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Abstract
Background/Aims: The anti-inflammatory, anti-autoimmune, antiparasitic, and anti-viral 
ether phospholipid edelfosine (1-O-octadecyl-2-O-methylglycero-3-phosphocholine) stimu-
lates apoptosis of tumor cells and is thus considered for the treatment of malignancy. Similar 
to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte 
death characterized by cell shrinkage and phospholipid scrambling of the cell membrane 
with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include 
Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i) and oxidative stress. The present 
study explored, whether and how edelfosine induces eryptosis. Methods: Flow cytometry and 
photometry, respectively, were employed to estimate phosphatidylserine exposure at the cell 
surface from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglo-
bin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS) 
from 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 6 hours ex-
posure of human erythrocytes to edelfosine (5 µM) significantly increased the percentage of 
annexin-V-binding cells, significantly decreased forward scatter, and significantly increased 
Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence. The effect of edelfo-
sine on annexin-V-binding was significantly blunted, but not abolished by removal of extracel-
lular Ca2+. Conclusions: Edelfosine triggers cell shrinkage and phospholipid scrambling of the 
erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.

Introduction

The anti-inflammatory [1], anti-autoimmune [2, 3], antiparasitic [4-8] and anti-viral 
[9] ether phospholipid edelfosine (1-O-octadecyl-2-O-methylglycero-3-phosphocholine) 
triggers apoptosis of tumor cells and is thus considered for the treatment of malignancy 

M. Briglia  and A. Fazio contributed equally to this work.
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[10-35]. Mechanisms involved in edelfosine-induced apoptosis include formation of plasma 
membrane lipid rafts recruiting death receptor and downstream apoptotic signaling 
molecules [14, 16, 19, 20, 24, 25, 27], endoplasmic reticulum (ER) stress response [13, 17, 
20, 29, 30], mitochondrial depolarisation [20, 25, 35], cytochrome c release [13], caspase 
activation [3, 13, 16, 23] and generation of reactive oxygen species [13, 31, 35]. 

Even though lacking mitochondria and nuclei, key organelles in the execution of 
apoptosis, erythrocytes may - similar to nucleated cells - enter suicidal death or eryptosis 
[36], which is characterized by cell shrinkage [37] and cell membrane scrambling with 
phosphatidylserine translocation to the cell surface [36]. Triggers of eryptosis include 
opening of oxidant sensitive Ca2+ permeable unselective cation channels with subsequent 
Ca2+ entry and increase of cytosolic Ca2+ activity ([Ca2+]i) [36]. Eryptosis is further stimulated 
by ceramide [38], energy depletion [36], caspases [36, 39, 40], casein kinase 1α [36], 
Janus-activated kinase JAK3 [36], protein kinase C [36], and p38 kinase [36]. Eryptosis is 
inhibited by AMP activated kinase AMPK, cGMP-dependent protein kinase, PAK2 kinase, 
and sorafenib/sunitinib sensitive kinases [36]. Eryptosis is stimulated by a large number 
of diverse xenobiotics [36, 41-65] and is accelerated in several clinical conditions, such 
as dehydration [54], hyperphosphatemia [64] chronic kidney disease (CKD) [46, 66-68], 
hemolytic-uremic syndrome [69], diabetes [70], hepatic failure [71], malignancy [36], sepsis 
[72], sickle-cell disease [36], beta-thalassemia [36], Hb-C-deficiency [36], G6PD-deficiency 
[36], and Wilsons disease [73].  

The present study explored whether and  how edelfosine triggers eryptosis. To 
this end, human erythrocytes from healthy volunteers were treated with edelfosine and 
phosphatidylserine surface abundance, cell volume, [Ca2+]i, as well as abundance of reactive 
oxygen species (ROS) determined by flow cytometry.

