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Abstract A thermomechanical model is used to analyze the strain pattern due to the Africa-Eurasia
convergence in the area that extends from the Calabrian Arc to the Alpine domain and the role that is
played by the Calabrian Arc complex in controlling the northward propagation of the tectonic stress. After
a preliminary analysis to eliminate GPS stations that are not representative of the main regional tectonic
process, the predicted deformation is compared to that based on GPS observations by using a novel χ2 test
in which both data and model uncertainties are taken into account. A large amount of the tectonic force
(at least 75%) that is associated with the Africa-Eurasia convergence is accommodated by the Calabrian
Arc complex, which plays a crucial role in controlling the intraplate propagation of the stress in the south
Tyrrhenian area. Furthermore, a strong lithosphere, which is characterized by a granite-type upper crust,
diabase-type lower crust, and peridotite-type lithosphere mantle, must pave the south Tyrrhenian; and a soft
lithosphere, which is characterized by a granite-type upper crust, granulite-type lower crust, and peridotite-type
lithospheric mantle, must pave the surrounding area to reproduce the expected regional compression in
the SE-NWdirection and extension in the perpendicular direction. Finally, the local deformation at high latitudes
is not sensitive to variations in the boundary conditions along a limited portion of the Calabrian Arc.

1. Introduction

The Central Mediterranean is a tectonically complex domain in which different regional and local processes,
such as the slow convergence between the Africa and Eurasia plates [DeMets et al., 1994]; the subduction of
the Ionian oceanic lithosphere beneath the European lithosphere, particularly along the Apennines and the
Calabrian Arc; trench retreat [Faccenna et al., 2001; Wortel and Spakman, 2000; Bassi et al., 1997]; oblique
subduction [D’Agostino and Selvaggi, 2004]; and the independent behavior of different microplates [D’Agostino
and Selvaggi, 2004; D’Agostino et al., 2008; Marotta and Sabadini, 2008; Palano et al., 2012], produce adjacent
extensional and compressional tectonic domains [e.g., Hollstein et al., 2003; Montone et al., 2004; Marotta
and Sabadini, 2008; Serpelloni et al., 2010; Splendore et al., 2010; Palano, 2015], such as back-arc basins and
orogenic belts.

In the SE-NW Africa-Eurasia convergence, a main feature that characterizes the Calabrian Arc domain is the
subduction of the Ionian lithosphere beneath the European lithosphere. Seismological analyses suggest that
the Calabrian subduction is characterized by a narrow (<200 km) and steep (approximately 70°) NW-dipping
Wadati-Benioff zone [e.g., Selvaggi and Chiarabba, 1995; Koulakov et al., 2009]. In particular, tomographic
images indicate a deep (>400 km), laterally discontinuous positive-velocity anomaly that is associated
with the subducted slab and proceeds under the Apennines, the Calabrian Arc, and the Magrebide Chain
[Selvaggi and Chiarabba, 1995; Wortel and Spakman, 2000; Piromallo and Morelli, 2003; Koulakov et al., 2009;
Neri et al., 2009, 2012]. Tomography also indicates that the Calabrian and southern Apennine slabs are not
directly linked [Chiarabba et al., 2008] and that the subducted slab has already detached at the northern
and southwestern portions of the Calabrian Arc [Neri et al., 2009], which implies that the final detachment
and the cessation of the subduction processes are geologically close.

The last 15 million years of the evolution of the Calabrian subduction have been characterized by the occur-
rence of the rollback of the Ionian lithosphere, which is associated with the opening of the Tyrrhenian
back-arc basin [Malinverno and Ryan, 1986; Faccenna et al., 2001]. The opening rates of the Tyrrhenian in
the Neogene-Quaternary are estimated to be 50–70mm/y, which is faster than contemporaneous plate
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convergence, whereas present-day evidence suggests that the back-arc spreading has essentially stopped
[Faccenna et al., 2001], as confirmed by GPS observations [D’agostino and Selvaggi, 2004] and tomographic
image analysis [Neri et al., 2009].

GPS observations also indicate that the Calabrian Arc is still moving trenchward [D’Agostino and Selvaggi,
2004; D’Agostino et al., 2008, 2011], which implies an active shortening in the Ionian wedge that is caused
by the gravitational flow of the whole Calabrian Arc under the effect of the difference in potential energy
between its crest and the bottom of the Ionian Sea [D’Agostino et al., 2011]. Furthermore, the present-day
velocity field and active deformation of the Calabrian Arc domain are mainly controlled by the recent frag-
mentation of the Adriatic promontory, which rigidly transferred Africa’s motion to the orogenic belts during
the Neogene into different microplates or blocks that behave independently and accommodate part of the
Eurasia-Africa convergence [D’Agostino et al., 2008; Marotta and Sabadini, 2008].

The subduction of the Ionian and Adriatic lithosphere plays a secondary role in driving the deformation of
the Calabrian Arc domain, although this process may still be locally active [D’Agostino et al., 2008]. Geological
evidence confirms this hypothesis for both the Calabrian wedge [Minelli and Faccenna, 2010] and the
Apulia escarpment [Argnani, 2009], which suggests that the Hyblean block is not rigidly connected to the
Nubia plate. This scenario is supported by geodetic observations of distinct deformation belts that separate
the Tyrrhenian, the Sicilian-Hyblean, and the Calabrian domains [Palano et al., 2012], although the interrela-
tionships of the different blocks are not fully understood. This complex puzzle of blocks can affect the stress
transmission in the Calabrian Arc domain, which lies in a key position for driving the geodynamics of the
Central Mediterranean.

Previous numerical models suggest that a consistent part of the Africa-Eurasia convergence is absorbed
either into the Calabrian subduction [Marotta and Sabadini, 2008] or through the whole Calabrian Arc zone
[Splendore et al., 2010]. Splendore et al. [2010] suggested that only 50% of the convergence is transmitted
to the European plate. Here we perform a novel statistical analysis to support the results of Splendore et al.
[2010]. In particular, we compare the deformation field that is predicted by a finite element thermomechanical
model and the observed deformation based on GPS velocity solutions by means of a χ2 test that is performed
at both short and long wavelengths in the area that extends from the Calabrian Complex to the Alpine
border. Both the observed and predicted deformation are expressed in terms of the rate of elongation
or shortening of the baselines that cross the study area (Figure 1), which is henceforth referred to as the
baseline rate.

The present analysis is more reliable and novel than previous attempts to investigate how the forces that are
associated with the Africa-Eurasia convergence are attenuated by the Calabrian arc complex [Splendore et al.,
2010]. First, a comparative analysis is performed in terms of the baseline strain rates instead of velocities,
which avoids possible biases from the differences between the reference frame in which the observed GPS
velocities are obtained and the reference frame in which the model is set up. Second, the present com-
parative analysis accounts simultaneously for both observation and model uncertainties, the latter through
the covariance function [Barzaghi et al., 2014; Marotta et al., 2015], and thus better constrains the statistical
significance of the comparison.

2. Model Setup

We used the thermomechanical model that was described in Splendore et al. [2010] and used in Barzaghi et al.
[2014] and Marotta et al. [2015] to analyze the role of the Calabrian Arc complex in transmitting the tectonic
force due to the Africa-Eurasia convergence. This finite element model is based on a spherical thin sheet
approach and calculates the horizontal velocity field of the study domain, starting from the Africa-Eurasia
convergence velocity and the rheological stratification of the lithosphere (Figure 1). The details of themodel’s
approach and the parameter values are summarized in Appendix A, Tables A1 and A2.

We consider three lithosphere stratifications among the 12 combinations in Marotta et al. [2015]: gra_gra_per,
which accounts for granite (upper crust), granulite (lower crust), and peridotite (lithosphericmantle); gra_dia_per,
which accounts for granite (upper crust), diabase (lower crust), and peridotite (lithospheric mantle); and
qtz_dia_oli, which accounts for quartzite (upper crust), diabase (lower crust), and olivine (lithospheric mantle).
These three rheological profiles are representative of an average soft (gra_gra_per) and hard (gra_dia_per
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and qtz_dia_oli) lithosphere, respectively, and correspond to the best fit (gra_gra_per), an intermediate fit
(gra_dia_per), and one of the worst fit models (qtz_dia_oli) in Marotta et al. [2015]’s statistical analysis. For
each lithospheric stratification, we varied the Africa Eurasia convergence velocities in the proximity of the
Calabrian Arc (Figure 1) at 0%, 25%, 50%, 75%, and 100% of the Africa-Eurasia relative velocity, which was
calculated based on ITRF2005 [Altamini et al., 2007] and following the procedure in Nocquet et al. [2001]
(see Splendore et al., 2010 for the detailed procedure). A total of 15 models were obtained (Appendix A;
Tables A1 and A2).

In the following, we refer to each model as “lithosphere stratification.percentage of prescribed velocity”
(e.g., gra_gra_per.25).

To statistically compare the model predictions to the GPS-derived observations, we applied the procedure
that was described in Barzaghi et al. [2014] to each model and obtained a relative covariance matrix that
was computed on the specific set of GPS permanent stations used in the present study (Table 1).

To retrieve the observed deformation field in the study area, we used the GPS velocity solutions of
Devoti et al. [2011] for a set of 265 GPS stations that are distributed throughout the study domain
(Table 1 and Figure 2).

3. Baseline Rate Computation

Starting from the velocity at each GPS station, baseline rates were computed from both the model predic-
tions and GPS solutions along with the related uncertainties, as described in the following. Assuming a

spherical Earth with radius R, the baseline rate
�
Lij between the two stations i and j can be expressed as

L̇ij ¼ d
dt

R � arccos sinϕisinϕj þ cosϕicosϕj cos ϑ i � ϑ j
� �� �� �

;

Figure 1. Sketch of the modeled domain. The green line represents the boundary of the finite element model mesh,
and the arrows represent the Africa-Eurasia velocities, which were applied as boundary conditions on the southern
boundary of the model. The red arrows represent the velocities, which vary from 0% to 100% of the Africa-Eurasia
convergence rate, to analyze the Calabrian Arc complex absorption effect. The brown lines represent the principal
plate boundaries in the modeled domain. GD stands for the Gargano-Dubrovnik fault zone. The study area is colored
in green.
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whereϑ is the longitude andϕ is the latitude or, after a fewmathematical steps, L̇ij¼ Bji Cji Bjj Cjj½ ��

Vi
ϑ

Vi
ϕ

Vj
ϑ

Vj
ϕ

2
666664

3
777775,

where

Bji ¼
cosϕj sin ϑ i � ϑ j

� �
dij

; Cji ¼
sinϕi cosϕj cos ϑ i � ϑ j

� �� cosϕi sinϕj

dij
;

Bjj ¼ �cosϕi sin ϑ i � ϑ j
� �
dij

; Cjj ¼
cosϕi sinϕj cos ϑ i � ϑ j

� �� sinϕi cosϕj

dij
;

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2ij

q
; εij ¼ sinϕi sinϕj þ cosϕi cosϕj cos ϑ i � ϑ j

� �
Vi
ϑ is the velocity component along the longitude, and Vϕ

i is the velocity component along the latitude.

Figure 2. GPS stations (circles) that were used in the Principal Component Analysis (PCA). Different colors are used to
distinguish the different subsets of the GPS stations that were used in the PCA analysis, which was performed at the
local scale of the north Adria (gray), north Tyrrhenian (blue), south Tyrrhenian (red), and Apulia (green) subdomains. The
brown lines indicate the principal plate boundaries from Figure 1.
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When N stations are considered simultaneously, the baseline rates along the NL˙ ¼
N!

N�2ð Þ!2! possible
(nonrepeated) baselines can be calculated as
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:
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where

A¼

B21 C21

1

B22 C22

2 ⋯ i ⋯ j ⋯ N�1 N

Bji Cji Bjj Cjj

BN N�1 CNN�1 BNN CNN

2
666666666666664

3
777777777777775

GPS station number

Although the GPS velocities are assumed to be uncorrelated variables, the calculated baseline rates are not.
The application of the classical rule of covariance matrix propagation allows the full covariance matrix that is
associated with the baseline rates to be obtained as

C �L ¼ A � Cv � AT ;
where Cv is the 2N× 2N symmetric matrix, whose diagonal terms contain the standard deviations σ2ϑ and σ2ϕ
of the velocity components in Table 1.

When the above described procedure was adopted to calculate the observed and modeled deformation
field, each GPS station was chosen as a reference site (now on pole), and the baseline rate was computed
along all possible baselines that could be built with the remaining stations.
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Furthermore, when the procedure was applied to calculate the modeled deformation field, the velocity
solutions that were predicted by each model were interpolated onto the geodetic sites by the same shape
function that was used for the numerical solution before computing the baseline rate along the same
baselines that were used for the GPS data.

4. Geodetic Deformation Field

In the present section, we illustrate the main strain features that were observed in the study area (green area
in Figure 1) in terms of the rate of elongation or shortening of baselines (baseline rate).

To calculate the observed baseline rates, we used the GPS velocity solutions that were recorded at the set of
265 GPS stations in Figure 2. Table 1 lists, for each GPS station, the longitude ϑ , the latitude ϕ, the absolute
velocity components along the longitude Vϑ along the latitude Vϕ, and the corresponding velocity standard
deviations σvϑ and σvϕ.

The GPS-derived deformation field in the study domain has been described in recent publications, such as
Marotta and Sabadini [2008]; Barba et al. [2010]; Serpelloni et al. [2010]; Palano et al. [2012], and Palano
[2015], in terms of the geodetic strain rate. Generally, strong extension is described along the Apennine ridge,
with a chain-perpendicular direction, and continuing along the Calabro-Peloritan ridge, whereas strong
compression is observed in the southern part of the Tyrrhenian basin, with a N-S direction, and in the
Gaeta Gulf, with an E-W direction. The Po Plain and the Adriatic region display compression that is perpendi-
cular to the Apennine front. These observations agree with the measured borehole stresses [Montone et al.,
2004] and seismological studies [Presti et al., 2013]. However, the described geodetic deformation pattern
was computed after the interpolation of the observed velocities over a regular grid and reflects a small-scale
strain rate field. By using the baseline rates, a larger-scale deformation can be computed without interpolat-
ing the GPS data. The baselines allow us to focus on the behavior of the system parallel and perpendicular to
the main direction of the Africa-Eurasia convergence, which is roughly NW-SE, at long and short wavelengths
by choosing a pair of distant or close GPS stations, respectively.

Figure 3 shows the geodetic deformation field at the regional scale in terms of the baseline rates that were
computed starting from the whole GPS stations data set, which covers the entire study domain. When the
baselines are calculated starting from the poles in the western part of the domain, such as AJAC and CAGL
(Figures 3a1 and 3a2, respectively), strong, roughly E-W extension is observed, which reflects the relative
eastward movement of the Apennines with respect to the Sardinia-Corsica block. The Africa-Eurasia convergence
parallel baselines are characterized by shortening, with the strongest magnitude relative to the stations in the
Hyblean block south of the plate boundary, which indicates active convergence west of the Calabrian Arc.

Choosing a pole in the northern portion of the domain, such as MONC (Figure 3b1), results in shortening in
the direction of the Africa-Eurasia convergence, with the lowest rates along the Apennine chain parallel to
the axis of the belt.

Strong shortening parallel to the Africa-Eurasia convergence direction is observed when a pole in the southern
portion of the Tyrrhenian basin, such as MSRU, is chosen (Figure 3b2) and is associated with extension with
respect to the poles in the Hyblean block. Finally, when poles roughly in the center of the study domain are
chosen, such as MOIE and MRLC, (Figures 3c1 and 3c2, respectively), extension is observed perpendicular to
the Africa-Eurasia convergence direction, which agrees with the eastward motion of the Apennine front. The
shorter baselines that run perpendicular to the axis of the Apennine belt show extension, which agrees with
previous studies [Montone et al., 2004; Palano et al., 2012; Palano, 2015], whereas compression parallel to the
Africa-Eurasia convergence direction characterizes the NW-SE directed baselines.

To illustrate local deformation features, we performed an analysis of the deformation patterns by using the
limited subsets of GPS stations, which are located within the north Tyrrhenian, south Tyrrhenian, north
Adria, and Apulia subdomains and indicated by circles of different colors in Figure 2 (blue for the north
Tyrrhenian, red for the south Tyrrhenian, gray for north Adria, and green for Apulia). The results are shown
in Figure 4. Local features that contrast with the regional deformation pattern can be highlighted, which
suggests the presence of local-scale processes that produce a second-order effect on short-scale deformation.
When selecting STSV as the pole for the south Tyrrhenian or MODE as the pole for the north Tyrrhenian
(Figure 4a), extension characterizes SE-NW baselines, which contrasts with the observed regional shortening
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Figure 3. Regional scale deformation in terms of the baseline rates, which were computed starting from the GPS-derived velocities that cover the entire study area.
Baselines were built for six sample poles throughout the study area: (a1) AJAC, (a2) CAGL, (b1) MONK, (b2) MILA, (c1) MOIE, and (c2) MRLC. The baselines are colored
according to the associated strain rate (see the color scale for further details). The brown lines indicate the principal plate boundaries from Figure 1.
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(Figure 3). Strong shortening alongW-E
baselines is observed when LICO and
VITE are chosen as poles (Figure 4b),
which is not compatible with the
regional deformation pattern. When
focusing on the north Adria domain,
close poles, such as VLKM, ASIA, and
SERM (Figures 4a–4c, respectively),
show different behavior. A roughly
similar behavior occurs within the
south Adria domain (Apulia).

Because the Mediterranean is a com-
plex tectonic area in which deforma-
tion is controlled by both regional
and local geodynamic mechanisms,
some of the available GPS stations
may not be representative of the
main regional process we are focus-
ing on, that is, the Africa-Eurasia
convergence and the related stress
transmission through the Calabrian
Arc complex. Thus, these stations
may bias the interpretation of the
results if included in the comparative
analysis. We herein assume that the
GPS velocity solutions that were
recorded by these GPS stations are
anomalies that can be treated as data
outliers, that is, observations that are
inconsistent with the remainder of
the data. To increase the reliability of
our analysis and its conclusions, we
performed a preliminary analysis to
identify outliers before performing
the comparative analysis. Various
statistical methods are available to
detect outliers [Markou and Singh,
2003, and references therein]. Here
we define a scheme that is based on
Principal Component Analysis (PCA),
as described in Jolliffe [2010].

Figure 4. Local scale deformation in terms
of the baseline rates, which were computed
starting from GPS-derived velocities.
Each panel shows the baselines that were
built for four sample poles, one for each
subdomain: (a) VLKM, MODE, NOCI, and
STSV; (b) ASIA, VITE, LICO, and FASA;
(c) and SERM, MACE, CDRU, and SVTO. The
baselines are colored according to the
associated strain rate (see the color scale
for further details). The brown lines
indicate the principal plate boundaries
from Figure 1.
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5. PCA-Based Outlier Detection Analysis

We began by considering a GPS database that is composed of 265 (N) stations that are distributed throughout
the study area (Table 1 and Figure 2). Figure 5a1 presents a plot of the data (red-filled squares) in terms of the

velocity components along the longitude, Vi
ϑ , and along the latitude, Vi

ϕ .

The corresponding average values, Vϑ and Vϕ , are subtracted from each component of the GPS horizontal
velocities to obtain a new data set whose mean is zero (black empty squares in Figure 5a1, coincident with
the red-filled squares), which enables the construction of a N×2 matrix, X, called the Mean Adjusted Data:

Mean Adjusted Data X ¼

ΔV1
ϑ ΔV1

ϕ

ΔV2
ϑ ΔV2

ϕ

… …

ΔVN
ϑ ΔVN

ϕ

2
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3
77775 ¼
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2
6666664

3
7777775
:

By using the Mean Adjusted Data Matrix X, the Covariance Matrix Css is then computed as follows:

Css ¼
Cϑϑ
ss Cϑϕ

ss

Cϑϕ
ss Cϕϕ

ss

" #
¼ 1

N � 1
� XT � X ¼ 1

N � 1
�
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ϕ
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 XN
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2

2
66664

3
77775:

As part of the standard PCA procedure, the eigenvalues eig1 eig2½ �and eigendirections ⌢n1
⌢n2

� �
of Css are

then computed.

Once the eigenvectors are plotted on top of the Mean Adjusted Data (dashed black lines in Figure 5a1), the
first eigenvector, which is associated with the highest eigenvalue, defines the principal pattern of the data,
which may be attributable to the direction of the principal tectonic process that controls the distribution
of the recorded velocity field; we herein refer to this eigenvector as the Principal Direction:

Principal Direction : ