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This paper investigates the “weak” and “strong” versions of Porter Hypothesis (PH) focusing on the
manufacturing sectors of 17 European countries between 1997 and 2009. The hypothesis that well-
crafted and well-enforced regulation would benefit both the environment and the firm was originally
proposed by Porter (1991) and Porter and van der Linde (1995). To date, the literature has analyzed the
impact of environmental regulation on innovation and on productivity mostly in separate analyses and
focusing on the USA. The few existing contributions on Europe study the effect of environmental reg-
ulation either on green innovation or on performance indicators such as exports. We instead look at
overall innovation and productivity impacts. First, focusing on overall innovative activity allows us to
account for potential opportunity costs of induced innovations. Second, productivity impacts are argu-
ably the most relevant indicators for the “strong” PH. As a proxy of environmental policy stringency we
use pollution abatement and control expenditures (PACE), one of the few sectoral level indicators
available. We remedy upon its main drawback, namely potential endogeneity, by adopting an instru-
mental variable estimation approach. We find evidence of a positive impact of environmental regulation
on the output of innovation activity, as proxied by patents, thus providing support in favor of the “weak”
PH. This result is in line with most of the literature. On the other front, we find no evidence in favor of the
“strong” PH, as productivity appears to be unaffected by the degree of pollution control and abatement
efforts.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we investigate the impact of environmental reg-
ulation on the economic performance of European manufacturing
sectors. The standard view holds that (strict) environmental reg-
ulation adversely affects productivity and competitiveness by
anagement and Quantitative

otti).
imposing constraints on industry behavior. On one hand, firms
face direct costs such as end-of-pipe equipment or the R&D in-
vestments necessary to modify production activities. On the other
hand, firms' budgets are limited due to financial constraints. By
committing resources to comply with environmental regulation,
firms also incur indirect (opportunity) costs because they cannot
invest in other profitable opportunities.

Porter (1991) and Porter and van der Linde (1995) challenged
this view. They argued that well-crafted and well-enforced reg-
ulation would benefit both the environment and the firm. The
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proposition, known as Porter Hypothesis (PH), was initially for-
mulated in rather general terms. Firms face market imperfections,
such as asymmetric information, organizational inertia or control
problems (Ambec et al., 2013). Environmental regulation would
push firms to overcome some of these market failures and to
pursue otherwise neglected investment opportunities. The key
mechanism in this respect is that regulation promotes innovation
aimed at lowering the cost of compliance, which would in turn
increase resource efficiency and product value, offset compliance
costs and enhance firms' productivity. Environmental regulation is
thus advertised as a “win-win” strategy, leading to better en-
vironmental quality and higher firms' productivity.1

Given the important implications for policy making and firms
performance, proving or disproving the PH has been the focus of
many empirical contributions since the early 1990s. Three distinct
research statements have been identified (Jaffe and Palmer, 1997).
First, the “narrow” PH postulates that flexible environmental
regulation, such as market-based instruments, increases firms'
incentives to innovate compared to prescriptive regulation, such as
performance-based or technology-based standards. Second, the
“weak” PH affirms the positive effect of well-crafted environ-
mental regulations on environmental innovation (even when such
innovation comes at an opportunity cost that exceeds its benefits
for a firm). Finally, the “strong” PH states that innovation induced
by well-crafted environmental regulation could more than offset
additional regulatory costs and, consequently, increase firms'
competitiveness and productivity.

Given the recent energy and environmental policy develop-
ments, testing the link between environmental regulation and
competitiveness is particularly relevant for Europe. Many worry
that environmental regulation will place an excessive burden on
European industries, thereby stifling growth and damaging their
competitiveness in an increasingly global market place. But em-
pirical evidence in this respect is scant for Europe, as most studies
focus on the US.

This paper investigates the PH using cross-country sector-level
data for 17 European countries between 1997 and 2009. Our
analysis contributes to the literature in several ways. First, unlike
several other studies, we look at both the weak and at the strong
PH, focusing on both innovation and productivity. Second, unlike
country-level analyses, our sector-level approach captures the ef-
fects of sector-specific environmental policies, and the dynamics of
sectoral competition. Third, we use pollution abatement and
control expenditures (PACE henceforth) as our environmental
policy indicator. PACE include the flow of industry investment and
current expenditures directly aimed at pollution abatement and
control. Hence, they provide information on the response of each
sector to the pressure of environmental policy. It is thus arguably a
good candidate to measure the different impact of environmental
policy on manufacturing sector sexpecially due to its sectoral
variability, certainly a plus in our context. Moreover, PACE data
were used in the seminal paper by Jaffe and Palmer (1997) for US
sectors: we implement their approach when assessing European
industries' innovation activity. Finally, we recognize the potential
endogeneity of PACE and address it using an instrumental variable
approach. Only a handful of papers have tackled this important
issue: if overlooked it may lead to biased estimates.

The paper proceeds as follows. Section 2 summarizes the
1 An example is distillers of coal tar in the US. In 1991 many of these firms op-
posed the regulations requiring substantial reductions in benzene emissions be-
cause at the time it was thought that the only means to achieve this goal was to
cover the tar storage tanks with costly gas blankets. However, the regulation
prompted Aristech Chemical Corporation to develop a method of removing ben-
zene from tar in the first processing stage, eliminating the need for gas blankets
and saving $ 3.3 million (see Zaelke et al., 2005).
literature on the PH. Section 3 describes the competitiveness in-
dicators and the environmental regulation proxy and presents
descriptive statistics. The empirical results are presented in Sec-
tion 4. Section 5 discusses the policy implications of our findings.
Section 6 describes the conclusion.
2. Related literature

The empirical literature investigating the PH is vast, but largely
focused on the US (Ambec et al., 2013). Two main groups of studies
can be identified. Those testing the weak PH focus on the re-
lationship between environmental regulation and innovation.
Those testing the strong PH focus instead on the relationship be-
tween environmental regulation and proxies of competitiveness.

The first paper to look at the weak PH is the descriptive analysis
of Lanjouw and Mody (1996) for the US, Japan and Germany.
Subsequent formal tests present mixed results. Jaffe and Palmer
(1997) find a positive link between regulation (proxied by PACE)
and R&D expenditures in US manufacturing sectors, but not be-
tween regulation and patent applications. Studies focusing on
environmental innovation reach instead a different conclusion.
Brunnermeier and Cohen (2003), Popp (2003, 2006), De Vries and
Withagen (2005), Carrion-Flores and Innes (2010), Johnstone et al.
(2010), Lanoie et al. (2011), Lee et al. (2011), Kneller and Man-
derson (2012) find a positive relationship between green patents
and environmental regulation.

The evidence is more mixed for the strong PH (Jaffe et al., 1995;
Koźluk and Zipperer, 2013). Early studies on the US concluded that
environmental regulation caused a productivity slowdown, pre-
sumably due to a displacement of “productive” investment by
environmental regulation (Gollop and Roberts, 1983; Gray and
Shadbegian, 1993, 2003). More recently, Berman and Bui (2001)
and Alpay et al. (2002) find positive results. However, in Green-
stone et al. (2012) stricter air quality regulations are associated
with a roughly 2.6 percent decline in the TFP of US manufacturing
plants and Lanoie et al. (2008) show a negative impact of con-
temporaneous environmental regulation on TFP growth for Qué-
bec, but a negative lagged effect. Costantini and Crespi (2008) and
Costantini and Mazzanti (2012) focus on Europe and the export
effects of several environmental policy indicators. Environmental
policies do not seem to harm export competitiveness of manu-
facturing sectors, whereas specific energy tax policies and in-
novation efforts positively influence export flows dynamics. Using
firm-level German data, Rennings and Rammer (2010) find that
environmental innovations on average do not perform worse
compared to other innovations in terms of profitability impact,
while Rexhäuser and Rammer (2014) conclude that the strong
version of PH does not hold in general, rather the impact of reg-
ulation on competitiveness is heterogeneous depending on the
type of environmental innovation.

Only a handful of papers test both versions of the PH. Hama-
moto (2006) and Yang et al. (2012) investigate both innovation and
productivity responses to environmental regulation, proxied by
PACE, in Japan and Taiwan respectively. Lanoie et al. (2011) find a
positive and significant link between perceived stringency of en-
vironmental regulations and environmental innovation, consistent
with the weak PH, using company survey data in 7 OECD coun-
tries. Furthermore, the “predicted” environmental innovation from
the weak PH equation has a positive and significant impact on
business performance, providing evidence in support of the strong
PH. van Leeuwen and Mohnen (2013) use a structural approach
and a comprehensive panel of Dutch firm-level data to corroborate
the weak, but not the strong, PH. Finally, Franco and Marin (2013)
look at innovation and at TFP using energy tax intensity to proxy
environmental policy stringency in manufacturing sectors in
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7 European countries. Stringency is the most relevant driver for
innovation and most of its effect on productivity is direct. Con-
versely, the effect of induced innovation is not statistically
significant.

There are aspects to note concerning these EU-based studies.
First, most are country-level analyses and as such they do not
account for heterogeneity in sectoral responses to regulation. In
this paper we overcome this shortcoming using sectoral level PACE
data, which have not been previously exploited.

Second, most studies test the weak PH. They focus on how
environmental innovation responds to regulation, but do not test
the effect of stringent environmental regulation on total manu-
facturing innovation. This is insufficient, because the opportunity
costs of environmental innovation are not accounted for. In fact,
environmental regulation could cause an increase of environ-
mental innovation, while (more valuable) innovation in other
fields is not pursued due to budget constraints. We look at overall
innovation, in terms of either R&D expenditures or patent appli-
cations. Our approach overlooks issues of crowding out between
green and non-green innovation, but we make this choice for
three main reasons: first, there is little or no evidence of the
overall innovation effect of environmental policy. Second, it is
important to account for the opportunity costs of green innova-
tion, and test whether overall innovation are affected by policy.
Finally, isolating green innovation at the sectoral level in a cross
country setting is neither straightforward nor completely safe,
since it relies on strong assumptions.

Third, European studies focusing on the strong PH use data on
exports or profitability to measure competitiveness and do not test
how productivity responds to stringent environmental policy. In
this paper we consider total factor productivity, either levels or
growth, as basis for testing the allegedly most controversial ver-
sion of the PH.

Finally, only very few papers in this area recognize the poten-
tial endogeneity of PACE. Exceptions are de Vries and Withagen
(2005), Carrion-Flores and Innes (2010), and Kneller and Man-
derson (2012). Not accounting for the endogeneity of environ-
mental policy proxies may bias estimates of environmental reg-
ulation effects on economic performance. In this paper the en-
dogeneity of our policy indicator PACE is accounted for and ap-
propriately dealt with.
2 Patent indicators suffer from the major drawback of greatly differing in quality
and in the magnitude of inventive output (Griliches, 1990). We mitigate this con-
cern by using EPO applications which are more expensive than national applica-
tions. This difference in cost provides a quality threshold (OECD, 2009). Since pa-
tents are assigned using fractional counting, there is no need to resort to count data
models in the estimation.

3 Details on the construction of our TFP proxies are provided in Rubashkina et al.
(2014).

4 PACE are in million Euros and constant prices. Sufficiently complete PACE data
can be gathered for 17 European countries. However, also for these countries there
are gaps. For a detailed description of the contents of PACE see Rubashkina et al.
(2014).
3. Data and methods

Our empirical investigation of the PH is based on the following
expression:

C f ER Z( , ) (1)=

where C is a competitiveness indicator, ER is an environmental
regulation stringency variable, and Z are other control variables.

3.1. Competitiveness indicators

Competitiveness C is represented by technological innovation
TI in the weak PH and by factor productivity FP in the strong PH. TI
is proxied by either R&D expenditures or patent statistics, as in
Jaffe and Palmer (1997). Both indicators have been widely used in
the innovation literature (Griliches, 1990). R&D expenditures re-
present an input of the knowledge production function and
measure the effort of private firms in pursuing innovation. In-
dustrial R&D expenditures in millions of Euro at 2005 prices are
taken from the ANBERD database (OECD, 2012). We complement
this with data from EUROSTAT (2012a) for some countries like
Bulgaria, Sweden, Slovakia and the UK. The data are available for
the period 1998–2009. Conversely, patent statistics approximate
the output of the knowledge production function. We use appli-
cations to the EPO from EUROSTAT (2012b) which assigns patent
applications according to the inventor country of residence and
uses fractional counting.2

To assess the impact of environmental regulation on pro-
ductivity FP, we use Total Factor Productivity (TFP) to proxy for
sectoral economic performance (Gray and Shadbegian, 1993,
2003). TFP indicates how productively inputs are combined to
generate gross output. Conceptually, TFP captures technical
change, but in practice it also reflects also efficiency change,
economies of scale, variations in capacity utilization and mea-
surement errors. We compute TFP using data from the EU KLEMS
(2009).3 Following the literature on the strong PH, we estimate
productivity equations both in levels and in growth rates, as there
is no a priori guide as to which proxy to use.

3.2. Environmental policy indicators

To proxy for environmental regulation we use data on Pollution
Abatement and Control Expenditures (PACE). Recently, there has
been a surge of interest in measures of environmental policy
stringency. A few alternatives have been proposed (Brunel and
Levinson, 2013; Galeotti et al., 2014; Nesta et al., 2014): all of them
are characterized by pros and cons both from a conceptual and a
practical perspective (Brunel and Levinson, 2013). This notwith-
standing, the PACE indicator has not been previously used in the
context of sector-level studies of the PH in Europe and is parti-
cularly well suited because it captures sector-specific responses to
environmental policy.

PACE are purposeful activities aimed directly at the prevention,
reduction and elimination of pollution or nuisances arising as a
residual of production processes or the consumption of goods and
services (OECD, 1996). PACE arise as the consequence of govern-
ment environmental policies and regulations and include the flow
of investment and current expenditures directly aimed at pollution
abatement and control. PACE data for the EU manufacturing sec-
tors are available for the period 1997–2009 from EUROSTAT
(2012c) and fill missing observations with comparable data from
various National Statistics Offices.4

3.3. Descriptive statistics

The sample has been selected based on data availability of our
environmental regulation indicator. and is an unbalanced sector-
level panel dataset covering 17 European countries – Bulgaria,
Cyprus, Czech Republic, Estonia, Finland, Hungary, Lithuania,
Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slove-
nia, Spain, Sweden and the United Kingdom – for the years 1997–
2009. The level of aggregation by industrial sectors varies across
the five different data sources we used (EUROSTAT, EU KLEMS,
WIOD, OECD STAN and OECD ANBERD). We therefore base our
analysis on the sectoral classification of the PACE variable, which
includes nine macrosectors. The classification and the reference to
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the two-digit European NACE revision 1.1 sectoral classification are
shown in Table A.1.5

Table A.3 shows striking differences in our competitiveness
indicators between new and old Member States. In particular,
Finland, Netherlands, Norway, and the UK have patent and/or R&D
intensities which exceed several time those of other countries. The
level of TFP is highest in Finland, Slovenia, Sweden and the UK. TFP
growth is highest in the Czech Republic, Finland, Lithuania and the
UK, whereas it is negative in Poland and virtually zero in Portugal.
On average PACE, are equal to 3.6% of value added or 0.9% of gross
output. Finland, Portugal, Norway, Spain and the UK are behind
the other countries in terms of share of environmental ex-
penditures in VA (between 2% and 3%). New Member States have
larger environmental expenditures intensities than old Member
States, presumably due to the fact that the former needed to catch
up with EU requirements in a relatively short period of time.
Among the old Member States, Sweden and the Netherlands have
the highest expenditures intensities.

Focusing on the sectoral breakdown, some sectors, such as 5
(“Coke, refined petroleum products and nuclear fuel”), 6 (“Che-
micals; rubber and plastic products”) and 9 (“Machinery and
equipment”), have higher-than-average patent and R&D in-
tensities (Table A.4). The former ranges between 19 and 36 patents
per billion of Euro against an average value of 13 patents per bil-
lion of Euro, while the latter is 4.9–8.2% versus an average of 2.9%.
The highest levels of TFP are in sectors 6 (“Chemicals; rubber and
plastic products”), 7 (“Other non-metallic mineral products”) and
8 (“Basic metals”). With respect to PACE, we observe sizeable dif-
ferences between sectors 5 (“Coke, refined petroleum products
and nuclear fuel”), 6 (“Chemicals; rubber and plastic products”)
and 8 (“Basic metals”) and the rest of the sample. These sectors
spend more on pollution abatement and control activities than
average: their shares of PACE in VA are 9.5%, 4.0% and 6.1%, re-
spectively, against an average of 3.6%. These three sectors are in
fact characterized by high energy intensity.6 Therefore, energy
intensive sectors appear to spend more on environmental ex-
penditures regardless of environmental regulation stringency.
(footnote continued)
spurious correlation. Nevertheless, we estimated the equation in ratio form as a
4. Empirical results

We begin our empirical analysis by studying the relationship
between environmental regulation and innovative activity.