Materials and Methods

Erythrocytes, solutions and chemicals
Fresh Li-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the 

University of Tübingen. The study is approved by the ethics committee of the University of Tübingen 
(184/2003 V). The blood was centrifuged at 120 g for 20 min at room temperature and the platelets and 
leukocytes-containing supernatant was disposed. Erythrocytes were incubated in vitro at a hematocrit of 
0.4% in Ringer solution containing (in mM) 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-
ethanesulfonic acid (HEPES; pH 7.4), 5 glucose, 1 CaCl2, at 37°C for 6 h. Where indicated, erythrocytes were 
exposed to edelfosine (Sigma Aldrich, Hamburg, Germany) at the indicated concentrations.

Annexin-V-binding and forward scatter 
After incubation under the respective experimental condition, 100 µl cell suspension was washed 

in Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; 
ImmunoTools, Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. The 
annexin-V abundance at the erythrocyte surface was subsequently determined on a FACS Calibur (BD, 
Heidelberg, Germany). A dot plot of forward scatter (FSC) vs. side scatter (SSC) was set to linear scale for 
both parameters. The threshold of forward scatter was set at the default value of “52”.

Hemolysis 
For the determination of hemolysis, the samples were centrifuged (10 min at 2000 rpm, room 

temperature) after incubation under the respective experimental conditions and the supernatants 
were harvested. As a measure of hemolysis, the hemoglobin (Hb) concentration of the supernatant was 
determined photometrically at 405 nm. The absorption of the supernatant of erythrocytes lysed in distilled 
water was defined as 100% hemolysis.
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Intracellular Ca2+

After incubation, erythrocytes were washed in Ringer solution and then loaded with Fluo3/AM 
(Biotium, Hayward, USA) in Ringer solution containing 5 µM Fluo3/AM. The cells were incubated at 37°C 
for 30 min and washed once in Ringer solution containing 5 mM CaCl2. The Fluo3/AM-loaded erythrocytes 
were resuspended in 200 µl Ringer. Then, Ca2+-dependent fluorescence intensity was measured with an 
excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS Calibur.

Reactive oxidant species (ROS) 
Oxidative stress was determined utilizing 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA). After 

incubation, a 100 µl suspension of erythrocytes was washed in Ringer solution and then stained with DCFDA 
(Sigma, Schnelldorf, Germany) in PBS containing DCFDA at a final concentration of 10 µM. Erythrocytes 
were incubated at 37°C for 30 min in the dark and then washed in PBS. The DCFDA-loaded erythrocytes 
were resuspended in 200 µl Ringer solution, and ROS-dependent fluorescence intensity was measured at an 
excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS Calibur (BD).

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis 

was made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of 
different erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments 
are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for 
control and experimental conditions.

Results 

The present study tested, whether and how edelfosine stimulates suicidal erythrocyte 
death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling 
with phosphatidylserine translocation to the cell surface. 

In order to test whether edelfosine influences erythrocyte volume, forward scatter 
was determined utilizing flow cytometry following a 6 hours incubation in Ringer solution 
without or with edelfosine (1 – 5 µM). As illustrated in Fig. 1, a 6 hours exposure to 1 and 2 
µM edelfosine did not significantly modify forward scatter, but 5 µM edelfosine significantly 
decreased the average erythrocyte forward scatter. 

Phosphatidylserine exposing erythrocytes were identified utilizing annexin-V-binding, 
as determined by flow cytometry. The erythrocytes were analysed following incubation for 
6 hours in Ringer solution without or with edelfosine (1 - 5 µM). As shown in Fig. 2, a 6 

Fig. 1. Effect of edelfosine on erythrocyte forward scatter. A. Original histogram of forward scatter of ery-
throcytes following exposure for 6 hours to Ringer solution without (grey area) and with (black line) pre-
sence of 5 µM edelfosine; B. Arithmetic means ± SEM (n = 10) of the erythrocyte forward scatter (FSC) fol-
lowing incubation for 6 hours to Ringer solution without (white bar) or with (black bars) edelfosine (1 - 5 
µM). ***(p<0.001) indicate significant difference from the absence of edelfosine (ANOVA).
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hours exposure to 1 and 2 µM edelfosine did not significantly modify annexin-V-binding, 
but 5 µM edelfosine significantly increased the percentage of phosphatidylserine exposing 
erythrocytes. 

For quantification of hemolysis, the hemoglobin concentration in the supernatant 
was determined by photometry. As illustrated in Fig. 3, a 6 hours exposure to 1 and 2 µM 
edelfosine did not trigger significant hemolysis but 5 µM edelfosine significantly increased 
the percentage of hemolytic erythrocytes.

Fluo3-fluorescence was taken as a measure of cytosolic Ca2+ activity ([Ca2+]i). As shown 
in Fig. 4, a 6 hours exposure to 1 and 2 µM edelfosine did not significantly modify Fluo3-
fluorescence, but 5 µM edelfosine significantly increased the Fluo3-fluorescence. 

In order to test whether edelfosine -induced translocation of phosphatidylserine or 
erythrocyte shrinkage required entry of extracellular Ca2+, erythrocytes were incubated for 
6 hours in the absence or presence of 5 µM edelfosine in the presence or nominal absence of 
extracellular Ca2+. As illustrated in Fig 5, removal of extracellular Ca2+ significantly blunted 
the effect of edelfosine on annexin-V-binding. However, even in the absence extracellular Ca2+ 

edelfosine significantly increased the percentage of annexin-V-binding erythrocytes. Thus, 
the edelfosine-induced cell membrane scrambling was partially but not fully triggered by 
entry of extracellular Ca2+. 

Fig. 2. Effect of edelfosine on phosphatidylserine exposure. A. Original histogram of annexin-V-binding of 
erythrocytes following exposure for 6 hours to Ringer solution without (grey area) and with (black line) 
presence of 5 µM edelfosine; B. Arithmetic means ± SEM (n = 10) of erythrocyte annexin-V-binding (black 
bars) following incubation for 6 hours to Ringer solution without or with presence of edelfosine (1 - 5 µM). 
C. Time course of the effect of different edelfosine concentrations on annexin-V-binding. ***(p<0.001) indi-
cates significant difference from the absence of edelfosine (ANOVA).

Fig. 3. Effect of edelfosine on hemolysis. Arithmetic means ± SEM (n = 10) of the percentage hemolysed 
erythrocytes following incubation for 6 hours to Ringer solution without (white bar) or with (black bars) 
edelfosine (1 - 5 µM). B. Time course of the effect of different edelfosine concentrations on hemolysis. 
***(p<0.001) indicates significant difference from the absence of edelfosine (ANOVA).
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Reactive oxygen species (ROS) was quantified utilizing 2′,7′-dichlorodihydrofluorescein 
diacetate (DCFDA). As a result, following a 6 hours incubation, the DCFDA fluorescence was 
similar in the absence of edelfosine (20.3 ± 0.6 n = 6) and in the presence of 1 µM (20.0 ± 0.6 
n = 6), 2 µM (19.6 ± 1.3 n = 6) and 5 µM (18.5 ± 0.5 n = 6) edelfosine. Thus, edelfosine did not 
appreciably trigger oxidative stress.

Discussion

The present observations uncover a novel effect of edelfosine, i.e. the triggering of 
suicidal erythrocyte death or eryptosis. A six hours treatment of erythrocytes from healthy 
volunteers with 5 µM edelfosine is followed by erythrocyte shrinkage and cell membrane 
scrambling with phosphatidylserine translocation to the erythrocyte surface. The 
concentrations required for this effect are in the range of those encountered in vivo [17, 74]. 

