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Abstract—We propose an approach to protect confidentiality of data and accesses to them when data are stored and managed by

external providers, and hence not under direct control of their owner. Our approach is based on the use of distributed data allocation

among three independent servers and on a dynamic re-allocation of data at every access. Dynamic re-allocation is enforced by

swapping data involved in an access across the servers in such a way that accessing a given node implies re-allocating it to a different

server, then destroying the ability of servers to build knowledge by observing accesses. The use of three servers provides uncertainty,

to the eyes of the servers, of the result of the swapping operation, even in presence of collusion among them.
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1 INTRODUCTION

A recent trend and innovation in the IT scenario has been
the increasing adoption of the cloud computing paradigm.
Companies can rely on the cloud for data storage and
management and then benefit from low costs and high avail-
ability. End users can benefit from cloud storage for enjoying
availability of data anytime anywhere, even from mobile
devices. Together with such a convenience comes however
a loss of control of the data (stored and managed by “the
cloud”). The problem of ensuring data confidentiality in
outsourcing and cloud scenarios has received considerable
attention by the research and development communities in
the last few years and several solutions have been proposed.
A simple solution for guaranteeing data confidentiality con-
sists in encrypting the data. Modern cryptographic algo-
rithms offer high efficiency and strong protection of data
content. Simply protecting data content with an encryption
layer does not fully solve the confidentiality problem, as
access confidentiality, namely the confidentiality of the spe-
cific accesses performed on the data remains at risk. There
are several reasons for which access confidentiality may be
demanded [1], among which the fact that breaches in access
confidentiality may leak information on access profiles of
users and, in the end, even on the data themselves, therefore
causing breaches in data confidentiality.

Several approaches have been recently proposed to pro-
tect access confidentiality. While with different variations,
such approaches share the common observation that the ma-
jor problem to be tackled to provide access confidentiality
is to break the static correspondence between data and the
physical location where they are stored. Among such pro-
posals, the shuffle index [1] provides a key-based hierarchical
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organization of the data, supporting then an efficient and
effective access execution (e.g., including support of range
operations). In this paper, we build on such an indexing
structure and on the idea of dynamically changing, at every
access, the physical location of data, and provide a new
approach to access confidentiality based on a combination
of data distribution and swapping. The idea of applying data
distribution for confidentiality protection is in line with
the evolution of the market, with an increasing number of
providers offering computation and storage services, which
represent an opportunity for providing better functionality
and security. In particular, our approach relies on data distri-
bution by allocating the data structure over three different
servers, each of which will then see only a portion of the
data blocks and will similarly have a limited visibility of the
accesses to the data. Data swapping implies changing the
physical location of accessed data by swapping them among
the three involved servers. Swapping, in contrast to random
shuffling, forces the requirement that whenever a block is
accessed, the data retrieved from it (i.e., stored in the block
before the access) should not be stored at the same block
after the access. We illustrate in this paper how the use of
three servers (for distributed data allocation) together with
swapping (forcing data re-allocation across servers) provide
nice protection guarantees, typically outperforming the use
of a random shuffling assuming (as it is to be expected) no
collusion among servers, and maintaining sufficient protec-
tion guarantees even in the presence of collusions among
two, or even all three, of the involved servers.

The remainder of the paper is organized as follows. Sec-
tion 2 recalls the basic concepts of the shuffle index. Section 3
introduces the rationale of our approach. Section 4 describes
our index structure working on three servers. Section 5
presents the working of our approach, discussing protection
techniques and data access. Section 6 analyzes protection
guarantees. Section 7 discusses the motivations behind our
choice of swapping and of three as the number of servers
to be used, and provides some performance and economic
considerations for our approach. Section 8 illustrates related
works. Finally, Section 9 concludes the paper.
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2 BASIC CONCEPTS

A shuffle index is an unchained B+-tree such that: i) each
node stores up to F − 1 (with F the fan-out of the B+-tree)
ordered values and has as many children as the number
of values stored plus one; ii) the tree rooted at the j-th
child of an internal node stores values included in the range
[vj−1, vj), where vj−1 and vj are the (j− 1)-th and j-th val-
ues in the node, respectively; and iii) all leaves, which store
actual tuples, are at the same level of the tree, that is, they
all have the same distance from the root node. Figure 1(a)
illustrates an example of unchained B+-tree. In this figure,
and in the remainder of the paper, for simplicity, we refer
to the content of each node with a label (e.g., a), instead
of explicitly reporting the values in it. In the example, root
node r has six children (a, . . . , f ), each with three to four
children. For easy reference, we label the children of a non-
root node with the same label as the node concatenated
with a progressive number (e.g., a1, a2, a3 are the children
of node a). At the logical level, each node is allocated to a
logical identifier. Logical node identifiers are also used in
internal nodes as pointers to their children. At the physical
level, each node is translated into an encrypted chunk stored
at a physical block. The encrypted chunk is obtained by
encrypting the concatenation of the node identifier and
its content (values and pointers to children). Encryption
protects the confidentiality of nodes content and of the
tree structure. Also, it provides integrity of each node (as
tampering would be detected) and of the structure overall
(being the node identifier and the pointers to children also
encrypted in the block).

Retrieval of a value in the tree requires walking the tree
from the root to the target leaf, following at each level the
pointer to the child in the path to the target leaf. Being the
index stored in encrypted form, such an access requires an
iterative process with the client downloading at each level
(starting from the root) the block of interest, decrypting it,
and determining the next block to be requested.

Although the data structure is encrypted, by observing
a long enough sequence of accesses, the server (or other
observers having access to it) could reconstruct the topology
of the tree, identify repeated accesses, and possibly also
infer sensitive data content [2], [3]. To protect data and
accesses from such inferences, the shuffle index makes use
of complementary techniques bringing confusion to the
observer and destroying the static correspondence between
nodes and blocks where they are stored. In particular, in the
original shuffle index proposal: i) to provide confusion as to
which block is the actual target of an access, more blocks (the
target plus some covers) are requested at every access, ii) a
cache is maintained with the most recently accessed paths,
and iii) at every access, the nodes/blocks accessed and the
ones in the cache are shuffled (randomly reassigning nodes
to blocks, and performing a new encryption) and all the
involved blocks rewritten back on the server.

3 RATIONALE OF THE APPROACH

Our approach builds on the shuffle index by borrowing
from it the base data structure (encrypted unchained B+-
tree) and the idea of breaking the otherwise static correspon-
dence between nodes and physical blocks at every access.

It differs from the shuffle index in the management of the
data structure, for both storage and access (which exploit
a distributed allocation) and in the way the node-block
correspondence is modified, applying swapping instead of
random shuffling, forcing the node involved in an access
to change the block where it is stored (again exploiting the
distributed allocation). Also, it departs from the cache, then
not requiring any storage at the client side.

The basic idea of our approach is to randomly partition
data among three independent storage servers, and, at every
access, randomly move (swap) data retrieved from a server
to any of the other two so that data retrieved from a server
would not be at the same server after the access. Since nodes
are randomly allocated to servers, the path from the root to
the leaf target of an access can traverse nodes allocated at
different servers. Then, to provide uniform visibility at any
access at every server (which should operate as if it was
the only one serving the client), every time the node to be
accessed at a given level belongs to one server, our approach
also requests to access one additional block (distributed
cover) at the same level at each of the other servers.

