cuticle are represented in the model
through changes in the value of the stretching stiffness S with respect to the wild type Swt. (A)
As S increases, the geometry of the pressurized cylinder is modified: the length increases and
the radius decreases (continuous lines). The prediction with the shell closed on the lateral sides
is different (dash dotted line), in particular the length of the cylinder is an increasing function
of S. (B) Effects on the mechanical response of the cylinder due to a modification of S. As S
increases the bulk modulus k (blu line) and the coefficients f (green line) and α (red line) of the
force-indentation relation increase. (C-D) Comparison of theoretical predictions for f and k as
a function of the radius of the shell with experimental measurements [38, 44]. Since in [44], the
radius of the mutants was not indicated, we used the values in [38]. The theory predicts that Ion-2
mutants should have a bulk modulus significantly different respect to that of the wild type.

observations described in Chapter 1 about soft and stiff worms and the dependence of
the response on the indentation depth rather than the applied force. Based on our anal-
ysis we predict a more general joint dependence of the response on the internal pressure
and the indentation. This prediction could be tested by measuring the neural response
of touch receptor neurons in worms.

The analysis performed here is also relevant to understand the mechanics of C. elegans
body. In particular, a question that have been longly debated in the field regards which
factors shape the stiffness of the nematode body. Here we showed that the stiffness of
C. elegans body is dominated by the internal pressure and the coefficient of the bending
term in the elastic energy is small. We also discussed the effects of mutations in the
cuticle on the mechanical response and predict how they should affect the bulk modulus
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in a way that is experimentally observable. The main results that lend to experimental
verification are the dependencies of the force-indentation relation and the deformation
profile on the size of the indenter and on the way the nematode is glued on the plate of
the experimental set-up.

The future direction of this research is to use the description of the mechanical re-
sponse of the worm body to make predictions on the neural current produced in inden-
tation experiments, this will provide a general method to differentiate between different
molecular structures and understand which describes the gating of ionic channels. A
long term goal of this research is the study of other types of touch receptor neurons that
show the same dynamical response, such as Meissner corpuscles in mammalian skin
or campaniform sensilla in Drosophila. The proposed mechanism highlighted the fun-
damental elements for fast adapting and symmetric dynamics and is compatible with
several molecular embodiments so it could be applied in different conditions.



CHAPTER 4

Complete coverage of space favors modularity of the grid
system

4.1 Neural basis of spatial representation

Animals are able to orient them self and navigate in an environment. Tolman [46] sug-
gested that this ability resides on an internal “cognitive maps” that flexibly represent
the overall spatial relationships between landmarks in the environment. The research
on the neural basis of such map started in the 70s with the discovery of Place Cells by
O’Keef [47]. He was looking at the neural activity of single neurons in the rat hippocam-
pus while the animal was moving freely in a confined environment where food was scat-
tered everywhere. He found that the single cell activity is related to the spatial position
of the animal. In particular each neuron is active in a specific place of the environment
(Fig. 4.1); the preferential location is randomly associated in different neurons. Since the
spatial position of the animal can be decoded by looking at the population activity of
these neurons, the system forms neural representation of space. In the last forty years
research in this field led to the discovery of different components of this neural map such
as head direction cells [48, 49], border cells [50], speed cells [51]. The research described
in the next Chapter focuses on one particular type of neurons called grid cells [52]; in the
following Section we give a detailed description of these neurons.

Figure 4.1: Spatial activity of place cells in the rat hippocampus. (A) Trajectories (black lines)
followed by rat free to move in a square environment and the positions at which a single neuron
was active (red dots). (B) Firing field as a function of the animal position. The activity of a neuron
is localized in a specific place of the environment.

Grid cells have been uncovered in the main input to hippocampus, a structure known
as the medial entorhinal cortex (MEC) [52]. They respond when the animal occupies one
of the vertices of a triangular grid tessellating space (Fig. 4.2). Locally within MEC, grid
cells share the same orientation and periodicity, but vary randomly in phase [52]. The
spatial period of the grid increases along the dorso-ventral axis of the MEC [52, 53, 54].

39
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Grid cells are organized in modules – the grids of cells within a module are clustered
around a discrete period [53, 54], and share similar orientations and ellipticities while
varying in spatial phase[54]. Experimentally, there is a power-law relation between the
periodicities of different modules.

It is believed that grid fields provide relatively rigid coordinates on space based
partly on self-motion and partly on environmental cues [55]. This raised the questions
of how the grid code could be read by the brain and which might be the advantage of
this peculiar structure.

A functional rationale for this organization has been given in [56], where it has been
shown that the triangular structure of the grids could be explained by assuming that
the system minimizes the number of neurons required to encode location with a given
resolution. We ask :

Why is the grid system modular in the first place?

Here, following [56], we will regard the grid system as providing a hierarchical code for
location where smaller periods provide precision, larger periods resolve ambiguity, and
each module must separately cover the range over which the grid should operate. We
will show that variability in the period, orientation and ellipticity effectively randomizes
the relative phases of firing fields, and eventually leads to failure of spatial coverage.
Larger variability entails a smaller physical range that can be covered without gaps.
Hence, optimizing spatial coverage gives a functional argument for reduced variability
and for the observed comodularity of the grid cells. Our arguments also predict a scaling
law that relates the number of neurons in a grid module and its period. In particular, we
predict that more neurons are required at small grid scales than at larger ones. Any grid
coding or decoding scheme will require complete coverage, so the results of the analysis
do not depend on details of a particular coding scheme and apply generally.

Figure 4.2: Structure of grid cells in the rat medial entorhinal cortex. (a) Activity of a single grid
cells (colored dots) superimposed to the trajectories followed by the rat (black lines) and its firing
field as a function of position (b). Fraction of grid cells with a given period (c) and orientation (d).
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4.2 A model of grid cell activity

Grid cells [52] have circular firing fields with diameter `, arranged in a regular triangular
grid with period λ (Fig. 4.3). The grid activity is also characterized by its phase φ, i.e. a
shift with respect to a reference point, and an orientation, i.e. an angular displacement θ
with respect to a reference direction. Grid patterns can present approximately isosceles,
rather than equilateral, triangles (Fig. 3 of [54]; also see [53, 50]). The aspect ratio of these
triangles is quantified through an “ellipticity” parameter ε, defined below. The firing
fields of grid cells form smooth lumps, but after thresholding for noise, we can regard
them as being active inside a localized region and inactive outside. For the purpose of
analyzing coverage of space, we will treat the activity as being uniform inside the active
region. Noise and firing inhomogeneity inside the active region can only degrade the
uniformity of coverage relative to this model. Thus, we will be able to use it to derive
bounds on how well a given grid architecture can cover space.

The activity of grid cells with the above properties can be expressed mathematically
as

a(x) =
∑
n,m∈Z

χ

(
2|φ+R(θ) [nv +mu)]− x|

`

)
, (4.1)

where x is the vector locating the position of the animal in two dimensions, v = λ1(cos(β), sin(β))
and u = λ2(1, 0) are the elementary vectors that generate the grid, λ2 and λ1 are the
lengths of these two vectors, and n and m are integers indexing the different vertices of
the grid. R(θ) is an overall rotation of the grid by an angle θ and the angle β describes
the relative rotation of the grid basis vector v relative to u. The activity of an equilateral,
unrotated triangular grid has λ1 = λ2 = λ, β = π/3 and θ = 0. The set of the six vertices
defined by the triplet u, v, u − v and their opposite vectors forms an hexagon that can
be inscribed into an ellipse centered at the origin. We assume that transformations of
the grids are such that one of the axes of ellipses remains parallel to the direction of the
vector u. As derived in Appendix A.1 this corresponds to grids made of isosceles trian-
gles with λ1 cos(β) = λ2/2 and cos(β) = 1/

√
1 + 3ε2, in which ε is the ellipticity of the

ellipse, defined as the ratio between its two axes [54], ε = 1 corresponds to a grid with
equilateral triangles. (We checked that our broad conclusions also hold for more general
transformations that correspond generally to non-isosceles deformations of grids, see
Appendix A.1.) Finally, since we want to simply analyze whether a neuron is active or
not at a given point (as opposed to the strength of activity), we take the function χ = 1
when its argument is < 1 and 0 otherwise.