4.1. Environmental regulation and innovation activity: the weak
Porter Hypothesis

The log–log specification relating innovation to environmental
policy, similar to the one originally used in the paper of Jaffe and
Palmer (1997) and adapted to a multi-country analysis, is

TI ER Zln ln ln (2)ijt ijt q ijt
TI

ij t ijt1β γ α μ ε= + + + +− −

where TIijt is either total R&D expenditures (R&D) or total patent
applications (PAT) in country i, sector j, and time t, and environ-
mental regulation (ER) is represented by PACE expenditures.7 Eq.
5 Definition, data sources and period of availability of all the main variables used
in the present investigation are reported in Rubashkina et al. (2014), as are the
description of outliers which were excluded from the analysis.

6 Energy intensity is defined as emission-relevant energy use (in TOE) over VA
from WIOD (2012). There are minor differences in the energy intensity classifica-
tion comparing to the innovation indicators and PACE. Due to minor differences
between the sectoral classification of PACE and WIOD “Fabricated metal” is in-
cluded in the sector 8, rather than in the sector 9.

7 Alternatively we could regress the ratio R&D/VA or PAT/VA on the ratio PACE/VA.
However, a measurement error in value added could cause Eq. (2) to exhibit
(2) controls for both observed and unobserved sector-country
specific heterogeneity. To deal with the former we include a vector
of sector- and country-level covariates (ZTI). Firstly, we include
sectoral value added (VA) as a scaling variable, since larger
industries are likely to have greater absolute levels of PACE and
are also more likely to have the resources necessary to meet the
fixed costs and bear the risks involved with undertaking invest-
ments in innovation. Secondly, a prominent role is played by
technology push factors (Schumpeter, 1943; Schmookler, 1966;
Horbach et al., 2012). We hence add a knowledge stock variable
(KR&D or KPAT) capturing previous innovation experience, which
is expected to have a positive influence on the innovation capacity
because innovators can “stand on the shoulders of the giants”
(Caballero and Jaffe, 1993). Industries which exhibit greater past
investment in technological development are also more likely to
engage in future innovative practices (Baumol, 2002). The stock of
knowledge is calculated using the perpetual inventory method
and a 10% depreciation rate (Keller, 2002). Thirdly, we include
import penetration (IMP) to proxy for external competition and
export intensity (EXP) which controls for a sector's participation in
foreign trade. Schumpeter (1943) postulated a positive influence of
market concentration on innovation, since market concentration
reduces uncertainty and motivates firms to invest in R&D.8 More-
over, if foreign markets are more responsive to variety changes, an
increase in export intensity could lead to more R&D spending
(Brunnermeier and Cohen, 2003). Finally, strong competition
abroad can encourage innovation, especially if a regulated firm is
competing with firms in countries with less stringent environ-
mental regulations and lower wages (Kneller and Manderson,
2012). The data for sector level import intensities (ratio of imports
over the sum of domestic production and imports) and export
intensity (ratio of exports over domestic production) are taken
from WIOD (2012). To control for the effect of sectors' structural
change due to creation, death or the relocation of enterprises on
innovation intensity we include enterprises birth (BR) and death
(DR) rates in the equations. The former is the number of new
enterprises over total enterprises, the latter is the number of death
enterprises over total enterprises.9 The data are from EUROSTAT
(2012a). Finally, the share of R&D appropriations in total govern-
ment expenditures from GBAORD (OECD, 2012) accounts for the
impact of public support to private R&D. These are country level
aggregates with no sectoral detail.

The control variables in ZTI (with the exception of R&DGOV) are
lagged once to avoid simultaneity problems with innovation ac-
tivity, an issue to which we return in the next section. Finally, Eq.
(2) includes country-sector specific effects αij which absorb the
impact of sector-specific time-invariant characteristics of innova-
tion ability and are also likely to be correlated with PACE.10 Since in
our context unobservable factors, that are constant over time but
vary across countries and sectors, can affect innovation activity
and are likely to be correlated with the other regressors, we esti-
mate the innovations models using a fixed effects (FE) estimator.11
robustness check. The results for PACE were very similar to those presented here
and are available upon request.

8 Some authors argue the opposite, claiming that concentration leads to inertia
and hinders innovation due to lacking competitive pressure (Levin et al., 1985).
Therefore, the sign associated with the effect of external competition on innovation
is a priori ambiguous.

9 Birth and death rates are highly correlated. Results including either DR or BR
alone do not differ from those presented below and are available from the authors.

10 We also assume that shocks in innovations could vary between new and old
member states and therefore we allow for time effects mt and their interaction with
an “Old Member countries” dummy variable, denoted by OLD.

11 This choice was validated with a Hausman test.



Table 1
Weak PH – R&D and patents FE regression results.

R&D Patents

(1) (2) (3) (4) (5) (6) (7) (8)

PACE 0.043 0.033 – –

(0.039) (0.041)
PACE(�1) – – �0.021 �0.045 0.086nnn 0.030nn – –

(0.042) (0.044) (0.019) (0.021)
PACE(�2) – – 0.096nnn 0.002

(0.029) (0.020)

VA(�1) 0.042 0.013 0.084 0.031 0.061 �0.045 �0.032 �0.045
(0.042) (0.061) (0.078) (0.129) (0.048) (0.029) (0.041) (0.033)

GOVR&D(�1) 0.043 0.311nn �0.076 0.132 0.323nnn �0.073 0.286nnn �0.086
(0.183) (0.141) (0.189) (0.167) (0.104) (0.069) (0.111) (0.082)

KR&D(�1) – 0.654nnn – 0.633nnn

(0.209) (0.189)
KPAT(�1) – 0.509nnn – 0.487nnn

(0.082) (0.091)
EXP(�1) – 0.434n – 0.519nnn – 0.05 – 0.105

(0.222) (0.178) (0.067) (0.093)
IMP(�1) – –0.32 – �0.633n – �0.277nn – �0.385nnn

(0.218) (0.348) (0.112) (0.151)
DR(�1) – 1.806nn – 1.938nnn – 0.024 – 0.129

(0.789) (0.678) (0.212) (0.261)
BR(�1) – �1.064 – �0.898 – 0.275n – 0.483n

(0.821) (0.704) (0.161) (0.289)

F-test 1.32n 5.61nnn 1.45nn 8.46nnn 6.89nnn 6.40nnn 10.32nnn 6.70nnn

Within R2 0.05 0.22 0.05 0.26 0.37 0.39 0.39 0.35
No. of observations 750 515 694 512 913 639 883 587
No. of country-sector effects 129 105 129 104 153 125 151 126

Notes to the table: (a) all variables in logs; (b) coefficient estimates from FE estimation; (c) country-year fixed effects and full set of time dummies included in all models;
(d) robust standard errors (clustered on the sector-country unit) in parentheses; (e) significance: npo0.1, nnpo0.05, nnnpo0.01; and (f) the data on EXP, IMP, DR and BR are
not complete, therefore we lose some observations when adding these covariates in the regressions.
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4.1.1. Estimation results
The main difference between the R&D and PAT regressions lies

in the lag structure incorporated in the our models to test the
dynamic effect of environmental regulation on innovation. We
assume that firms immediately react to the introduction of reg-
ulation and engage into R&D. However, it may take time to mo-
bilize the resources necessary for R&D investments. Therefore, in
the R&D equation we test for contemporaneous, one and two year
lagged effects of environmental policy. Previous findings show
that the policy variable is most significant with lags between zero
and two years (Brunnermeier and Cohen, 2003; Hamamoto, 2006;
Johnstone et al., 2010). As for patent data, we assume that the
whole innovation process from R&D investment to a patent ap-
plication takes time and that environmental policy-induced in-
novations are translated into patents with at least one (or more)
year lag period. Thus, we include from one to three-year lagged
regulation variables in the patent equation.

Table 1 reports the estimation results of the effect of environ-
mental regulation on R&D efforts and patenting activity
respectively.12 Columns 1–2 (resp. 5–6) and columns 3–4 (resp.
7–-8) differ for the timing of the impact of PACE on the innovation
variables. As a starting point, columns 1 and 3, and columns 5 and
7, report the results for the baseline specification similar to Jaffe
and Palmer (1997). The baseline specification is then augmented to
control for the knowledge stock, export and import intensity, en-
terprises’ birth and death rates in the remaining columns.

The first and most relevant result is that in no case is the im-
pact of environmental regulation on R&D efforts statistically
12 Due to data availability, the estimation of the R&D equations are carried out on
a smaller sample (1999–2009) than that of the patent equations (1997–2009). For
details se Rubashkina et al. (2014).
significant across all the specifications. On the contrary, the effect
of PACE on patent applications is always positive and significant.
Here a 10% increase in PACE is associated with a 0.3–0.9% increase
in patent applications.13 Hence, environmental regulation does not
seem to have an effect on overall R&D, but it increases the number
of patents in the short and in the medium run. While these find-
ings are in line with the literature pointing to a positive and sig-
nificant impact of environmental regulation on innovation (Ambec
et al., 2013), they are in contrast with those of Jaffe and Palmer
(1997), who found a positive effect of PACE on R&D but not on
patents. Our explanation to reconcile this difference is that in the
EU more stringent regulation does not seem to provide enough
stimulus to one important input to the production of knowledge,
but it does favor a more efficient combination of all the inputs
involved which results in a higher knowledge output, as proxied
by patents.