The reader may wonder why we are distributing the in-
dex structure among three servers, and not two or four. The
rationale behind the use of multiple servers is to provide
limited visibility, at each of the servers, of the data structure
and of the accesses to it. In this respect, even adopting two
servers could work. However, an approach using only two
servers would remain too exposed to collusion between the
two that, by merging their knowledge, could reconstruct
the node-block correspondence and compromise access and
data confidentiality. Also, the data swapping we adopt,
while providing better protection with respect to shuffling in
general, implies deterministic reallocation in the case of two
servers and could then cause exposure in case of collusion.
The use of three servers provides instead considerably better
protection. Swapping ensures that data are moved out from
a server at every access, providing non determinism in data
reallocation (as the data could have moved to any of the
other two servers), even in presence of collusion among
the three servers. While going from two servers to three
servers provides considerably higher protection guarantees,
further increasing the number of servers provides limited
advantage, while instead increasing the complexity of the
system (see Section 7).

4 DATA STRUCTURE AND THREE-SERVER ALLO-
CATION

At the abstract level, our structure is essentially the same as
the shuffle index, namely we consider an unchained B+-
tree defined over candidate key K , with fan-out F, and
storing data in its leaves. However, we consider the root
to have three times the capacity of internal nodes. Since
internal nodes and leaves will be distributed to three dif-
ferent servers, assuming a three times larger root allows us
to conveniently split it among the different servers (instead
of replicating it) providing better access performance by
potentially reducing the height of the tree. In fact, a B+-
tree having at most 3F children for the root node can store
up to three times the number of tuples/values stored in
a traditional B+-tree of the same height. Formally, each
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(a)

LOGICAL INDEX

(b)

PHYSICAL INDEX

(c)

Fig. 1: An example of abstract (a), logical (b), and physical
(c) index distributed at three servers

internal abstract node na in the tree stores a list v1, . . . , vq
of q values, with ⌈F

2 ⌉ − 1 ≤ q ≤ F − 1 (q ≤ 3F − 1 for the
root node), ordered from the smallest to the greatest, and
has q + 1 children. The i-th child of a node is the root of
the subtree containing the values val with vi−1 ≤ val < vi,
i = 2, . . . , q; the first child is the root of the subtree with all
values val < v1, while the last child is the root of the subtree
with all values val ≥ vq . Each leaf node stores a set of values,
together with the tuples in the dataset having these values
for attribute K . All the non-root nodes have to be at least
33% full. Figure 1(a) illustrates an example of our abstract
data structure.

At the logical level, the abstract root node translates to
three logical nodes, say r0, r1, r2, each storing one third of
the values and pointers to children of the abstract root node.
More precisely, r0 stores values v1, . . . , vi, with i = ⌊ q−2

3 ⌋,
and the corresponding pointers to children; r1 stores values
vi+2, . . . , v2i+1, and the corresponding pointers to children;
and r2 stores the remaining values v2i+3, . . . , vq , and the
corresponding pointers to children. (Note that values vi+1

and v2i+2 are not necessary for the index definition and are
then not explicitly stored in the obtained roots.) Figure 1(b)
illustrates an example of logical index representing the
abstract index in Figure 1(a) where the abstract root r is
represented by three logical nodes, r0, r1, r2, each having
two of the six children of r. Each (non-root) abstract node
na translates to a logical node n and is allocated to a logical
identifier n.id, used also to represent the pointer to n in its
parent. To regulate data distribution at the different servers,
we distinguish three subsets IDi, i∈{Y ,G,B}, of logical
identifiers corresponding to the physical addresses at each
of the storage servers Si, i∈{Y ,G,B}. Allocation of abstract
nodes to logical identifiers is defined through an allocation
function, formally defined as follows.

Definition 4.1 (Distributed allocation). Let N a be the set of
abstract nodes in a distributed index I, SY , SG, SB be

the servers storing I, and IDY , IDG, IDB be the sets
of logical identifiers at server SY , SG, SB , respectively.
A distributed allocation function is a bijective function
φ: N a→ IDY ∪ IDG ∪ IDB that associates a logical
identifier with each abstract node.

Given an abstract node na, φ(na) determines the iden-
tifier of the logical node n where na is allocated, denoted
n.id. In the following, we denote with σ(id) the server at
which the logical node with identifier id is stored. Note that
the order of logical identifiers is independent from the node
content. Also, the allocation of logical nodes to physical
blocks and, more in general, to servers does not depend
on the topology of the abstract structure. In other words, a
node may be stored at a different server with respect to its
parent and/or its siblings. An example of distribution of the
index in Figure 1(a) is illustrated in Figure 1(b). For the sake
of readability, logical identifiers are reported on the top of
each node and blocks are color-coded (yellow for SY , green
for SG, and blue for SB , corresponding to light, medium,
and dark gray in b/w printout). For simplicity and easy
reference, logical identifiers start with a letter denoting the
server where the corresponding block is stored (Y for SY , G
for SG, and B for SB), and their first digit denotes its level in
the tree. For instance, G24 is the logical identifier of a node
at level 2 and stored at server SG.

A distributed index I can be represented, at the logical
level, as a pair ⟨N , (SY ,SG,SB)⟩, with N the set of logical
nodes composing it, and SY , SG, and SB the storage servers
where these nodes are physically stored. To guarantee dis-
tribution among the different servers (and provide uniform
visibility at every server in access execution), the distributed
allocation function guarantees that at level 1 (children of
the root) there is at least one node stored at each storage
server, and that each non-root node in the index has at least
one child stored at each server. At starting time, we then
assume the structure to be evenly distributed at the level of
node, meaning that the children of each node are equally
distributed among the three servers (i.e., each server will
be allocated one third ±1 of the children of every node).
We also assume the structure to be evenly distributed both
globally and for each level in the tree. Figure 1(b) represents
an example of logical distributed index where the children
of each node, the nodes in each level, and the nodes in the
tree are evenly distributed to servers.

At the physical level, logical addresses are translated
into physical addresses at the three servers. Node content
is prefixed with a random salt and encrypted in CBC
mode with a symmetric encryption function. The result
of encryption is concatenated with the result of a MAC
function applied to the encrypted node and its identifier,
producing an encrypted block b allocated to a physical
address. Formally, the block b representing a node n is
the concatenation E||T of two strings obtained as follows:
E=Ek1(salt||n) and T =MACk2(id||E), with E a symmetric
encryption function, k1 the encryption key, MAC a strongly
unforgeable keyed cryptographic hash function with key
k2, and salt a randomly chosen value. The presence of the
node identifier in each block enables the client to assess the
authenticity and integrity of the block content and, thanks
to the identifiers of the children stored in each node, also of
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the whole index structure. Figure 1(c) illustrates the physical
representation of the logical index in Figure 1(b). In the
following, for simplicity and without loss of generality, we
assume that the physical address of a block corresponds
to the logical identifier of the node it stores. The view of
each server Si, with i∈{Y,G,B}, corresponds to the portion
of the physical representation in Figure 1(c) allocated at
Si. Note that each server can see all and only the blocks
allocated to it. In the following, we use the term node to refer
to an abstract data content and block to refer to a specific
memory slot in the logical/physical structure. When either
terms can be used, we will use them interchangeably.

5 WORKING OF THE APPROACH

In this section, we illustrate how access execution is per-
formed adopting distributed covers and swapping protection
techniques to guarantee data and access confidentiality.