Within a module, grid cells with similar grid spacing have similar orientation, ellip-
ticity and firing field size [54]. However, there is variability. We quantified the variability
using experimental data reported in [54]. For each animal in this dataset we fit the dis-
tribution of grid spacing and orientation using a different Gaussian for each module
(details in Appendix A.2). We find roughly constant standard deviations for grid spac-
ing (λ) and orientation (θ) across modules of σλ ∼ 6 cm and σθ ∼ 0.03 rad. The standard
deviation of ellipticity is harder to estimate because of limitations of the data, and so we
will treat it as a free parameter. Across animals, the ratio of grid spacing of consecu-
tive modules is 1.42 ± 0.17 [54]. Furthermore, the ratio between firing field width and
grid spacing for each neuron is ∼ 1.63± 0.035, i.e. grid cells with different periods look
like globally rescaled versions of one another [57]. We will incorporate these facts into
our analysis. Assuming that there are 10 grid modules, and that the smallest one has a
period of about 40cm, the ratio σλ/λ changes from 0.01 to 0.15.
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Figure 4.3: Deformations in grid parameters induce dephasing. (A) Spatial activity of a grid cell
and its possible deformations: regular grid (a), dilation (b), rotation (c) and ellipticity transforma-
tion (d). The activity after transformation (green) is superimposed on the reference activity (black
circumferences). (B) Using a set of grid parameters we divide the space into unit cells represented
by black hexagons. A neuron with the same set of grid parameters (a) has constant relative phase
(black arrows) in each unit cell. A neuron with different grid parameters (b) has different phases
in different unit cells, e.g. here the center of the unit cell is covered by a firing field in U1 but not
in U2.

4.3 Dephasing and decorrelation of neuronal activity

In order to cover an environment with grid cells, there has to be at least one active neuron
at each point. If grid cells in a module differ only in their phase, perfect periodicity
implies that once a unit cell is covered, all of space is covered. Below, we show that
this is not longer true if the characteristics of the grid geometries within a module are
variable.

The grid cells in a module will have an average orientation (θ), ellipticity (ε) and
period (λ). Starting with a lattice with these parameters, we divide the plane into unit
cells defined as the locus of points in space that are closer to each lattice point than to
any of the other lattice points. For each unit cell K we define the relative phase φK
of a particular grid as the vector connecting the center of the unit cell to the center of
the closest firing field, as shown in Fig. 4.3. If the grid parameters are different from
those of the average grid, the relative phase changes from one unit cell to the other (a
phenomenon that we call “dephasing”). Because of dephasing, if the firing field of a
neuron covers the center of a unit cell U1 it may not cover the center of another unit cell
U2 (see Fig. 4.3).

To quantify the effect described above, we compute the correlation coefficient be-
tween the number of neurons that are active at the center of two unit cells. Consider a
set of neurons whose grid parameters are drawn from Gaussian distributions with mean
period λ, orientation θ, and ellipticity ε = 1 and corresponding standard deviations σλ,
σθ and σε. We compute the correlation between the numbers of neurons n(x) and n(y)
active at different points x and y, by averaging over statistical realizations (Fig. 4.4).
When there is no variance in the grid parameters between neurons, the correlation is
independent of separation, and equal to one. Equivalently, the number of neurons with
a certain relative phase is the same for all unit cells. When we introduce variance in the
orientation, period and ellipticity, the correlation decreases rapidly with separation. The
smallest grids in the entorhinal cortex have periods λ in the range 10 − 40 cm. Fig. 4.4
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then shows that that the correlation length will be in the meter scale, well within the
behavioral range of a few tens of meter where the grid system is expected to support
spatial behavior, based on studies of rat homing ranges[58, 59, 60].

Figs. 4.4A,B,C show that the correlation between the number of active neurons at two
separated points declines systematically with separation in the grid lattice. We charac-
terize this decline in terms of a correlation length L, defined as the distance at which the
correlation drops to 1/e. Appendix A.3 shows that our results for scaling relations do not
depend on the specific choice of this threshold. The correlation length decreases with the
variance in the orientation, ellipticity and periods of the grid cells. For different values of
σλ/λ, σε and σθ we measure the correlation length (Fig. 4.4D,E,F). A numerical analysis
of these results shows that the correlation length decreases with variability in the grid
parameters and the qualitative behaviour is the same for σθ, σλ/λ and σε. In particular,
when only one of the three variances, say σθ, is varied, while the other two are fixed, L
is a monotonically decreasing function that behaves as λ/σθ when σθ � σλ/λ, σε and as
λ/ (σθ + constant) when σθ � σλ/λ, σε, with a constant that depends on σλ/λ and σε.
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Figure 4.4: Variability induces decorrelation in grid cells activity. The correlation coefficient of
the number of neurons active at the center of two unit cells along the line ~x = nλ(1, 0) in the
grid lattice with n ∈ {0, 1, . . . } for different standard deviations of the period, orientation and
ellipticity. In the plots x = |~x|. In each plot of the first row there are three colors representing
different values of one of the variances (orientation (A), period (B), ellipticity (C)) while the other
two are fixed. Larger variances lead to a more rapid decrease in the correlation as a function of
separation. (See Appendix A.3 for a discussion of the bump in the blue line in panel C.) The
correlation length depends on three variances which we varied in pairs obtaining contour plots
for fixed variance in ellipticity (D), orientation (E) and period (F). The white points in panel (D)
correspond to the average variance in orientation σθ and period σλ in the modules measured
in[54]. Here we assumed 10 modules with constant variances and extrapolated the values of σλ/λ
assuming a smallest scale of 40cm and a constant ratio between scale of 1.42. In the simulations
the mean ratio of the grid period and firing field size is λ/` = 1.63, the mean grid orientation angle
is θ = 0, and the mean grid shows equilateral triangles (ε=1). Here and in the following figures,
the 95% confidence interval error bars are smaller than the size of the dots representing each data
point.
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4.4 Coverage drives modularity

In order to cover an environment with a set of grid cells, there has to be at least one active
neuron at every point. Above, we defined a correlation length L that characterizes the
scale of distance beyond which the numbers of active neurons become approximately
independent. In terms of this scale, a region of size R can be thought of as being com-
posed of R2/L2 regions where the probabilities of coverage are roughly independent of
each other. If each of these is covered with probability p, the probability P of covering
the whole environment is

log(P ) = γ
R2

L2
log(p) , (4.2)

where γ is a constant that depends on the geometry of the system. The covering proba-
bility P of the whole environment depends on variability since the correlation length L
does. To test this analytical estimate, we numerically analyzed the covering probability
of a circular environment of radius R by N neurons whose periods and orientations are
drawn from Gaussians with means λ, θ, ε = 1, standard deviations σλ, σθ, σε, and uni-
formly distributed phases. We then checked if every point in the environment is covered
by at least one grid cell and we averaged over realizations. The results confirm our ana-
lytical estimate Eq. (4.2) for the covering probability P (Fig. 4.5), with a proportionality
constant γ = 0.804.

Within a single volume of side L, the correlation between the number of active neu-
rons n(x) and n(y) approaches one if |x − y|/L � 1 and decreases continuously as the
distance increases. We numerically investigated the dependence of p, the probability of
covering a correlation volume of linear size L, on the probability of covering a unit cell
puc; results are shown in Appendix A.4. As seen in Fig. 2, over a range of orientation,
period and ellipticity variances that includes the experimentally measured values, the
correlation length lies in the range, L/λ . 20. We carried out a numerical fit within this
range, and found that the probability p is well described by

log(p) = K (L/λ) log(puc) , K (x) = c1 + c2 log(x) , (4.3)

where c1 = 0.73, c2 = 13 and puc is the covering probability of a unit cell. Combining the
Eqs. (4.2) and (4.3), we obtain for the probability of covering the environment :

log(P ) = γ
R2

L2
K (L/λ) log(puc) . (4.4)

We tested this formula as follows. For a given number of neurons N we measured puc
through numerical simulation, and then used the formulae for K and γ from above to
predict the coverage probability P . We then numerically computed P through repeated
simulations and found the agreement shown in Fig. 4.5.

Fig. 4.5 and Eq. (4.4) show that the covering probability of a region increases with the
correlation length. In this sense, a set of grid cells with a larger correlation length is more
efficient, because with the same number of neurons, and hence a fixed probability, puc,
of covering the unit cell, it will have fewer gaps. Since the correlation length decreases
with the standard deviations of orientation, ellipticity and period increase, we conclude
that coverage drives modularity – grid cells in a period module should also have simi-
lar orientations and ellipticities as observed experimentally [54]. We have checked that
the same conclusion, i.e. coverage drives modularity, also holds for grids that are non-
equilateral on average, as detailed in Appendix A.1.
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Figure 4.5: Covering probability decreases with variance and environment size. Covering prob-
ability of a circular environment of radius R is computed for environments of different size and
different variances for orientations, ellipticity and grid period. As in Fig. 4.4, in each plot there are
three colors representing different values of one of the variances (orientation (A), period (B), ellip-
ticity (C)) while the other two are fixed. The covering probability decreases as variances increase.
Results of the numerical simulation (colored circles) match theoretical predictions (continuous
line) obtained by Eq. (4.4). Simulation parameters are as in Fig. 4.4 with N = 30 neurons in the
module.

4.5 Gaps decline exponentially with the number of neurons

We showed above that the probability of covering a range R is given by equation (4.4)
where the factor puc, i.e. probability of covering a unit cell, contains the dependence on
the number of neurons. Given the experimental evidence that phases of grid cells are
randomly distributed [52], the covering probability of a unit cell can be directly com-
puted.