The coefficients associated with other controls used in the re-
gressions are generally in line with expectations. For instance, the
positive coefficients associated with the knowledge stocks confirm
the results from a rich literature pointing to the “standing on the
shoulder of the giants” effect. Participation in international trade
has a positive effect on sectoral R&D, confirming positive learning-
by-exporting effects. External competition, measured by import
intensity, has a negative and significant impact both on R&D and
patents, confirming the Schumpetrian view of a negative influence
of market pressure on innovation. Closure of enterprises, mea-
sured by death rate, results in increased R&D intensity, while pa-
tent intensity is positively affected by opening of new enterprises.
13 Various additional robustness are available from the authors upon request. For
instance, the results of Table 1 do not change if we considered longer lags for PACE.
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In several specifications the public support of private R&D, as
measured by the share of public R&D in government budget, has a
positive effect on private R&D and patent behavior.

4.1.2. Endogeneity of PACE
Even with all the controls included in the innovation equa-

tion, confounding trends in sector-level innovation performance
and unmeasured omitted factors that could affect PACE are still
reason for concern. The endogeneity of PACE could cause either a
downward or ad upward bias in the estimation of its effect. For
instance, the assumption that omitted common determinants of
the cost of regulation (PACE) and of innovation are time-invariant
could be too strong, as these factors are likely to change over
time. If this assumption is relaxed, we cannot hope to capture
these factors simply including country-sector fixed effects.
Moreover, PACE estimates could be biased due to measurement
error problems. PACE are self-reported by firms that could face
difficulties in identifying the portion of the expenditures asso-
ciated with regulatory compliance in their total expenditures. It
could therefore be reported with errors. Finally, PACE is not ad-
justed to take into account transfers or subsidies. Yet, some
Member Countries use subsidies and refund schemes to protect
producers from any negative effect on competitiveness arising
from increases in input costs.14

To overcome potential endogeneity issues we adopt an in-
strumental variable (IV) estimation approach. Although finding
suitable instruments is not easy, PACE is instrumented here with
the average share of PACE intensity for eight adjacent sectors of the
same country excluding the current sector (PACE/VA� j). In fact,
there is a strong correlation between environmental policies ap-
plied to different sectors within one country: adjacent sectors'
PACE intensity is therefore strongly correlated with a sector's PACE
intensity within a country, while it should have no direct effect on
the sectors' innovative activity or productivity. We also interact
this instrument with pre-sample (year 1996) sectoral energy-in-
tensity (PACE/VA� j� EIpre), as regimes of environmental regulation
of energy-intensive sectors could differ from those of less energy-
intensive sectors within the same country: thus environmental
policies of energy intensive sectors could stand out from policies
of adjacent sectors.15 The identification assumption for all the in-
struments is that, conditional on sectoral value added, innovation
stock, government R&D support, import and export intensities,
enterprises demographic indicators, country-sector fixed effects
and time effects, these instruments are strong predictors of sector-
level PACE, but are not correlated with unobserved factors im-
pacting innovation.

We estimate the effect of environmental costs on innovation
performance using 2SLS and optimal IV-GMM estimators in the
just identified and the over identified equations, respectively. The
first stage attempts to isolate the portion of variation in PACE in-
tensity that is attributable to exogenous environmental ex-
penditures. Using the predicted PACE from this stage we can be
relatively confident that our results truly reflect causal effects of
environmental costs on sectoral innovation performance. More-
over, because we have two instruments for one endogenous
variable, we are able to test the joint validity of these instruments
and to show that they pass an over identification test.

Tables 2 and 3 report the results of the first-stage regression
between PACE and the set of instruments in the R&D and patent
14 If we go back to Eq. (1) and assume that ER is not observed, we can specify the
following: (I) C¼ f(ER,Z) (II) PACE¼g(ER,W); we can solve (ii) for ER as a function of
PACE and substitute the result in (i) so that: (III) C¼h(PACE,W,Z) which is the
baseline equation we estimate. This clarifies the endogeneity of PACE.

15 We should note that when using PACE/VA� j as well as PACE/VA� j� EIpre we lose
several observations.
equations, respectively. In both equations the instruments posi-
tively correlate with PACE. The coefficient of PACE/VA� j and its
interaction with the pre-sample EI are shown to be strongly sig-
nificant. The specification tests reported at the bottom of the ta-
bles confirm relevance and validity of the instruments. The Klei-
bergen–Paap test for weak identification shows a F-statistic that
exceeds a widely used rule of thumb of 10 (Staiger and Stock, 1997)
in columns 5–8 of Table 2 and in columns 1–4 of Table 3, although
in the other cases it is close to that value. On this basis the joint
significance of excluded restrictions in the first-stage regressions is
not rejected. Moreover, F-statistic are above the reported Stock and
Yogo (2005) weak ID test critical value (for 10–15% relative IV bias
toleration) across different specifications of R&D and patent
equations, eliminating the concern that the excluded instruments
are weakly correlated with the endogenous regressors (Stock et al.,
2002; Stock and Yogo, 2005). Another weak-instrument diag-
nostics we report is Shea (1997)'s partial R2 between PACE and the
excluded instruments after controlling for the included instru-
ments in the first-stage regression. The high value in the patent
equation indicates that the endogenous regressor is not weakly
identified. In the R&D equation the value of partial R2 is rather low
suggesting some need for caution. The weak instrument-robust
Anderson and Rubin (1950) test statistics always reject the null
hypothesis that the coefficients of the one-year lagged PACE in the
structural equation are equal to zero, and, in addition, that the
over-identifying restrictions are valid. Finally, the C-test rejects the
null hypothesis that one-year lagged PACE can actually be treated
as exogenous in the R&D equation (p value is lower than 0.05).
However, exogeneity of one-year PACE is not rejected in the patent
equation. The validity of the instruments are tested with Hansen's
J-test. As the reported p-values are above 0.05 in all the models,
we do not reject the joint null hypothesis that the instruments are
valid, i.e. they are uncorrelated with the error term, and conclude
that the over-identifying restriction is valid.

Tables 4 and 5 respectively report the second-stage estimation
results of the R&D and PAT equations controlling for the potential
endogeneity of PACE. Columns 1–4 and 5–8 correspond to the
specifications with current and one-year lagged PACE (Table 2),
and with one-year and two-year lagged PACE (Table 3). In all
specifications of the R&D equation (Table 4) instrumented PACE is
insignificant, in keeping with the results of the FE estimation
shown in Table 1. The exception is the last two columns, where
PACE is lagged and all covariates are included, in which case it is
negative and statistically significant. Results available from the
authors show that environmental regulation proxied by PACE does
not affect R&D after one-year period.

In the patent equation one-year lagged PACE remains positive
and strongly significant with a coefficient of similar magnitude to
that of the FE estimation. Other things equal, an additional 10% of
regulation compliance expenditures increases the number of pa-
tent applications by approximately 0.1% in the one-year period.
The same holds for the two-year lagged effect of environmental
regulation on patents, if we look at the first two columns. Other
things equal, an additional 10% of regulation compliance ex-
penditures decrease the number of patent applications by 0.2%.
The exception is given by the negative statistically significant
impact of lagged PACE of the last two columns. With the exception
of public R&D the effects of the other control variables are robust
to the change from the FE to IV estimations in both the R&D and
the patent equations.

Taking together the results of R&D and patent equations, we
conclude that environmental regulation leads to an increase in
patent applications. The IV results of both innovation equations
highlight the upward bias of the lagged PACE coefficients in the FE
estimation.



Table 2
Weak PH – R&D IV regression – first stage results.

(1) (2) (3) (4) (5) (6) (7) (8)

PACE/VA� j 0.268nnn 0.350nnn 0.204nnn 0.268nnn – – – –

(0.056) (0.071) (0.072) (0.073)
PACE/VA� j(�1) – – – – 0.395nnn 0.414nnn 0.374nnn 0.360nnn

(0.089) (0.092) (0.101) (0.009)
PACE/VA� j� EIpre – �0.074nn – �0.244nn – – – –

(0.042) (0.111)
PACE/VA� j� EIpre(�1) – – – – – �0.122n – �0.334nn

(0.071) (0.148)

VA(�1) 0.105nn 0.176n 0.089nn 0.171n 0.106 0.119 0.112 0.103
(0.048) (0.101) (0.041) (0.089) (0.084) (0.092) (0.083) (0.091)

GOVR&D(�1) �0.325n �0.354nn �0.281 �0.294 �0.356n �0.351n �0.387n �0.371
(0.167) (0.174) (0.195) (0.204) (0.201) (0.201) (0.230) (0.231)

KR&D(�1) – – 0.244n 0.226 – – 0.171 0.217
(0.141) (0.149) (0.178) (0.181)

EXP(�1) – – 0.025 �0.01 – – �0.118 �0.107
(0.158) (0.182) (0.174) (0.180)

IMP(�1) – – �0.068 �0.207 – – �0.298 �0.24
(0.266) (0.278) (0.341) (0.343)

DR(�1) – – �0.286 �0.45 – – 2.392nnn 2.448nnn

(0.532) (0.509) (0.878) (0.861)
BR(�1) – – �0.291 0.036 – – 1.536n 1.584n

(0.661) (0.662) (0.892) (0.891)

F-statistics 5.65 8.319 4.95nnn 7.73nnn 12.985 12.687 14.08nnn 14.53nnn

Within R2 0.166 0.205 0.08 0.09 0.181 0.198 0.14 0.15
C-test of endogeneity (p value) 0.1 0.53 0.089 0.486 0.4 0.13 0.019 0
Weak-ID test (F instruments) 17.73 15.35 9.17 12.94 20.48 13 13.48 12.53
Stock–Yogo weak ID test (critical val 15% max IV size) 8.96 11.59 8.96 11.59 8.96 11.59 8.96 11.59
Partial R2 0.05 0.08 0.03 0.06 0.08 0.1 0.07 0.09
AR Weak-ID-robust F (p value) 0.21 0.74 0.1 0.22 0.45 0.47 0.01 0
AR Weak-ID-robust χ2 (p value) 0.2 0.74 0.09 0.2 0.44 0.45 0.01 0
J-statistics (p value) 0.33 0.25 0.5 0.27
No. of observations 693 629 498 480 654 620 509 492
No. of country-sector effects 127 120 108 102 124 117 104 98

16 Other than learning-by-exporting effect, the causality can run from pro-
ductivity to export through the self-selection effect: higher productivity could
cause higher exporting of the firm. Productivity decrease of the local producers
could bring into the country the foreign producers, thus, increasing import in-
tensity. Moreover, the productivity enhancement could cause a boost of production,
thus the causality between productivity and VA could also be bidirectional.
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4.2. Environmental regulation and productivity: the strong Porter
Hypothesis

We now examine the relationship between regulation strin-
gency and productivity. Productivity may be affected by environ-
mental regulation through a number of channels. First, the firm
may need to use additional inputs, such as labor, materials or ca-
pital to comply with environmental requirements (the direct ef-
fect). Consequently, an increase in production costs could result in
a negative impact on productivity in the short run. Second, en-
vironmental regulation would affect the stock of knowledge which
in turn could positively impact productivity (the indirect effect).
The latter effect is likely to appear in the medium-long run.

In view of the multiple channels through which environmental
regulation may affect productivity, we model the link between the
former and the latter through reduced-form equations. In such a
setup, a positive coefficient of the environmental regulation vari-
able means that an induced innovation effect outweighs the ad-
ditional input costs due to regulation, resulting in enhanced
productivity.

The specification we use is

FP ER Zln ln ln (3)ijt ijt q ijt
FP

ij t ijt1β γ α μ ε= + + + +− −

where FPijt is factor productivity in country i, sector j, and time t,
environmental regulation (ER) is given by PACE and ZFP is a vector
of sector- and country-level covariates. Our first proxy of pro-
ductivity is the level of TFP.

To control for factors that could affect sectoral productivity we
include a vector of controls including value added, import penetration,
export intensity, enterprises birth and death rates. First, as larger in-
dustries are likely to have greater absolute levels of PACE, we include
value added as a scaling factor. Next, we include import intensity as
the role of import penetration is stressed in the cross-country pro-
ductivity growth literature (Griffith et al., 2004). Export intensity is
added to control for a sector's participation in foreign trade. As sug-
gested by the learning-by-exporting hypothesis, strong competition
abroad could encourage productivity improvements (Grossman and
Helpman, 1991). Finally, we control for the effect of a sector's struc-
tural change due to enterprises creation, death or relocation by in-
corporating enterprises birth and death rates in the equation. The
productivity impact of environmental regulation is conditional on
plants survival. Stringent regulation can result in the closure of some
plants. Not accounting for survivorship the true productivity effect
could be understated. Finally, as before, the above covariates are lag-
ged one year to avoid two-way causation with productivity.16

An alternative version of (3) that we consider proxies FP with total
factor productivity growth (TFPG), as there is no a priori reason to
prefer, in the present context, levels or growth of TFP. In the TFPG
specification, in keeping with a large literature, we adopt a catch-up
specification and supplement the vector ZFP with a measure of TFPG at
the technological frontier (TFPG-frontier) and ameasure of the distance
from that frontier (TFP-gap): both are found to be important



Table 3
Weak PH – patents IV regression – first stage results.

(1) (2) (3) (4) (5) (6) (7) (8)

PACE/VA� j(�1) 0.413nnn 0.458nnn 0.689nnn 0.673nnn – – – –

(0.071) (0.070) (0.067) (0.061)
PACE/VA� j(�2) – – – – 0.443nnn 0.448nnn 0.575nnn 0.486nnn

(0.071) (0.070) (0.078) (0.081)
PACE/VA� j � EIpre(�1) – 0.093nnn – �0.166n – – – –

(0.03) (0.10)
PACE/VA� j � EIpre(�2) – – – – – �0.128nn – 0.547nnn

(0.056) (0.156)

VA(�1) 0.171nn 0.189nn 0.180n 0.176n 0.093 0.106 0.404nnn 0.439nnn

(0.091) (0.090) (0.091) (0.104) (0.056) (0.072) (0.141) (0.130)
GOVR&D(�1) �0.186 �0.198 �0.292 �0.277 �0.105 �0.091 �0.198 �0.221

(0.156) (0.172) (0.211) (0.221) (0.178) (0.180) (0.190) (0.181)
KPAT(�1) 0.378nn 0.390nn 0.406n 0.415n

(0.182) (0.180) (0.224) (0.224)
EXP(�1) 0.467nnn �0.468nn �0.351n �0.289

(0.178) (0.181) (0.211) (0.212)
IMP(�1) 0.486 0.491 0.888nn 0.847nn

(0.301) (0.311) (0.381) (0.351)
DR(�1) �0.637 �0.646 �0.765n �0.901nn

(0.490) (0.501) (0.450) (0.421)
BR(�1) 0.427 0.467 �0.062 0.204

(0.432) (0.423) (0.478) (0.402)

F-statistics 16.27 16.646 10.76nnn 11.00nnn 7.662 8.179 8.67nnn 9.10nnn

Within R2 0.23 0.256 0.36 0.37 0.202 0.221 0.32 0.36
C-test of endogeneity (p value) 0.702 0.52 0.042 0.126
Weak-ID test (F instruments) 39.20 25.42 110.75 60.1 38.67 23.00 47.11 33.87
Stock–Yogo weak ID test (critical val 15% max IV size) 8.96 11.59 16.38 19.93 8.96 11.59
Partial R2 0.12 0.15 0.27 0.28 0.14 0.16 0.2 0.25
AR Weak-ID-robust F (p value) 0.10 0.04 0 0.02 0.00 0.00 0.02 0
AR Weak-ID-robust χ2 (p value) 0.09 0.03 0 0.01 0.00 0.00 0.01 0
J-statistic (p value) 0.13 0.48 0.12 0.06
No. of observations 862 822 637 620 817 784 573 550
No. country-sector effects 150 143 129 123 148 141 119 113

Notes to the table: (a) all variables in logs; (b) coefficient estimates from FE estimation; (c) country-year fixed effects and full set of time dummies included in all models;
(d) robust standard errors (clustered on the sector-country unit) in parentheses; (e) significance: npo0.1, nnpo0.05, nnnpo0.01; and (f) the data on EXP, IMP, DR and BR are
not complete, therefore we lose some observations when adding these covariates in the regressions.

Table 4
Weak PH – R&D IV regression – second stage results.

