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SUMMARY

Myosin VI is critical for cargo trafficking and sort-
ing during early endocytosis and autophagosome
maturation, and abnormalities in these processes
are linked to cancers, neurodegeneration, deafness,
and hypertropic cardiomyopathy. We identify a
structured domain in myosin VI, myosin VI ubiqui-
tin-binding domain (MyUb), that binds to ubiquitin
chains, especially those linked via K63, K11, and
K29. Herein, we solve the solution structure of
MyUb and MyUb:K63-linked diubiquitin. MyUb folds
as a compact helix-turn-helix-like motif and nestles
between the ubiquitins of K63-linked diubiquitin,
interacting with distinct surfaces of each. A nine-
amino-acid extension at the C-terminal helix (Helix2)
of MyUb is required for myosin VI interaction with en-
docytic and autophagic adaptors. Structure-guided
mutations revealed that a functional MyUb is neces-
sary for optineurin interaction. In addition, we found
that an isoform-specific helix restricts MyUb binding
to ubiquitin chains. This work provides fundamental
insights into myosin VI interaction with ubiquitinated
cargo and functional adaptors.

INTRODUCTION

Myosins are a superfamily of quintessential molecular motors

that power movements on actin filaments by converting ATP

hydrolysis to mechanical energy and force. A highly conserved

N-terminal motor domain undergoes conformational changes

during the ATPase cycle that modulate actin affinity (Geeves

and Holmes, 1999). These motions are amplified into the myosin

powerstroke by a variable calmodulin-binding lever arm causing

nanometer-scale movement (Spudich and Sivaramakrishnan,
Cell
2010). With the exception of myosin VI, movement is toward

the barbed (plus) end of actin filaments (Wells et al., 1999).

Myosin VI contains an additional calmodulin-binding insertion

that redirects the effective lever arm toward the pointed (minus)

end of actin filaments (Ménétrey et al., 2005). The C-terminal tail

region is divergent among myosins and confers specificity for

cargo and distinct interactions that define subcellular localization

and specialized functions.

Humans express�40 known or predictedmyosins (Berg et al.,

2001) that participate in diverse activities, including conventional

skeletal myosin IIs for muscle contraction and unconventional

myosins that function in intracellular trafficking, cell division

and motility, actin cytoskeletal organization, and cell signaling

(Sellers, 2000). Myosin malfunction has been implicated in hy-

pertrophic cardiomyopathy (Mohiddin et al., 2004), Usher syn-

drome (Hasson et al., 1995;Weil et al., 1995), deafness (Avraham

et al., 1995; Gibson et al., 1995), Griscelli syndrome (Kumar et al.,

2001; Takagishi and Murata, 2006), and cancer (Dunn et al.,

2006; Yoshida et al., 2004), thus prompting the development of

small-molecule myosin inhibitors (Bond et al., 2013).

Themyosin VI cargo-binding tail (Figure 1A) interacts withmul-

tiple adaptor proteins, including regulators of clathrin-mediated

endocytosis and autophagy (Tumbarello et al., 2013). Some of

these ligands require a myosin VI Arg-Arg-Leu (RRL) motif (Fig-

ure 1C), including nuclear dot protein 52 (NDP52) (Morriswood

et al., 2007), Traf6-binding protein (T6BP) (Morriswood et al.,

2007), optineurin (Sahlender et al., 2005), and GAIP-interacting

protein C terminus (GIPC) (Bunn et al., 1999; Spudich et al.,

2007). Others engage a Trp-Trp-Tyr (WWY) triplet present in

the cargo-binding domain (CBD; Figure 1A), including Tom1/

Tom1L2 (Finan et al., 2011; Tumbarello et al., 2012), Dab2 (Inoue

et al., 2002; Morris et al., 2002; Spudich et al., 2007), and lemur

tyrosine kinase-2 (LMK2) (Chibalina et al., 2007).

We previously reported the existence of a motif interacting

with ubiquitin (MIU) domain C-terminal to the myosin VI coiled-

coil region (Penengo et al., 2006) (Figure 1A, yellow). In this

article, we identify a second ubiquitin-binding domain (UBD) in
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Figure 1. Identification and Characteriza-

tion of the MyUb Domain

(A) Domain architecture of myosin VI highlighting

the motor domain (gray), lever arm (white), MIU

(yellow), MyUb (beige), and cargo-binding domain

(CBD; light blue). TheWWYmotif is in the CBD and

noted with an asterisk. aa, amino acid. Depicted

below are the tail constructs used for the experi-

ment described in (B).

(B) GST-tagged myosin VI tail (N835–K1294) wild-

type and mutant carrying an internal deletion of the

MIU domain (S997–I1024) were used to pull down

polyubiquitinated proteins from HEK293T cellular

lysates. Immunoblotting (IB) as indicated. Right:

ponceaushowingequal loadingof theGSTproteins.

(C) Sequence alignment of MyUb from Homo sapi-

ens, Mus musculus, Gallus gallus, Rattus vorvegi-

cus,Sus scrofa,BosTaurus,Xenopus tropicalis, and

Drosophila melanogaster with conserved and non-

conserved amino acids in black and gray, respec-

tively. The RRL motif is highlighted in magenta.

(D) GST pull-down assay with indicated myosin VI

constructs or GST as a control. GST-fusion pro-

teins were incubated with purchased diubiquitins

linked by M1, K6, K11, K27, K29, K33, K48, or K63

(Boston Biochem) and analyzed by immunoblot-

ting with anti-ubiquitin antibody.

(E) Fluorescence polarization (FP) assays to deter-

mine MyUb binding affinities for K63-, K48-, and

K11-linkeddiubiquitin.Results are representative of

at least three independent experiments. Dissocia-

tionconstantswith their respectiveSDare reported.

See also Figure S1.
myosin VI, which we name MyUb (myosin VI ubiquitin-binding

domain), that contains the RRL motif. We use nuclear magnetic

resonance (NMR) spectroscopy to find that MyUb adopts a

compact protein fold that is required for ubiquitin binding and

disrupted by amino acid substitutions in the RRL motif. We

evaluate MyUb in the context of myosin VI binding to the auto-

phagy adaptor optineurin and the distinct myosin VI isoforms

expressed in humans.

RESULTS

Identification of a Ubiquitin-Binding Domain
in Myosin VI: The MyUb
In Rabex-5, the MIU domain binds to ubiquitinated epidermal

growth factor receptor and promotes coupled monoubiquitina-

tion (Penengo et al., 2006). To obtain insight into the function

of the MIU (Q998–S1025) in the context of myosin VI (Figure 1A),

we analyzed the myosin VI tail spanning N835–K1294, which

recapitulates myosin VI interaction and localization (Buss et al.,

2001). Surprisingly, deletion of the MIU domain (S997–I1024)

did not abrogate myosin VI tail binding to ubiquitinated species

from cellular lysates (Figure 1B). Deletion analysis led to the

identification of a second UBD C-terminal to the identified MIU

(Figure 1A), which we narrowed down to a 43-amino-acid frag-

ment (G1080–H1122; Figures S1A–S1C). This region is highly

conserved in myosin VI from various species (Figure 1C) and

appears to be unique to myosin VI, as bioinformatics analysis

was unable to detect its presence in other genes (Kay Hoffman,
2684 Cell Reports 14, 2683–2694, March 22, 2016 ª2016 The Author
personal communication). Since this region lacks sequence sim-

ilarity with any previously described UBD, we henceforth refer to

it as MyUb.

We used diubiquitin molecules made with the eight possible

linkages (M1, K6, K11, K27, K29, K33, K48, and K63) to test

whether MyUb or MIU exhibit preference for a specific chain

type. glutathione S-transferase (GST)-MIU binding to diubi-

quitin was barely detectable by this method (Figure 1D); on the

contrary, GST-MyUb bound robustly to ubiquitin chains, with

preference for K63-, K11-, andK29-linked diubiquitin (Figure 1D).

Weak interaction was detected with K48-linked diubiquitin

(Figure 1D), a linkage type associated with proteasomal degra-

dation (Ehlinger and Walters, 2013). This difference in affinity

was confirmed by fluorescence polarization (FP) assays. MyUb

bound to K11-, K48-, and K63-linked diubiquitin with low micro-

molar affinity, with the K63- and K11-linked diubiquitin exhibiting

10- and 4-fold greater affinity compared to K48-linked diubiqui-

tin, respectively (Figure 1E).

Solution Structure ofMyUb Reveals a Compact Fold that
Is Critical for Binding to Ubiquitin and Adaptors for
Endocytosis and Autophagy
We used NMR techniques (described in Experimental Proce-

dures) to solve the MyUb (G1080–H1122) structure. The 20

lowest-energy structures calculated from 100 extended starting

ones converged to fit recorded NMR data (Table S1), with a

backbone root mean square deviation (rmsd) of 0.20 Å (Fig-

ure S2A). From these data, we concluded that MyUb adopts a
s



Figure 2. Myosin VI Contains a Compact Ubiquitin-Binding Domain

(A and B) Ribbon representation of MyUb (G1080–H1122) highlighting the helix boundaries and the interactions that stabilize the fold, including hydrogen bonds

from R1117 to S1087 and E1113 (dashed yellow lines) and van der Waals interactions engaging Y1084, L1086, W1089, L1094, and L1106 (pink).

(C) GST pull-down assay performed with GST-MyUb (G1080–R1131) wild-type (WT) or amino-acid-substituted protein as indicated. GST fusion proteins were

incubated for 2 hr at 4�Cwith K63-linked polyubiquitin1–7 and analyzed by immunoblotting (IB) with anti-ubiquitin antibody. Ponceau staining shows comparable

loading of GST-tagged proteins (bottom). GST was used as a negative control.

(D) GST-MyUb (G1080–H1122), GST-MyUb (G1080–R1131), or GST (as a negative control) were incubated with synthetic K63-linked polyubiquitin1–7 or cellular

lysates from HEK293T cells transfected with GFP-optineurin, FLAG-T6BP, His-GIPC, or FLAG-NDP52. Immunoblotting (IB) was performed using the specific

anti-TAG antibodies. Ponceau staining shows comparable loading of GST-tagged proteins (bottom).

(E) Ribbon representations of MyUb (G1080–H1122) (left) and MyUb (G1080–R1131) with extended hydrophobic surface highlighted in green formed by addition

of A1123–R1131 (right) were shown. The RRL motif is colored magenta.

See also Figure S2.
compact helix-turn-helix-like fold with two helices spanning

Y1091 to T1100 (Helix1) and I1104 to K1119 (Helix2) (Figure 2A).