Let us write
puc = 1− exp (F (N)) , (4.5)

where exp (F) is the probability of having at least one gap, i.e. of not covering the unit
cell. The functional form of F can be computed analytically in one dimension:

F1D (N) = α1DN + β1D log(N) + γ1D , (4.6)

α1D = −γ1D = log

(
1− `

λ

)
, β1D = 1 , (4.7)

as shown in [61] (see also Appendix A.5). Here, ` and λ are the grid field width and the
grid period respectively. Eqs. (4.5) and (4.7) show that the probability of having a gap de-
clines exponentially in the number of neurons. In fact, this will be true for a grid system
in any number of dimensions as shown by the following general argument. Imagine first
that N neurons cover a unit cell of a d-dimensional grid, leaving one gap. Suppose we
add an additional neuron which has a random phase. There is some probability h < 1
that it will fail to overlap the gap. If we add Q additional neurons independently, the
probability that they all miss the gap is hQ. Because of this, the probability that the gap
persists will decline exponentially with the number of added neurons. In detail, there
is some probability of partial coverage with each additional neuron and this leads to
subleading terms of O(logN) and O(1) in (4.6).

Thus, when the number of neurons participating in a two-dimensional grid module
is large, we expect that puc ∼ 1 − exp (α2DN) , where α2D < 0 is a factor that does
not depend on N . In the opposite limit, when N is smaller than the area of the unit
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cell divided by the area of the firing field, coverage cannot be achieved at all and hence
puc = 0. We confirmed these expectations numerically for the two dimensional case
(Fig. 4.6). As in one dimension, the parameter α only depends on the ratio of the grid
field width (`) and the grid period (λ). This is because α controls the probability of gaps
in covering a unit cell with grid fields, whose respective sizes are λ and l. Dimensional
analysis then shows that the dimensionless quantity α can only depend on a ratio of the
two parameters λ and ` which both have dimensions of length.

Putting everything together, the probability of covering a two dimensional circular
region with a radius R is estimated to be

log(P ) = γ
R2

L2
K (L/λ) log(1− eF(N)) , (4.8)

as confirmed by numerical simulation (Figs. 4.5, 4.6). Thus we find that the probability
of gaps in coverage of a unit cell declines exponentially in the number of neurons in a
module. However, the probability of gaps in coverage of a range R increases exponen-
tially as (R/L)2K (L/λ) where L is a correlation length which decreases as the variance
in a module increases. In the next section, we balance these effects against each other
to estimate the number of neurons required to cover space in modules of different mean
periods given the measured variability.
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Figure 4.6: Covering probability increases with the number of neurons. (A) The probability
1 − P of having gaps is computed numerically for a unit cell (black dots). This result is used
to predict through Eq. (4.8) the probability of having gaps for an environment of size R/λ = 20
(black line), the prediction matches the numerical simulations (green dots.) The function 1 − P
declines exponentially with N and is asymptotic to exp(−0.4N + 5.5) (red line). (B) Covering
probability computed numerically for different environment size R and number of neurons N.
Results of the simulations (colored dots) match theoretical predictions (black lines) obtained with
Eq. (4.8). Simulations parameter are λ/` =1.63, σθ = 0.04, σλ/λ = 0.08, σε = 0.

4.6 Prediction: smaller period modules need more neurons

Eq. (4.8) describes a relation between the number of neurons (Ni) and the parameters
of the i-th module. Since the different modules vary systematically in their period, this
relation predicts an associated variation in the number of neurons.

Assume that an animal encodes position within a region of size R2 that is common
to all the modules, and that the probability of covering space is the same at all scales.
As we showed above, the probability of gaps in coverage declines exponentially with
the number of neurons, and the coefficient in the exponent depends on the ratio `/λ
between the grid field width and the period. It is established experimentally that this
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ratio is fixed among modules [53, 54]. Thus we can evaluate the predicted fraction of
neurons in a given module, Ni/

∑
iNi, where the denominator is a sum over modules,

and Ni is obtained by inverting Eq. (4.8).

The results of this prediction and a comparison with the extant experimental data are
shown in Fig. 4.7. The theoretical predictions are given for a variety of assumed ranges
and coverage probabilities, with the grid periods and variabilities fixed from experimen-
tal data. Qualitatively, the theory predicts for any choice of parameters that the number
of neurons should decline with the period of the module, as also suggested by the data.

The experiments of [54] measured responses from 4-5 modules in recordings span-
ning up to 50% of the dorsoventral extent of mEC, with a smallest grid period of about
40cm and a ratio of 1.42 between consecutive scales. This suggests that there should be
about 10 modules in total in the rat grid system with a maximum period of about 10m.
We fit the theoretical predictions to the data of [54] and find that a range of a few tens of
meters can indeed be covered with a high coverage probability. Within the range of pa-
rameters that allows this coverage in our model, we predict a decrease of about 50−70%
in the number of neurons between the first and tenth module (Fig. 4.7). Given the ex-
perimental uncertainties and possible biases in recording from harder-to-reach modules
with larger periods, our fits to the existing data should be treated with caution. Never-
theless, our theory robustly states that the fraction of neurons should decline with the
period of the grid module. Ongoing progress in making large-scale recordings from
deeper regions of the brain will enable more stringent tests of our theory.
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Figure 4.7: Fraction of neurons required for coverage decreases with the spatial period. (A)
We used published data from 8 different rats and inferred the fraction of recorded neurons as a
function of the spatial period (red circles represent the fraction of neurons in individual modules
of individual animals) [54]. We divided the data according to the spatial period into four different
modules using k–means clustering and obtain periods λ =53 cm, 85 cm, 115 cm, 155 cm. For each
module we computed the associated fraction of neurons and plotted the mean and the standard
deviation of the fractions of neurons in each module (black squares and lines). The theoretical
prediction given by Eq. (4.8) depends on the choice of two unknown parameters, the radius of
the environment (R) and the probability of covering P . We plotted the predictions for different
combination of these values (colored lines.) Current data are compatible with different values of
R and P . (B) We extrapolated the fraction of neurons over ten modules for different values of R,
P . The theory predict a decrease of 50 − 70% between the first and tenth module. Simulation
parameters are λ/` = 1.63, σθ = 0.03, σε = 0 and σλ = 6cm.
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4.7 Discussion

A striking experimental observation about the grid system in the entorhinal cortex is
that it is organized in discrete modules that share similar periods, orientations and el-
lipticities [54]. Given this modular structure, the geometric progression of grid periods
can be shown to minimize the number of neurons required to provide a specified spatial
resolution [56, 62]. However, why would a modular architecture be necessary in the first
place? Here, we have shown that efficient coverage of space favors modularity.

We asked how variability in the periods, orientations and ellipticities within a mod-
ule would affect the probability of holes in coverage. To carry out this analysis we were
only interested in whether a neuron did or did not fire above the noise threshold at
a given location – hence we treated the firing fields of grid cells as uniform within a
bounded region. Of course, the actual firing rate of grid cells varies smoothly between
the center and periphery of the firing field. So an alternative analysis could sum these
firing profiles across the grid cell population to assess how variability in the periods, ori-
entations and ellipticities affects the homogeneity of the population firing across space.
As in our approach, the key variable would then be the correlation in the expected num-
ber of action potentials generated by the population at different sites, characterized by
a correlation length as introduced above. Then in a similar manner, the probability of
having any given degree of inhomogeneity would be a product over factors determined
within each decorrelation volume. Thus, the analysis would be very similar to that re-
ported here, and we would find again that coverage favors modularity.

We chose to analyze coverage because any grid coding scheme, e.g., [63, 64, 65, 62, 66,
56], will require neurons to be active at each point in space. Thus we view our approach
as setting a minimal requirement for a functioning grid system for encoding location.
Our model predicted that there would be fewer neurons in modules with larger peri-
ods and we compared our theory with the actual numbers of neurons recorded across
modules. This comparison should be taken with caution because of potential biases in
the recording methods, especially for deeper structures in the brains. Some additional
evidence for a decrease of neurons with the period of modules stems from the relatively
smaller size of the ventral entorhinal cortex (which is enriched in large periods) relative
to the dorsal region. Indirect evidence also comes from the larger drifts seen in the activ-
ity of grid cells with larger periods [67] : attractor models indeed predict that networks
with smaller numbers of neurons will drift more. However, because these lines of evi-
dence are indirect, further data is needed. Comprehensive recordings from many grid
modules are challenging because modules of a given period are not strictly localized
anatomically, and because ventral regions are harder to record from. But such data will
greatly illuminate models of the functional logic of the grid system, and will further test
our quantitative predictions.