(1) (2) (3) (4) (5) (6) (7) (8)

PACE-inst �0.234 �0.034 �0.448 �0.125 – – – –

(0.198) (0.137) (0.318) (0.198)
PACE-inst(�1) – – – – �0.086 �0.134 �0.403nn �0.475nnn

(0.109) (0.102) (0.175) (0.184)

VA(�1) 0.100n 0.05 0.123nn 0.093 0.086 0.079 0.156 0.190nn

(0.048) (0.067) (0.056) (0.102) (0.069) (0.068) (0.009) (0.102)
GOVR&D(�1) �0.20 �0.16 �0.04 0.034 �0.244 �0.26 �0.086 �0.077

(0.191) (0.171) (0.211) (0.150) (0.149) (0.156) (0.180) (0.202)
KR&D(�1) – – 0.674nnn 0.563nnn – – 0.665nnn 0.693nnn

(0.191) (0.191) (0.157) (0.151)
EXP(�1) – – 0.413nn 0.397nn – – 0.348nn 0.291nn

(0.164) (0.174) (0.141) (0.153)
IMP(�1) – – �0.161 �0.168 – – 0.494nnn 0.500nnn

(0.222) (0.252) (0.172) (0.191)
DR(�1) – – 1.589 �0.337 – – �0.228 �0.438

(9.122) (1.985) (0.678) (0.719)
BR(�1) – – 0.848 �0.372 – – 0.141 0.254

(8.521) (0.901) (0.489) (0.508)

No. of observations 693 629 498 480 654 620 509 492
No. of country-sector 127 120 108 102 124 117 104 98

Notes to the table: (a) all variables in logs; (b) coefficient estimates from FE estimation; (c) country-year fixed effects and full set of time dummies included in all models;
(d) robust standard errors (clustered on the sector-country unit) in parentheses; (e) significance: npo0.1, nnpo0.05, nnnpo0.01; and (f) the data on EXP, IMP, DR and BR are
not complete, therefore we lose some observations when adding these covariates in the regressions.
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Table 5
Weak PH – patents IV regression – second stage results.

(1) (2) (3) (4) (5) (6) (7) (8)

PACE-inst(�1) 0.116n 0.131nn 0.073nn 0.063nn – – – –

(0.067) (0.056) (0.033) (0.031)
PACE-inst(�2) – – – – 0.192nnn 0.170nnn �0.060n �0.052n

(0.048) (0.052) (0.032) (0.031)

VA(�1) 0.036 0.039 �0.052 �0.051 �0.059nn �0.056n �0.008 �0.01
(0.043) (0.040) (0.031) (0.034) (0.028) (0.029) (0.039) (0.040)

GOVR&D(�1) 0.308nnn 0.333nnn �0.073 �0.082 0.212nn 0.202nn �0.156nn �0.112n

(0.091) (0.078) (0.062) (0.061) (0.090) (0.091) (0.072) (0.056)
KPAT(�1) – – 0.528nnn 0.535nnn – – 0.537nnn 0.518nnn

(0.073) (0.071) (0.091) (0.085)
EXP(�1) – – 0.079 0.062 – – 0.083 0.07

(0.056) (0.061) (0.090) (0.091)
IMP(�1) – – 0.345nnn 0.346nnn – – 0.365nnn 0.418nnn

(0.110) (0.111) (0.133) (0.132)
DR(�1) – – �0.028 �0.036 – – 0.108 �0.052

(0.163) (0.154) (0.231) (0.180)
BR(�1) – – 0.291n 0.307n – – 0.397 0.580nn

(0.170) (0.171) (0.261) (0.256)

No. of observations 862 822 609 592 817 784 546 523
No. of country-sector 150 143 122 116 148 141 112 106

Notes to the table: (a) all variables in logs; (b) coefficient estimates from FE estimation; (c) country-year fixed effects and full set of time dummies included in all models;
(d) robust standard errors (clustered on the sector-country unit) in parentheses; (e) significance: npo0.1, nnpo0.05, nnnpo0.01; and (f) the data on EXP, IMP, DR and BR are
not complete, therefore we lose some observations when adding these covariates in the regressions.

18 Bootstrapped standard errors were applied to properly account for the inclu-
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determinants of productivity growth (Nicoletti and Scarpetta, 2003;
Griffith et al., 2004). The frontier country is defined as the country
with the highest TFP level in sector j and at time t. The assumption is
that, within each sector and year, the level of efficiency, among other
factors, depends on technological and organizational transfers from
the technology leader country. This variable aims at capturing the link
between TFPG in the “catching-up” country with the extent of in-
novation and knowledge spillovers which are taking place in the
technologically most advanced country. In particular, TFPG in the
frontier country is assumed to lead to faster TFPG in follower countries
by widening the production possibility set. Along similar lines, we
assume that the technological gap variable captures the extent to
which TFPG in a specific country can be explained by the adoption of
more efficient existing technologies. The assumption here is that the
larger the technology gap, the higher the potential gains from
adopting more efficient, internationally available, technologies and
consequently the faster the rate of TFPG.17

4.2.1. Estimation results
The timing of the productivity impact of environmental reg-

ulation involves asking how soon we can expect to see it. As to the
direct effect of ER through additional input costs, that is likely to
be prompt. As to the induced R&D effect, previous empirical work
suggests that R&D brings about productivity growth with a lag of
one to three years (see, for example, Griffith et al. 2004). Moreover,
as argued in the previous section, the potential impact of en-
vironmental regulation on R&D is likely to be lagged as well. Thus,
we include ER in the reduced-form productivity Eq. (3) with dif-
ferent lags, ranging from one to four years (Table 6).

Results of the estimation of the reduced-form model where we
regress TFP against one- and two-years lagged PACE and the set of
controls are presented in columns 1–4 of Table 6. As in the previous
section, we use the model with country-sector fixed effects and con-
sider both TFP level (columns 1–2) and TFPG (columns 3–4) as de-
pendent variables. Across all specifications we find no evidence of a
17 Also in this case, due to productivity data availability, we lose some
observations.
statistically significant effect of environmental policy stringency on
factor productivity. Regardless of the controls used, the PACE variable
always remains insignificant. As to the other controls, only those di-
rectly attributable to the TFP convergence model turn out to be
significant.

We may also want to verify the impact of generic innovation on
the level of TFP in connection to the empirical work carried out in the
previous section under the weak PH. As innovation proxies we
therefore use the fitted values of R&D and PAT variables predicted
from the innovation equations of Table 1. The results of the FE esti-
mation of this TFP level model are reported in columns 5–8 of
Table 7.18 They do not favor the idea that innovation drives the pro-
ductivity growth. The coefficients associated with the fitted value of
the one-year lagged overall R&D are insignificant, whereas the patent
variable is negative but only weakly significant.19 Judging from this
model, higher R&D investments over time do not bring any pro-
ductivity gain to a certain country-sector, whereas more patent ap-
plications might decrease its productivity.

4.2.2. Endogeneity of PACE
The potential endogeneity of PACE could be a concern also in the

productivity equations. Firstly, in the FE specification the assumption
that omitted common determinants of the cost of regulation (PACE)
and productivity at the country-sector level are time-invariant could
be too strong, as these factors are likely to change over time. If this
assumption is relaxed, we cannot capture these factors with the
country-sector fixed effects. Secondly, endogeneity of con-
temporaneous PACE could arise in productivity equations for likely
reverse causality. Firms' political pressures to change regulations are
an important potential source of reverse causality. In particular, if firms
respond to negative productivity shocks by “lobbying” for relaxing
environmental regulations, inverse causality would entail a positive
sion of generated regressors.
19 The results are robust to using different lags of R&D and PAT, to using the

original R&D and PAT values (rather than predicted), and to using the stocks of R&D
and PAT instead of the flows.



Table 6
Strong PH – TFP FE regression and two-stage models.

FE regression Two-stage model

TFP level TFP growth TFP level TFP growth

(1) (2) (3) (4) (5) (6) (7) (8)

PACE(�1) �0.007 – 0.004 –

(0.009) (0.001)
PACE(�2) – �0.001 – 0.001

(0.011) (0.003)

R&D-pred(�1) �0.068 – �0.001 –

(0.056) (0.003)
PAT-pred(�1) – �0.078n – 0.002

(0.040) (0.004)

TFPG-frontier 0.232nn 0.226nn 0.179 0.210nn

(0.109) (0.112) (0.113) (0.002)
TFP-gap(�1) 0.078nnn �0.071nn 0.020nnn 0.007

(0.029) (0.031) (0.014) (0.009)
VA(�1) �0.012 �0.017 0.003 0.008 �0.055 �0.018

(0.019) (0.030) (0.008) (0.012) (0.038) (0.031)
IMP(�1) �0.019 �0.047 �0.02 0.006 �0.032 �0.087 0.008nnn �0.005

(0.067) (0.075) (0.029) (0.027) (0.121) (0.089) (0.002) (0.001)
EXP(�1) �0.006 �0.016 0.04 0.035 �0.03 �0.043 0.006nn 0.003

(0.061) (0.063) (0.030) (0.021) (0.067) (0.056) (0.003) (0.004)
DR(�1) 0.035 0.146n 0.039 0.087nnn 0.328 0.167 �0.023 0.058

(0.041) (0.089) (0.042) (0.028) (0.253) (0.239) (0.078) (0.056)
BR(�1) �0.027 �0.15 �0.064 �0.052 �0.378n 0.115 �0.003 �0.042

(0.089) (0.109) (0.051) (0.048) (0.209) (0.217) (0.092) (0.067)

F 5.38nnn 6.03nnn 2.85nnn 6.65nnn 0.23 0.2 0.16 0.18
R2 0.21 0.17 0.16 0.18 296 354 296 354
No. of observations 476 432 476 432 84 86 84 86
No. of country-sector effects 95 95 95 – – 0.179 0.210nn

Notes to the table: (a) all variables in logs; (b) coefficient estimates from FE estimation; (c) country-year fixed effects and full set of time dummies included in all models;
(d) robust standard errors (clustered on the sector-country unit) in parentheses; (e) significance: npo0.1, nnpo0.05, nnnpo0.01; and (f) the data on EXP, IMP, DR and BR are
not complete, therefore we lose some observations when adding these covariates in the regressions.
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correlation between productivity and environmental regulation in-
dicators. Therefore, the impacts of environmental regulations on
productivity could be overestimated. Finally, similar to the innovation
equation, productivity impact of environmental regulation could be
biased due to PACE measurement errors.

To overcome the potential endogeneity problem we adopt an
instrumental variable (IV) approach similar to the one used in the
innovation equations. We estimate the effect of environmental
costs on innovation performance using 2SLS and optimal IV-GMM
estimators in the just identified and the overidentified equations,
respectively, including country-sector and time fixed effects. The
instruments are the same as before.

Table 7 reports the results of the first-stage IV regression. We
present the results of the TFP level model in columns 1–4 and of
the TFPG model in columns 5–6 respectively. The coefficients of
PACE/VA� j and PACE/VA� j� EIpre are strongly significant across all
the specifications. All the tests reported at the bottom of the table
confirm relevance and validity of the instruments, as in the case of
the IV estimation of the innovation equations.

The results of the second-stage IV regression, presented in Table 8,
are not completely in line with those of Table 7 where we did not
account for the potential endogeneity of PACE. The effect of environ-
mental regulation remains negligible and insignificant in the TFPG
regression.20 As to the TFP level model, we find a negative, weakly
significant effect of one-year lagged PACE, but not of two-year lagged
expenditures. We believe that these results should be taken with care,
20 PACE beyond the one-year lag has no effect on TFPG in the IV regression.
as the FE model does not support as a whole the “innovation channel”
of productivity growth.21
5. Discussion

When looking at the weak PH we conclude that environmental
regulation leads to an increase in patent applications, but has no
impact on R&D expenditures. These findings are in contrast with
those of earlier papers, beginning with those of Jaffe and Palmer
(1997). As to patents, a number of previous papers show that
environmental regulation positively impacts environmental pa-
tenting. We complement this result by showing that for our
sample of European countries environmental regulation results in
an enhancement of overall patent activity (and not only environ-
mental patents). Our evidence suggests the following: environ-
mental regulation stimulates environmental R&D spending which
displaces non-environmental R&D, but does not result in lower
overall R&D levels (hence, PACE is not significant in the R&D
equation). This increased environmental R&D is applied as an in-
put in the production of knowledge resulting in more patent ap-
plications. The increased patent activity could result from two
different processes. On one hand, it could be fully attributable to
environmental patents. This would be the case if, for example,
environmental innovation was inherently more patent-intensive
than overall innovation. On the other hand, this shift of the focus
21 Several robustness checks can be found in Rubashkina et al. (2014).



Table 7
Strong PH – TFP IV regression – first stage results.

TFP level TFP growth

(1) (2) (3) (4) (5) (6)

PACE/VA� j(–1) 0.683nnn 0.580nnn – – 0.677nnn 0.560nnn

(0.078) (0.089) (0.081) (0.093)
PACE/VA� j

� EIpre(�1)
– 0.508nnn – – – 0.564nnn

(0.189) (0.181)
PACE/VA� j

(�2)
– – 0.616nnn 0.509nnn – –

(0.078) (0.103)
PACE/VA� j

� EIpre(�2)
– – – �0.501nn – –

(0.211)

VA(�1) 0.339nn 0.447nnn 0.397n 0.452nn 0.333nn 0.456nnn

(0.131) (0.139) (0.201) (0.182) (0.143) (0.151)
IMP(�1) 0.707nn 0.793nnn 0.867nnn 0.868nnn 0.633nn 0.697nn

(0.298) (0.267) (0.332) (0.311) (0.278) (0.281)
EXP(�1) 0.904nnn 0.852nnn �0.406 �0.43 0.890nnn 0.817nnn

(0.272) (0.264) (0.361) (0.349) (0.267) (0.261)
DR(�1) �1.106 �1.075 1.202nnn �1.241nnn �1.038 �1.001

(0.881) (0.878) (0.278) (0.302) (0.890) (0.889)
BR(�1) 1.308 1.293 1.322nn 1.244nn 1.301 1.298

(1.156) (1.160) (0.535) (0.541) (1.142) (1.129)

F-statistics 11.36nnn 13.04nnn 16.72nnn 16.03nnn 10.97nnn 11.83nnn

Adjusted R2 0.4 0.42 0.34 0.35 0.41 0.43
C-test of en-
dog.(p-
value)

0.201 0.41 0.328 0.749 0.301 0.156

F instruments 74.02 51.04 53.05 34.21 73.05 51.31
Stock–Yogo
weak ID test
(critical val
10% max IV
size)

16.38 19.93 16.38 19.93 16.38 19.93

Partial R2 0.28 0.3 0.23 0.25 0.28 0.3
p-Value An-
derson–Ru-
bin F-test

0.04 0.14 0.28 0.32 0.65 0.75

p-Value An-
derson–Ru-
bin χ2 test

0.04 0.12 0.27 0.3 0.64 0.74

p-Value J-
statistic

0.28 0.21 0.51

No. of ob-
servations

467 467 413 413 467 467

No. of coun-
try-sector
effects

86 86 76 76 86 86

Notes to the table: (a) all variables in logs; (b) coefficient estimates from FE esti-
mation; (c) country-year fixed effects and full set of time dummies included in all
models; (d) robust standard errors (clustered on the sector-country unit) in par-
entheses; (e) significance: npo0.1, nnpo0.05, nnnpo0.01; and (f) the data on EXP,
IMP, DR and BR are not complete, therefore we lose some observations when
adding these covariates in the regressions.

Table 8
Strong PH – TFP IV regression – second stage results.

TFP level TFP growth

(1) (2) (3) (4) (5) (6)

PACE-inst(�1) �0.020n �0.014n – – �0.003 �0.004
(0.009) (0.010) (0.009) (0.011)

PACE-inst(�2) – – �0.013 �0.005 – –

(0.011) (0.009)

TFPG-frontier – – – – 0.241nn 0.245nnn

(0.101) (0.094)
TFP-gap(�1) �0.007 �0.008 �0.012 �0.019 0.007 0.007

(0.022) (0.021) (0.029) (0.025) (0.007) (0.012)
VA(�1) – – – – 0.084nnn 0.085nnn

(0.033) (0.032)
IMP(�1) �0.014 �0.022 �0.041 �0.072 �0.018 �0.017

(0.060) (0.063) (0.061) (0.056) (0.034) (0.031)
EXP(�1) �0.012 �0.001 �0.02 0.001 0.036 0.035

(0.053) (0.046) (0.055) (0.047) (0.032) (0.019)
DR(�1) 0.027 0.029 0.136n 0.148n 0.035 0.035

(0.041) (0.039) (0.080) (0.078) (0.041) (0.038)
BR(�1) �0.012 �0.023 �0.13 �0.153 �0.055 �0.054

(0.078) (0.076) (0.092) (0.103) (0.051) (0.0047)

No. of
observations

467 467 413 413 467 467

No. of country-
sector effects

86 86 76 76 86 86

Notes to the table: (a) all variables in logs; (b) coefficient estimates from FE esti-
mation; (c) country-year fixed effects and full set of time dummies included in all
models; (d) robust standard errors (clustered on the sector-country unit) in par-
entheses; (e) significance: npo0.1, nnpo0.05, nnnpo0.01; and (f) the data on EXP,
IMP, DR and BR are not complete, therefore we lose some observations when
adding these covariates in the regressions.
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of R&D activities to green innovation might indeed push firms to
overcome inertia and to become more efficient in their non-en-
vironmental innovation production. Our analysis suggests that
both these channels could be at work, but cannot cast definitive
results on the strength of these two effects.22

This notwithstanding, the evidence we present has important
policy implications. Increased environmental regulation as proxied
by PACE in our sample did not result in lower innovation levels.
Hence, there is support for the hypothesis that sectors somehow
22 The issue of environmental innovation crowding-out non-environmental in-
novation has been investigated, not necessarily with a specific reference to the PH,
by Gray and Shadbegian (1998), Roediger-Schluga (2003), Kneller and Manderson
(2012), Popp and Newell (2012). Interestingly, these studies all find evidence in
favor of a crowding-out effect.
adapt to tighter regulation, by either shifting inputs or increasing
productivity, in such a way that it does not impair the output of
their innovative activity.

Assessing the validity of the strong PH is admittedly more difficult,
both conceptually and statistically. Conceptually, for instance, one as-
pect on which Porter is silent is the possibility of a Jevons Paradox or
Khazzoom–Brookes effect of environmental regulation when posi-
tively affecting a firm's profitability and competitiveness. Indeed, the
strengthened position of firms may induce them to expand so as to
result into increased pollution. Statistically, there are several proxies
for competitiveness or profitability, from real (productivity, market
entry and exits) to monetary-financial (price-cost margins, profits,
Tobin's q) ones. In our investigation of PACE effects on TFP levels or
growth of European manufacturing sectors, we find that more strin-
gent environmental regulation does not harm productivity either in
one-year or in two-year period. Rather, the overall productivity effect
is neutral. On the whole, potential positive effects on firms' innovation
activity appear not to be able to offset the negative effect of additional
compliance costs. We thus fail to find support in favor of the strong
Porter Hypothesis. From a policy perspective, this should somehow
ease concerns that European manufacturing sectors could be pena-
lized because of increased domestic environmental policy stringency.
The effect of environmental policy is indeed not comparable to the
effect of other factors which would push firms to relocate production,
such as lower foreign wages or capital costs.

Overall, our results confirm that the EU strategy of pursing
green growth, namely reconciling the need for a more sustainable
use of resources with sustained economic growth, is indeed pos-
sible and plausible. Of course, policy interventions to this end need
to be appropriately designed, and concerns about enacting effi-
cient policies that do not stifle competitiveness should always be
present in the policy debate.



Table A.1
Classification of industrial sectors.
Source: International Standard Industrial Classification of all economic activities.

# Sector NACE
Rev.1.1

1 Food products, beverages and tobacco 15–16
2 Textiles and textile products; leather and leather products 17–19

3 Wood and wood products 20
4 Pulp, paper and paper products; publishing and printing 21–22

5 Coke, refined petroleum products and nuclear fuel 23
6 Chemicals, rubber and plastic products 24–25
7 Other non-metallic mineral products 26
8 Basic metals 27
9 Fabricated metal, machinery and equipment, electrical and

optical equipment, transport equipment, manufacturing n.e.c.
28–36

Table A.2
Summary statistics (1997–2009).
Source: our own computations based on the EUROSTAT, the EUKLEM, the OECD
STAN, the OECD ANBERD and the WIOD datasets.

Variable Unit Mean Std. dev. Min Max

PACE/VA percent 3.63 4.56 0.05 49.13
PACE/GO percent 0.92 1.02 0.02 12.60
R&D/VA percent 2.86 4.04 0.00 34.36
PAT/VA pat/bln.euro 12.73 20.28 0.00 148.88
TFP 1.19 0.44 -0.39 2.06
TFPG (growth) 0.01 0.04 -0.55 0.30
GOVR&D percent 1.28 0.46 0.36 2.08
KPAT/VA pat/bln.euro 90 144 0.00 1282
KR&D/VA percent 22.11 34.26 0.00 219.15
EXP percent 0.60 1.14 0.05 15.69
IMP percent 0.33 0.18 0.04 0.97
DR percent 0.08 0.07 0.00 1.00
BR percent 0.09 0.08 0.00 1.00
GDPpc euro 18303 8119 4600 48000
EI toe/bln.euro 1.16 2.49 0.02 42.41

Table A.3
Summary statistics of the main variables by country (1997–2009).
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6. Concluding remarks

This paper has provided fresh new econometric evidence on
the nexus between environmental regulation and competitive-
ness, as captured by innovation activity and productivity, allowing
to shed further light on the well-known Porter Hypothesis in both
its weak and its strong versions. The analysis is based on a panel of
industrial sectors across seventeen European countries over the
period of 1997–2009. Only few papers offer this comprehensive
view, and even fewer do so in the context of manufacturing sectors
of European countries. This is both interesting and relevant, as
environmental regulation in the European Union has increased
since the late 80s.

Another important feature of the paper is that it explicitly ac-
counted for the potential endogeneity of our proxy of environ-
mental policy, PACE, in the investigation of the environmental
regulation-economic performance nexus. Only a handful of papers
seem to have worried about this problem, which basically affects
all proxies for policy stringency, not limited to environmental
policy.

Our conclusions are that there is evidence in favor of the weak
PH in European manufacturing sectors. More precisely, we find
support in the case of patent applications but not of total R&D
expenditures. The overall productivity effect of regulation be-
comes neutral when searching for a strong PH effect. These results
often contrast with the limited available evidence for European
sectors. Furthermore, we show that not controlling for the en-
dogeneity of PACE may lead to biased estimates and may reverse
the interpretation of the environmental regulation effect on eco-
nomic competitiveness.

Our research highlights some important avenues for further
research. One limitation of this paper is the limited coverage due
to the availability of PACE data and of the data used to construct
the productivity proxies. Large economies of the EU, such as Ger-
many, France and Italy could not be included. and the effect of the
increasing number of recent environmental policies that entered
into force after 2006 as consequence of EU-wide environmental
strategy could not fully be captured. In this direction we will focus
our future research effort.

Related to the above problem is the issue of the search for
suitable measures of environmental regulation. The debate sur-
rounding this issue has been recently intensifying and so has re-
search (Brunel and Levinson, 2013; Nesta et al., 2014; Galeotti et al.
2014). This issue is not in principle limited to the environmental
area, but more generally it applies to any empirical analysis of the
impact of policies on economically relevant variables.
Source: our own computations based on the EUROSTAT, the EUKLEM, the OECD
STAN, the OECD ANBERD and the WIOD dataset.

Country PACE/VA PACE/GO R&D/VA PAT/VA TFP TFPG

Bulgaria 5.28 1.14 – 5.13 – –

Cyprus 3.00 0.84 – 11.40 – –

Czech Republic 4.37 0.74 1.87 6.89 1.02 0.02
Estonia 3.28 0.95 2.16 12.88 – –

Finland 2.79 0.78 4.85 25.49 1.27 0.02
Hungary 3.68 1.03 1.50 7.79 1.02 0.00
Lithuania 3.46 0.78 – 4.90 1.01 0.02
Netherlands 4.38 0.84 4.02 38.86 1.17 0.01
Norway 2.81 0.88 4.36 16.95 – –

Poland 3.78 0.12 0.42 2.21 1.03 �0.01
Portugal 2.88 0.63 1.19 4.01 0.98 0.00
Romania 5.85 1.35 3.12 1.83 – –

Slovakia 3.62 0.82 2.06 4.11 – –

Slovenia 3.59 0.83 2.47 12.07 1.32 0.01
Spain 2.01 0.48 2.22 6.73 1.09 0.01
Sweden 5.14 1.73 – 30.84 1.23 0.01
United Kingdom 2.54 0.76 5.49 15.03 1.55 0.02
Total 3.63 0.92 2.86 12.73 1.19 0.01
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Table A.4
Summary statistics of the main variables by sector (1997–2009).
Source: own computations based on the EUROSTAT, the EU KLEM, the OECD STAN,
the OECD ANBERD and the WIOD.

Sector PACE/VA PACE/GO R&D/VA PAT/VA TFP TFPG Energy intensity

1 2.60 0.63 1.05 4.15 1.06 0.01 0.37
2 1.52 0.57 1.25 4.56 1.12 0.01 0.30
3 2.38 0.64 0.48 0.90 1.21 0.01 0.56
4 3.25 1.07 0.60 2.17 1.31 0.01 0.69
5 9.49 1.43 4.88 19.17 0.29 0.01 3.96
6 4.03 1.16 8.17 36.97 1.44 0.01 1.20
7 3.45 1.29 0.99 7.42 1.67 0.02 1.39
8 6.08 1.20 1.90 11.93 1.40 0.01 2.37
9 1.16 0.37 5.99 29.10 1.04 0.01 0.10
Total 3.63 0.92 2.86 12.73 1.19 0.01 1.16
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