5.1 Distributed covers

Like in the shuffle index, retrieval of a key value (or more
precisely the data indexed with that key value and stored
in a leaf node) entails traversing the index starting from the
root and following, at every node, the pointer to the child
in the path to the leaf possibly containing the target value.
Again, being data encrypted, such a process needs to be per-
formed iteratively, starting from the root to the leaf, at every
level decrypting (and checking integrity of) the retrieved
node to determine the child to follow at the next level. Since
our data structure is distributed among three servers and
the allocation of nodes to servers is independent from the
topology of the index structure, the path from the root to
a target leaf may (and usually does) involve nodes stored
at different servers. For instance, with reference to Figure 1,
retrieval of a value d1 entails traversing path ⟨r1, d, d1⟩ and
hence accessing blocks G01, Y12, and B24 each stored at a
different server. Retrieval of value a3 entails traversing the
path ⟨r0, a, a3⟩ and hence accessing blocks Y01, B12, and
B23, the first stored at server SY and the last two stored at
server SB . Since each. server can observe different iterations
and, after a long enough sequence of observations, also
infer the levels associated with blocks, we aim at ensuring a
uniform visibility at every server and at each access. In other
words, we want every server to observe, for every search,
the access to one block at each level, with each server then
operating as if it was the only one serving the client. This
approach guarantees that each server has uniform visibility
over every access, independently from the allocation of the
target of the search. (Note that even if only one block is
accessed at every level, no information is leaked to the
server on the tree topology, since: i) the accessed blocks
may not be actually in a parent-child relationship, and ii) the
content of accessed blocks changes just after the access.) Our
requirement of uniform visibility at each server is captured
by the following property.

Property 5.1 (Uniform visibility). Let I = ⟨N , (SY ,SG,SB)⟩
be a distributed index, and N = {n1, . . . , nm} be the set
of logical nodes accessed by a search. The search satisfies
uniform visibility iff for each Si, i∈{Y ,G,B}, and for each
level l in I, ∃! n ∈ N such that: 1) σ(n.id)=Si; and 2) n
is at level l in I.

In other words, for each access, one and only one node
per level should be accessed at every server. To illustrate,
our two sample accesses above do not satisfy uniform
visibility. For instance, in the first access SG is accessed for
level 0 (G01), but not for levels 1 and 2. To satisfy uniform
visibility, we complement, at each level, the access required
by the retrieval of the target value with two additional
accesses at the servers that do not store the target block
at that level. We call covers these additional accesses as
they resemble cover searches of the shuffle index, although
they have also many differences (e.g., they cannot be pre-
determined as data allocation is unknown, they may not
represent a path in the distributed index, and they are not
observed by the same server observing the target). Stressing
their distributed nature, we term them distributed covers,
defined as follows.

Definition 5.1 (Distributed cover). Let I = ⟨N , (SY ,SG,SB)⟩
be a distributed index, and n be a node in N . A set
of distributed covers for n is a pair of nodes (ni, nj) in
N such that the following conditions hold: 1) n, ni, nj

belong to the same level of I; and 2) σ(n.id) ̸= σ(ni.id),
σ(n.id) ̸= σ(nj .id), and σ(ni.id) ̸= σ(nj .id).

As stated by the definition above, distributed covers for
a node n are a pair of nodes (ni, nj) that belong to the
same level l of the structure as n, and such that the three
nodes are allocated at different servers. For instance, dis-
tributed covers for Y12 could be any of the following pairs:
(B11, G11), (B11, G12), (B12, G11), (B12, G12). Similarly, at
the leaf level, the distributed covers for B24 could be any
pair of nodes (Y2∗, G2∗), with ∗ any value between 1 and 7
(e.g., (Y23, G21)). The distributed covers of a root node are
the roots at the other two servers (e.g., (G01, B01) are the
distributed covers for Y01).

With the consideration of distributed covers, to guaran-
tee uniform visibility at every server, access execution works
as follows. Again, an iterative process is executed starting
from the root to the leaf level. First, the client retrieves the
roots at all the three servers and decrypts them to determine
the target root (i.e., the one going to the target value) and
the target child node n to visit. It also randomly chooses
two distributed covers for n. The client requests access to n
and its distributed covers to the respective servers. It then
decrypts the accessed nodes and iteratively performs the
same process until the leaves (target and distributed covers)
are reached. As an example, consider the data structure in
Figure 1(b) and assume node d1 to be the target. The nodes
along the path to the target of the accesses are ⟨r1, d, d1⟩ en-
tailing accesses to target blocks ⟨G01, Y12, B24⟩. Assume that
distributed covers (Y01, B01), (G11, B11), and (G21, Y23)
are used for G01, Y12, and B24, respectively. Figure 2(a)
illustrates the nodes involved in the access, either as target
(denoted with a bullet) or as distributed covers, at each level
also indicating the parent-child relationship among them at
the abstract level. Figure 2(b) provides the same information
distinguishing the nodes accessed at every server. Note that
each server simply observes a sequence of three accesses to
three blocks, while the node content (reported in the figure
for clarity) is not visible to the servers.

Even if any pair of nodes at the same level as n, but
allocated at the other two servers, can work as distributed



5

ACCESS

(a) (b)

SWAPPING

(c) (d)

AFTER ACCESS

(e) (f)

Fig. 2: Logical (a) and physical (b) view of the nodes/blocks
accessed searching for value d1; swapping among accessed
nodes/blocks (c-d); logical (e) and physical (f) view of the
effects of the swapping.
Target nodes/blocks are denoted with •

covers for n, in the choice of distributed covers we need
to take into consideration the fact that accessed nodes are
reallocated. In fact, when n is moved to a different block,
the pointers to n in its parent must be updated to maintain
consistency of the index structure. Therefore, the nodes in-
volved in an access should always form a sub-tree, possibly
including paths of different lengths. Each distributed cover
at level l should then be child of the node along the path to
the target at level l − 1 or of one of its distributed covers.
This is formally captured by the following definition.

Definition 5.2 (Chained distributed covers). Let p =
{n0, . . . , nh} be the path (sequence of nodes) to the tar-
get, and C(p) = ⟨(n0i,n0j),. . .(nhi,nhj)⟩ be the sequence
of distributed covers for the nodes in the path. C(p) is
chained if ∀x = 1, . . . , h, nxi and nxj are children of one
of the nodes in {nx−1,n(x−1)i,n(x−1)j}.

In other words, every node in C(p), but the roots, must
have its parent in C(p). The distributed covers in Figure 2(a)
are chained as the covers at every level are children of a
node accessed (either as target or cover) in the level above.

Note that while in the example (for simplicity and read-
ability of the figure) every accessed node has one accessed
child, such a condition is not needed. In fact, Definition 5.2
requires every node to have its parent in the access (so to
enable update of pointers to the node in its parent), while
a node can have no children in the access. The reason for
such a choice is twofold: it provides better protection to
the parent-child relationship among accessed nodes, and
it permits to find more easily distributed covers for target
nodes. For instance, Y26 (d4) could have also been used
instead of Y23 (e4) as one of the covers for B24, together
with G21 still satisfying Definition 5.2.

5.2 Swapping

A desired requirement of our approach is that data retrieved
(either as target or as cover) in an access are stored after the
access at a different server. We capture such a requirement
with a property of continuous moving as follows.

Property 5.2 (Continuous moving). Let I = ⟨N , (SY ,SG,SB)⟩
be a distributed index, and N = {n1, . . . , nm} be the set
of nodes in N accessed as target or distributed covers
by a search. The search satisfies continuous moving iff, for
each node n ∈ N , the server σ(n.id) where n is stored
before the access is different from the one where it is
stored after the access.

Continuous moving prevents servers from building
knowledge based on accesses they can observe, since a node
is immediately removed from a server after being accessed.
For instance, servers will not be able to observe repeated
accesses anymore. We guarantee satisfaction of this property
by swapping the content of the blocks accessed at every
level. Swapping is defined as follows.

Definition 5.3 (Swapping). Let ID be a set of logical iden-
tifiers. A swapping for ID is a random permutation
π :ID→ID such that ∀id∈ID, σ(id)̸=σ(π(id)).