CHAPTER 5

Theory of feedback controlled brain stimulations for
Parkinson’s disease

5.1 Introduction

The basal ganglia circuit plays a central role in humans movements. In Parkinson’s dis-
ease, the death of dopaminergic neurons in the substantia nigra causes movement dis-
orders such as tremor, rigidity, slowness of movement, and postural instability [68, 69].
At the neural level, this degenerative process modifies the activity in the basal ganglia.
In ill individuals, the neurons in the subthalamic nucleus show an oscillatory discharge
pattern that is coherent at the frequency of the limb tremor [70]. Such activity is sup-
pressed by treatment with the dopamine prodrug, levodopa, and by dopamine agonists
[71]. The effect of treatment with these drugs is a reduction in the severity of the symp-
toms. These observations suggest that the anomalous discharge pattern is correlated to
the motor disfunction.

Another strategy to reduce the symptoms associated with Parkinson’s disease is deep
brain stimulations on the basal ganglia [72, 73, 74]. In deep brain stimulation, electrodes
implanted in the brain stimulate neurons in the subthalamic nucleus with electrical im-
pulses at a constant frequency of about 100 Hz. Although the therapy has been shown to
be effective in reducing the motor symptoms of the disease, it is far from optimal. In fact,
the treatment delivers constant electrical stimulations independent of the state of the pa-
tient. Conversely, in brain disorders, and in particular in the case of Parkinson’s disease,
symptoms are highly variable, depending on factors such as cognitive and motor load
and concurrent drug therapy [73]. A feedback control that modifies the stimulation pa-
rameters depending on the current state of the neural network would clearly be more
appropriate and indeed solutions in this direction have been shown to be more efficient
in alleviating parkinsonian motor symptoms than the standard deep brain stimulations
[75, 76, 77] but, to the best of our knowledge, no general protocol has been found yet.

In this Chapter we derive a mathematical model that describes the dynamics of the
subthalamic nucleus. We ascribe the onset of tremor–related activity in Parkinson’s dis-
ease to a region of unstable activity in the phase diagram of the neural network. Based
on this premise, we show that the main symptoms of the disease are reproduced as a
consequence of the degradation of neural stimulation from the striatum and we propose
a novel feedback based stimulation protocol to avoid the unstable region, and hence
tremor. We also show that our procedure can be implemented with current technology
and we finally test the efficiency of the protocol by numerical simulations of the dynam-
ics in the basal ganglia.
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5.2 Description of the model

Current evidence mentioned in the Introduction indicates that the death of the dopamin-
ergic cells produces oscillatory neural activity in the basal ganglia and causes the tremor
characteristic of Parkinson’s disease. A priori, the complete circuit could be involved
in the generation of the oscillations. However, experiments on in vitro cultures demon-
strate that a suitable subcircuit shows spontaneous oscillatory activity analogous to that
observed in the basal ganglia in patients affected by Parkinson’s disease [78]. The subcir-
cuit is formed by the external globus pallidus and the subthalamic nucleus together with
external currents coming from the cortex and from the striatum. Motivated by this ex-
perimental observation, we will analyze here the dynamics of that subcircuit and show
that its dynamics is indeed sufficient to explain the raise of the anomalous oscillation in
the basal ganglia.

Our first goal is to give a microscopic description of the basal ganglia and to derive
their effective dynamics. We consider a neural network with N neurons, NS = fN of
which belong to the subthalamic nucleus and NG = (1− f)N to the external globus pal-
lidus. To each neuron i we associate two continuous variables: the membrane potential
hi(t) and the firing rate Fi(t) ≥ 0, that are related by

Fi(t) = φi(hi(t)) , (5.1)

with φi sigmoidal functions, e.g.

φi(x) =
φ∞i

1 + exp [−gi(x− h∗i )]
. (5.2)

The constants gi measure the amplification of the neural response (gS =0.3mV−1 [79],
gG =0.2mV−1 [80]), h∗i is the activation potential (h∗S =15 mV [79], h∗G =10 mV [80]) and
φ∞i is the maximal firing rate (φ∞S =0.5 kHz [81, 82], φ∞G =0.1 kHz [80]).

The dynamics of the network is governed by the equation

τiḣi = −hi +

N∑
k=1

Rikφi(hk) + ηi + Ii , (5.3)

where ηi(t) are independent, Gaussian white noises 〈ηi(t)ηj(t′)〉 = Ω2
i δijδ(t − t′) and Ii

are the external currents coming form the striatum (STR) and the cortex (CTX). The time
constants τi are τS =6 ms [81, 82] and τG =14 ms [80], respectively. The matrix elements
of the synaptic matrix R are Gaussian random variables. We suppose for simplicity the
absence of self synapses, i.e. Rii = 0. Note though that this biologically motivated
assumption could be removed as it becomes irrelevant in the limit of a large number of
neurons. The off-diagonal elements of the matrix R are

〈Rij〉 = µij ; 〈RijRln〉 − 〈Rij〉〈Rlk〉 = δilδjkσ
2
ij . (5.4)

The mean and the variance take four distinct values depending on the indices i and j
belonging either to the subthalamic nucleus or to the external globus pallidus :

µij = mSS , σij = σSS , i = 1, . . . NS , j = 1, . . . , NS ,

µij = mSG , σij = σSG , i = 1, . . . NS , j = 1, . . . , NG ,

µij = mGS , σij = σGS , i = 1, . . . NG , j = 1, . . . , NS ,

µij = mGG , σij = σGG , i = 1, . . . NG , j = 1, . . . , NG.

(5.5)
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Figure 5.1: Loop within the basal ganglia formed by the subthalamic nucleus (STN) and the ex-
ternal globus pallidus (GPe) with external currents coming from striatum (STR) and cortex (CTX).
Green arrows indicate excitatory connections whilst blue arrows denote inhibitory connections.
The strength of the connections is controlled by the corresponding parameters m.

A scheme of the relation between these parameters and the neural network is shown in
Fig. 5.1.

In the B.1, we show that in the large N limit, the single neuron membrane potential
is given by

hi(t) = h̄S,G(t) + ηi(t) , (5.6)

where ηi is the white noise specified above and the mean nucleus membrane potential
h̄S or h̄G appear in (5.6) depending on the value of the index i specifying the type of
neuron. The mean nucleus membrane potentials obey the equations

τS
˙̄hS + h̄S = fmSSφ̃S(h̄S) + (1− f)mSG φ̃G(h̄G) + ICTX ,

τG
˙̄hG + h̄G = fmGSφ̃S(h̄S) + (1− f)mGG φ̃G(h̄G) + ISTR ,

(5.7)

with

φ̃S,G(x) =
1√
πΩ2

S,G

+∞∫
−∞

dz φS,G(z) exp

[
− (z − x)

2

Ω2
S,G

]
. (5.8)

In the next Section we discuss the dynamics of the system of equations (5.7) and relate
it to the observations on the physiology of the basal ganglia in healthy and pathological
conditions of Parkinson’s disease.

We point out that the result of our microscopical derivation depends on the noise
variance Ω. It is only in the limit of small noise, i.e. ΩS,G → 0, that the mean field
equations (5.7) reduce to the effective description previously used in the literature [83,
84, 85]. However, noise does affect the behaviour of the system as the signal to noise ratio
measured in the subthalamic nucleus [70] is roughly ' 8. To reproduce this observation,
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noise must be included into the equations and we find that the appropriate value of the
variance is : gSΩS = 0.6, where gS is the gain factor defined in (5.2). As we discuss in
detail in B.2, this relatively strong level of noise modifies the stability of the system and
the network dynamics with respect to the noiseless case.

5.3 Results

5.3.1 Neural network phase diagram: healthy and pathological conditions

In this section we discuss the behaviour of the mean membrane potential given by equa-
tions (5.7).

For given values of the external currents (ISTR, ICTX), the system (5.7) has a set
of equilibrium points : τS ˙̄hS = τG

˙̄hG = 0. The stability of each point is given by the
corresponding eigenvalue of the Jacobian matrix. Eigenvalues with a negative real part
correspond to stable equilibrium points while a positive real part leads to local instabil-
ity. As showed in [83] the system has either a finite number of stable equilibrium points,
corresponding to equilibrium solutions

(
h̄G, h̄S

)
constant in time (Fig. 5.2), or one un-

stable equilibrium point. In the latter case, due to the confining properties of equations
(5.7), the Poincaré-Bendixson theorem [86] states that a limit cycle and an oscillatory
solution (Fig. 5.2) will arise.

An example of the stability of the system as a function of the external currents is
shown in the phase diagram of Fig. 5.3. The phase space features two distinct regions:
with stable fixed points and with unstable fixed points where limit cycles arise. The
position and the size of these regions depends both on the parameters of the network
mSS , mGS , mSG, mGG (for an extensive discussion of this point see [83]) and on the
noise variance Ω (see B.2).

The basal ganglia activity in patients affected by Parkinson’s disease resembles the
behaviour found in the unstable region. Indeed, an oscillatory activity is then superim-
posed (see equation (5.6)) to the single neuron membrane potential. Therefore, we shall
posit that the non-pathological dynamics corresponds to external currents driving the
system within the stable region. Furthermore, we assume that the death of dopaminer-
gic neurons in the substantia nigra modifies the fluctuations of the external currents in
such a way that the dynamics enters the unstable region. We identify this situation as
the pathological Parkinson condition. This is analogous to what was proposed in [83]
for the case without any noise. An example of transition from healthy to pathological
condition is given in Fig. 5.4.

We remark that the network behaviour in the healthy and the pathological condition
described here should be understood as background in the dynamics of the brain. The
background is accompanied by the local activity induced by time variation of the ex-
ternal currents. It is therefore intuitive that a constant background corresponds to the
healthy status and a variable background is harmful to the network functions controlled
by the total (background+local) activity.

The scenario above provides an intuition as to the goal of an external feedback stimu-
lation: keep the region of activity of the network (driven by external currents) away from
the unstable region of the system. In the next Section we use this principle to design a
feedback control system that modifies the position and the size of the unstable region in
the phase diagram to avoid anomalous oscillations in the network.



Theory of feedback controlled brain stimulations for Parkinson’s disease 53

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500  600

g S 
h S 

t(ms)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500  600

g S 
h S 

t(ms)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500  600

g S 
h S 

t(ms)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500  600

g S 
h S 

t(ms)

Figure 5.2: Dynamics of the mean subthalamic nucleus membrane potential given by equations
(5.7) for different values of the external currents. For external currents gSICTX = 2 from the
cortex and gGISTR = −0.5 from the striatum, the system has one stable equilibrium point that
corresponds to constant membrane potential (top left). For gSICTX = 2 and gGISTR = −1.5
there is one unstable equilibrium point that leads to oscillatory behaviour (top right). In the case
gSICTX = 2 and gGISTR = 0.5 there are two stable equilibrium points (bottom left and right).
In solving numerically equations (5.7) we used mean synaptic efficacy fmSS = 54mV/kHz, (1−
f)mSG = 120mV/kHz, fmGS = 80mV/kHz and (1−f)mGG = 100mV/kHz. The noise variance
is gSΩS = 0.6, ΩS = ΩG. Initial condition are h̄S = h̄G = 0 for figures at the top and bottom left
while gS h̄S = 5, h̄G = 0 for the figure at the bottom right.

5.3.2 A feedback system avoids anomalous oscillations

Current technology allows to stimulate and measure simultaneously the activity of a
whole group of neurons [76]. Here, based on this possibility, we discuss a feedback stim-
ulation protocol to modify the neural network phase diagram and to avoid the patho-
logical condition identified in the previous paragraph.

The dynamics of the neurons in the network with a feedback system is given by

τiḣi = −hi +

N∑
k=1

Rikφi(hk) + ηi + Ii +Hi , (5.9)

where Hi represents the external stimulation on neuron i of the circuit due to the feed-
back control. In standard deep brain stimulations Hi is a sinusoidal function with a fre-
quency that is fixed, independent of the network activity and applied only on neurons
of the subthalamic nucleus. In our case we also suppose a uniform external stimulation
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Figure 5.3: Stability of the equilibrium points as a function of the external currents. For every value
of (ISTR, ICTX), using equations (5.7), we computed the equilibrium points and their stability. As
explained in the main text, there are three possible behaviors. Red points correspond to unstable
equilibrium that leads to oscillatory field potential for the neurons in the network. The other
points are associate to stable (light blue) and bistable (green) equilibrium solutions. Simulation
parameters are as in Fig. 5.2.

of the network, i.e. Hi(t) = H(t), yet the stimulation will actively depend on the state of
the network itself.

Let us discuss a possible implementation of an active feedback stimulation acting
only on the subthalamic nucleus. We choose this target because current technology
of stimulation and measurements have mostly been developed for that area and the
implementation of our results requires just a software update. The uniform feedback
Hi(t) = H(t) on the group of neurons will depend only on global observables, e.g. the
mean activity or the standard deviation. We can then perform a calculation similar to
that outlined above and discussed in detail in the Appendix. The result is the pair of
mean field equations

τS
˙̄hS + h̄S = fmSSφ̃S(h̄S) + (1− f)mSGφ̃G(h̄G) + IS +H ,

τS
˙̄hG + h̄G = fmGSφ̃S(h̄S) + (1− f)mGGφ̃G(h̄G) + IG .

(5.10)

The structure of equation (5.10) suggests a control term of the form

H = −αφ̃S(h̄S) , (5.11)

which gives for the network dynamics

τS
˙̄hS + h̄S = (fmSS − α)φ̃S(h̄S) + (1− f)mSGφ̃G(h̄G) + IS ,

τS
˙̄hG + h̄G = fmGSφ̃S(h̄S) + (1− f)mGGφ̃G(h̄G) + IG .

(5.12)

The rationale for (5.11) is that (5.10) is thus reduced to (5.12), which has the same struc-
ture as the mean field equations (5.7). The phase diagram of the system is therefore
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Figure 5.4: Example of transition from healthy to pathological condition represented on the phase
diagram of Fig. 5.3. In the healthy state (blue circle) the external currents from the cortex and the
striatum fluctuate in a region with stable equilibrium points. A pathological decrease in the current
from the striatum, that in Parkinson’s disease could be generated by the death of dopaminergic
neurons in the substantia nigra, drive the system into an unstable region (red circle) in which
spontaneous oscillation in the neural activity arises.

preserved by the control, yet we can modify the connection parameters m by varying
α. Tuning the parameter α allows then to keep the physiological region of activity of
the external currents away from the unstable region and hence avoid anomalous oscil-
lations in the system. In Fig. 5.5 we show explicitly the effect on the phase diagram that
is achieved by modifying α. The correct behaviour of our feedback system can be seen
also in the neurons dynamics, as showed in Fig. 5.6.

A possible concern is that in real applications, the region in the subthalamic nucleus
that can be stimulated is just a fraction of the network. It is then important to verify
that partial stimulation produces a result similar to that found in the effective model.
We verified that that is indeed the case by simulating the complete dynamics of a neural
network described by equation (5.9) assuming that the feedback term Hi measures and
stimulates only a fraction k of neurons in the subthalamic nucleus. Fig. 5.7 confirms that
the control system is effective also with the stimulation operating on a limited fraction
of neurons.

5.4 Discussion

We have described a simple model that suggests a new protocol for therapeutic deep
brain stimulation of the basal ganglia. The main difference with respect to previous
work is twofold. First, our systematic formalism allows us to naturally include the ef-
fect of noise, which results to affect the dynamics of the system and its stability prop-
erties, as seen from the phase diagram in Fig. B.1. Second, our protocol of stimulation
is active, meaning that it depends on the state of the network itself. Our stimulation
paradigm follows naturally from the model of the neural network that we derived, so it
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Figure 5.5: Phase diagram of the network with control term α = 6mV/kHz. Because of the
feedback system the structure is different from that of Fig. 5.4. We point out that the pathological
decrease in the current from the striatum does not produce anomalous oscillations. Indeed the
external currents continue to fluctuate into a stable region, as showed by the blue circle at the
bottom. Simulation parameters are as in Fig. 5.2.

does not need to be determined empirically as in other works [75, 76]. The application
that we presented to the stimulation of the subthalamic nucleus gives promising results
that would deserve to be tested experimentally. The protocol is based only on the mea-
surement and the stimulation of neural activity in the subthalamic nucleus and therefore
fully compatible with existing technology [76].

Furthermore, the performance of the method favorably compares with the standard
deep brain stimulations. Indeed, as discussed in [85], the effect of standard deep brain
stimulations is to reduce the amplitude of the anomalous oscillations in the unstable
region. Conversely, we showed that in our protocol the oscillations vanish completely
because the active feedback that we designed allows the network to systematically work
in the stable region. Hence, we expect that our protocol should constitute an improve-
ment of standard treatments in controlling Parkinson’s related limb tremor, as confirmed
already by simulations.

An interesting direction for further improvement of our protocol relates to the pa-
rameter α controlling the active feedback (see Eq. (5.11)). Its value depends on the value
of the unknown connection parameters and thus in our simulations it was fixed empiri-
cally. Moreover, the stable state that is driven by the feedback has in general a different
firing field with respect to the healthy conditions. New experiments providing quanti-
tative information on the strength and the variability of the connection parameters and
on the firing field in the post-stimulation stable state should permit to better tune the
control and further improve the active protocol presented here.
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Figure 5.6: The feedback control stops anomalous oscillation in the mean subthalamic nucleus
membrane potential. From 0 to 600ms there is no feedback system (α = 0) and the membrane
potential oscillates in time. At 600ms the control is switched on (α = 6mV/kHz) and maintained
until the end of the simulation at 1200ms, manifestly suppressing oscillations. Parameters in the
simulation are as in Fig. 5.2 with gSICTX = 2, gGISTR = −1.5.
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Figure 5.7: Amplitude of anomalous oscillations as a function of the fraction k of neurons in the
subthalamic nucleus involved in the measurement and stimulations. The amplitude of the oscil-
lations decreases with k. Simulation parameters are as follows : gSΩS = 0.6, ΩS = ΩG; gSIi = 2,
gGIi = −1.5; we used 500 neurons both for subthalamic nucleus and the globus pallidus. The
connection parameters are mSS = 0.108mV/kHz, mSG = −0.24mV/kHz, mSS = 0.16mV/kHz
and mGG = −0.2mV/kHz. Connections are Gaussian distributed around these mean values with
variance σ = 0.002mV/kHz. Because of the scaling (B.9), the resulting mean field parameters are
those used in Fig. 5.2. We introduced the control system on a fraction k of neurons in the subtha-
lamic nucleus, which modifies the connection parameters of a value α = 0.006mV . The network
dynamics was simulated for 25s. For each k the network shows the same oscillatory activity ob-
served in the mean field system. In the figure we reported the amplitude (defined as the difference
between the maximum and the minimum value) of mean neural field potential in the subthalamic
nucleus population normalized to its maximum value (k = 0).





APPENDIX A

Complete coverage of space favors modularity of the grid
system

A.1 Covering probability of non-isosceles grids

In the main text we analyzed the covering probability of the grid system assuming
isosceles grids, in this Section we show that our results hold also in the case of general
grids.

The triangular lattice defining the spatial activity of a grid cell is determined by linear
combinations of two elementary vectors v and u. The reference frame can be chosen
to have the vector u coinciding with the x-axis, i.e. u = λ2(1, 0) and the vector v =
λ1(cos(β), sin(β)), where β is the angle formed by the two elementary vectors (which
can be restricted to the first quadrant). The two positive numbers λ2 and λ1 are the
moduli of the two elementary vectors. The set of the six vertices defined by the triplet
u, v, u − v and their opposite vectors, forms an hexagon that can be inscribed into an
ellipse centered at the origin, whose general equation is Ax2 + 2Bxy + Cy2 = 1 (see
Fig. A.1A). The (inverse squared) length of the two axes of the ellipse is determined by
the eigenvalues of the quadratic form and their orthogonal directions are determined by
the corresponding eigenvectors.

An alternative parametrization of the ellipse is given by : 1) the direction δ of the axes
of the ellipse with respect to the axes of the reference frame ; 2) the ratio ε between the
length of the two axes (i.e. the ellipticity of the grid as defined in [54]) ; 3) the length
λ/
√
ε of the axis parallel to the x-axis when δ = 0 (the other axis has length

√
ε λ). By

requiring that the ellipse pass through the three independent vertices u, v, u − v, we
obtain the relations

λ2 =
λ√
F1

; λ1 sinβ =

√
3

2
λ2F1 ; λ1 cosβ =

λ2F2

2

F1 ≡ ε cos2 δ +
1

ε
sin2 δ ; F2 ≡ 1−

√
3

(
ε− 1

ε

)
sin δ cos δ , (A.1)

which provide a general mapping between the free parameters λ, ε, δ of the ellipse and
the free parameters λ1, λ2, β of the vectors u and v. Ellipses with δ = 0 have axes aligned
with the coordinate system. Elementary algebra shows that this condition corresponds
to isosceles triangles with |v| = |u − v|, i.e. 2λ1 cosβ = λ2 or cosβ = 1/

√
1 + 3ε2. The

special case of ε = 1 fixes λ1 = λ2 = λ and cosβ = 1/2, i.e. corresponds to equilateral
triangles. We stress that the direction δ is related only to the deformation of the hexagon
defined by the elementary vectors and its variations do no affect the orientation θ of the
grid.
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We generalize the analysis of the main text to cases where the axes of the ellipse
are not aligned with the coordinate system (δ 6= 0), which generally corresponds to
scalene triangles. We choose a parametrization where ε, δ and λ vary independently.
The upshot is that the results presented in the main text still hold. Specifically, for fixed
σλ/λ and σθ we compute the correlation coefficient between the number of neurons that
are active at the center of two unit cells, as described in the main text. Fig. A.1B, C
illustrates the results of the simulations for different values of σε and σδ using general
grids. As for the other sources of variability, the correlation decreases rapidly with the
separation between the two centers and the correlation length decreases as σε and σδ
increase. Finally, Fig. A.1D also shows that the covering probability conforms to the
relation (4.2) presented in the main text.

A.2 Fit of variability in the grid parameters

In order to measure variability in grid parameters, we analyzed data from Stensola et
al. [54]. For each animal where the distribution of grid parameters is available, we fit the
data with a sum of Gaussians. For each module, we used one Gaussian for the period
(mean λ, standard deviation σλ) and one for the orientation (mean θ, standard deviation
σθ.) The two standard deviations are roughly constant in the various modules. Indeed,
the Pearson correlation coefficient is 0.21 between σλ and λ and 0.28 between σθ and λ.
The standard deviation of the grid period is about 6 cm. Assuming 10 modules and that
the smallest is about 40cm, the ratio σλ/λ goes from 0.01 to 0.15. The standard deviation
of the orientation in a module is about 0.03 rad. In the literature we were not able to
find the distribution of ellipticity in the population within a single module. We know
that ellipticity also has a modular structure and that across a population (all modules)
the mean ellipticity is around 1.16 ± 0.003 [54]. In the analysis we assume a standard
deviation in ellipticity in the range 0.01-0.15, i.e. similar to the grid spacing.

A.3 Analysis of the correlation function

In this section we discuss the asymptotic behavior of the Pearson correlation function
of the number of neurons active at two spatial points (i.e., the correlation function nor-
malized to 1 for coincident points) at large separations. We show that, as long as there is
some variability in the orientation, the correlation function tends to zero; the special case
of zero variability in orientation is not relevant to the analysis of the covering probability
in the actual grid system.

The number of neurons active at a spatial point x is given by n(x) =
∑N
i=1 ai(x),

where ai is the spatial activity of the i−th neuron given by Eq. (4.1) and N is the number
of neurons in the system. We are assuming that grid cells in a module fire indepen-
dently. Therefore, the correlation function of the number of neurons active at x and y,
ρ(n(x), n(y)), is equal to the correlation function of the activity of a single generic neuron
a(x), averaged over the distribution of grid parameters, ρ(a(x), a(y)). In what follows
we compute the asymptotic value of this correlation function for |y − x|/λ� 1.

The mean activity of a single neuron is obtained from Eq. (4.1) by averaging over the
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Figure A.1: Variability in ellipticity ε and direction δ induces decorrelation and decreases the
covering probability. We perform the same analysis as in the main text for the more general case
δ 6= 0. (A) Representation of the grid activity with δ 6= 0. The six firing fields defined by the
triplet u, v, u − v and their opposite vectors (green circles) have centers belonging to an ellipses
(curved red line), the ellipse axes (straight red lines) are rotated rotated by an angle δ respect to the
vector u aligned with the x-axis. (B) The Pearson correlation coefficient is computed as in Fig. 4.4.
(C) Correlation length for different values of σε and σδ computed as in Fig. 4.4. (D) Covering
probability computed as in Fig. 4.5. We find that increasing variability reduces the correlation
length and decreases the covering probability. Eq. (4.4) correctly describes the covering probability
as a function of variance and environment size.

grid parameters. This quantity can be written as

〈a(x)〉 =

∫
a(x) dPθdPλdPεdPφ (A.1)

=
∑
n,m∈Z

∫
χ

( |φ+R(θ) [nv +mu)]− x|
`/2

)
dPθdPλdPεdPφ , (A.2)

where dP(∗) represents the measure related to the grid parameter (∗). As discussed in the
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main text, orientation, period and ellipticity of the grids follow a gaussian distribution
whilst the spatial phase is uniformly distribute in a unit cell. To compute the integral,
we divide the space into unit cells and consider the center of the cell containing x as
a reference point respect to which we express the phase of the grid φ. Because φ is
uniformly distributed in the unit cell and χ is 1 within the firing field and 0 outside, the
integral over φ is a constant equal to the ratio between the area of a firing field and that
of a unit cell, i.e. π/2

√
3 (`/λ)

2. The remaining integrals are equal to one and we obtain
〈a(x)〉 = π/2

√
3 (`/λ)

2.
In order to compute the correlation function we need to determine the quantity

〈a(y)a(x)〉 =

∫
a(y)a(x)dPθdPλdPεdPφ , (A.3)

that can also be written as

〈a(y)a(x)〉 =

∫
Pφ(y,x)dPφ , Pφ(y,x) =

∫
a(y)a(x) dPθdPλdPε , (A.4)

where Pφ(y,x) is the joint probability distribution that depends parametrically on φ.
The joint probability can be computed as