Importantly, the structural fold is stabilized by numerous interac-

tions with an N-terminal region (Figure 2B). Y1084 and L1086

from the N-terminal region pack against hydrophobic amino

acids (L1094 and L1106) from Helix2, while W1089 is partially

buried by L1094 and L1086 (Figure 2B, pink). Alanine substitution

of L1086 or L1106 causes misfolding of the MyUb domain (Fig-

ures S2B and S2C) and significantly decreased binding to K63-

linked ubiquitin chains (Figure 2C). A W1089A mutation was

instead tolerated, as it did not fully disrupt the MyUb structure

(Figure S2D) and did not prevent MyUb binding to K63-linked

diubiquitin (Figures 2C and S2E). Changing the temperature

and salt conditions did not alter MyUb structure (Figures S2F–

S2H) or interaction with K63-linked diubiquitin (Figure S2I).

Several myosin VI adaptor proteins, namely optineurin, GIPC,

T6BP, and NDP52, were shown to require an intact 1116RRL1118

motif for interaction with myosin VI (Bunn et al., 1999; Morris-

wood et al., 2007; Sahlender et al., 2005; Spudich et al., 2007).

In particular, amino acid substitution of this motif with the alanine

triple AAA was reported to abolish myosin VI interaction with

these autophagy adaptor proteins (Morriswood et al., 2007).
Cell
The RRL motif resides in Helix2 where R1117 forms hydrogen

bonds to S1087 and E1113 (Figure 2B), suggesting that it is crit-

ical for MyUb (G1080–H1122) structural integrity. As expected,

replacement of R1117 with alanine resulted in misfolding, as

measured by a 2D NMR experiment (Figure S2J, red compared

to black) and abolished interaction with ubiquitin (Figure 2C).

This result prompted us to re-examine the interaction of

myosin VI with previously characterized autophagy adaptor

proteins using various RRL-containing fragments. The minimal

binding region was found to be a MyUb construct spanning

G1080–R1131 (Figure 2D). The shorter construct spanning

G1080–H1122 was unable to bind optineurin, GIPC, T6BP, and

NDP52, even though it was competent for binding to ubiquitin

(Figures 2D and S2K) and adopted a stable protein fold (Fig-

ure 2A). Thus, the interaction surface between myosin VI and

its known partners extends beyond the previously identified
1116RRL1118 motif toward the C-terminal part of Helix2 of the

MyUb domain. We next used NMR to solve the structure of

this longer construct (Figure S2L; Table S1). The backbone

rmsd of the extended MyUb (G1080–R1131) to MyUb (G1080–

H1122) was 0.46 Å for the overlapping region. Helix 2 was

extended, however, by six amino acids forming an additional
Reports 14, 2683–2694, March 22, 2016 ª2016 The Authors 2685



Figure 3. MyUb Nestles between the Moi-

eties of K63-Linked Diubiquitin

(A and B) Stoichiometry of the complex formed by

MyUb and K63-linked (A) diubiquitin or (B) triubi-

quitin, as indicated. 100 mM purified K63-linked

diubiquitin or K63-linked triubiquitin was incu-

bated (1 hr, 20�C) with either 200 or 400 mMMyUb,

followed by fractionation on a Superdex75 col-

umn. Selected fractions were separated by SDS-

PAGE gel and stained with Coomassie.

(C) Ribbon diagram of MyUb (G1080–H1122):K63-

linked diubiquitin with MyUb (beige) nestled be-

tween the proximal ubiquitin (light gray) and distal

ubiquitin (dark gray) with interactions to a I44-

centered surface on distal ubiquitin (green) and a

F45-centered surface of proximal ubiquitin (blue).

Interacting MyUb amino acids are displayed in

yellow. Labels for MyUb amino acids are under-

lined.

(D) Expanded view of (C) showing critical in-

teractions of I1104 from MyUb with L8 and H68 of

the distal K63-linked diubiquitin.

(E) GST pull-down assay performed with GST-

MyUb (G1080–R1131) wild-type (WT) or I1104A.

GST fusion proteins were incubated for 2 hr at 4�C
with K63-linked polyubiquitin1–7 and analyzed by

immunoblotting (IB) with anti-ubiquitin antibody.

Ponceau staining shows comparable loading of

GST-tagged proteins (bottom). GSTwas used as a

negative control.

(F) Selected regions that include A1092 and T1100

signals from 1H-15N HSQC spectra acquired on
15N-labeled MyUb wild-type (top) or MyUb I1104A

(bottom) with K63-linked diubiquitin at the indi-

cated molar ratio. Arrows point to new peak po-

sitions caused by addition of diubiquitin. All

spectra were recorded at 850 MHz on MyUb

sample concentrations of 0.1 mM.

(G) Ribbon diagrams of the MyUb:K63-linked

diubiquitin complex showing the opposite surface

compared to (C), rotated 145 degrees along the

x axis, to highlight hydrogen bond (yellow dashed

line) interactions involving MyUb and K63-linked

diubiquitin. An expanded region (boxed in red) is

displayed to the right.

See also Figure S3.
1.5 helical turns, with an expanded hydrophobic surface contrib-

uted by Y1121, H1122, and W1124 (Figure 2E, right). We specu-

late that this extended hydrophobic surface is involved in myosin

VI binding to autophagy adaptor proteins.

MyUb Nestles between Ubiquitins of K63-Linked
Diubiquitin
The MyUb bound well to K11-, K29, and K63-linked ubiquitin

chains (Figure 1D). We therefore used K63-linked diubiquitin as

a model to dissect the molecular mechanism of MyUb binding

to ubiquitin chains. Initially, we determined the binding stoichi-

ometry of theMyUb:K63-linked ubiquitin chain complex by using

size exclusion chromatography. 2- or 4-fold molar excess MyUb

incubated with 100 mM diubiquitin or triubiquitin was loaded on

a size exclusion column (Figures 3A and 3B). At 2-fold molar

excess, MyUb and K63-linked diubiquitin co-eluted at the ex-
2686 Cell Reports 14, 2683–2694, March 22, 2016 ª2016 The Author
pected molecular weight for a 1:1 complex with the excess

MyUb eluting separately (Figure 3A, blue). By contrast, very little

MyUb eluted separately from K63-linked triubiquitin (Figure 3B,

blue), and the presence of free MyUb in the mixture with triubi-

quitin increased significantly when MyUb was at 4-fold molar

excess (Figure 3B, purple). Altogether, these data indicate a

1:1 stoichiometry for the MyUb:diubiquitin complex and a 2:1

stoichiometry for the MyUb:triubiquitin complex.

To explore the molecular basis of MyUb binding to ubiquitin,

we used NMR to solve the structure of MyUb (G1080–H1122)

in complex with K63-linked diubiquitin. The MyUb structure

was unchanged upon ubiquitin binding, as demonstrated by an

almost identical interaction network for free and K63-linked

diubiquitin-bound MyUb (Figure S3A). We isotopically labeled

either the proximal (defined by a free G76 that can be in principle

conjugated to a substrate protein) or the distal ubiquitin of
s



K63-linked diubiquitin and used 13C half-filtered nuclear Over-

hauser effect spectroscopy (NOESY) experiments to detect

interactions between MyUb and each ubiquitin (Figures S3B–

S3D). We were able to assign 59 intermolecular interactions

between MyUb and the proximal ubiquitin and 47 intermolecular

interactions between MyUb and the distal ubiquitin; these were

used to solve the structure of the MyUb:K63-linked diubiquitin

complex (Figures S3E and S3F; Table S1). We found that

MyUb nestles between the two ubiquitins, making extensive

contacts to both ubiquitin moieties (Figure 3C).

On the distal ubiquitin, an exposedMyUb hydrophobic surface

formed by the two helices contacts the classic hydrophobic

patch centered on I44 (Liu andWalters, 2010) (Figure 3C, green).

This contact surface includes I1098 from Helix1 and I1104,

L1107, A1108, R1111, and F1114 fromHelix2 (Figure 3C, yellow).

In particular, I1104 forms critical interactions with L8 and H68 of

distal ubiquitin (Figure 3D). Its replacement with alanine does not

affect the overall MyUb fold (Figure S3G) but abolishes binding to

K63-linked diubiquitin, as shown in a pull-down experiment (Fig-

ure 3E) and by NMR titration experiments (Figure 3F). In the slow

exchange regime on the NMR timescale (Walters et al., 2001),

amino acids A1092 and T1100 shift to a new position upon

K63-linked diubiquitin addition (Figure 3F, top panels). This

effect is lost in the MyUb I1104A mutant (Figure 3F, bottom).

These data were confirmed by FP analysis, which demonstrated

a Kd >400 mM for the I1104A mutant (Figure S3H).

On the proximal ubiquitin, aforementioned A1092 and T1100

from Helix1 of MyUb contact a surface formed by F4, F45,

A46, K48, and T66 (Figure 3C, blue). Likely, the involvement of

K48 at this location explains the relatively poor affinity of the

MyUb for this chain type (Figures 1D and 1E). Some nuclear

Overhauser effects (NOEs) were assigned to the L8-I44-V70 hy-

drophobic patch of the proximal ubiquitin, indicating that MyUb

can form a lower affinity interaction with this region (Figures S3C

and S3F, orange, and S3I). However, binding to this second, low-

affinity site was not retained in the size exclusion chromatog-

raphy experiment (Figure 3A), indicating that this interaction is

weak and possibly not present in the context of the full-length

protein.

MyUb interaction with K63-linked diubiquitin is stabilized by

electrostatic contacts that surround the ubiquitin isopeptide re-

gion (Figure 3G). MyUb R1095 forms hydrogen bonds with distal

ubiquitin L73 and proximal ubiquitin Q62. Distal ubiquitin R42

and Q49 are spatially close to MyUb N1099 and form hydrogen

bonds with its side chain and backbone, respectively.

We also explored how MyUb binds to K11-linked diubiquitin

taking advantage of K11-linked diubiquitin in which either the

proximal or distal ubiquitin was 13C and 15N labeled. We found

in a 13C half-filtered NOESY experiment that L8 and I44 from

the proximal K11-linked ubiquitin formed similar contacts to

MyUb as was observed for the distal K63-linked ubiquitin

component (Figure 4A). For example, L8 and I44 from the

proximal ubiquitin of K11-linked diubiquitin were similarly shown

to directly interact with I1104 from MyUb (Figure 4A). No such

intermolecular NOE interactions were observed for L8 or I44

from the distal ubiquitin of K11-linked diubiquitin (data not

shown). Furthermore, the I44 and A46 amide signals from

the proximal, but not distal, ubiquitin demonstrated significant
Cell
shifting following addition of equimolar MyUb (Figure 4B, orange

versus black). Taken together, our data suggest that MyUb pre-

fers the hydrophobic patch of proximal ubiquitin to distal ubiqui-

tin in the context of K11-linked diubiquitin and that the proximal

ubiquitin hydrophobic patch of K11-linked diubiquitin binds to

MyUb in a similar mode as that observed for distal ubiquitin of

K63-linked diubiquitin (Figures 4C and 3C). Further studies are

needed to solve the structure of this MyUb complex, but we

concluded that MyUb binds to K11-linked chains in a distinct

manner that involves contacts between MyUb I1104 and the

L8 and I44 methyl groups (Figures 4A and 4C).

The Ubiquitin-Binding Ability of MyUb Contributes to
Optineurin Interaction
Optineurin is a well-characterized myosin VI interactor. Previous

work has suggested a direct interaction mediated by the RRL

motif in myosin VI and the UBDs of optineurin (Sahlender et al.,

2005; Shen et al., 2015). Our results suggest that ubiquitin may

be part of the myosin VI interaction with this adaptor protein.

To investigate this issue, we first analyzed whether optineurin

undergoes ubiquitination. HEK293T cells were transfected with

GFP-optineurin and HA-ubiquitin and the cell lysate subjected

to immunoprecipitation using anti-HA antibody. As visible in Fig-

ure 5A, optineurin is poly- or multi-ubiquitinated under these

conditions. The lysate was next used for a pull-down assay in

which we compared MyUb wild-type (WT) with the ubiquitin-

binding-impaired I1104A mutant (Figure 3E). WT MyUb bound

strongly to the ubiquitinated form of optineurin, while the

I1104A mutant retained only a basal interaction with this auto-

phagic adaptor (Figure 5B). Notably, the I1104A mutant also

showed a clear impairment for ubiquitin binding in vivo where

ubiquitinated proteins were robustly immunoprecipitated with

the WT protein (Figure 5B). Similar results were obtained incu-

bating immunoprecipitated GFP-optineurin with GST proteins

eluted from the beads (Figure 5C). Altogether, these results indi-

cate that the ubiquitin-binding surface of the MyUb participates

in binding to this RRL interactor, either by direct binding or by

binding to ubiquitin that is conjugated to optineurin.

MIUExists within a Long aHelix that Kinks into a Shorter
Linker Helix
We have previously identified an MIU domain that is C-terminal

to the myosin VI coiled-coil region (Penengo et al., 2006) (Fig-

ure 6A). We tested whether we could detect binding between a

peptide that encompasses the myosin VI MIU (spanning Q998–

S1025) and ubiquitin by NMR. Unlabeled ubiquitin was added

to 15N-labeled MIU and the effects recorded (Figure 6B). Shifting

and disappearance of MIU signals was observed with ubiquitin

addition (Figures 6B and S4A), including signals from A1013

and L1014, which were predicted to be at the center of the

MIU ubiquitin-binding surface (Penengo et al., 2006). By

contrast, unlabeled MyUb did not affect NMR spectra recorded

on 15N MIU (Figure S4B), indicating that these two structural

elements do not interact. In support of this finding, the MIU is

not significantly different in spectra recorded on the MIU by itself

(Q998–S1025) compared to in the context of the MIU-MyUb

region (Q998–R1131; Figure S4C), similarly demonstrating that

it does not interact with these other regions of the protein.
Reports 14, 2683–2694, March 22, 2016 ª2016 The Authors 2687



Figure 4. MyUb Binds to K11-Linked Diubiquitin through the Hydrophobic Patch of the Proximal Ubiquitin Moiety

(A) Selected regions showing methyl groups from L8 and I44 from a 3D 13C half-filtered NOESY experiment acquired on �0.5 mM unlabeled MyUb (G1080–

H1122) mixed with equimolar K63- (left) or K11-linked (right) diubiquitin with the proximal or distal ubiquitin moiety 15N and 13C labeled, respectively. NOEs

assigned uniquely to MyUb atoms are labeled. D-K63, K63-linked diubiquitin with the distal moiety 15N and 13C labeled; P-K11, K11-linked diubiquitin with the

proximal moiety 15N and 13C labeled.

(B) Selected regions that include A46 and I44 amide signals from 1H-15N HSQC spectra acquired on 13C, 15N-labeled proximal (left) or distal (right) K11-linked

diubiquitin (black) and with equimolar unlabeled MyUb (orange).

(C) Model structure of MyUb bound to a single ubiquitin based on Figure 3C, illustrating the amino acids involved in complex formation as revealed in (A) and (B).
Myosin VI is generated by alternatively spliced isoforms, which

are differentially expressed in tissues and cell lines, and associ-

ated with specific subcellular compartments (Au et al., 2007;

Buss et al., 2001; Tomatis et al., 2013). These isoforms differ

by insertions in the cargo-binding tail. Notably, the large insert

(LI) (Buss et al., 2001) separates the two myosin VI UBDs,

the MIU (Penengo et al., 2006) and the MyUb (Figure 6A). We

first tested whether the presence of the LI variable exons (as ex-

pressed in isoform1 [iso1] and isoform3 [iso3]) has an impact on

MyUb binding to ubiquitin by using pull-down assays. Compared

to isoform2 (iso2) MIU-MyUb, iso1/3 MIU-MyUb exhibited

reduced overall binding to ubiquitinated proteins from cellular ly-

sates (Figure 6C). Moreover, the iso2 MIU-MyUb fragment that

lacks the LI bound short K63-linked ubiquitin chains more

robustly (Figure 6D). FP analysis with K63-linked diubiquitin
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corroborated these data, indicating iso1 and iso3 MIU-MyUb

to have a 4- to 5-fold reduction in ubiquitin-binding strength

compared to iso2 MIU-MyUb (Figures 6E and S4D–S4F). Thus,

the presence of the LI led to reduced affinity of the myosin VI

ubiquitin-binding region for K63-linked ubiquitin chains.

We also tested whether the MIU-MyUb region from iso1/3 and

iso2 exhibit differences in affinity for K11- and K48-linked diubi-

quitin by using FP. We similarly found higher affinity for iso2

compared to iso1/3, with �5- and �3-fold greater affinity for

K11- and K48-linked chains, respectively (Figure 6E). Interest-

ingly, binding to K63- and K48-linked diubiquitin is similar be-

tween MyUb and iso2, whereas K11-linked diubiquitin binds

with a greater affinity to iso2 compared to MyUb (Figures 6E

and S4E), indicating a possible contribution of the MIU domain

in myosin VI for K11-linked ubiquitin chains. To test the
s



Figure 5. Ubiquitin Binding by MyUb Con-

tributes to Myosin VI/Optineurin Interaction

(A) Lysate from HEK293T cells expressing GFP-

optineurin and HA-ubiquitin was immunoprecipi-

tated and immunoblotted as indicated.

(B) 2 mM of the indicated GST-fusion proteins was

incubated with the same cellular lysate (2 mg)

shown in (A). Immunoblotting was performed us-

ing anti-GFP or anti-ubiquitin antibodies. Ponceau

staining shows comparable loading of GST-tag-

ged proteins (bottom).

(C) GFP-Trap beads were used to purify GFP-op-

tineurin from cellular lysates of HEK293T trans-

fected cells. Washed beads were incubated with

the indicated eluted GST proteins and immuno-

blotting was performed using anti-GST. Ponceau

staining shows comparable loading of GFP-opti-

neurin (top).
contribution of the MIU region further, we analyzed by FP the

behavior of a myosin VI iso2 construct in which the alanine at

position 1,013 was mutated to glycine to abrogate MIU binding

(Penengo et al., 2006). The results validated the hypothesis, as

the MIU mutation did not change the iso2 affinity for K63-linked

diubiquitin but reduced affinity toward K11-linked diubiquitin

6-fold (Figures 6E and S4G).

In an effort to understand why longer isoforms (iso1/3) exhibit

reduced affinity for ubiquitin chains compared to the isoformwith

no insert (iso2), we produced a fragment that extends from the

MIU region to just before the MyUb, spanning Q998–A1071 of

the longer myosin VI isoform (iso3; Figure 6A). This region in-

cludes the LI, which is deleted in the short myosin VI isoform

(iso2; Figure 6A). By using NMR techniques, we solved the 3D

structure of the iso3 Q998–A1071 fragment, which contains the

MIU domain and the LI (a snapshot is provided in Figure 6F).

This analysis revealed the presence of three helices, including

the anticipated MIU (Q998–E1022), a common linker helix

(linker-a1, D1026–R1036), and an isoform-specific helix (linker-

a2, P1055–L1066). A three-residue kink follows the MIU, while

an 18-amino acid flexible region separates linker-a1 and linker-

a2 (Figure 6F). Long-range NOE interactions among the three

helices were not observed (data not shown). The relative config-

uration of MIU and linker-a1 is constrained by the short inter-

vening region (Figures S4H and S4I), whereas linker-a1 and

linker-a2 are widely distributed due to their long, flexible loop

sequence (Figures S4I and S4J).

Based on these results, we hypothesized that linker-a2 is

sufficient to limit MyUb:ubiquitin interaction. To test this idea,

we evaluated binding to K63-linked diubiquitin of various

MyUb constructs. As previously shown by a GST pull-down

assay (Figure 2D), G1080–R1131 and G1080–H1122 constructs

demonstrated an almost identical affinity for K63 diubiquitin

(Figure S2K). By contrast, myosin VI 1050–1131, which includes

linker-a2, exhibited a 4-fold reduction in binding affinity

compared to the MyUb domain alone (Figure S2K). Altogether,

these data led us to conclude that the isoform-specific helix

linker-a2 restricts MyUb binding to ubiquitin.
Cell
DISCUSSION

Myosin VI as a Ubiquitin Receptor
Wedescribe here a previously unanticipated structural domain in

myosin VI with a helix-turn-helix-like configuration that is stabi-

lized by a folded back N-terminal loop. This small domain, which

we name MyUb, binds to ubiquitin chains, with preference for

K63, K11, and K29 linkages (Figure 1D). We find that MyUb nes-

tles between K63-linked ubiquitins and that K48 is part of a

unique binding surface on the proximal ubiquitin (Figure 3C).

This recognition mode provides a rationale for MyUb binding to

K48-linked diubiquitin with 10-fold lower affinity compared to

K63-linked diubiquitin (Figure 1E). In binding to K11-linked diubi-

quitin, MyUb engages the classic hydrophobic patch on the

proximal ubiquitin moiety in a manner akin to its interaction

with the distal ubiquitin of K63-linked chains (Figure 4). Future

experiments are needed to determine how MyUb recognizes

K11- and K29-linked ubiquitin chains; however, we provide evi-

dence that the MIU plays a role in binding to K11-linked ubiquitin

chains that is not recapitulated for K63-linked ubiquitin chains

(Figures 6E, S4E, and S4G).

The demonstrated binding with K63-linked ubiquitin chains is

consistent with the well-established role played by myosin VI in

intracellular transport of endocytic vesicles (Buss et al., 2004;

Tumbarello et al., 2013). Indeed, K63-linked ubiquitin chains func-

tion in cell signaling and membrane trafficking events (Acconcia

et al., 2009). K63- and K11-linked ubiquitin chains may also co-

exist in ubiquitinated substrates, such as in the case of the major

histocompatibility complex class I (MHC I), where these signals

have been found to be required for efficient epsin1-dependent

internalization (Boname et al., 2010; Goto et al., 2010). In this

context, ubiquitin binding could contribute to the association of

myosin VI with known interactors, adding an additional interaction

layer of regulation. As a proof of principle, we tested optineurin,

and our experiment appears to support this idea (Figure 5).

As a K11-linked ubiquitin receptor, myosin VI remains to

be explored. During cell-cycle progression, the anaphase-

promoting complex/cyclosome (APC/C) modifies substrates
Reports 14, 2683–2694, March 22, 2016 ª2016 The Authors 2689



Figure 6. The Presence of an Isoform-Specific Helix in the MIU-MyUb Region of Myosin VI Affects Its Affinity for Ubiquitin Chains

(A) Sequence alignment of myosin VI isoforms spanning MIU (yellow box) to MyUb (beige box). Linker-a1 (boxed in blue) and linker-a2 (boxed in purple) are

indicated. The RRL motif is highlighted in magenta. Amino acids from the LI region are boxed in gray.

(B) Expanded region of 1H-15N HSQC spectra recorded on 0.1 mM 15N MIU (Q998–S1025) with unlabeled monoubiquitin added at the indicated molar ratio. This

dataset was acquired at 700 MHz.

(C) GST-tagged myosin VI MIU-MyUb constructs from the different isoforms were used to pull down polyubiquitinated proteins from HEK293T cellular lysates

(1 mg). GST was used as a control, immunoblotting (IB) was done with anti-ubiquitin antibody, and Ponceau staining is included below to indicate loading of GST-

tagged proteins.

(D) GST pull-down assay for 2 mM indicated myosin VI GST-MIU-MyUb or GST (as a control) with 2 hr incubation with K63-linked ubiquitin chains at 4�C. Analysis
was done by immunoblotting (IB) with anti-ubiquitin antibody. All six isoforms bind longer chains, but only iso2 MIU-MyUb retains binding to K63-linked

diubiquitin. Bottom: Ponceau staining showing equal loading of the GST proteins.

(E) Binding affinities (± SD) determined by FP between K63-, K11-, and K48-linked diubiquitin and the indicated myosin VI constructs.

(F) Snapshot ribbon representation of the solution structure of iso3 Q998–A1071. MIU is part of a 6.5-turn helix (yellow), which is followed by a three-residue kink

and 2.5-turn helix (linker-a1, blue). A long, flexible linker region separates linker-a1 from isoform-specific linker-a2 (pink), and the orientation of these two helices

is not defined. Amino acids from the LI region are boxed in gray.

See also Figure S4.
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Figure 7. MyUb Interaction with K63-Linked Ubiquitin Chains Is Unique

(A–D) Structures of (A) myosin VIMyUb: K63-linked diubiquitin, (B) Rap80UIM: K63-linked diubiquitin (3A1Q), (C) TAB2NZF: K63-linked diubiquitin (3A9J), and (D)

AMSH-LP DUB: K63-linked diubiquitin (2ZNV) displayed with their proximal ubiquitin in the same orientation. The proximal ubiquitin is depicted in light blue and

the distal ubiquitin in light green. Amino acids in proximal and distal ubiquitin at the contact surface are displayed in blue and green, respectively, and labeled.

(E) Structure of monomeric ubiquitin highlighting the amino acids involved in binding to K63-linked chain specific receptors, as assessed by coordinates

deposited in the Protein Data Bank (PDB: 3A1Q, 3A9J, and 2ZNV) and our structure (A). A legend is included to the right illustrating the color coding with

corresponding amino acids on monoubiquitin for the listed binding domains. Amino acids in yellow are unique to MyUb binding.
with ubiquitin chains linked by multiple lysines (heterotypic

chains) that contain stretches of K11 linkages, allowing for their

expedient degradation by the proteasome (Meyer and Rape,

2014). A recent study suggests that the need for heterotypic

chains may be derived from poor binding to mammalian protea-

some of ubiquitin chains that are linked exclusively by K11 (Grice

et al., 2015). Notably, a few reports suggest a nuclear function

for myosin VI (Vreugde et al., 2006; Zorca et al., 2015). In this

subcellular compartment, myosin VI may interact with proteins

modified by K11-linked chains to regulate transcription and viral

infection.

MyUb Binding to K63-Linked Ubiquitin Chains
Our structural results indicate that theMyUb nestles between the

neighboring moieties of a K63-linked diubiquitin, making exten-

sive contacts around the ubiquitin ligation site (Figures 3C, 3G,

and 7A). We compared our MyUb:K63-linked diubiquitin struc-

ture to other solved structures of ubiquitin receptors in complex

with K63-linked ubiquitin chains. All of themmake direct interac-

tion with ubiquitin at positions L8, I44, H68, and V70 (Figures 7B–

7D). Rap80 uses two UIMs that are registered in a contiguous

helix to bind neighboring ubiquitins of K63-linked ubiquitin

chains (Sims and Cohen, 2009) (Figure 7B). A small compact

TAB2 NZF domain uses two distinct surfaces to bind the I44-

centered surface of both ubiquitins in K63-linked ubiquitin chains
Cell
(Kulathu et al., 2009; Sato et al., 2009) (Figure 7C) in a binding

mode similar to hHR23A UBA2 domain binding to K48-linked

ubiquitin chains (Varadan et al., 2005). Deubiquitinase AMSH-

LP forms direct interactions with the K63 linker region to achieve

linkage specificity engaging K63 and surrounding Q62, E64, and

F4 (Sato et al., 2008) (Figure 7D). In contrast to the above-

mentioned domains, MyUb binds to K63-linked ubiquitin chains

by engaging the canonical hydrophobic surface on distal ubiqui-

tin and a unique surface on proximal ubiquitin that includes

F45, K48, N60, Q62, and T66 (Figures 7A and 7D).

