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We discuss a procedure to simplify the Landau potential, based on Michel’s reduction
to orbit space and Poincaré normalization procedure, and illustrate it by concrete
examples. The method makes use, as in Poincaré theory, of a chain of near-identity
coordinate transformations with homogeneous generating functions; using Michel’s
insight, one can work in orbit space. It is shown that it is possible to control the
choice of generating functions so to obtain a (in many cases, substantial) simpli-
fication of the Landau polynomial, including a reduction of the parameters it de-
pends on. Several examples are considered in detail. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4927425]

I. INTRODUCTION

Landau theory1,2 is a standard tool in analyzing phase transition; it describes the state of a
physical system in terms of the minima of a certain (Landau) potential. The Landau potential
can however be very complicated, and it is thus essential to be able to simplify it in concrete
applications.

Our motivation here is mainly in applications to liquid crystals; these will be treated more
specifically in a companion paper,8 while the present one deals with the general theory.

We will assume the order N at which the expansion can be truncated is determined (we will
then disregard all terms of degree higher than N); this is usually done by requiring thermodynamic
stability of the resulting model. We focus then on the problem of identifying the terms of order
smaller than or equal to N which are “inessential,” i.e., that can be dropped without changing the
qualitative properties of the Landau potential Φ. More precisely, we discuss which terms can be
eliminated by a careful choice of the coordinates in the order parameter space; our procedure is thus
fully algorithmic, requires only to solve linear equations, and can easily be computer-implemented
via an algebraic manipulation language.

It should be stressed that our procedure, while simplifying terms of order lower than N , will at
the same time generate terms of higher orders. Coherently with the general framework of Landau
theory, which considers truncated series expansions, we will not consider these. In other words, all
of our series will be truncated at the same order N .

Our approach will be through application of Poincaré normalization technique (see, e.g.,
Refs. 3–6); we generalize previous work7 in which we gave full justification to a criterion stated
by Gufan9,10 and extended it to consider a full range of order parameters, in particular, near a phase
transition.

In this paper, a more detailed analysis (compared to Ref. 7) of the relevant operators acting in
the reduction process allows for a more complete characterization of the reduction procedure and of
the reduced potential obtained in this way. In a companion paper,8 as already mentioned, we apply
our method to nematic liquid crystals.

It should be stressed that in the present paper we will work at first nontrivial order, in partic-
ular, when describing the effects of the change of variables to be considered; this corresponds to
classical Poincaré-Birkhoff theory.3–6 In the framework of Dynamical Systems, extensions of this
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classical theory have been considered in order to take into account higher order effects; this goes
under the name of “further normalization”6 and would require some more delicate discussion. This
approach—and its possible extension to Landau theory—will not be discussed here; for the applica-
tion of the Poincaré approach to Landau-deGennes theory of nematic liquid crystals considered in
the companion paper,8 it would be rather convenient to take into account these higher order effects
as well.31

The main result of the paper will be the formulation of an algorithmic method (requiring only
the solution of linear equations) to simplify the Landau potential. It should be stressed that this will
be just based on mathematical manipulations, and more specifically on the choice of adapted coor-
dinates (which are built through a perturbation approach), that is, we will not introduce any physical
considerations. Introducing the latter could of course result, in principle, in a further reduction of
the Landau potential. Thus, our procedure should be seen as a first step eliminating unnecessary
complications through the choice of convenient coordinates; it leaves room for further reduction
based on the Physics of the specific system under study.

We also anticipate that in many cases the resulting simplified potential will still be quite com-
plex, despite a substantial reduction. For example, in Examples 5 and 6 below, we will have to
consider a potential depending in principle on 22 parameters, and will be able to eliminate 16 of
them, but the simplified potential will still depend on 6 parameters and thus be very hard to study.

The plan of the paper is as follows. In Sec. II, we will recall some basic notions, to be used
in the following, also in order to set down our general notation. In Sec. III, we will start applying
the Poincaré approach: we will identify a class of changes of coordinates which is convenient
for our purposes; these are identified by generating functions which are the gradients of invariant
functions. We also discuss how invariant polynomials are transformed under these. In Sec. IV, we
will apply this discussion to Landau polynomials, and see how one can choose the generating func-
tions mentioned above in order to obtain a simpler Landau polynomial. Section V is then devoted
to illustrate the different steps analyzed theoretically in previous sections by means of a number
of case studies. In Sec. VI, we discuss how the analysis can be simplified by passing to adapted
coordinates, and in Sec. VII how the reduction procedure can be of help in analyzing the behavior
of physical systems, i.e., in performing an—quantitative and qualitative—analysis of Landau poly-
nomials. Finally, in Sec. VIII, we discuss the advantages and the limitations of our methods, as well
as possible direction of further extension of the present results, and in brief Sec. IX, we draw some
conclusions.

II. PRELIMINARIES

We will briefly recall some notions from Landau theory, mainly to set the notation to be used
below; see also Ref. 7 for details and for further references (in particular, on invariants theory).
Summation over repeated indices is understood.

A. Generalities

We denote by x ∈ M ⊆ Rm the order parameter, and by G the group acting in M to describe
symmetry of the system in the order parameters space; this acts through a real representation, i.e., a
set of matrices {Tg , g ∈ G}; as this is fixed and in order to avoid cumbersome notation, we also
just write g for Tg as well. We assume G is compact, and it acts linearly and orthogonally in Rm,
mapping the order parameter space M to itself.32

The effective potential Φ(x) ∈ R is a G-invariant polynomial, so we should preliminarily deter-
mine the most general G-invariant polynomial in the xi; the Landau potential Φ(x) will be a
truncation of Φ to a suitable order N . We would then like to omit some “unessential” terms of order
n ≤ N in Φ (see below).

The polynomials Φ and Φ have coefficients depending on external (control) parameters λ ∈
Λ ⊆ RL, so that we will also write Φ(x; λ), Φ(x; λ); the equilibrium state of the system is described
by the minima of Φ(x; λ), which we denote as xα(λ). In general, there will be different minima for
a given value of λ: in particular, if x(λ) is not a fixed point for the G-action, then the whole G orbit
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through x(λ) will be an orbit of minima. Moreover, there can be different G-orbits of minima for a
given value of λ.

The symmetry of the state corresponding to x(λ) will correspond to Gx(λ), the isotropy group of
x(λ); we recall that by definition Gx B {g ∈ G : Tg x = x}.

If x and y are on the same G-orbit, y = gx, then Gy = gGxg
−1; the conjugacy class of isotropy

subgroups associated to any G-orbit in M is called the orbit type [Gx]. A phase will be described by
an orbit type.

A necessary condition to have a phase transition at λ = λ0 is that the orbit type [Gx(λ)] is not
constant in a neighborhood of λ0, no matter how small.

We stress again that it is inherent to Landau theory to consider a truncated series expansion;
thus, all of our computations and theoretical considerations will disregard higher order terms. In
particular, when our change of variables would generate terms of order higher than N , these will
simply be dropped.

B. Invariant polynomials

By the Hilbert basis theorem,12,13 there is a set {J1(x), . . . , Jr(x)} (with our hypotheses on G,
r is guaranteed to be finite12) of G-invariant homogeneous polynomials of degrees {d1, . . . ,dr} (we
can and will always order these so that d1 ≤ d2 ≤ · · · ≤ dr) such that any G-invariant polynomial
Φ(x) can be written as a polynomial in the {J1, . . . , Jr}, i.e.,

Φ(x) = Ψ [J1(x), . . . , Jr(x)] , (1)

with Ψ a polynomial in (J1, . . . , Jr).
When the Ja are chosen so that none of them can be written as a polynomial of the others and

r has the smallest possible value, we say that they are a minimal integrity basis (MIB), and that the
{Ja} are a set of basic invariants for G.

When the elements of a MIB for G are algebraically independent, we say that the MIB is
regular; not all groups G admit a regular MIB (see Example 2 below).

We will from now on assume we have chosen a MIB, with elements {J1, . . . , Jr} (of degrees
{d1, . . . ,dr} in x, with d1 ≤ d2 ≤ · · · ≤ dr).

C. The (Sartori)P-matrix

In the following, we will need to consider a matrix built with the gradients of basic invariants,
which we call the Sartori P-matrix.14 This is defined, with ⟨., .⟩ the standard scalar product in
M = Rm, as

Pih(x) B ⟨∇Ji(x),∇Jh(x)⟩. (2)

The gradient of an invariant is necessarily a covariant quantity; the scalar product of two covariant
quantities is an invariant one, and thus can be expressed again in terms of the basic invariants.
Moreover, we always deal with polynomials. Thus, the P-matrix can always be written in terms of
the J themselves.

D. Orbit space and the Michel principle

Let us come back to Φ; this is G-invariant and thus can be written in terms of the basic
invariants. The evaluation of Φ : M → R is in principle substituted by evaluation of J : M → Ω and
π : Ω → R; here, we have denoted byΩ ⊆ Rr the target space for J = (J1, . . . , Jr).

If—as in Landau theory—we have to consider the most general G-invariant polynomial on M ,
we only have to deal with the map π : Ω → R. In general, Ω is a semi-algebraic submanifold (i.e., it
is defined by polynomial equalities and inequalities) of Rr , possibly of dimension smaller than r; if
the MIB is regular, thenΩ has dimension r .
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The space Ω is also known as the orbit space for the G action on M; indeed, its points are
in one-to-one correspondence with the G-orbits in M , Ω ≃ M/G. The geometry of orbit space is
discussed, e.g., in Refs. 12 and 14–16; for applications to Dynamics, see, e.g., Ref. 17.

The Landau-Michel principle states that Landau theory can be worked out in the G-orbit space
Ω B M/G.

E. Thermodynamic stability and convexity

Let us now briefly discuss how the request of thermodynamic stability,2 i.e., convexity, is
reflected in the polynomial π(J).