Figure 2(d) illustrates a possible swapping among the
nodes/blocks accessed at each server by the search in
Figure 2(a-b), resulting in swapping content among them
as depicted in Figure 2(c). For instance, swap Y01→G01,
G01→B01, B01→Y01 causes r0 to move to G01, r1 to move
to B01, and r2 to move to Y01. Figure 2(e) illustrates the
effect of such a swapping on the data structure at the
logical level. Figure 2(f) shows the changes in the content
of blocks stored at each server. Note that before re-writing
blocks at the servers, the content of the corresponding nodes
is re-encrypted with a different random salt that changes
at every access. The adoption of a different random salt
in node encryption and the concatenation with a different
node identifier guarantees to produce a different encrypted
block, even if the content represents the same node. This
makes it impossible for storage servers to track swapping
operations. Given an index characterized by a distributed
allocation function φ and a swapping function π over a
subset ID of the identifiers in the distributed index, the
allocation function resulting from the swap is defined as:
φ(na)=π(φ(na)) iff φ(na)∈ID; φ(na)=φ(na), otherwise. Note
that the assignment function resulting from the application
of a swap π still represents a distributed assignment func-
tion, since π is a permutation function. For instance, with
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LOGICAL INDEX BEFORE THE ACCESS

SWAPPING

LOGICAL INDEX AFTER THE ACCESS

Fig. 3: Evolution of the logical index in Figure 1 for the
search of d1 illustrated in Figure 2

reference to the example in Figure 2, we note that each
node is associated with exactly one identifier and vice versa
before and after the access. Figure 3 illustrates the logical
distributed index before and after the access searching for d1
and the swapping among accessed nodes, which preserves
the correctness of the allocation function (Definition 4.1).

Moving nodes among servers may reduce the number
of children at a server for some nodes. In the worst case,
a node may be left with no children on one of the three
servers. We note however that, since we initially define a
balanced allocation and in traditional systems the fan-out
of the tree is high (in the order of some hundreds), the
probability that a node is left without children on one of the
servers is extremely low, due to a natural regression to the
mean that reduces the stochastic drift. To completely solve
this risk, as illustrated in the next section, we check that
swapping does not create configurations where a server is
not represented in the descendants of a node.

5.3 Access execution algorithm

Figure 4 illustrates the pseudocode of the algorithm,
executed at the client-side, searching for a value in our
approach. The algorithm visits the index level by level,
starting from the root. At each level l the algorithm chooses
two distributed covers for the node along the path to the
target, accesses the target and cover blocks, decrypt them,
and swap their content. To guarantee consistency of the
index, swapping is also reported in the parents of accessed
nodes, which are then re-encrypted and re-written at the
storage servers. Finally, the algorithm returns the leaf node
storing the target value.

Theorem A.1 in the Appendix formally states and proves
the correctness of the algorithm.

6 PROTECTION ANALYSIS

We evaluate the protection of our approach with respect to
guaranteeing confidentiality of the accesses against possible

/* I=⟨N , (SY ,SG,SB)⟩: distributed index with height h */
INPUT target value : value to be searched in I
OUTPUT n : leaf node that contains target value

MAIN
1: Parents := download and decrypt block Y01 from SY

block G01 from SG and block B01 from SB

2: let π be a permutation of identifiers of nodes
in Parents s.t. σ(id)̸=σ(π(id))

3: swap nodes in Parents according to π

4: for l:=1. . .h do /* visit the index level by level*/
5: target id := id of the node at level l along the path to target value
6: randomly choose cover[1] and cover[2] s.t.

they are children of Parents and σ(target id)̸=σ(cover[1]),
σ(target id)̸=σ(cover[2]), and σ(cover[1])̸=σ(cover[2])

7: Read := download and decrypt each block with identifier
id∈{target id,cover[1],cover[2]} from σ(id)

8: let π be a permutation of identifiers of nodes in Read
s.t. σ(id)̸=σ(π(id)) and
each n∈Parents has at least one child at SY ,SG,SB

9: if π does not exist, then goto 6
10: swap nodes in Read according to π

11: update pointers to children in Parents according to π

12: encrypt and write each node n∈Parents at server σ(n.id)
13: target id := π(target id)
14: cover[1] := π(cover[1]), cover[2] := π(cover[2])
15: Parents := Read
16: encrypt and write each node n∈Parents at server σ(n.id)
17: return node n∈Read with n.id=target id

Fig. 4: Access algorithm

observers. In particular, we consider the servers as our
observers as they have the most powerful view over the
stored data as well as of the accesses to them (Section 6.1).
Guaranteeing confidentiality of the accesses means hiding
to the servers the correspondence (as our distribution and
swap aim to do) between nodes and blocks where they
are stored. We perform our analysis considering two dif-
ferent, opposite, starting scenarios. The first one represents
a worst case scenario where, at initialization time, each
server knows the node-block correspondence exactly (Sec-
tion 6.2). We then illustrate how our approach is able to
quickly destroy the knowledge of the servers at every access,
even in presence of collusion among them. The second
scenario considers instead the case where the servers do not
have any knowledge at initialization time about node-block
correspondence (Section 6.3). We then illustrate how our
approach prevents the servers from building knowledge on
the node-block correspondence based on their knowledge
on the accesses being performed.

6.1 Modeling knowledge

The storage servers know (or can infer from their interac-
tions with the client) the following information: the total
number of blocks (nodes) in the distributed index; the height
h of the tree structure; the identifier of each block b and its
level in the tree; the identifier of read and written blocks for
each access operation. On the contrary, they do not know
nor can infer the content and the topology of the index (i.e.,
the pointers between parent and children), thanks to the fact
that nodes are encrypted. For simplicity, but without loss of
generality, we focus our analysis only on leaf blocks/nodes,
since leaves are considerably more exposed than internal
nodes. Internal nodes are more protected since they are
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Fig. 5: Probability matrices in the worst case scenario at initialization (a,c,e) and after the first access (b,d,f) to blocks b1,
bN+1, b2N+1 with: no collusion (a,b), collusion among two servers (c,d), and full collusion (e,f)

accessed, and hence involved in swapping operations, more
often than leaf nodes.

Let N be the set of logical leaf nodes in the unchained
B+-tree, and B be the set of blocks storing them at any of
the servers. We assume data to be equally distributed among
storage servers SY , SG, and SB (i.e., the number N of nodes
stored at each server is equal to |N |

3 ). For concreteness and
simplicity of notation, we assume that |N | is a multiple of 3,
and that blocks b1, . . . , bN are at SY , blocks bN+1, . . . , b2N
are at SG, and blocks b2N+1, . . . , b3N are at SB .

The knowledge of a server Sx, with x∈{Y,G,B}, on the
fact that a node n is stored at a block b can be expressed
as the probability P x(b,n) that Sx knows that node n is
stored at block b. Probability P x(b,n) has value 1 if the
server knows with certainty that n is stored at b, and
value 1

|N | for every n if the server does not have any
knowledge on node-block allocation (i.e., the block could
contain n or any other node in N ). The overall degree
of uncertainty of a server Sx about the block containing a
node n can be represented as the entropy Hx

n , computed
on the non-zero probabilities Px(bi, n), for all bi∈B, that

is, Hx
n=−

∑|B|
i=1 Px(bi, n) log2 Px(bi, n). Note that Hx

n=0
means that the server knows exactly the block storing n.
In fact, in this case P x(bi,n)=1 for each block bi and then
Hx

n = −
∑|B|

i=1 1 log2 1 = 0. On the contrary, Hx
n=log2 |N |

means that the server has complete uncertainty about such a
correspondence. In fact, P x(bi,n)= 1

|N | for each block bi and

then Hx
n = −

∑|B|
i=1

1
|N | log2

1
|N | = log2 |N |.

6.2 Knowledge degradation

In the worst case initialization scenario, every server Sx,
with x∈{Y,G,B}, initially knows the exact correspondence
between nodes and its blocks (i.e., Hx

n=0 since P x(b,n)=1
if n is allocated at b, P x(b,n)=0 otherwise, with n a node

in N and b one of the blocks stored at Sx). We show, for
each node n, the evolution of entropy Hx

n (i.e., knowledge
degradation) for each server as a consequence of a random
sequence of accesses. For concreteness, we refer the discus-
sion to server SY (but the same applies to SG and SB) and
write P (b,n) instead of P Y (b,n) and Hn instead of HY

n .