The stimulation of phosphatidylserine translocation by edelfosine is at least in part 
due to triggering of Ca2+ entry from the extracellular space, as removal of extracellular Ca2+ 

Fig. 4. Effect of edelfosine on erythrocyte Ca2+ activity. A. Original histogram of Fluo3-fluorescence in eryth-
rocytes following exposure for 6 hours to Ringer solution without (grey area) and with (black line) pres-
ence of edelfosine (5 µM); B. Arithmetic means ± SEM (n = 10) of the Fluo3-fluorescence (arbitrary units) 
in erythrocytes exposed for 6 hours to Ringer solution without (white bar) or with (black bars) edelfosine 
(1 – 5 µM). ***(p<0.001) indicates significant difference from the absence of edelfosine  (ANOVA).

Fig. 5. Ca2+ sensitivity of edelfosine -induced phosphatidylserine exposure. A,B. Original histogram of an-
nexin-V-binding of erythrocytes following exposure for 6 hours to Ringer solution without (grey area) and 
with (black line) presence of edelfosine (5 µM) in the presence (A) and absence (B) of extracellular Ca2+; C. 
Arithmetic means ± SEM (n = 10) of annexin-V-binding of erythrocytes after a 6 hours treatment with Ringer 
solution without (white bars) or with (black bars) edelfosine (5 µM) in the presence (left bars, +Ca2+) and ab-
sence (right bars, -Ca2+) of Ca2+. ***(P<0.001) indicates significant difference from the absence of edelfosine, 
##(p<0.01) indicates significant difference from the presence of Ca2+ (ANOVA).
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significantly blunted the edelfosine-induced cell membrane scrambling. An increase of  
[Ca2+]i triggers cell membrane scrambling by activating an ill-defined scramblase [36]. An 
increase of [Ca2+]i presumably further accounts for the erythrocyte shrinkage, as it leads to 
activation of Ca2+ sensitive K+ channels with subsequent cell shrinkage due to K+ exit, cell 
membrane hyperpolarization, Cl- exit and thus cellular loss of KCl with water [37].

Ca2+ entered presumably through Ca2+ permeable cation channels. Those channels could 
be opened by oxidative stress [36]. However, DCFDA fluorescence did not reveal a significant 
effect of edelfosine treatment on the abundance of reactive oxidant species. While this 
observation does not rule out effects of edelfosine on the redox state of the cation channels, 
other stimulators must be taken into consideration. 

The edelfosine-induced eryptosis was paralleled by a stimulation of hemolysis. It 
is actually the purpose of eryptosis, to trigger removal of defective erythrocytes from 
circulating blood thus preceding hemolysis [36]. Hemolysis leads to release of hemoglobin, 
which passes the renal glomerular filter, precipitates in the acidic lumen of renal tubules 
and thus occludes nephrons [75]. Eryptosis is particularly important for the clearance of 
Plasmodium infected erythrocytes in malaria. By imposing oxidative stress the pathogen 
activates the Ca2+-permeable erythrocyte cation channels [36, 76]. The channels are more 
prone to be activated in several genetic erythrocyte disorders, such as sickle-cell trait, 
beta-thalassemia-trait, Hb-C-deficiency and G6PD-deficiency. The accelerated eryptosis 
and subsequent clearance of infected erythrocytes limits the parasitemia and thus confers 
partial protection against a severe clinical course of malaria [36, 77-79]. A similar relative 
protection is provided by iron deficiency [80], and treatment with lead [80], chlorpromazine 
[81] or NO synthase inhibitors [81], which all sensitize erythrocytes to the eryptotic effect 
of Plasmodium infection.  

Accelerated eryptosis may lead, however, to anemia, as soon as the loss of erythrocytes 
cannot be compensated by similarly enhanced erythropoiesis [36]. Eryptosis may further 
lead to impairment of microcirculation [38, 82-86] due to adherence of phosphatidylserine 
exposing erythrocytes to the vascular wall [87], stimulation of blood clotting and triggering 
of thrombosis [82, 88, 89]. 

Conclusions 

Edelfosine triggers eryptosis with cell shrinkage and cell membrane scrambling, an 
effect paralleled by and in part due to stimulation of Ca2+ entry with increase of cytosolic Ca2+ 
activity.  
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