Consider first the regular case; now π : Rr → R, and the Ja can be considered as independent
variables. The minimal Landau polynomial Φ(x) = π(J) will be quadratic in the J, and the stability
is ensured by requiring that the matrix Dih = ∂2Φ/(∂xi∂xh) is positive definite for |x | sufficiently
large.

So the prescription in this case will be to consider a polynomial of order (at least) N =
2 max(d1, . . . ,dr) = 2dr and of course choose coefficients so that the matrix D is positive definite
for large |x |.

If we deal with a non-regular case, this prescription also works: maybe it would also be possible
to stop at a lower order, as we have to care only about the submanifold of Ω allowed by the relations
between the Ja, but if we require stability in all ofΩ we are on the safe side.

Some remarks are in order here:

(i) The prescription is not to write π as a quadratic polynomial in the Ja and then express Φ in
terms of this; rather it is to consider the most general G-invariant polynomial of order 2dr

(this can contain quite high powers in some of the Ja’s, see examples below).
(ii) The requirement to have D positive definite for large |x | is surely satisfied if the largest order

term in Φ(x) is a power of ρ = |x |2.
(iii) The coefficients of (at least some of) the polynomials will depend on the external parameters;

in particular, this will be the case for J1 = |x |2, whose coefficient controls the loss of stability
of the critical point x = 0 and thus the onset of the phase transition.

III. TRANSFORMATION OF INVARIANT POLYNOMIALS

We will apply to Landau theory the technique of Poincaré transformations. These are the
fundamental tool of the theory of Poincaré-Birkhoff normal forms;3–5 see Ref. 7 for a more com-
plete discussion of the relation of these with Landau theory.

Let us consider G-invariant polynomials Φ(x) = Ψ[J(x)]. We write

Φ(x) =
∞
k=0

Φk(x), (3)

where Φk(ax) = ak+2Φk(x).
We want to consider changes of coordinates of the form

xi → xi + hi
m(x), (4)

with hm(ax) = am+1hm(x); moreover, we want to preserve the symmetry properties of Φ. Thus, the
function h : M → M has to transform in the same way as x under the G-action, i.e., we have to
require

h(Tg x) = Tg h(x)
for all x ∈ M and all g ∈ G. We will choose hm to be the gradient of a G-invariant function Hm(x),
i.e.,

hi
m(x) = gi j (∂Hm/∂x j),

with g the metric in M; note Hm(ax) = am+2Hm(x).
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As Hm is G-invariant, it is also possible to write it as a function of the basic invariants:
Hm(x) = χm[J1(x), . . . , Jr(x)]. This yields

(∂Hm/∂xi) = (∂ χm/∂Jα) · (∂Jα/∂xi). (5)

In order to know how (4) acts on (3), it suffices to know how it acts on the basic invariants Ja,
and how this is reflected in the action on Φ. The computations are straightforward, but the resulting
formulas can be considerably involved.

Luckily, we will only need the first order terms; dropping higher order terms, recalling the
expression for hi, and using (5), we get

Ja(x) → Ja(x) + (∂Ja/∂xi)δxi

= Ja(x) + (∂Ja/∂xi)gi j(∂Hm/∂x j)
= Ja(x) + (∂Ja/∂xi)gi j(∂ χm/∂Jb)(∂Jb/∂x j)
= Ja(x) + Pab (∂ χm/∂Jb). (6)

IV. REDUCTION OF LANDAU POLYNOMIALS

Let us now apply the above discussion to the reduction of an invariant polynomial Φ(x) =
Ψ(J1, . . . , Jr). That is, we want to choose the χm so to obtain a convenient (reduced) form of the
polynomials Ψk, hence of the Φk as well.

A. General reduction scheme

We have in general, dropping h.o.t. as usual,

Ψ(J) → Ψ(J + δJ) = Ψ(J) +
r

α=1

∂Ψ(J)
∂Jα

δJα. (7)

We have seen that under (4) the Ja(x) change according to (6); hence, we readily obtain at first order

δΨ =
∂Ψ

∂Jα
Pαβ

∂ χm

∂Jβ
. (8)

Let us now consider expansion (3) for Φ, and write correspondingly Ψ =


k Ψk, where
Φk(x) = Ψk[J(x)]. We will also expand the P-matrix in homogeneous terms, P = 

k P(k), again
with P(k) homogeneous of degree (k + 2) in the x. Note that Pih is homogeneous of degree
(di + dh − 2); in particular, P(0) corresponds to the sub-matrix relating quadratic invariants only.

It follows from our discussion that the terms Ψk with k < m are not changed, while the term Ψm

changes as

Ψm → Ψm +
∂Ψ0

∂Jα
P(0)
αβ

∂ χm

∂Jβ
. (9)

Terms of higher order change in a more complex way.33

We can thus operate sequentially with H1,H2,H3, . . .; at each stage (generator Hm), we are
not affecting the terms Ψk with k < m. Moreover, we can just consider the first order correction;
higher order terms will be changed in some complex way but they were generic, hence will continue
being such, and (those of degree not higher than the truncation order N) will be taken care of in
subsequent steps.

It should be stressed that in (9) it is not the full P-matrix which appears, but only its quadratic
(in x) part P(0); this in turn only depends (linearly) on the quadratic invariants.

B. Analysis of the reduction procedure

Let us now consider (9) in more detail; we are interested in the case where x = 0 is always
a critical point for the Landau polynomial (albeit not necessarily a minimum); then there will be
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invariants J1, . . . , Js (with s ≤ r) quadratic in the x, and only these will appear in Ψ0, which will be
of the form

Ψ0 =

s
α=1

cα Jα, (10)

with cα some real constants. Thus, (9) can be rewritten as Ψm → Ψm + δΨm with

δΨm = cα P(0)
αβ

∂ χm

∂Jβ
B −L0(χm). (11)

It is quite clear that any term in Ψm which lies in the range of the linear differential operator

L0 B −cα P(0)
αβ

∂

∂Jβ
(12)

can be eliminated by a suitable choice of χm. On the other hand, we can always add to χm some
term in the kernel of L0 without affecting δΨm.

More precisely, let us denote by Sm the set of smooth functions F : M → R which are G-
invariant and homogeneous of degree (m + 2) in the x, and by πm the operator of projection to
Ran(L0) ∩ Sm. Then, any term Ψm ∈ πm(Sm) can be eliminated via the step-m Poincaré transforma-
tion by choosing the generating function as Hm(x) = χm[J(x)] with χm a solution to the equation

L0(χm) = πmΨm; (13)

we will refer to this as the homological equation, like in standard Poincaré normal forms theory.3,4

It should be noted that if πmΨm = Ψm homological equation (13) determines the generating
function to completely cancel the Ψm term; but when we deal with the highest order terms in the
Landau polynomial (m = N), we do not want to completely cancel these. In fact, we should be
careful to preserve the thermodynamical stability (i.e., the convexity at large |x |, as discussed in
Sec. II E), see below.

Remark 1. It should be stressed that the whole procedure is based on a non-degeneration
hypothesis, i.e., on the assumption to have a non-zero quadratic part Ψ0. If this is not the case, i.e., if
the cα in (10) are all zero, the homological operator L0 is trivial, and the theory simply vanishes.34

Thus, the reader should not be surprised if later on, in concrete examples, he/she will always find
that results depend on conditions amounting indeed to the non-vanishing of the quadratic part of the
potential.

C. The operatorL0

Let us consider in more detail the operator L0. As remarked above, P(0) necessarily depends
only on the quadratic invariants J1, . . . , Js (with 1 ≤ s ≤ r) and is linear in these. Thus, we can
always write P(0) = κγJγ with κγ a constant real matrix (with numerical entries Kγ

αβ), i.e.,

P(0)
αβ = Kγ

αβ Jγ; (14)

the real coefficients Kγ
αβ (and the matrices κγ) are identically zero for γ > s.

With this notation, the operator L0 reads

L0 = −[(cα Kγ
αβ) Jγ] ∂

∂Jβ
B − (Q γ

β Jγ) ∂

∂Jβ
. (15)

Note that we can reach the same expression in a slightly different way; indeed, (12) can be
rewritten as

L0 = −Θβ (∂/∂Jβ), (16)

with of course Θβ = cαP(0)
αβ; as we know that P(0) is linear in the J, necessarily Θβ = Q γ

β Jγ for
some constant matrix Q, and we arrive again at (15).
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D. Normalized versus original coordinates

It should be stressed that the simplification (or normalization, à la Poincaré) procedure is based
on passing from the original coordinates—which in this case are the order parameters—to new
coordinates which are expressed as non-homogeneous functions of the old ones.

This means, in particular, that albeit one may have at first sight the impression that the reduced
Landau polynomial supports phase transitions of order different from the original one (e.g., in the
case where the next to lowest order terms are fully canceled), when the predictions obtained on the
basis of the reduced polynomial are mapped back to the original coordinates, one does of course go
back to the original phase transition order.

More generally, as what we do here is just a sequence of changes of coordinates, it is clear that
no physical predictions can be altered—albeit obtaining such predictions may be simpler in the new
coordinates.

V. EXAMPLES

In order to fix ideas, let us consider explicitly some concrete (simple) example. We will
follow our theoretical discussion, and consider “in parallel” the different steps for various examples,
in different subsections; we trust this will better help the reader to familiarize with the present
approach. We will also deal with some of the examples considered in Ref. 7, in order to make easier
comparison with the methods used in previous work.

Note that the symmetry considered in Example 1 is the one of bent-core (or chevron-shaped)
nematic liquid crystals, that in Example 4 is the one of isotropic nematics, and those of Examples 5
and 6 are relevant to anisotropic nematics.19,20

Here, all the indices will be written as lower ones, in order to avoid any possible confusion with
exponents.

A. TheP and Q matrices

Example 1. Consider M = R2 = {x, y} with group G = Z2 × Z2 generated by

gx : (x, y) → (−x, y), gy : (x, y) → (x,−y);
in this case, the MIB is given by two invariants, both of them quadratic,

J1 = x2, J2 = y2.

Note that here ρ B |x |2 is written in terms of the chosen basic invariants as ρ = J1 + J2.
We have P(0) = P, and we get immediately

P = P(0) = *
,

4J1 0
0 4J2

+
-

; Θ = cP(0) = *
,

4c1J1

4c2J2

+
-
.

In other words, now the matrix Q is diagonal,

Q = *
,

4c1 0
0 4c2

+
-
.

Example 2. Consider M = R2, and G = Z2 is the group generated by inversion (simultaneous
reflections in x and in y), i.e., by

g : (x, y) → (−x,−y).
Now the MIB is given by three invariants, all of them quadratic,

J1 = x2, J2 = y2, J3 = x y.

Again ρ = J1 + J2. Note that the basis is not regular: we have J1J2 = J2
3 .
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Again P(0) = P, and in this case we get

P(x, y) =
*...
,

4x2 0 2x y
0 4y2 2x y

2x y 2x y x2 + y2

+///
-

=
*...
,

4J1 0 2J3

0 4J2 2J3

2J3 2J3 J1 + J2

+///
-

.

It follows that

Θ =
*...
,

4c1J1 + 2c3J3

4c2J2 + 2c3J3

c3(J1 + J2) + 2c1J3 + 2c2J3

+///
-

,

and hence

Q =
*...
,

4c1 0 2c3

0 4c2 2c3

c3 c3 2(c1 + c2)

+///
-

.

Example 3. Consider now the group generated by rotation of an angle ϑ = (2π/3) in the plane
(x, y); with R, the rotation matrix

R = *
,

cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

+
-
,

the group consists simply of G = {I,R,R2}. The basic invariants are

J1 = x2 + y2, J2 = x3 − 3x y2, J3 = y3 − 3x2y;

only the first one is quadratic.35 In this case, ρ = J1. The P-matrix is

P =
*...
,

4J1 6J2 6J3

6J2 9J2
1 0

6J3 0 9J2
1

+///
-

,

and P(0) is just the P11 entry, hence

Θ = 4 c1 J1, Q = 4 c1.

Example 4. Consider M = R3 and G = SO(2) × Z2, with SO(2) acting as rotations in the (x, y)
plane, i.e., with the same R as in Example 3, and with Z2 acting as reflections in the z variable,
z → −z (this is met in studying isotropic nematic liquid crystal). Here, we have two basic invariants,

J1 = (x2 + y2), J2 = z2;

both of them are quadratic and they have no algebraic relation. Here, again ρ = J1 + J2. Now

P = P(0) = *
,

4J1 0
0 4J2

+
-

and of course

Θ = *
,

4c1J1

4c2J2

+
-

; Q = *
,

4c1 0
0 4c2

+
-
.

Note that the dimension of the MIB and the expression of Q (and ρ as well) are the same as in
Example 1; thus, the two examples will be dealt with in a similar manner for what concerns the orbit
space analysis, albeit the interpretation in the original (order parameters) space will be different due
to the different expressions for J1, J2 in terms of the order parameters.

Example 5. Consider now M = R3 and the group G = Z2 × Z2 × Z2 × S3 generated by reflec-
tions in each of the coordinates, i.e., by

gx : (x, y, z) → (−x, y, z), gy : (x, y, z) → (x,−y, z), gz : (x, y, z) → (x, y,−z)
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and by permutations in the (x, y, z) coordinates. This is the situation studied by Sergienko, Gufan,
and Urazhdin.10 (More precisely, they considered the crystallographic group Pm3m;11 this includes
the reflections in each of the coordinate planes (x y), (y z), (xz) mentioned above as well as inver-
sion across an axis (ix : (x, y, z) → (x,−y,−z) and the like for iy and iz), reflections in planes
through the diagonal of the unit cube, i.e., in the planes y = ±x, z = ±x, z = ±y , and rotations
around the coordinate axes. All these elements are also generated by the gx, gy, gz elements plus the
full permutation group in three elements.) The MIB consists of three invariants,

J1 = x2 + y2 + z2, J2 = x2y2 + y2z2 + x2z2, J3 = x2y2z2;

only one of these is quadratic, and ρ = J1. In this case,

P = 4
*...
,

J1 2J2 3J3

2J2 (J1J2 + 3J3) 2J1J3

3J3 2J1J3 J2J3

+///
-

;

the quadratic part reduces to P11 and is hence scalar, i.e., P(0) = 4J1. In this case, Θ = 4c1J1,
Q = 4c1.

Example 6. Consider now M = R3 and G the crystallographic group G = D2h (this is also met
in studying anisotropic nematic liquid crystals); this acts in R3 via

(i) inversion through the center,

I : (x, y, z) → (−x,−y,−z);
(ii) reflections in each of the coordinate planes,

σxy : (x, y, z) → (x, y,−z), σyz : (x, y, z) → (−x, y, z), σxz : (x, y, z) → (x,−y, z);
(iii) rotations (by an angle π) around each coordinate axis,

Rx : (x, y, z) → (x,−z, y), Ry : (x, y, z) → (z, y,−x), Rz : (x, y, z) → (−y, x, z);
(iv) and, of course, the identity.

It follows immediately from (i) and (ii) that functions f (x, y, z) can be invariant under G = D2h
only if they are actually functions of x2, y2, z2; it is then easy to check that, in view of (iii), they must
actually be also symmetric under any permutation of the coordinates.

We conclude that the MIB is provided by

J1 = x2 + y2 + z2, J2 = x2y2 + x2z2 + y2z2, J3 = x2y2z2.

This is the same set of invariants met in Example 5 above, and the discussion for that case
(above and in the following) also applies here; we will thus not further discuss this example. This
illustrates an important point, i.e., different groups can give raise to the same set of invariants and
can hence be dealt with, from our point of view, in exactly the same way (see also the note at the end
of Example 4).

B. Straightforward reduction—non-maximal order

We can apply the general reduction scheme discussed earlier on to the examples considered
above, which we will do now for what concerns non-maximal order terms. Note that in Examples 1,
2, and 4, we would have a polynomial of order four and no terms of non-maximal order to simplify.
Thus, for these examples, we will consider a Landau polynomial of order six, and discuss the
simplification of the terms of order four. In Examples 5 and 6, on the other hand, the lowest possible
truncation of the Landau polynomial is at order 12, and there is no need to artificially increase it.

The main purpose of this subsection is to show that one can obtain very explicit formulas for
the generating functions appearing in our reduction procedure.

For terms of the non-maximal orders, the strategy is simple: simplify them as much as possible.
Terms of maximal order will be dealt with—taking care of thermodynamic stability—in Subsec-
tion V C.
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Remark 2. The reader should be warned that we are using a simplified notation. In fact, each
change of variables at order m will affect the terms of higher orders, hence will change the coef-
ficients kq (with q > m) appearing in the Landau potential. In the explicit formulas below for am,
the km should be understood as the coefficients appearing in the potential after all the previous steps
have been performed. This should be taken into account when working concrete applications, as in
the companion paper devoted to application of this method to liquid crystals.8

Example 1 (continued). In this case, the quadratic part of the Landau polynomial will be
written as

Φ0 = c1 J1 + c2 J2;

the general invariant polynomial of order four is

Φ2 = k1 J2
1 + k2 J2

2 + k3 J1 J2.

A similar general expression also holds for the invariant generating function of order four,36

H2 = −
�
a1 J2

1 + a2 J2
2 + a3 J1 J2

�
.

Acting with L0 on H2, we obtain

L0(H2) = [(4c1J1) (2a1J1 + a3J2) + (4c2J2) (2a2J2 + a3J1)]
= 8a1c1 J2

1 + 8a2c2 J2
2 + 4a3(c1 + c2) J1J2.

In order to eliminate the term Φ2, we should solve the homological equation L0(H2) = Φ2, which is
now an equation for the unknown coefficients (a1,a2,a3) appearing in the generating function. Actu-
ally, the homological equation is promptly recast in terms of the coefficients—and of the parameters
ci—as

8a1c1 = k1, 8a2c2 = k2, 4a3(c1 + c2) = k3;

thus, it suffices to choose

a1 =
k1

8c1
, a2 =

k2

8c2
, a3 =

k3

4(c1 + c2)
in order to eliminate completely the Φ2 term. Needless to say, this is possible provided c1 , 0,
c2 , 0, (c1 + c2) , 0; if some of these non-degeneracy conditions (involving only the quadratic part
of the Landau polynomial) fails, we correspondingly have to retain the associated quartic term(s).

Example 2 (continued). In this case, the quadratic part of the Landau polynomial will be
written as

Φ0 = c1 J1 + c2 J2 + c3 J3;

the general invariant polynomial of order four is

Φ2 = k1 J2
1 + k2 J2

2 + k3 J2
3 + k4 J1J3 + k5 J2J3

(note we have not written any J1J2 term; as J1J2 = J2
3 , this would be redundant). A similar general

expression also holds for the invariant generating function of order four,

H2 = −
�
a1 J2

1 + a2 J2
2 + a3 J2

3 + a4 J1J3 + a5 J2J3
�
.

Acting with L0 on H2, we obtain

L0(H2) = 4a1c1 J2
1 + 4a2c2 J2

2 + [(a4 + a5)c3 + 2a3(c1 + c2 + 2c3)] J2
3

+[2a1c3 + a4(3c1 + c2 + 2c3)] J1J3 + [2a2c3 + a5(c1 + 3c2 + 2c3)] J2J3.

The homological equation L0(H2) = Φ2 is now recast as

k1 = 4a1c1, k2 = 4a2c2, k3 = (a4 + a5)c3 + 2a3(c1 + c2 + 2c3),
k4 = 2a1c3 + a4(3c1 + c2 + 2c3), k5 = 2a2c3 + a5(c1 + 3c2 + 2c3).
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Its solution is provided by

a1 =
k1

4c1
, a2 =

k2

4c2
, a3 =


2k3 +

c3(c3k1 − 2c1k4)
c1(3c1 + c2 + 2c3) +

c3(c3k2 − 2c2k5)
c2(c1 + 3c2 + 2c3)

 
1

4 (c1 + c2 + 2c3)

,

a4 =
2c1k4 − c3k1

2c1(3c1 + c2 + 2c3) , a5 =
2c2k5 − c3k2

2c2(c1 + 3c2 + 2c3) .
Here, again one should impose non-degeneracy conditions corresponding to the requirement that
the fractions appearing in the explicit expressions for the ai are well defined; if these fail, some (or
all) of the fourth-order terms cannot be eliminated.

Example 3 (continued). The situation in Example 3 is different from the one of previous
examples; indeed, now we have third order invariants. We write as usual

Φ0 = c1 J2
1 ,

and the third order invariant term will be

Φ1 = k1 J2 + k2J3;

correspondingly, the third order generating functions will be written as

H1 = − (a1 J2 + a2 J3)
and does not depend on J1. Thus, any third order invariant is in the kernel of L0, and it does not
produce any effect (at the first order level). At order four, the invariant term and the generating
functions will be written as

Φ2 = k3 J2
1 , H2 = −a3 J2

1 .

We immediately have

L0(H2) = 8 c1 a3 J2
1 ,

and the homological equation is solved by choosing

a3 =
k3

8c1
.

We also have invariants (and generating functions) of order five; these are

Φ3 = k4 J1J2 + k5 J1J3; H3 = − (a4 J1J2 + a5 J1J3) .
Now we have

L0(H3) = 4c1a4 J1J2 + 4c1a5 J1J3;

hence, in order to solve the homological equation, we just choose

a4 =
k4

4c1
, a5 =

k5

4c1
.

Needless to say, the elimination of terms of both order four and five is possible only under the
condition c1 , 0.

Example 4 (continued). As remarked above, once we set our problem in orbit space this is
the same as Example 1 (albeit with a different interpretation when we want to go back to the order
parameters space). We can thus just reproduce the computations seen in dealing with Example 1
above. We write the quadratic term in the form

Φ0 = c1 J1 + c2 J2;

the quartic term and generating functions will read

Φ2 = k1J2
1 + k2J2

2 + k3J1J2; H2 = −
�
a1J2

1 + a2J2
2 + a3J1J2

�
.

Thus, we readily get

L0(H2) = 8a1c1 J2
1 + 8a2c2 J2

2 + 4a3(c1 + c2)J1J2;
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the homological equation is solved by choosing

a1 =
k1

8c1
, a2 =

k2

8c2
, a3 =

k3

4(c1 + c2) .
In this case, the non-degeneracy conditions are of course c1 , 0, c2 , 0, (c1 + c2) , 0.

Examples 5 and 6 (continued). We will as usual write Φ0 = c1J1. In this case, no terms of odd
order are allowed by the symmetry, and we should eliminate as many terms as possible at orders
4,6,8,10.

The different invariant terms of order not higher than ten are written as

Φ2 = k1J2
1 + k2J2,

Φ4 = k3J3
1 + k4J1J2 + k5J3,

Φ6 = k6J4
1 + k7J2

1 J2 + k8J1J3 + k9J2
2 ,

Φ8 = k10J5
1 + k11J3

1 J2 + k12J2
1 J3 + k13J1J2

2 + k14J2J3;

the expressions for the Hk are obtained from these by replacing the ki coefficients with ai ones and
changing sign. As we have seen above,

Θ = 4 c1 J1, Q = 4 c1.

This means that, as easy to compute,

L0(H2) = 8a1c1J2
1 ,

L0(H4) = 12a3c1J3
1 + 4a4c1J1J2,

L0(H6) = 16a6c1J4
1 + 8a7c1J2

1 J2 + 4a8c1J1J3,

L0(H8) = 20a10c1J5
1 + 12a11c1J3

1 J2 + 8a12c1J2
1 J3 + 4a13c1J1J2

2 .

Note that in this case several terms appearing in Φ are not in the range of L0, and hence cannot
be eliminated. At the same time, some terms in the Hk are in the kernel of L0 and thus inessential to
our procedure.

In particular, by choosing

a1 =
k1

8c1
, a3 =

k3

12c1
, a4 =

k4

4c1
, a6 =

k6

16c1
, a7 =

k7

8c1
,

a8 =
k8

4c1
, a10 =

k10

20c1
, a11 =

k11

12c1
, a12 =

k12

8c1
, a13 =

k13

4c1
,

the Landau potential is reduced to one of the form
Φ = β1J2 + β2J3 + β3J2

2 + β4J2J3.

Needless to say, this is possible provided c1 , 0. It would be possible (but not of interest here)
to compute explicitly the coefficients βi in terms of the ki and ai. Note that the coefficients
a2,a5,a9,a14 are not determined by our procedure.

C. Straightforward reduction—maximal order

For terms of maximal order, our strategy should not be to eliminate whatever can be elimi-
nated through our procedure. We should instead take care to guarantee the thermodynamic stability
(i.e., convexity for large |x |, see Section II E) of the simplified (truncated) Landau polynomial.

A simple way to guarantee this, if all terms could be eliminated, is by arranging things so that
ΦN = |x |N+2. (Note this is surely possible: all terms which can be eliminated are in the range of L0,
so we can also arrange things so that a specific term appears as result of applying L0 on a suitable
generating function.) In practice, we should express ρ = |x |2 in terms of the basic polynomials Ji,
and then keep the term ρm (with m = N/2 + 1) in ΦN .37

Example 1 (continued). In this case N = 4, and

Ψ4 = k4J3
1 + k5J2

1 J2 + k6J1J2
2 + k7J3

2 ;

the general generating function at this order can be written as

χ4 = b1J3
1 + b2J2

1 J2 + b3J1J2
2 + b4J3

2 .
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Acting on this with L0, we obtain

L0(χ4) = 12b1c1J3
1 + 4J2

�
b2(2c1 + c2)J2

1 + J2(b3(c1 + 2c2)J1 + 3b4c2J2)� .
Recalling that the transformed term will be

Ψ4 = Ψ4 + δΨ4 = Ψ4 − L0(χ4),
and that in this case ρ = J1 + J2, it is possible to get Ψ4 = βρ3 by choosing (provided c2 , 0,
c1 + c2 , 0)

b2 =
36b1c1 − 3k4 + k5

4(2c1 + c2) , b3 =
36b1c1 − 3k4 + k6

4(2c1 + c2) , b4 =
12b1c1 − k4 + k7

12c2
.

With this choice, we have

Ψ4 = (k4 − 12b1c1) ρ3;

thus, by choosing (as usual, under the assumption c1 , 0)

b1 =
k4 − 1
12 c1

,

we always obtain Ψ4 = ρ3.
Summarizing, in this case (G = Z2 × Z2, Landau polynomial of order six), under the assump-

tions c1 , 0, c2 , 0, (c1 + c2) , 0 we can always reduce to consider a Landau polynomial of the
form

Ψ = c1 J1 + c2 J2 + (J1 + J2)3,
thus getting rid of the seven additional parameters k1, . . . , k7.

Example 1B. In Example 1, we have considered the case where one considers a Landau
polynomial of order six (this was in order to avoid a trivial case at non-maximal orders, i.e., in
Sec. V B). We can now also consider the case where the Landau polynomial is of order four (thus,
N = 2), i.e., Φ = Φ0 + Φ2. The quadratic part Φ0 is not modified, so we only have to modify the
quartic—and maximal—term Φ2. We know from Example 1 that it could be fully eliminated, but in
order to preserve stability we should actually leave a term of the type ρ2, i.e., (J1 + J2)2. In view of
the expressions for Ψ2 and χ2 (see again Example 1 in Sec. V B), this is obtained by choosing

a1 =
k1 − 1

8c1
, a2 =

k2 − 2
4(c1 + c2) , a3 =

k3 − 1
8c2

.

Thus, for G = Z2 × Z2, and Landau polynomial of order four, under the assumption c1 , 0, c2 , 0,
(c1 + c2) , 0, we can always reduce to consider a Landau polynomial of the form

Ψ = c1 J1 + c2 J2 + (J1 + J2)2,
thus getting rid of the three additional parameters {k1, k2, k3}.

Example 2 (continued). In this case, also N = 4, but we should take into account that J1J2 =

J2
3 ; we can thus write the general Ψ4 term and the generating function χ4 as

Ψ4 = k6J3
1 + k7J2

1 J3 + k8J1J2
3 + k9J2

2 J3 + k10J2J2
3 + k11J3

2 + k12J3
3 ,

χ4 = b1J3
1 + b2J2

1 J3 + b3J1J2
3 + b4J2

2 J3 + b5J2J2
3 + b6J3

2 + b7J3
3 .

The explicit expressions (which can be readily obtained with a symbolic manipulation lan-
guage, e.g., in Mathematica) are in this case rather involved and we will not report them. However,
one obtains that by a suitable choice of the coefficients appearing in χ4, it is possible to obtain

Ψ4 B Ψ4 − L0(χ4) = ρ3 = (J1 + J2)3.
The suitable choices for the bi have a denominator di of the form di = ri(c1 + c2) R where ri are
some positive integers and

R = (5c2
1 + 26c1c2 + 5c2

2 − 4c2
3) (4c1c2 − c2

3) (8c2
1 + 20c1c2 + 8c2

2 − c2
3).
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The non-degeneracy conditions allowing for such a reduction of the Landau polynomial (besides
those met at order four, see Sec. V B) are then just the non-vanishing of the above denominators,
i.e., (c1 + c2) , 0, R , 0.

Summarizing, in this case (G = Z2, Landau polynomial of order six), under the assumption
c1 , 0, c2 , 0, (c1 + c2) , 0, (c1 + c2 + 2c3) , 0, (3c1 + c2 + 2c3) , 0, (c1 + 3c2 + 2c3) , 0, R , 0,
we can always reduce to consider a Landau polynomial of the form

Ψ = c1 J1 + c2 J2 + c3 J3 + (J1 + J2)3,
thus getting rid of the 12 additional parameters k1, . . . , k12.

Example 2B. In this case as well we can consider a variant of the above example, namely, the
case where the Landau polynomial is of order four (N = 2), Φ = Φ0 + Φ2 and hence the discussion
in the framework of Sec. V B would have been trivial.

In this case,

Ψ2 = k1 J2
1 + k2 J1J3 + k3 J2J3 + k4 J2

2 + k5J2
3 ,

χ2 = a1 J2
1 + a2 J1J3 + a3 J2J3 + a4 J2

2 + a5J2
3 .

Explicit formulas are still rather involved; in fact now Ψ2 = Ψ2 − L0(χ2) results to be simply
Ψ2 = ρ2 with the choice

ai =
αi

ri A

where αi are some rather involved polynomial in the ci and ki, the ri are positive integers, and

A = (c1 + c2) [12c3
1c2 − 3c2

2c2
3 + c4

3 + c2
1(40c2

2 − 3c2
3) + 2c1(6c3

2 − 7c2c2
3)].

This allows to explicitly identify the non-degeneracy conditions under which such a reduction is
possible.

Example 3 (continued). In this case, the general term Ψ4 and the generating function χ4 of
order six read

Ψ4 = k6 J3
1 + k7 J2

2 + k8 J2
3 + k9 J2 J3,

χ4 = b1 J3
1 + b2 J2

2 + b3 J2
3 + b4 J2 J3.

We have

L0(χ4) = 12 b1 J3
1 ;

thus, the terms other than J3
1 cannot be eliminated. On the other hand, in this case ρ = J1, so this is

precisely the term which we do not want to cancel (the reader can easily check that setting this to
zero produces direction in which the potential is not convex for large |x|); we can however set this to
unity, which is obtained by setting

b1 =
k6 − 1

12
.

Summarizing, in this case, i.e., for G = Z3, the sixth order Landau polynomial can always
(provided c1 , 0) be reduced to

Φ = c1J1 + k1J2 + k2J3 + k7J2
2 + k8J2

3 + k9J2J3 + J3
1

(recall k7, k8, k9 are in general different from the initial ones), thus getting rid of the four additional
parameters {k3, . . . , k6}.

Example 4 (continued). In orbit space, this is the same as Example 1; the computations and
results would just reproduce those seen in dealing with Example 1 above and are thus omitted.

Examples 5 and 6 (continued). In this case, the general term Ψ10 and the generating function
χ10 of order 12 are written as

Ψ10 = k15J6
1 + k16J4

1 J2 + k17J3
1 J3 + k18J2

1 J2
2 + k19J1J2J3 + k20J3

2 + k21J2
3 ,

χ10 = b1J6
1 + b2J4

1 J2 + b3J3
1 J3 + b4J2

1 J2
2 + b5J1J2J3 + b6J3

2 + b7J2
3 .
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We obtain immediately

L0(χ10) = (k15 − 24b1c1) J6
1 + (k16 − 16b2c1) J4

1 J2 + (k17 − 12b3c1) J3
1 J3

+ (k18 − 8b4c1) J2
1 J2

2 + (k19 − 4b5c1) J1 J2 J3 + k20 J3
2 + k21 J2

3 .

It is thus clear that we could cancel the J6
1 term (which we do not actually want to cancel) and we

can cancel all the other terms at the exception of the J3
2 and the J2

3 ones, just by choosing, under the
assumption c1 , 0,

b1 =
k15

24c1
, b2 =

k16

16c1
, b3 =

k17

12c1
, b4 =

k18

8c1
, b5 =

k19

4c1
.

On the other hand, the coefficients b6 and b7 are inessential (the corresponding terms are in the
kernel of L0). As for b1, with the choice

b1 =
k15 − 1
24c1

,

we will have a term ρ6 in Ψ6.
In fact, with these choices (and those considered in Sec. V B for lower order generating

functions, all of them valid under c1 , 0), the Landau polynomial of order 12 is reduced to
Φ = c1J1 + β1J2 + β2J3 + β3J2

2 + β4J2J3 + β5J3
2 + β6J2

3 + J6
1 ;

this depends on 6 parameters, while the original one depended on 22 parameters.
Note also that the convexity for large |x| is guaranteed, precisely by the presence of the J6

1 term.

VI. ADAPTED COORDINATES

Let us go back to considering (15); in that formula, Qβ
α = cγK β

γα is by construction a numerical
matrix. It is quite clear that we would be better off using a set of quadratic invariants such that the
matrix Q characterizing the homological operator L0 had diagonal form; if this is not possible, one
could at least set Q in Jordan normal form.

Let us denote a set of new quadratic invariants as

Zµ = Aµν Jν; (17)

here, A is a constant matrix; correspondingly, we have

Jα = A−1
αβ Zβ, (∂/∂Jα) = AT

αβ (∂/∂Zβ).
The operator L0 defined in (15) reads, with these basis invariants,

L0 =
(

Aµα Qαβ A−1
βν

)
Zν

 ∂

∂Zµ
B (Pµν Zν) ∂

∂Zµ
; (18)

here, the matrix P is given by

P = A Q A−1. (19)

We also write P = Ps + Pn, with Ps and Pn the semisimple and nilpotent parts38 of P, with

Ps = diag(λ1, . . . , λs). (20)

Needless to say, to reach this form, the matrix A in (17) should be chosen precisely as the matrix
taking Q into Jordan normal form, which we assume below.

In the following, we will use the set Zα (α = 1, . . . , s) of quadratic invariants, and write
ζi = Js+i (i = 1, . . . ,q = r − s; if s = r then no ζ is present) for basic invariants of higher order.

A. Semisimple P

Let us consider the case where Pn = 0. In this case, we can consider the monomials (in the
invariants)

Γkh B Zk1
1 . . . Zks

s ζ
h1
1 . . . ζ

hq
q ; (21)
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note that χm can be written as

χm = γk1, ...,ks;h1, ...,hq Γkh, (22)

where the sum extends on all the sets k,h such that

s
α=1

2kα +
q
i=1

dr+i hi = m + 2. (23)

It follows immediately from (19) and (20) that

L0 (Γkh) = (λα · kα) Γkh. (24)

Thus, the kernel of L0 restricted to Sm is spanned by all the Γ—among those satisfying (23)—such
that

s
α=1

λα · kα = 0. (25)

This is the equivalent of the Poincaré resonance condition in our case; thus, we will call terms Γkh
satisfying it, resonant, and (25) will be said to be the resonance condition.

Similarly, the range of L0 (applied to Sm) is the subspace of Sm spanned by the Γkh—among
those satisfying (23)—which do not satisfy (25).

We conclude that in this case one can always eliminate—as usual, by a careful choice of the
generating functions H1,H2, . . ., see below—all terms of higher order which are not resonant.39

In other words, we can always reduce—at least in principle—to consider Landau polynomials in
which the terms of higher (but not maximal) order which are allowed by the symmetry but are
non-resonant, are absent.

In more detail, we can always write the generating function as Hm = −ξkhΓkh; if the term of
order m + 2 is written as Φm = ckhΓkh, then the homological equation is solved by choosing

ξkh =
ckh

(λα · kα) , (26)

for the k satisfying (λα · kα) , 0, while ξkh is undetermined (we can, e.g., set it to zero) for k
satisfying (25).

Note that our procedure produces hence some (possibly small) denominators; this will make
that the procedure is well defined only in a small neighborhood of the origin in the M space. Phys-
ically, this is not a problem provided this neighborhood is large enough to include the symmetry-
breaking minima of the theory; if this is not the case, the procedure described here is only formal
and not helpful in practice. This problem is well known in the applications of Poincaré-Birkhoff
normal forms in dynamical and Hamiltonian systems (see also Sec. VIII).

B. Non-semisimple P

In the case where P is not semisimple, i.e., Pn , 0, one does actually proceeds in the same
way, dealing with Ps rather than the full P. That is, the system is set in normal form with respect
to the semisimple part of P, and resonant terms are defined with reference to the semisimple part
of P alone (i.e., as above); this is completely analogous to what is done in the Poincaré approach to
dynamical systems.3–5

As a result, the Landau polynomial can be reduced to include only resonant higher order terms
Φk, while the quadratic one is Φ0 = Φs + Φn, where of course Φs,Φn are associated, respectively, to
Ps and Pn.

In terms of the operator L0, this amounts to saying that our previous results (nonlinear terms
can be reduced to those not in the range of L0, etc.) remain true, with a difference: now the operator
L0 is not associated to the full quadratic part Φ0, but instead to its semisimple part Φs only.
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C. Example

By looking at Section V A, one sees that in Example 1, the Q matrix is diagonal, and in
Examples 3–6, it actually reduces to a scalar. Thus, the only example, among those considered
above, in which the coordinates are not already adapted is Example 2; we are now going to consider
this.

Note that the matrix Q for this case (see Section V A) is diagonal when c3 = 0; we will thus
assume c3 , 0, and simplify our notation by setting k1 = c1/c3, k2 = c2/c3, γ = k1 + k2. Then, Q
reads

Q = c3

*...
,

4k1 0 2
0 4k2 2
1 1 2(k1 + k2)

+///
-

.

This is taken into Jordan normal form by the map

A =
1

4β2

*...
,

−2δ 2δ 4δ2

δ − β −(δ + β) 2
δ + β −(δ − β) 2

+///
-

,

where we have defined

δ B k1 − k2; β =
√

1 + δ2.

The inverse matrix is given by

A−1 =
*...
,

−δ−1 (1 + 2βδ − 2β2)(β − δ)−1 (−1 + 2βδ + 2β2)(β + δ)−1

δ−1 −(β − δ)−1 (β + δ)−1

1 1 1

+///
-

;

the corresponding (diagonal) Jordan form for Q is

P = 2 c3

*...
,

γ 0 0
0 γ − β 0
0 0 γ + β

+///
-

.

In order to check that our construction is working correctly, one can reach the same result in a
different way. The new invariants Zα = AαβJβ are given by

Z1 = [δ/(2β2)] (−x2 + 2δx y + y2),
Z2 = [(δ − β)/(4β2)] [x2 − 2(δ + β)x y + (δ + β)2y2],
Z3 = [(δ + β)/(4β2)] [x2 + 2(β − δ)x y + (β − δ)2y2].

From these expressions, one easily computes the P-matrix in terms of the Z , which we denote by
P. On the other hand, we should now express the quadratic part of the Landau polynomial in terms
of the Zα, i.e., writes

Φ0 = cα Jα = cα A−1
αβ Zβ B cβ Zβ.

Finally, we can write L0 = −cαPαβ(∂/∂Zβ); doing this explicitly, with standard (and boring)
algebra, we obtain L0 = (PαβZβ)(∂/∂Zα) with the same P given above.

VII. REDUCTION AND ANALYSIS OF LANDAU POTENTIALS

In this section, we will discuss how the reduction studied here can be used to analyze—both
quantitatively and qualitatively—the behavior of concrete physical systems in the framework of
Landau theory, i.e., the critical points of Landau potentials. We will again refer to the examples
considered in Sec. V.
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A. Quantitative analysis of Landau polynomials

In this subsection, we consider the simplest of the examples presented above—i.e., Example 1
(recall all computations will also immediately apply to Example 4), albeit with a sixth order Landau
polynomial—and show how the method depicted here can be concretely used to study the problem.
We will give a complete—qualitative and quantitative—analysis of this simple problem.

In concrete cases, one would be satisfied in discussing the qualitative behavior, as will be done
in Subsection VII B, and the simple case at hand here is just to be meant as an illustration of the
method.

The analysis of a concrete problem requires to obtain definite expressions for the coefficients
appearing in the generating functions, i.e., to describe exactly the change of variables to be consid-
ered. A discussion of how to obtain these in a computationally efficient way is contained in the
companion paper,8 and here we will just provide the resulting formulas for the normalizing change
of coordinates, see below.

Examples 1 and 4 (continued). The general sixth order G-invariant Landau polynomial for the
G action considered in Example 1 (and also applying to Example 4) is given, in terms of the original
(x, y) coordinates, by

Φ = (c1x2 + c2y
2) + (k1x4 + k2x2y2 + k3y

4) + (k4x6 + k5x4y2 + k6x2y4 + k7y
6);

note this depends on eight parameters, and analyzing its behavior in terms of these parameters
would be quite a substantial task.

By the (nonunique, see above) change of coordinates

x → x = x

1 −

( (k1x2 + k2y
2)

2c1

)
+ *
,

(1 − k4)x4 + (3 − k6)y4

2c1
+

7k2
1x4 + 3k2

2 y
4

8c2
1

+
k2k3y

4

2c1c2

+
-


,

y → y = y


1 −

(
k3y

2

2c2

)
*
,

(3 − k5)x4 + (1 − k7)y4

2c2
+

5k1k2x4

4c1c2
+

7k2
3 y

4

8c2
2

+
-


,

and truncating the resulting polynomial again at order six, the Landau potential is transformed into
Φ = c1x2 + c2y2 + (x2 + y2)3.

This depends only on the two parameters associated to the quadratic terms, and the analysis of its
critical points is simple enough.

In fact, there is the trivial critical point

p0 = (0,0),
always present and stable for c1 > 0 and c2 > 0; this is invariant under the full G group. Then, there
are some solutions with both x and y nonzero (the explicit expressions for these are extremely
involved and will not be reported), which are therefore invariant only under the trivial subgroup
made of the identity alone. Moreover, there are four families of nontrivial critical points (x,y),
whose existence is limited to ranges of the parameters c1 and c2. The latter are given by

p±1 =
�
±(−c1/3)1/4,0

�
,

p±2 =
�
0,±(−c2/3)1/4� .

The family p±1 exists for c1 < 0, the family p±2 for c2 < 0. As for their stability, by explicit
computations, we obtain that the eigenvalues of the Hessian matrix on p±1 are given by {−8c1,−2c1 +

2c2}. Thus, in their range of existence, these solutions are stable provided (c2 − c1) > 0; given that
c1 < 0, this is always the case for c2 > 0, while for c2 < 0, it amounts to the condition |c1| > |c2|.
Solutions in this family are invariant under gy.

Similarly, by explicit computations, the eigenvalues of the Hessian matrix on p±2 are given
by {2(c1 − c2),−8c2}. In their range of existence, these solutions are stable provided (c1 − c2) > 0;
given that c2 < 0, this is always the case for c1 > 0, while for c1 < 0, it amounts to the condition
|c2| > |c1|. Solutions in this family are invariant under gx.

Thus, qualitative information can be obtained by the reduced Landau potential Φ. Should we
require to obtain the exact dependence of the solutions on all the control parameters, we should
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invert the change of coordinates (x, y) → (x,y); this inversion should be sought for working by
series.

In this case, such an inversion (again nonunique) is obtained by setting

x = x
�
1 − (a1x2 + a2y2) + �(3a2

1 − a3)x4 + (4a1a2 − a4 + 2a2b1)x2y2 + (a2
2 − a5 + 2a2b2)y4�� ,

y = y
�
1 − (b1x2 + b2y2) + �(2a1b1 + b2

1 − b3)x4 + (2a2b1 + 4b1b2 − b4)x2y2 + (3b2
2 − b5)y4�� .

With these, and writing

α = 33/2, β1 =
3k1

2|c1| , β2 =
3k3

2|c2| ,

γ1 =
√

3 *
,

4|c1|(1 − k4) − k2
1

8|c1|2
+
-
, γ2 =

√
3 *
,

4|c2|(1 − k7) − k2
3

8|c2|2
+
-
,

the solutions in the family p±1 are given by

(x, y) =
(
± |c1|1/4

37/4


α − β1

 |c1| + γ1|c1|

, 0

)
,

and those in the family p±2 by

(x, y) =
(
0, ± |c2|1/4

37/4


α − β2

 |c2| + γ2|c2|

, 0

)
.

B. Qualitative analysis of Landau polynomials

The concrete computational problem in Sec. VII A was the determination of the explicit
changes of coordinates, i.e., the expression of (x,y) in terms of (x, y), and the inverse transforma-
tion expressing (x, y) in terms of (x,y). This can be obtained through the method presented in the
main body of the paper, and would easily produce for the other examples considered here explicit
(and rather lengthy) formulas.

However, as mentioned above, in many cases one would be satisfied with a qualitative analysis
of the Landau potential, that is, determine which phases are possible and how these change with the
parameters.

Note that it is true that the explicit relation between parameters in the reduced and in the
original Landau potential requires to explicitly determine the change of variables relating (x, y)
and (x,y), but it is also true that in a wealth of physical applications, the parameters entering in
the (original) Landau potential are effective ones, determined phenomenologically by fitting data.
So the same approach can be followed directly on the reduced Landau potential, and we can work
directly at this level.

Needless to say, an analysis of the reduced Landau potential is much simpler than that of the
full (original) one. In this section, we will shortly indicate how such an analysis can be performed in
the examples considered above; we will omit Example 1 (and 4), considered in Section VII A.

Example 2 (continued). In Example 2, we started from a potential depending on three param-
eters associated to the quadratic part, plus twelve additional ones. All of them can be eliminated
by Poincaré changes of coordinates, and recalling the explicit expression for the Ja we arrive at the
reduced potential

Φ = c1 x2 + c2 y
2 + c3 x y + (x2 + y2)3. (27)

The trivial critical point (0,0) is always present; there are several branches of nontrivial critical
points (x∗, y∗), and we omit the explicit expressions for these in terms of the ci parameters. These
are invariant under a nontrivial subgroup only for c3 = 0, in which case potential (27) reduces to

Φ = c1 x2 + c2 y
2 + (x2 + y2)3,

and we have (i) solutions with y∗ = 0 and hence invariant under the y reflection (for such solutions
x∗ = ±(−c1/3)1/4) and (ii) solutions with x∗ = 0 and hence invariant under the x reflection (for such
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solutions y∗ = ±(−c2/3)1/4). Solutions (i) are stable for c1 > 0 and c2 < c1, while solutions (ii) are
stable for c2 > 0 and c1 < c2. Thus, there is a phase transition semi-infinite line at c1 = c2, for both
parameters being positive.

Note that c3 = 0 implies that actually the potential is invariant not only under the simultaneous
reflection in x and y but also separately under reflection in each variable, so that we are in the frame
of Example 1.

Example 3 (continued). In this case, as seen above (but with a small change of notation), the
reduced potential is written as

Φ = c1J1 + k1J2 + k2J3 + k3J2
2 + k4J2

3 + k5J2J3 + J3
1 .

By considering the gradient of this in the orbit space—that is, with respect to the Ji variables—we
get immediately that critical points exist for c1 < 0 and

J1 = ±

−c1

3
, J2 =

2k1k4 − k2k5

k2
5 − 4k3k4

, J3 =
2k2k3 − k1k5

k2
5 − 4k3k4

.

However, it should be recalled that the three invariants J1, J2, J3 depend on two variables (x, y) (or
one complex variable z = x + iy) so that the ∇Ji are surely not independent at each point.

Moreover, in this case, the symmetry group does not admit any nontrivial subgroup; it is easily
checked that solutions with other symmetries—such as reflections in x or y—only exist for special
values of the parameters and hence do not form a branch.