No collusion. We first consider the natural configuration
where servers do not collude, that is, each server has
knowledge of the overall sets of nodes but observes only
the encrypted content and accesses to the blocks it stores.
At initialization time, SY has complete knowledge on the
node-block correspondence for the blocks it stores, while it
does not have any information on the allocation of nodes
to blocks stored at the other two servers. For simplicity,
we assume each node ni to be initially allocated at block
bi (i.e., P (bi,ni)=1 and P (bi,nj)=0). Figure 5(a) illustrates
the probability values for the different nodes and blocks:
each cell [bi, nj ] in the matrix reports the value of P (bi, nj).
Consistently with the fact that SY does not have any in-
formation on blocks at the other servers, all such blocks
are summarized in a single row bother in the matrix, which
reports the probability that nj is not at SY (i.e., bother is the
sum of the probabilities P (bi, nj) with bi a block not at SY ).
We now illustrate how such probability values (and then the
entropy) evolve as accesses are executed. In the discussion,
we use bi to denote the whole row in the probability
matrix associated with block bi, that is, the vector over cells
[bi, nj ], with j=1, . . . , 3N . Operations over rows are to be
interpreted to operate cell-wise.

Consider the first access observed by SY and let by
(storing ny) be the block accessed. Because of swapping,
after the access, block by will certainly not contain anymore
node ny since the node has moved to one of the blocks at
the other two servers (with equal probability among the
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blocks, as SY does not have any knowledge over them).
Hence, P (by, ny) will change to 0 (from 1 before the access)
while P (bother, ny)=1 (from 0 before the access). Similarly,
by could contain after the access, with equal probability, any
of the other 2N nodes previously stored at one of the other
servers. For any nj with j>N , P (by, nj) will change to 1

2N
(from 0 before the access) and P (bother, nj) will change to
2N−1
2N (from 1 before the access). Assuming, as an example,

that the first access is for block b1, Figure 5(b) illustrates the
probability matrix after the access execution. Extending the
reasoning to a sequence of accesses, we can formalize the
changes to the probability matrix due to the observation of
the access to a block by as follows (the values in the right
side of the formulas are those before the access):

• by := 1
2N bother ;

• bother := by +
2N−1
2N bother ;

• bi := bi, with i ̸= y and i ̸= other.

Note that the first access described above is indeed an
instantiation of these formulas. In fact, with reference to our
example, P (b1, n1) changes from 1 to 1

2N · 0 = 0 after the
access.

To evaluate the increase of entropy due to changes in
allocation probabilities, we performed a series of experi-
ments with indexes of different sizes. In the simulations,
we considered both uniform and non-uniform distributions
of the logical access requests and this aspect did not have a
detectable impact on the results. Figure 6 shows the results
of the experiments and confirm that the initial knowledge
of the server suffers rapid degradation, independently from
the index size. While large indexes show a less steep in-
crease in the entropy trend, this is balanced by the greater
uncertainty on the node-block correspondences due to their
large number of leaf nodes/blocks.

Collusion between two servers. We now evaluate protec-
tion (i.e., destruction of knowledge for this scenario) in
presence of collusion between two servers. For concrete-
ness and easy notation, let us assume the two colluding
servers to be SY and SG. By colluding, SY and SG combine
their knowledge of the initial node-block correspondence,
producing the initial probability matrix illustrated in Fig-
ure 5(c), where bother now refers to the blocks at server SB ,
over which SY and SG have no knowledge. Also, SY and
SG can combine their observations on the accesses. Assume

then the initial configuration and a first observation on the
access of block by (storing ny at SY ) and block bg (storing
ng at SG). Let us first consider block by and node ny , as
the same (just substituting g for y and vice versa) applies
to bg and ng . Because of swapping, after the access, block
by will certainly not contain anymore node ny since the
node content has been moved to either bg (with probability
1
2 ) or to any other (equiprobable) block at SB (again with
probability 1

2 ). Hence, P (by, ny) will change to 0 (from 1
before the access) while P (bg, ny)=P (bother, ny)=

1
2 (from

0 before the access). Similarly, by could contain after the
access, either ng (with probability 1

2 ) or any of the nodes
previously stored in bothers (each with equal probability
1
2N ). Formally, P (by, ng)=

1
2 (from 0 before the access) while

for any nj with j>2N , P (by, nj), will change to 1
2N (from

0 before the access) and P (bother, nj) will change to N−1
N

(from 1 before the access). Assume, as an example, that
the first access is for block b1 at SY and for block bN+1

at SG, Figure 5(d) illustrates the probability matrix after the
access execution. Extending the reasoning to a sequence of
accesses, we can formalize the changes to the probability
matrix due to the observation of the access to blocks by and
bg as follows (the values in the right side of the formulas are
those before the access):

• by := 1
2 (bg +

1
N
bother);

• bg := 1
2 (by +

1
N bother);

• bother := 1
2 (by + bg) +

N−1
N

bother ;
• bi := bi, with i ̸= y, i ̸= g, and i ̸= other.

We performed some experiments evaluating the evolu-
tion of entropy in presence of collusion between two servers
comparing it with the base case where no collusion exists.
Figure 7(a) illustrates the results of such experiments for a
data structure with |N |=1200, where the solid black line
corresponds to the base case of no collusion and the dotted
blue line (darker in b/w printout) to the case where two
servers collude. We note that even if the entropy shows
a less steep increase than in the no collusion scenario (as
it is to be expected given the combined knowledge of
the two servers), our approach still provides considerable
degradation in the knowledge of colluding servers. In fact,
even colluding, the two servers still cannot detect whether
an accessed node has been allocated to one of them or to
any of the other blocks not under their control.

Full collusion. We now evaluate protection (i.e., destruction
of knowledge) in presence of collusion among all the three
servers. By colluding, the servers can share information on
the initial node-block correspondence, which would then be
completely known to them as shown in Figure 5(e), and on
the block accessed. Assume then the initial configuration
and a first observation on the access to blocks by (storing
ny at SY ), bg (storing ng at SG), and bb (storing nb at SB).
Again, let us first consider block by and node ny , as the same
applies to bg and ng , and to bb and nb. Because of swapping,
after the access block by will certainly not contain anymore
node ny as the node has moved either to bg or to bb, each
with probability 1

2 . Hence, P (by, ny) will change to 0 (from
1 before the access) while P (bg, ny)=P (bb, ny) becomes 1

2
(from 0 before the access). Similarly, by could contain after
the access, either ng or nb each with probability 1

2 . Such
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changes in the probability are illustrated in Figure 5(f),
which assumes, as an example, that the first access is for
block b1 at SY , bN+1 at SG, and b2N+1 at SB . Extending the
reasoning to a sequence of accesses, we can formalize the
changes to the probability matrix due to the observation of
the access to blocks by, bg , and bb as follows (the values in
the right side of the formulas are those before the access):

• by := 1
2 (bg + bb);

• bg := 1
2 (by + bb);

• bb := 1
2 (by + bg);

• bi := bi, with i ̸= y, i ̸= g, and i ̸= b.

In Figure 7(a), entropy evolution in case of full col-
lusion is represented by the dotted red line (lighter in
b/w printout). The increase of entropy (i.e., the knowledge
degradation) is clearly lower than in the case of no or partial
(between two servers) collusion. However, the knowledge of
each server is progressively destroyed thanks to the uncer-
tainty (among the two other servers) of the new allocation
of the accessed node.

6.3 Knowledge gain

We now evaluate, with a similar approach, a different initial-
ization scenario, where the servers have no knowledge on
the node-block correspondence, and assume that a storage
server (or more of them in case of collusion) knows the
content of the node n∗ target of one every T accesses. How-
ever, it does not know the corresponding distributed covers,
which are randomly chosen. To model the knowledge of
the servers on the content of the target node (one every T
access requests), in the analysis of the no collusion, collusion
between two servers, and full collusion scenario, we select
n∗ uniformly at random among the leaves of the abstract
index. The block storing n∗ is, in turn, chosen following
the discrete probability mass function (pmf) specified by
the column in the probability matrix associated with the
target node n∗. The two blocks representing the distributed
covers of n∗ are chosen among the blocks stored at the other
two servers. In the following, we show for each node n,
the evolution of entropy Hn (i.e., knowledge gain) for each
server given the execution of a random sequence of accesses.

No collusion. We first consider the natural configuration
where servers do not collude. At initialization time, SY has
no knowledge on the node-block correspondence. There-
fore, the initial configuration of the probability matrix is
uniform (see Figure 8(a)). Consider the first access observed
by SY to a known target node n∗, and let by be the block
accessed at SY , and bi any other block stored at SY . Since
the target of the access is known to SY , it knows for sure
that n∗ is allocated (both before and after swapping) at
one among the three accessed blocks with equal probability.
Hence, the probability P (by, n∗) will change to 1

3 (from 1
3N

before the access), while the probability that node n∗ is
allocated at a block bi stored at SY different from by (and
then not accessed) changes to P (bi, n∗)=0. The probability
that n∗ is allocated at a block stored at a server differ-
ent from SY instead remains unchanged P (bother, n∗)= 2

3 .
The values of the probabilities P (by, nj) that each non-
target node nj ̸=n∗ is allocated at by before the access are
uniformly redistributed over the whole set of 3N blocks,
that is, 1

3N P (by, nj) is added to P (bi, nj), with nj ̸=n∗ and
i ̸= y. (In fact, it is more likely for blocks different from
by to store nodes different from n∗.) Similar changes apply
to the probability values for blocks that are stored at SG

and SB . Hence, 2N · 1
3N P (by, nj)=

2
3P (by, nj) is added to

P (bother, nj). Analogously, P (by, nj) is reduced to be 1
3N of

its original value, that is 1
3N P (by, nj). Figure 8(b) illustrates

the probability matrix after the execution of an access with
target n∗ that accesses block b1. Extending the reasoning to
a sequence of accesses, we can formalize the changes to the
probability matrix due to the observation of an access with
known target n∗ as follows (the values in the right side of
the formulas are those before the access):

• by := 1
3N by and by[n∗] := 1

3 ;

• bother := bother+
2
3by and bother[n∗] := 2

3 ;

• bi := bi+
1
3N by and bi[n∗] := 0,

with i ̸= y and i ̸= other.

Note that for accesses whose target is not known to SY , the
formulas illustrated in the case of no collusion among the
servers in Section 6.2 apply.

To evaluate entropy evolution, similarly to what done
in the previous scenario, we performed a series of exper-
iments considering an index with |N |=1200 leaf nodes,
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Fig. 8: Probability matrices at initialization (a,c,e) and after
the first known access (b,d,f) to blocks b1, bN+1, b2N+1 with:
no collusion (a,b), collusion among two servers (c,d), and
full collusion (e,f)

and varying the frequency of known accesses to be one
every T∈{16, 8, 4, 2, 1} requests. At initialization time, the
probability matrix is uniform and then the initial value of
the average entropy is the maximum theoretical one (i.e.,
log2 1200). Figure 9(a) shows that the system reaches an
equilibrium between the information gain acquired by ob-
serving known accesses and the destruction of information
caused by swapping. Note that entropy is higher when the
frequency of accesses with known target is lower. However,
the minimum entropy value reached at equilibrium is high
even when the server is supposed to know all the accesses
(T = 1 in Figure 9(a)). This confirms the effectiveness of the
design of our distributed index structure, showing how it is
able to guarantee access and pattern confidentiality.

Collusion between two servers. We now evaluate the en-
tropy evolution when two servers (SY and SG for concrete-
ness) collude. Consider the initial uniform configuration
(see Figure 8(c)) and assume that the first access has n∗

as target and accesses blocks by at SY and bg at SG. The
probability matrix evolves similarly to the case in which the
servers do not collude. Because of swapping, the target n∗ of
the access can be allocated to any of the accessed blocks (i.e.,
by , bg, or a block at SB) with the same probability. Hence,
P (by, n∗)=P (bg, n∗)=P (bother, n∗)= 1

3 , while P (bi, n∗)=0

with bi a block stored at SY or SG different from by and
bg. The values of probabilities P (by, nj) and P (bg, nj), with
nj ̸=n∗, before the access are uniformly redistributed over
the whole set of 3N blocks, including by , bg, and the blocks
at SB . Assuming, as an example, that the first access is
known to be for n∗ and it accesses block b1 at SY and block
bN+1 at SG, Figure 8(d) illustrates the probability matrix
after the access execution. Extending the reasoning to a
sequence of accesses, we can formalize the changes to the
probability matrix due to the observation of an access with
known target n∗ as follows (the values in the right side of
the formulas are those before the access):

• by := 1
3N (by + bg) and by[n∗] := 1

3 ;

• bg := 1
3N (by + bg) and bg[n∗] := 1

3 ;

• bother := bother+
1
3 (by + bg) and bother[n∗] := 1

3 ;

• bi := bi+
1
3N (by + bg) and bi[n∗] := 0,

with i ̸= y, i ̸= g, and i ̸= other.

Again, for accesses whose target is not known to SY , the
formulas illustrated in the case of collusion between two
servers in Section 6.2 apply.

Figure 9(b) shows the protection (i.e., the average en-
tropy value) offered by an index with |N |=1200 leaf nodes
distributed among three storage servers that know the
content of the node retrieved by the client one every
T∈{16, 8, 4, 2, 1} access requests. As expected, the equilib-
rium is reached at a lower entropy value compared with the
case in which there is no collusion. However, the degree of
protection exhibited by our solution still guarantees pattern
confidentiality.

Full collusion. We now evaluate the knowledge gain (i.e.,
how entropy decreases) in presence of collusion among
all the three servers. Consider an initial configuration of
absence of knowledge in the node-block allocation (Fig-
ure 8(e)). Assume now that the first observation is for
an access with n∗ as target and over by at SY , bg at
SG, and bb at SB . By colluding, the servers can share
information on the leaf block accessed at each server,
therefore they know for sure that n∗ is allocated at
one among by , bg, and bb with equal probability. Hence,
P (by, n∗)=P (bg, n∗)=P (bb, n∗)= 1

3 , while P (bi, n∗)=0 for
each bi with i ̸= y, i ̸= g, and i ̸= b. Again, the values
of probabilities P (by, nj), P (bg, nj), and P (bb, nj), with
nj ̸=n∗, before the access are uniformly redistributed over
the whole set of 3N blocks, including the accessed blocks.
These changes in the probability matrix are illustrated in
Figure 8(f), which assumes, as an example, that the known
target of the first access is n∗ and that blocks b1 at SY , bN+1

at SG, and b2N+1 at SB are accessed.
For each access request, we can formalize the changes to

the probability matrix due to the observation of the access
to blocks by , bg, and bb like for the case of full collusion
described in Section 6.2, except for the T -th access whose
target is known, for which the update of the probability
matrix is as follows (the values in the right side of the
formulas are those before the access):

• by := 1
3N (by + bg + bb) and by[n∗] := 1

3 ;

• bg := 1
3N (by + bg + bb) and bg[n∗] := 1

3 ;

• bb := 1
3N (by + bg + bb) and bb[n∗] := 1

3 ;
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Fig. 9: Evolution of the entropy for a distributed index with
1200 leaf nodes distributed among three storage servers
starting from a no-knowledge scenario in a no collusion
(a), collusion between two servers (b), and full collusion (c)
scenario

• bi := bi+
1
3N (by + bg + bb) and bi[n∗] := 0,

with i ̸= y, i ̸= g, and i ̸= b.

Figure 9(c) shows the protection (i.e., the average en-
tropy value) offered by an index with |N |=1200 leaf nodes
distributed among three storage servers that know the
content of the node retrieved by the client one every
T∈{16, 8, 4, 2, 1} access requests. As expected, the equilib-
rium is reached at a lower entropy value compared with
the cases of no or partial (between two servers) collusion.
However, it still presents a significant level of obfuscation

Shuffling Swapping

Two servers 2.5 8.8

Three servers 5.8 9.2

TABLE 1: Comparison among the rates of entropy increase
(bits/104 accesses) for shuffling and swapping with two and
three servers, assuming no collusion.

of the correlation between nodes and blocks, demonstrating
the effectiveness of the swapping technique.

7 DISCUSSION

The main characteristics of our approach are the use of
swapping (in contrast to shuffling) and the use of three
servers for managing the data structure. In this section we
provide the motivation behind these choices. We close the
section with a comment on the performance and cost of our
approach.

Why swapping. Swapping forces an accessed node to be
reallocated to a block at a different server from the one
where the node was stored before the access. By contrast,
with random shuffling, the node can remain with the server
(i.e., under its control) with probability 1

S
, where S is the

number of servers (three in our approach). Considering the
worst case scenario illustrated in Section 6.2, in absence
of collusion (as the system is expected to work) swapping
provides a much higher increase of entropy (i.e., a much
higher degradation of the knowledge) at each server. Table 1
reports the rate of entropy increase after the first access
starting from the full knowledge initial configuration, com-
paring shuffling and swapping techniques combined with
the use of two and three servers (we will discuss on the
number of servers next), and assuming no collusion. As it is
clear from the table, swapping outperforms shuffling, with
entropy increase being three times as much in the case of
two servers and twice as much in the case of three servers.
The analysis in Section 6.3 further confirms this observation.
In fact, even if entropy initially decreases, it never goes
below a minimum threshold (i.e., maximum knowledge),
which is higher if the servers do not collude.

Why three servers. Collusion, while unlikely, cannot be
completely ruled out (or in any case some protection must
be provided against it). When only two servers are used,
the requirement of swapping to move the accessed node out
of its original block implies a deterministic reallocation of
the node (to the other server). In case of collusion between
the two servers this discloses the block to which the node
is re-allocated. Assuming the worst initial configuration in
Section 6.2, the determinism of the swapping operation
would provide then no increase in entropy in presence of
collusion. Figure 7(b) illustrates the entropy evolution for
an index with 1200 leaf nodes with the use of two servers.
As the figure shows while two servers provide an increase in
entropy (as also reported in Table 1) in case of no collusion
(solid black line), the entropy would show no increase in the
case of collusion (dotted red line). By contrast, as already
discussed in the Section 6.2 and visible in Figure 7(a), the
use of three servers shows an increase of entropy (and hence
protection due to the degradation of the knowledge of the
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servers) even when all servers collude. This is also testified
by the lower decrease of the entropy obtained when the
servers do not have any initial knowledge, but they know
the target of each access. In fact, as visible in Figure 9, the
minimum entropy reached when the servers do not collude
is 7.3% higher than the case of two colluding servers, and
18.7% higher than the case of all the servers colluding.

System Performance. Among the several factors con-
tributing to the response time, our evaluation showed that
the latency of the network is the factor with greatest impact
in a large-bandwidth WAN scenario (which is the most
interesting and natural environment for data outsourcing
applications). We considered a data set of 2 GiB stored
in the leaves of a B+-tree built on a numerical candidate
key of fixed-length, with h=3, F=512, and nodes of 8
KiB. The index is distributed among three servers. The
client machine runs the algorithm in Figure 4 on an Intel
Core i5-2520M CPU at 2.5 GHz with 8 GiB RAM. Each
server is equipped with an Intel Core i7-920 CPU at 2.6
GHz with 12 GiB RAM, and 120 GiB SSD disk SATA III
with read throughput 240 MiB/s, and write throughput
220 MiB/s. Client and servers run an Ubuntu-OS with the
ext4 file system. To configure the network environment, we
adopted a professional-grade tool suite (i.e., Traffic Control
and Network Emulation, for Linux systems) and we chose
a representative continental WAN configuration suitable for
interactive traffic with LAN-like bandwidth (i.e., 100Mbps),
and round-trip time (RTT) modeled as a normal distribution
with mean of 30ms and standard deviation of 2.5ms.Our
experiments showed an average overall response time equal
to nearly 96ms, which derives from: i) the latencies for the
execution of three exchanges between the client and the
servers, ii) the execution at the servers side of accesses to
the blocks on the storage devices, and iii) the execution at
the client side of the algorithm, with the decryption of the
received blocks, the analysis of their content, the swapping
and the re-encryption of the blocks. The overall response
time is then dominated by the network latency (i), repre-
sented three interactions (one per server) of the maximum
among three (one per server) RTTs that follow the above
distribution with a 30ms average. The fraction of time (ii)
employed to execute random read/write accesses on current
flash memories is largely <0.5ms, which is negligible com-
pared to the previous component. Thanks to the efficiency
of symmetric encryption algorithms on modern CPUs, the
decryption, analysis, swapping, and re-encryption time (iii)
on the client has an even lower impact, introducing a delay
roughly equal to 0.1ms.

In terms of scalability, the only parameter influencing
the performance of the system is the overall size of the
outsourced data set as the number of network interac-
tions between the client and each server is proportional
to the number of levels of the index (i.e., response time
∝(h)×RTT). We note that the number of servers has a
limited (or no) impact on response times, as servers are
simultaneously accessed.

Economic considerations. One may wonder how the in-
volvement of three servers (in contrast to one or two)
impacts the overall costs of the system. In this section, we
provide some economic considerations on the approach.

The price lists of most cloud servers present three cost
components (we take the March 2015 prices of Amazon
S3 as a reference; similar pricing schemes are used by the
other providers): 1) monthly amount of stored data (US$
30 per month per TB); 2) number of access requests (US$
5 per million PUT requests, and US$ 0.4 per million GET
requests); and 3) amount of data transferred out of the
server (roughly US$ 80 per TB; data sent to the server is
free of charge). The second parameter dominates the third
one when requests transfer on average less than 50KB,
which is the case for our index (the node size we typi-
cally used in experiments is a few KB). A simple analysis
shows that, for an index distributed at three servers, the
storage and access costs are comparable when the system
has to manage around 10K index access requests per day
over a 1TB data collection. More precisely, when the access
frequency is lower, the storage costs dominate; when the
access frequency is higher, it is the cost of upload (PUT)
requests that dominates.1 However, for systems with a low
ratio between access frequency and storage size the costs for
a solution involving three servers is comparable with those
incurred for a solution with a single server. This is due to
the fact that the overall memory needed for our distributed
index structure is independent on the number of servers on
which the index is stored, and the access cost will linearly
increase with the number of servers used.

8 RELATED WORK

The problem of protecting data in the cloud requires the
investigation of different aspects (e.g., [4], [5], [6], [7]).
Approaches supporting query execution in data outsourcing
scenarios consist in attaching to the encrypted data some
metadata (indexes) used for fine-grained information re-
trieval (e.g., [4], [8]), or in adopting specific cryptographic
techniques for keyword-based searches (e.g., [9]). These
solutions however protect only the confidentiality of the
data at rest.