Pφ(y,x) = Pφ(y|x)Pφ(x) (A.5)

where Pφ(y|x) is the conditional probability that a neuron is active at y if it is active at
x and Pφ(x) is the probability that a neuron is active at x. In order to evaluate the con-
ditional probability we divide space into unit cells using the mean grid parameters. We
consider a neuron with φ = (0, 0), i.e. with a firing field centered at the origin, and ana-
lyze the evolution of its phase φn in the unit cells centered at y = (nλ, 0), n = 0, 1, . . . .
If the grid cell has the same grid properties of the average grid, its phase will be in-
variant, i.e. φn = φ. If the grid has the same orientation of the mean grid but dif-
ferent period (λ′ 6= λ), the phase will gradually shift along the x−axis as n increases
but it will always belong to a one dimensional surface with fixed y component equal
to φy . When n increases the phase becomes randomly distributed along the segment
[(n − 1/2)λ, (n + 1/2)λ] and the probability that the point y = (nλ, 0) is covered given
that x = (0, 0) is covered depends on φy . In particular, a grid that covers the point x

will have an intersection of length 2
√
`2/4− φ2

y between its firing field and the segment
[−1/2λ,+1/2λ]. Because of the previous argument, for large n this interval will be uni-
formly distributed along the segment [(n− 1/2)λ, (n+ 1/2)λ] so it will cover the point y
with probability

Pφ(y|x) =
2
√
`2/4− φ2

y

λ
. (A.6)

On the other hand, the probability of having a neuron active at x is

Pφ(x) =

{
0 if φ2

x + φ2
y > (`/2)2

1 φ2
x + φ2

y ≤ (`/2)2
(A.7)

Combining the previous results we obtain 〈a(y)a(x)〉 → 4
√

3`3

9λ3 . Hence, if the orienta-
tion variance is zero the correlation coefficient between two distant points reaches the
asymptotic value

ρ(a(∞), a(0)) =

8`
3πλ − π`2

2
√

3λ2

1− π`2

2
√

3λ2

. (A.8)



Complete coverage of space favors modularity of the grid system 63

This has been confirmed numerically in Fig. A.2. The same argument holds if ellipticity
variance is present.

On the other hand, if there is variance in the orientation, as n increases the phase
of the grid will be randomly distributed in the two-dimensional area of the unit cell
centered at (nλ, 0). It follows that 〈a(y)a(x)〉 → 〈a(x)〉 and the correlation asymptotically
goes to zero as shown in Fig. 4.4.

In the main text we assessed the correlation length of a grid system as the distance at
which the correlation in the number of active cells falls below a fixed threshold. The re-
sults of the present Section fix a specific range in which this threshold should be chosen.
Indeed, for a given `/λ, Eq. (A.8) gives the asymptotic value of the correlation function
when no variance in the orientation is present, e.g. in the biological system `/λ ≈ 1/1.63
and the asymptotic value of the correlation is about 0.28 (see Fig. A.2B). Because of the
effect described above, if the threshold used to define the correlation length is chosen
below this value, the correlation length will depend only on the orientation variance.
Hence, in order to assess the length scale of correlation that is affected by the variance
in all the grid parameters, a threshold slightly above the asymptotic value should be
chosen (in the main text we used 1/e.) This choice is relevant because it captures the
dependence of the covering probability on the variance in the grid parameters. In fact,
if our definition of the correlation length is used to analyze the covering of a system, the
analytical results obtained from our approach are in agreement with direct numerical
analysis performed with (see Fig. 4.5) and without (see Fig. A.2D) orientation variance.

A.4 Covering probability of a decorrelation volume

In the main text we showed that within a single volume of side L, the correlation be-
tween the number of active neurons n(x) and n(y) approaches one if |x− y|/L � 1 and
decreases continuously as the distance increases. In this Section we derive the functional
dependence of p, the probability of covering a decorrelation volume, on its linear size L
and on the probability of covering a unit cell puc.

We computed numerically the covering probability of a circolar environment of ra-
dius R using sets of grid cells characterized by different puc, results of the simulations
are shown in Fig. A.3. For every value of the radius R the logarithm of the covering
probability rescaled over log(puc) does not depend on puc (Fig. A.3B). It follows that the
probability p of covering a decorrelation volume of linear size L can be expressed as

log(p) = K log(puc) , (A.1)

where K is a function that depends only on L/λ for dimensional reasons.
Over a range of grid variances that includes the experimentally measured values, we

found that L/λ . 20 (Fig. 2 of the main text). In this range, we found numerically that
K (x) = c1 + c2 log(x) (c1 = 0.73, c2 = 13) gives a good description of the data (see
Fig. A.3C) .

A.5 Covering probability of a unit cell

We discuss the covering probability of a unit cell in one dimension. We take each grid
cell to be active in intervals of length `, regularly spaced with centers at distance λ apart.
A unit cell is given by an interval of length λ. The covering probability of a unit cell byN
grid cells is analogous of that of covering a region of length λ by N intervals of length `
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Figure A.2: The correlation length depends on the behavior above the asymptotic value of the
correlation. (A) When there is no variance in grid orientations, the correlation function between
the number of active cells at two locations, ρ(n(x), n(0)), approaches a nonzero asymptotic value
that depends on `/λ. The solid lines indicate the theoretical prediction of the asymptotic values
from Eq. (A.8). (B) The asymptotic value of the correlation in the absence of orientation variance
is predicted by Eq. (A.8) (black line). Representative values corresponding to the three curves in
panel A are marked by the colored dots. Note that there is a maximum value in the asymptotic
correlation as a function of l/λ. (C) The correlation decreases faster when the variance in the
period increases. (D) Numerical simulations (colored dots) determine the covering probability
of the environment for the different variances in the grid parameters and environment sizes. The
numerics are accurately predicted by Eq. (4.8) of the main text (solid lines) in which the correlation
length for a grid system was assessed as the distance at which ρ in panel C decreased to 1/e. This
threshold is always larger than the asymptotic value of the correlation (see main text).
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Figure A.3: Covering probability of a decorrelation volume of linear sizeL. (A) Covering proba-
bility P of a circular environment of linear sizeR computed numerically for different environment
size and covering probability of the unit cell puc. The different values of puc have been obtained
using sets of grid cells made of a different number of neurons, as discussed in the main text. (B)
Results of panel (A) collapse on a common curve when their logarithm is rescaled over log(puc),
justifying the functional form introduced in Eq. A.1. (C) Numerical covering probability p of a
decorrelation volume of linear size L have been used to obtain an empirical description of the
function K (L/λ) described in Eq. A.1 (red dots). The best fit (black line) is given by the function
K (x) = 0.73+13 log(x). Simulations parameters are λ/` =1.63, σθ = 0.04, σε = 0. In panels (A-B)
we fixed σλ/λ = 0.08 whilst the number of neurons N is 30 (magenta), 40 (light blue), 50 (brown).
In panel (C) we fixed N = 30 and σλ/λ has been varied to span the different values of L observed
in the biological system as described in Fig 4.4E of the main text.
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with periodic boundary conditions on the region. This probability distribution has been
computed analytically in [61] and is

P

(
N,

`

λ

)
=

N∑
k=0

(−1)k
(
N

k

)
f(k) , (A.1)

where f(k) = (1− k`/λ)
N−1 if k` < λ and f(k) = 0 otherwise. For large N this relation

reduces to the result used in the main text P = 1−N (1− `/λ)
N−1.

The proof of (A.1) is presented below for the sake of completeness. Because we have
periodic boundary conditions on the region to be covered, we can regard it as a circle of
unit length and we can take the intervals of length ζ = `/λ to be arcs on this circle. The
arcs are labelled by their order of occurrence in the anti-clockwise direction around the
circle, starting by convention from the north pole. The arcs are identified by their initial
position ; there is a gap after the r-th arc if the distance between the initial positions of the
r-th and the r + 1-th arcs is larger than the size of the arcs. For convenience, we rigidly
translate all the arcs so that the first one is positioned at the north pole – this convention
does not affect the probability of coverage.

Consider N random arcs of length ζ on the circle. Draw k arbitrary arcs from this
set (say (r1, r2, . . . rk), with k ≤ N ). Let f(k) be the probability that each arc in this
randomly selected subset is followed by a gap, irrespective of the state (followed by a
gap or not) of all the other arcs. From the f(k)’s, the probability (A.1) of leaving no gaps
is computed as follows. First, let Q(ng, nu) be the probability that ng prescribed arcs are
each followed by a gap and nu prescribed arcs are each not followed by a gap, with the
rest of the N arcs in unspecified states. Then, Q(ng, 1) = f(ng)−f(ng + 1) because f(ng)
includes the probability that the extra arc might be gapped or ungapped, while f(ng+1)
subtracts the probability that the extra arc is in fact gapped. By a similar reasoning we
obtainQ(ng, 2) = Q(ng, 1)−Q(ng+1, 1) and so on recursively up to ng+nu = N . Simple
algebra shows then that the probability of leaving no gaps is

P

(
N,

`

λ

)
= Q(0, N) =

N∑
k=0

(−1)k
(
N

k

)
f(k) . (A.2)

The formula (A.2) leaves us to determine the expression of f(k), which is done as
follows. When an arc, say r, is followed by a gap, we rigidly shift backward (clockwise)
all the following arcs up to the last (N -th) by an amount ζ . Because the r-th arc is
followed by a gap, the state of all the arcs other than r is not affected by this backward
shift and we are left with a final region of size ζ that does not contain any initial position
of the arcs (see Fig. A.4). Note that whether the N -th arc is gapped or ungapped before
this shift corresponds to whether or not the last arc partially overlaps with the final
region of size ζ. The probability of distributing N − 1 initial positions of the arcs (other
than the first one fixed at the origin) in a region of size 1 − ζ gives f(1) = (1− ζ)

N−1.
The reasoning for f(2) is similar. If the two prescribed gapped arcs are r1 and r2 > r1,
we first shift backward by ζ all the arcs following r1 and then again by ζ those following
r2. We are then left with a final unoccupied region of size 2ζ. The crucial point is that
the state of all the arcs other than r1 and r2 is again unaffected. We can then compute
f(2) = (1− 2ζ)

N−1 as the probability of distributing N − 1 initial positions of the arcs
in the available region of size 1 − 2ζ. Generalizing the reasoning to k arcs gives the
expression f(k) = (1− kζ)

N−1, provided the total length of the arcs is smaller than the
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Figure A.4: Shift of the arcs following the gap affects only the covering of the arc that is fol-
lowed by the gap. (A) Circle of unit length with seven arcs of which only the initial position has
been represented (red lines at angle rk). Each arc has length ζ = 1/4 and the 5-th arc is followed
by a gap (green region). (B) the 6-th and 7-th arc have been rotated clockwise by an angle π/2 that
corresponds to an arc of length ζ. The rotation shifts the gap to the region before the first arc and
does not affect the state of the 6-th and 7-th arc.

length of the circumference, i.e. kζ ≤ 1, otherwise f(k) = 0. That completes the proof
and yields Eq. (A.1).





APPENDIX B

Theory of feedback controlled brain stimulations for
Parkinson’s disease

B.1 Derivation of the mean field equations

In this Section we derive the mean field equations (5.7). Using the Martin-Siggia-Rose
formalism [87] we write the microscopic dynamics given by equation (5.3) in a functional
form

ZR(x, x̂) =

∫
DhDĥ eL0(h,ĥ)+LR(h,ĥ)+J(h)+K(x,x̂,h,ĥ) . (B.1)

Here, the various terms at the exponential read as follows :

K(x, x̂, h, ĥ) =

∫
dt

N∑
k=1

(
x̂k(t)hk(t) + xk(t)ĥk(t)

)
, (B.2)

the free Lagrangian is

L0(h, ĥ) =

∫
dt

N∑
k=1

[
−Ωk

2
ĥk(t)ĥk(t)− iĥk(t)

(
τkḣk(t) + hk(t) + Ik(t)

)]
, (B.3)

the coupling term is

LR(h, ĥ) =

∫
dt

N∑
j 6=k=1

iĥj(t)Rjkφj(hk(t)) , (B.4)

and

J =
1

2

N∑
k=1

1

τk

∫
dt− 1

2

∫
dt

N∑
j=1

Rjjφ
′
j(hj(t)) =

1

2

N∑
k=1

1

τk

∫
dt . (B.5)

The J term is due to the the Jacobian of the transformation and ensures that ZR(0, 0) = 1.
The average of (B.1) over the realizations of the synaptic matrix gives

[ZR] =

∫
DhDĥeL0+J+K

∫
DR exp

−1

2

 N∑
j 6=k=1

(Rjk − µjk)
2

σ2
jk


+i

∫
dt

N∑
j 6=k=1

ĥj(t)Rjkφj(hk(t))

 , (B.6)

69
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where

DR =

N∏
j 6=k=1

dRjk√
2πσ2

k

. (B.7)

Performing the Gaussian integral we obtain

[ZR] =

∫
DhDĥexp

L0 + J +K + i

∫
dt

N∑
j 6=k=1

ĥj(t)µjkφj(hk(t))

−1

2

∫
dtdt′

N∑
j 6=k=1

ĥj(t)ĥj(t
′)σ2

jkφj(hk(t))φj(hk(t′))

 . (B.8)

To perform the mean field limit of the model, the scaling with N of the connection
parameters must be specified. In the neural network that we model, the connections
from one nucleus to another are either excitatory or inhibitory. A necessary condition to
preserve the identity of neurons is that the mean to noise ratio for individual neurons
be sufficiently high, so that changes of sign are rare. In other words, we require σ < |m|
when N →∞, which leads to a scaling of the form

µ =
m

N
, σ =

s

Nβ
, β ≥ 1 . (B.9)

It follows that in the limit N � 1 the quadratic contribution to the action due to terms in
ĥ tends to vanish. This is a general property stemming from the condition β ≥ 1.

The dynamics of two effective neurons is

τS ḣS + hS = fmSSF̄S + (1− f)mSGF̄G + ICTX + ηS ,

τGḣG + hG = fmGSF̄S + (1− f)mGGF̄G + ISTR + ηG ,
(B.10)

with the self-consistency conditions

F̄S(t) = 〈φS(hS(t))〉 , F̄G(t) = 〈φG(hG(t))〉 , (B.11)

where 〈. . . 〉 denotes the average over the independent Gaussian white noises ηS and ηG

〈ηS〉 = 〈ηG〉 = 0 , 〈ηS(t)ηS(t′)〉 = Ω2
Sδ(t− t′) ,

〈ηG(t)ηG(t′)〉 = Ω2
Gδ(t− t′) , 〈ηS(t)ηG(t′)〉 = 0 . (B.12)

Averaging the effective neurons equations, we obtain

τS ḣS + hS = fmSSF̄S + (1− f)mSGF̄G + ICTX ,

τGḣG + hG = fmGSF̄S + (1− f)mGGF̄G + ISTR .
(B.13)

Since the effective potentials hS and hG are Gaussian processes, we have

F̄S,G(t) = 〈φS,G(hS,G(t))〉 =

+∞∫
−∞

dz φ(z)
1√

2π〈〈hS,G(t)2〉〉
e

[
− 1

2

(z−h̄S,G(t))
2

〈〈hS,G(t)2〉〉

]
, (B.14)
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where 〈〈hS,G(t)2〉〉 denotes the variance and satisfies

τS,G
d

dt
〈〈h2

S,G(t)〉〉+ 2〈〈h2
S,G(t)〉〉 = Ω2

S,G . (B.15)

For times t � τS,G, the variance 〈〈h2
S,G(t)〉〉 =

Ω2
S,G

2 and equations (B.13) give the mean
field equations used in the main part of the text. Note finally that in random matrix
theory it is common to assume β = 1/2. Such scaling leads to a chaotic regime depending
on the variance σ [88]. Such a regime does not appear in our model due to the different
scaling that the identity of neurons imposes.

B.2 Noise dependency of the phase diagram

As we pointed out in the main text, the microscopic derivations of the mean field equa-
tions gives an explicit dependence on the noise variance ΩS,G. In this Section we discuss
the importance of this aspect for the network dynamics.

In the main text we remarked that, for a given value of the external currents (ISTR,ICTX ),
the equilibrium behaviour of the membrane potential is given by the solution of the sys-
tem τS

˙̄hS = τG
˙̄hG = 0, i.e.{
−h̄S + fmSSφ̃S(h̄S) + (1− f)mSGφ̃G(h̄G) + ICTX = 0 ,

−h̄G + fmGSφ̃S(h̄S) + (1− f)mGGφ̃G(h̄G) + ISTR = 0 .
(B.1)

The functions

φ̃S,G(x) =
1√
πΩ2

S,G

+∞∫
−∞

dzφS,G(z) exp

[
− (z − x)

2

Ω2
S,G

]
(B.2)

are smeared out versions of the single neuron response function that parametrically de-
pends on the noise variance ΩS,G. The stability of each solution of equation (B.1) is given
by the eigenvalues of the relative Jacobian matrix. Since the Jacobian matrix depends on
the noise variance ΩS,G, the stability of the equilibrium points for a given value of the
external currents (ISTR,ICTX ) does depend on the noise variance. This is explicitly con-
firmed by numerical simulations shown in Fig. B.1.
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Figure B.1: Dependency of the phase diagram on the noise variance. The stability of the system is
computed for the cases without noise (left) and with noise (right, gSΩS = 0.6) using the technique
explained in Fig. 5.3. For fixed values of the external currents the noise modifies the stability of the
system. Here for the case gSΩS = 0 (gSΩS = 0.6) the area covered is 54% (59%) stable, 32% (19%)
bistable and 14% (22%) unstable. Hence noise increases the unstable region at the expense of the
bistable region. The parameters in the simulations are as in Fig. 5.2. The colour code is: green
(bistable), light blue (stable) and red (unstable).
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