Examples 5 and 6 (continued). The reduced Landau polynomial is in this case

Φ = c1J1 + β1J2 + β2J3 + β3J2
2 + β4J2J3 + β5J3

2 + β6J2
3 + J6

1 .

By looking at the gradients in terms of the Ji variables, we have two branches of critical points, i.e.,

J1 = (−c1/6)1/5,

J2 =
β2

4 − 4 β3 β6 ±
√
Θ2

12 β5 β6
,

J3 = −
β3

4 + 12 β2β5β6 − β4
�
4β3β6 ∓

√
Θ3

�

24 β5 β
2
6

;

Θ2 = 24 β5β6 (β2β4 − 2β1β6) + (β2
4 − 4β3β6)2,

Θ3 = β4
4 − 8β3β

2
4 β6 + 24β2β4β5β6 + 16β2

3 β
2
6 − 48β1β5β

2
6.

We can have other solutions at points where the gradients ∇Ji are not independent. The matrix
built with the gradients of the three invariants is

M = 2
*...
,

x y z
x(y2 + z2) y(x2 + z2) z(x2 + y2)

x y2z2 x2y z2 x2y2z

+///
-

with determinant

Det(M) = 8 x y z (x2 − y2) (y2 − z2) (x2 − z2).
Thus, the singular sets where gradients of the basic invariants are not independent are made of
the three coordinate axes and of the six lines bisecting (the positive or negative quadrants of) the
three coordinate planes. One should then consider restrictions of Φ to these singular sets; actually
due to the inherent symmetry of the potential, it would suffice to consider just one case for each
type, e.g., just the sets z = 0 and z = y . The solutions obtained on these singular sets will have a
transparent symmetry and will provide symmetry-breaking solutions.

It should be stressed that these reductions would provide simpler systems for determination of
critical points, i.e., two polynomial equations in two variables (e.g., choosing the cases mentioned
above, in x and y). However, these equations would be of high degree, degree 10 for the reduction
to coordinate axes and degree 11 for reduction to lines bisecting coordinate planes.
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We will not analyze these high degree systems; the symmetry breakings for this group have
been studied in detail in Ref. 10 (and also reconsidered in Ref. 6); in particular, Sergienko, Gufan,
and Urazhdin considered in detail the different types of phase transitions occurring in this case, and
the reader is referred to their work for a detailed (quantitative and not just qualitative) analysis.

VIII. DISCUSSION

We have so far shown that all terms in the range of the homological operator L0 can be
eliminated by a suitable sequence of Poincaré transformations, and shown how one can proceed in
practice to obtain this.

We will now briefly discuss the advantages, together with the limitations and some possible
extensions of our approach.

A. Advantages of the method

In studying the behavior of (the extremal points of) the Landau polynomial Φ when the param-
eters appearing in it are varied, one is usually faced with a formidable task, just due to the high
number of these parameters. In fact, the general approach should go through a study (often possible
only via a numerical approach, in particular, for high N) of the critical point of Φ, exploring a high
dimensional parameter space.

The advantage of the method proposed here, which is just a reformulation of the Poincaré
approach to the study of dynamical systems around an equilibrium point (or other known solutions),
lies in that the number of parameters, and thus the dimension of the space to be explored, is reduced.
This reduction can in fact be quite substantial, as we have seen in some of the examples considered
through Section V. In fact, in Example 1 (and Example 4), we passed from nine to two parameters,
in Example 2 from fifteen to three parameters, in Example 3 from ten to six parameters, and in
Examples 5 and 6 from twenty-two to six parameters.

Thus, the effectiveness of the method depends on the group (representation) one is considering.
Moreover, while a problem depending on two parameters can be analyzed, a problem depending say
on six parameters is still extremely hard to analyze; so obviously the present method provides in
general a step forward, but not a full solution.

We will now pass to consider several other limitations of the method

B. Varying parameters

First of all it should be stressed that we have worked with a given Landau polynomial, i.e., with
fixed values of the parameters entering in it (the coefficients of the Landau polynomial). These
parameters—or at least some of them—will in general depend on the external “control” parameter,
i.e., the physical ones: temperature, pressure, and magnetic field, and indeed the Landau parameters
have to change with the physical ones for a phase transition to take place. Thus, some extra care is
needed if we want to work on a full interval of values of the control parameter(s).

In particular, one is often interested in (the vicinity of) phase transitions; in this case, the
coefficients of the polynomial Φ(x) not only depend on external control parameters λ but also at
phase transition necessarily pass through critical values.

The discussion given so far should be modified if we want to consider not just given fixed
values of the parameter(s) but a full range of values, including, in particular, critical ones.

Let us consider, for ease of discussion, a single control parameter λ ∈ Λ ⊆ R, and let λ0 ∈ Λ be
a critical value. If we want to describe a small but finite interval Λ0 ⊂ Λ, we have to require that the
near-identity changes of variables considered in Secs. I–VII are defined uniformly in Λ0. In partic-
ular, if we want to consider an interval which includes the critical point, e.g., Λ0 = [λ0 − ε, λ0 + ε],
this would mean requiring that these changes of variables are well defined also at λ = 0. Note that
the changes of variables considered in Section V B do not in general pass this criterion: e.g., many
of them are not allowed when c1 = 0.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  159.149.197.10

On: Fri, 08 Apr 2016 14:49:46



083504-22 Giuseppe Gaeta J. Math. Phys. 56, 083504 (2015)

It should be stressed that, as mentioned in Remark 1 above, this is just inherent to the method.
In fact, the vanishing of c1 means the vanishing of the quadratic part of the Landau potential, on
which all of the Poincaré procedure is based. Note also that this makes perfect physical sense: we
cannot expect to have results uniform in λ over an interval which includes a phase transition.

The conclusion is that special care must be taken (as also rather obvious physically) if we want
to consider reduction of the Landau polynomial over a full range of parameters, and in particular the
allowed reduction is (in general, severely) limited if this range includes critical values (actually, one
should avoid these). On the other hand, our method can give a simplified description of the outcome
of a phase transition, analyzing the simplified potential for values of the parameters higher or lower
than the critical ones.

C. Small denominators

The generating functions for the Poincaré near-identity changes of variables are obtained as
solutions of the homological equation. As seen quite clearly in the examples, and as is specially
clear once the Q matrix (or its semisimple part) has been set in diagonal form, this involves
inversion of a matrix and thus introduces some denominators.

When the latter vanish, the transformation is not defined and hence the reduction turns out to
be impossible. But even when the denominators are nonzero, some care should be taken if they are
small.

In fact, our approach is based on a series expansion; for this to make sense, it is needed that the
terms of different orders have a size which correspond to their order (that is, that the series is well
ordered). If the expansion parameter (roughly speaking, the distance from the critical point) is ε and
we perform a change of variables in which the involved denominator is larger than ε−1, then terms
which are apparently of order εk will actually be of lower orders, and the series is not well ordered
any more. In other words, the series expansion gets not justified in this case.

Thus, one should check the appearance of these small denominators; they will in general make
that the resulting change of coordinates is well defined only within a certain radius of convergence,
and the computation will have physical relevance only if the minima of the Landau polynomial
(i.e., the physical state) lie within this convergence region.

It should be mentioned that some way to partially escape this problem is well known in dynam-
ical systems. In fact, the small denominators will appear only when attempting to eliminate terms
which correspond to near-resonances, i.e., such that λα · kα ≃ 0, see Eq. (25). It is thus possible to
circumvent them by simply renouncing to eliminate near-resonant terms.

In more formal terms, this is obtained by “detuning the resonance”:21 we write λα = σα +

ε2ηα, and consider σα as the eigenvalues of P, while the difference λα − σα is considered as a
perturbation term40 to be included between higher order terms in the Landau expansion.

We will not discuss this approach here (see Ref. 22 for a recent overview), but it is worth
mentioning that it gave extremely satisfactory results in explicitly computing quantum levels of
molecules up to near the dissociation threshold.23,24

D. Non-orthogonal action

We have assumed the group G acts in M = Rn by an orthogonal action. Unfortunately, this is
not always the case in concrete applications; albeit in principle (by Palais-Mostow theorem, see,
e.g., Refs. 12 and 16), one can always reduce to an orthogonal action, this goes through dimension
increase and/or modification of the metric. This means that in practice the method can become much
more involved and less computationally convenient.

In particular, it is known that Landau theory for liquid crystals25,26 requires a description in
terms of a tensorial order parameter of second order; the natural group action on this is not fitting
simply in the framework considered here, and will be discussed elsewhere.

E. Further reduction

In our discussion, we have considered the result of changes of variable on terms of the same
order as the generating function, without describing in detail the higher order effects.
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Actually, the reduction procedure can be iterated—restricting to generating functions in the
kernel of L0, so not to change terms which have already been reduced—using higher order effects;
the latter are basically controlled by using the Baker-Campbell-Haussdorff formula. This is known
(under different approaches) in the framework of dynamical systems as “further normalization,” and
we will just refer the interested reader to, e.g., Refs. 5, 6, and 27 and references therein.

F. Dynamics and Landau-Ginzburg

In standard Landau theory, the equilibrium state x of the physical system is described by the
minima of the Landau potential Φ(x); this description is inherently static. One can also provide, in
nearly the same terms, a dynamical description; the time evolution of the state x(t) of the system is
then described by ẋ = −∇Φ(x). Needless to say this agrees with standard Landau theory if we look
at asymptotic solutions.

In this case, the equations of motion also include a ẋ term, and our computations for the effect
of a change of variables on the equations have to be changed accordingly. Once again we will defer
a detailed account of this modification of our approach, and just refer the reader to the equivalent
treatment given in the dynamical systems framework (by construction, one would be interested only
in the time evolution of invariants); see, e.g., Ref. 28.

A well known extension of Landau theory is provided by Ginzburg-Landau theory; here, the
order parameter is a local function on spacetime, and the theory is described by an (gauge) invariant
functional. Michel theory can be extended to this framework,29 and it has thus to be expected that
our approach works also here. (There will be a severe reduction of the regularity of the functional
upon reduction to the orbit space;30 luckily this reduction does not take place if one works with C∞,
or analytic, functionals. I am grateful to Professor Ball for pointing out these facts.)

IX. CONCLUSIONS

In the Landau theory of phase transitions, one considers an effective potential Φ whose symme-
try group G and degree d depend on the Physics of the system under consideration.

One should consider as Φ the most general G-invariant polynomial of a certain degree d. When
such a Φ turns out to be too complicated for a direct analysis, it is essential to be able to consider a
simplified potential Φ giving rise to the same behavior as the original one.

Here, we have described in detail a reduction procedure based on classical Lie-Poincaré theory;
this just considers changes of variables, defined locally. Thus, it expresses the same potential Φ in
different coordinates.

In many cases, one is satisfied with analyzing the behavior of the Landau potential for fixed
values (near the transition point) of the control parameter(s); in these cases, our method is specially
effective. In other cases, one wants to be able to “follow” the critical points of the Landau potential
as the control parameter(s) is (are) changed over a range Λ; in this case, one has to require the
change of variables required by our method is uniformly defined in all of Λ, which poses serious
limitations on the applicability of the method.

We stress that our discussion does not just provide a proof of the fact one can consider
a reduced potential of the form described in detail in Secs. I–VIII; it also gives a constructive
algorithm to make completely explicit computations.

We have shown this by a number of explicit examples; these included, in particular, groups
describing the symmetry of isotropic, non-isotropic, and chevron-shaped nematics.

Finally, we would like to stress that in this paper we consider just changes of coordinates: we
eliminate terms by choosing suitable coordinates, but we are not changing the physical potential. On
the other hand, in Landau theory, one allows changes of the potential, provided these do not alter its
qualitative behavior.

Thus, we are not considering the most general transformation of Φ allowed by Landau theory.
On the other hand, our reduction amounts to a change of variables, requires only to solve linear
equations, and is completely algorithmic; it can thus be easily implemented, maybe resorting to a
symbolic manipulation language in order to perform the algebraically complex (albeit conceptually
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simple) required computations. Further analysis—maybe with an actual change of the physical
potential, and based on physical considerations rather than on mathematical manipulations—can
then be applied on the simplified form of the potential thus obtained.

ACKNOWLEDGMENTS

This work was triggered by participation in the Newton Institute workshop on “Symmetry,
bifurcation and order parameters”; I thank D. Chillingworth for his invitation there, and several
participants for interesting remarks. The first version of the paper was written while visiting
LPTMC (Paris-Jussieu); I thank M. Barbi for her hospitality. My research is partially supported by
MIUR-PRIN program under Project No. 2010-JJ4KPA.

1 L. D. Landau, Nature 138, 840-841 (1936); Zh. Exsp. Teor. Fiz. 7, 19-32 (1937), http://www.ujp.bitp.kiev.ua/files/journals/
53/si/53SI08p.pdf.

2 L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1958).
3 V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, Berlin, 1983).
4 C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, and G. Iooss, Physica D 29, 95-127 (1987); 32, 488 (1988).
5 G. Cicogna and G. Gaeta, in Symmetry and Perturbation Theory in Nonlinear Dynamics, Lecture Notes in Physics Mono-

graphs Vol. 57 (Springer, Berlin, 1999).
6 G. Gaeta, Acta Appl. Math. 70, 113-131 (2002).
7 G. Gaeta, Ann. Phys. (NY) 312, 511-540 (2004).
8 G. Gaeta, “Poincaré-like approach to Landau theory. II: Simplyfying the Landau-de Gennes potential for nematic liquid

crystals,” J. Math. Phys. 56, 083505 (2015).
9 Yu. M. Gufan, Structural Phase Transitions (Nauka, Moscow, 1982).

10 I. A. Sergienko, Yu. M. Gufan, and S. Urazhdin, Phys. Rev. B 65, 144104 (2002).
11 M. Hamermesh, Group Theory and its Application to Physical Problems (Addison-Wesley, Reading, 1962), reprinted by

Dover, 1989.
12 M. Abud and G. Sartori, Ann. Phys. (NY) 150, 307-372 (1983).
13 C. Procesi and G. Schwarz, Invent. Math. 81, 539-554 (1985).
14 G. Sartori, La Riv. Nuovo Cimento 14(1), (1991); Acta Appl. Math. 70, 183-207 (2002).
15 L. Michel, C. R. Acad. Sci. Paris, Ser. A 272, 433-436 (1971); Rev. Mod. Phys. 52, 617-651 (1980).
16 L. Michel, J. S. Kim, J. Zak, and B. Zhilinskii, Phys. Rep. 341, 1-395 (2001), http://www.sciencedirect.com/science/article/

pii/S0370157300000880.
17 P. Chossat, Acta Appl. Math. 70, 71-94 (2002).
18 G. Cicogna and S. Walcher, Acta Appl. Math. 70, 95-111 (2002).
19 E. F. Gramsbergen, L. Longa, and W. H. de Jeu, Phys. Rep. 135, 195-257 (1986).
20 D. Allender and L. Longa, Phys. Rev. E 78, 011704 (2008).
21 F. Verhulst, Philos. Trans. R. Soc., A 290, 435-465 (1979); Acta Appl. Math. 70, 231-264 (2002).
22 G. Pucacco, D. Boccaletti, and C. Belmonte, Celest. Mech. Dyn. Astron. 102, 163-176 (2008).
23 M. Joyeux, J. Chem. Phys. 109, 2111-2122 (1998).
24 D. Sugny and M. Joyeux, J. Chem. Phys. 112, 31-39 (2000).
25 P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
26 E. Virga, Variational Theories for Liquid Crystals (Chapman & Hall, 1995).
27 G. Gaeta, Ann. I.H.P.: Phys. Theor. 70, 461-514 (1999), http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_

6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf; Lett. Math. Phys. 42, 103-114 (1997); 57, 41-60 (2001).
28 G. Gaeta, Lett. Math. Phys. 33, 313-320 (1995); G. Gaeta and S. Walcher, J. Nonlinear Math. Phys. 12(S1), 327-342

(2005); J. Differ. Equations 224, 98-119 (2006).
29 G. Gaeta and P. Morando, Ann. Phys. (N. Y.) 260, 149-170 (1997).
30 J. M. Ball, Duke Math. J. 51, 699-728 (1984).
31 In that paper, they will however be considered via a “brute force” approach; this will avoid to enter into the mathematical

details needed for further normalization, which are therefore not discussed here.
32 Note that if G is a continuous group, some of the x variables will actually be inessential physically, as can be quotiented

out; in the present note, we only consider discrete groups, while in the companion paper8 we will meet this situation.
33 Actually, their transformation can be described by means of the Baker-Campbell-Haussdorff formula;5 but this is

inessential here.
34 One could actually consider a “higher order normalization,” e.g., following the steps of Ref. 6, but we prefer not to enter

into such details.
35 With z = x + iy, these correspond to J1 = |z |2, J2 = Re[z3], J3 = −Im[z3].
36 Here and in the other examples, the generating function has a minus sign for convenience in writing the homological

equation and the final results.
37 If some term in ΦN is resonant and cannot be eliminated, then we should enter into details of the term, and see how we

can guarantee convexity for large |x |.
38 The nilpotent part could (and will most often) vanish, but we are not guaranteed this will be the case in general.
39 Note again here we should not attempt to eliminate the maximal order terms as these are needed to guarantee the

thermodynamic stability.
40 It is necessary to consider this as being second order in ε for the method to be viable.21,22

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  159.149.197.10

On: Fri, 08 Apr 2016 14:49:46

http://dx.doi.org/10.1038/138840a0
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://www.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://dx.doi.org/10.1016/0167-2789(87)90049-2
http://dx.doi.org/10.1016/0167-2789(88)90071-1
http://dx.doi.org/10.1023/A:1013974115113
http://dx.doi.org/10.1016/j.aop.2004.04.001
http://dx.doi.org/10.1063/1.4927426
http://dx.doi.org/10.1103/PhysRevB.65.144104
http://dx.doi.org/10.1016/0003-4916(83)90017-9
http://dx.doi.org/10.1007/BF01388587
http://dx.doi.org/10.1007/BF02810048
http://dx.doi.org/10.1023/A:1013930400092
http://dx.doi.org/10.1103/RevModPhys.52.617
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://www.sciencedirect.com/science/article/pii/S0370157300000880
http://dx.doi.org/10.1023/A:1013970014204
http://dx.doi.org/10.1023/A:1013922131043
http://dx.doi.org/10.1016/0370-1573(86)90007-4
http://dx.doi.org/10.1103/PhysRevE.78.011704
http://dx.doi.org/10.1098/rsta.1979.0006
http://dx.doi.org/10.1023/A:1013934501001
http://dx.doi.org/10.1007/s10569-008-9141-x
http://dx.doi.org/10.1063/1.476724
http://dx.doi.org/10.1063/1.480559
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://archive.numdam.org/ARCHIVE/AIHPA/AIHPA_1999__70_6/AIHPA_1999__70_6_461_0/AIHPA_1999__70_6_461_0.pdf
http://dx.doi.org/10.1023/A:1007341428540
http://dx.doi.org/10.1023/A:1017902827929
http://dx.doi.org/10.1023/A:1017902827929
http://dx.doi.org/10.1007/BF00749685
http://dx.doi.org/10.2991/jnmp.2005.12.s1.26
http://dx.doi.org/10.1016/j.jde.2005.06.025
http://dx.doi.org/10.1006/aphy.1997.5700
http://dx.doi.org/10.1215/S0012-7094-84-05134-2