Solutions for protecting access and pattern confiden-
tiality are based on Private Information Retrieval (PIR)
techniques. Such solutions, however, do not protect content
confidentiality and suffer from high computational costs
(e.g., [10]), even when different copies of the data are stored
at multiple non-communicating servers (e.g., [11]). Recent
approaches address the access and pattern confidentiality
problems through the definition of techniques that dy-
namically change, at every access, the physical location of
the data. Some proposals have investigated the adoption
of the Oblivious RAM (ORAM) structure (e.g., [12]), in
particular with recent proposals aimed at making ORAM
more practical such as ObliviStore [13], Path ORAM [14],
and Melbourne Shuffle [15]. ORAM has also been recently
extended to operate in a distributed scenario [16], [17]. The
goal of these solutions is to reduce communication costs for
the client and then make ORAM-based approaches available
also to clients using lightweight devices. The privacy guar-
antees provided by distributed ORAM approaches however
rely on the fact that storage servers do not communicate

1. PUT requests are 12.5 times more expensive than GET requests;
in our distributed index PUT and GET requests occur with similar fre-
quency, then the cost of PUT requests dominates that of GET requests.
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or do not collude with each other. Our approach is instead
more general and is specifically aimed at enhancing protec-
tion guarantees provided to the client. Alternative solutions
are based on the adoption of a tree-based structure (e.g., [18],
[19]) to preserve content and access confidentiality.

The shuffle index has been first introduced in [1] and
then adapted in [20], [21] to accommodate concurrent ac-
cesses on a shuffle index stored at one storage server or to
operate in a distributed scenario with two storage providers.
These solutions differ from the approach proposed in this
paper since they rely on a traditional shuffling among ac-
cessed blocks (which do not impose the constraint of chang-
ing the server where nodes are allocated at each access).
Furthermore, the proposal in [20] provides lower protec-
tion guarantees, as also demonstrated by our evaluation.
The distribution of the shuffle index among three servers,
together with the adoption of swapping, for protecting
access and pattern confidentiality has been first proposed
in [22]. This paper considerably extends our prior work by
providing a comprehensive analysis and an experimental
evaluation of the protection guarantees provided by the
adoption of our techniques.

A different, although related, line of works is represented
by fragmentation-based approaches for protecting data con-
fidentiality (e.g., [5], [23]). These solutions are based on the
idea of splitting sensitive data among different relations,
possibly stored at different storage servers, to protect sensi-
tive associations between attributes in the original relation.
Although based on a similar principle, fragmentation-based
approaches only protect content confidentiality.

9 CONCLUSIONS

We have proposed an approach that protects both the
confidentiality of data stored at external servers and the
accesses to them. This approach is based on the use of a key-
based dynamically allocated data structure distributed over
three independent servers. We have described our reference
data structure and illustrated how our distributed allocation
and swapping techniques operate at every access to ensure
protection of access confidentiality. Our analysis illustrates
the protection offered by our approach considering two
representative scenarios. We considered first a worst-case
scenario where servers start with a complete knowledge
of the data they store, showing how swapping quickly
brings to a degradation of such a knowledge. We also
analyzed a scenario where the servers do not have initial
knowledge, but know the individual accesses, and show
how our approach prevents knowledge accumulation. Our
analysis confirms that distributed allocation and swapping
provide nice protection guarantees, typically outperforming
traditional shuffling, even in presence of collusion.

APPENDIX

Theorem A.1. Let I=⟨N , (SY ,SG,SB)⟩ be a distributed index,
and target value be the target of an access. The algorithm
in Figure 4:

1) satisfies Property 5.1 (uniform visibility);
2) satisfies Property 5.2 (continuous moving);

3) maintains unchanged the number of blocks stored
at each server for each level l = 0, . . . , h (distribution
invariance);

4) returns the unique node where target value is, or
should be, stored (access correctness);

5) maintains a distributed index representing the orig-
inal unchained B+-tree (structure correctness).

Proof: (SKETCH). We separately prove each of the
conditions in the theorem.

1) Uniform visibility. At the root level, the algorithm accesses
the three root nodes (line 1). If the root nodes are stored at
three different servers before the access (as it is by definition
of distributed index), Property 5.1 holds for level 0. For
each level l=1, . . . , h the algorithm accesses the target node
(line 5) and two cover nodes (Definition 5.1), which are
nodes at level l stored at different servers (line 6). Since
the distributed index is stored at three servers, Property 5.1
holds also for every level l=1, . . . , h. Note that, given a block
n, there always exists a pair of distributed covers for it. In
fact, it is sufficient for the node along the path to the target
to have a child at each server as the distributed covers of
n can be its siblings. Since the index is initially distributed
in a balanced way to the servers and, at each access, the
algorithm guarantees that each node still have a child at
each server (lines 8-9), each node always has at least a child
at each server.

2) Continuous moving. At the root level, the algorithm moves
the content of the three accessed blocks according to a
permutation function π that satisfies Definition 5.3 (lines 2-
3). Such a permutation always exists since the three root
nodes are initially represented by three blocks stored at
three different servers. Hence, the three roots are stored at
a different server after the access, satisfying Property 5.2
for level 0. For each level l=1, . . . , h the algorithm moves
the content of the target node and of its two distributed
covers according to a permutation function π that satisfies
Definition 5.3 (lines 8-10). In fact, a node and its distributed
covers are three blocks stored at three different servers, for
which a permutation π that satisfies Definition 5.3 always
exists. Property 5.2 is then satisfied also for every level
l=1, . . . , h.

3) Distribution invariance. Since function π, used to move
the content of nodes to different blocks at each access, is a
permutation function (line 2, line 8), the set of logical node
identifiers (i.e., IDY , IDG, IDB) does not change and then
also their allocation to the servers.

4) Access correctness. The algorithm first accesses all the
logical root nodes. Hence, it certainly accesses also the node
at level 0 along the path to the target value. For each level
l, the algorithm identifies, among the children of the nodes
accessed at level l−1, the node along the path to target value.
Since the node at level l along the path to the target is the
child of the node at level l − 1 along the same path, the
algorithm will find it. Note that swapping does not affect
the correctness of the algorithm since variables target id,
cover[1], and cover[2] (used to keep track of the node along
the path to the target and its distributed covers) are updated
according to π before passing to the next level in the tree.
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5) Structure correctness. The only operation that could com-
promise the consistency of the abstract data structure is
swapping. However, every time a non-root node n is moved
to π(n.id), the reference to n in its parent is updated ac-
cording to π (line 11). Such an update is made permanent
by writing back at the servers the parent node (line 12).
The parent of each accessed node at level l>0 is a node in
variable Parents, which stores the set of nodes accessed at
level l − 1. In fact, initially Parents is set to the three root
nodes. At the end of each iteration of the for loop, it is
set (for the next iteration) to the set Read of nodes accessed
at level l. Since the nodes accessed at level l>0 are direct
descendants of the ones accessed at level l−1 (lines 5-6), the
direct ancestor of each node in Read is in Parents.
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Università degli Studi di Bergamo, Italy. He has
been a visiting researcher at Stanford Univer-
sity and IBM Almaden, CA (USA), and George
Mason University, VA (USA). His research fo-
cuses on information security and privacy, Web
technology for data intensive applications, XML,
information systems, and database technology.
http://cs.unibg.it/parabosc

Gerardo Pelosi is an assistant professor at the
Department of Electronics, Information and Bio-
engineering, Politecnico di Milano, Italy. His re-
search interests focus on computer security and
privacy, secure storage and data management,
and applied aspects of cryptography. He has
been serving as a PC member of several con-
ferences. He is inventor of ten granted patents
on hardware design of cryptographic systems.
http://home.deib.polimi.it/pelosi

Pierangela Samarati is a professor at the
Computer Science Department, Università degli
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