Finally, it is important to appraise the MyUb in the context of

the myosin VI protein. Our study established that the binding of

MyUb to ubiquitin is regulated by two other nearby structural

elements. The first one is the MIU, which shows limited ubiqui-

tin-binding ability by itself (Figures 1E and 6B) and does not

appear to contribute to the overall binding of myosin VI to K63-

linked diubiquitin but does participate in its binding to K11-linked

diubiquitin (Figure 6E). These data suggest that myosin VI do-

mains evolved in order to recognize and accommodate specific

diubiquitin signals. The second element of regulation is the iso-

form-specific helix linker-a2, which is capable of modulating

myosin VI interaction with ubiquitin, as iso1 and iso3 showed

reduced binding compared to iso2 for all diubiquitin chain types

tested (Figure 6E). This region could potentially regulate isoform-

specific myosin VI functions. For a thorough understanding of
Reports 14, 2683–2694, March 22, 2016 ª2016 The Authors 2691



these elements and their functions, additional structural and

functional studies are needed.

Implications for RRL Interactors
Embedded in the MyUb is the RRL motif previously identified as

critical for interaction with endocytic and autophagic adaptors

(Tumbarello et al., 2013). We demonstrate here that R1117

from thismotif is crucial forMyUb structure integrity. Our findings

underline the requirement of an extended hydrophobic surface

on Helix2 of the MyUb (H1122–R1131) for binding to the func-

tional adaptors optineurin, GIPC, T6BP, and NDP52 (Figures

2D and 2E). In addition, we showed that optineurin may undergo

ubiquitination and that I1104 on MyUb is critical for myosin VI

binding to this autophagic adaptor (Figure 5). Although we

cannot formally exclude the possibility that I1104 is part of the

direct binding site, our data suggest that MyUb binding to ubiq-

uitin on optineurin may regulate the interaction between myosin

VI and optineurin in space and time, a hypothesis that is consis-

tent with previous literature (Liu et al., 2014). This additional layer

of regulation can be particularly relevant in the context of selec-

tive autophagy, where both proteins were recently implicated

(Tumbarello et al., 2012, 2015), or in cell migration for which

we have demonstrated a critical role exerted by iso2 myosin VI

and optineurin (Wollscheid et al., 2016).

Altogether, the fundamental insights we have generated within

this study provide the basis for future studies that interrogate

howmyosin VI interacts with functional adaptors for downstream

signaling.

EXPERIMENTAL PROCEDURES

Reagents, Antibodies, Protein Expression and Purification, and Cell

Lines

Information regarding reagents, including the production of protein samples,

antibodies, and cell culturing can be found in Supplemental Experimental

Procedures. GFP-optineurin, FLAG-T6BP, His-GIPC, and FLAG-NDP52

were generously provided by Dr. Alain Israel, Dr. Folma Buss, Dr. Guido Serini,

and Dr. Felix Randow, respectively. Hemagglutinin (HA)-ubiquitin was previ-

ously described (Polo et al., 2002).

Size Exclusion Chromatography

100 mM K63-linked diubiquitin or triubiquitin was incubated at different molar

ratios with MyUb (G1080–R1131) for 1 hr at 20�C and subjected to size exclu-

sion chromatography on a Superdex75 (5/150) column using the ÄKTA micro-

system (GE Healthcare). Fractions containing complex or single proteins were

analyzed by SDS-PAGE and Coomassie staining.

Fluorescence Polarization Assay

The thiol-reactive fluorescent probe BODIPY TMR C5-maleimide (Invitrogen)

was conjugated to diubiquitin G76C linked via K11, K48, or K63 (100 mM, in

20 mM Tris-HCl [pH 7.6], 200 mM NaCl, 5% glycerol, and 1 mM tris(2-carbox-

yethyl)phosphine [TCEP]) following the manufacturer’s instructions. Briefly, a

20 mM stock solution of lyophilized dye suspended in DMSO was diluted

into the protein solution at 10-fold molar excess and the conjugation reaction

allowed to proceed for 2 hr in the dark at 4�C. The reaction mixture was

dialyzed against 20 mM Tris-HCl [pH 7.6], 200 mM NaCl, and 5% glycerol to

remove excess dye and then loaded on a Superdex75 10/300 column (GE

Healthcare) to isolate labeled proteins, monitored by absorbance at 544 nm.

Fluorescence polarization assays were performed at 22�C with lexcitation at

535 nm and lemission at 580 nm on a 384-well plate by using an Infinite 200

instrument (Tecan). Concentrations in the nanomolar range (20–50 nM) of

labeled proteins were titrated with MyUb (280–300 mM). Polarization readings
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from three independent replicates were averaged and fitted as previously

described (Eletr et al., 2005). Experiments were repeated at least three times,

and the reported Kd values represent the mean ± SD.

GST Pull-Down Experiments

Detailed procedures used for GST pull-down experiments can be found in

Supplemental Experimental Procedures.

NMR Spectroscopy and Structure Determination

Detailed procedures for collecting and analyzing NMR data as well as for

calculating, evaluating, and presenting the protein structures can be found

in Supplemental Experimental Procedures.
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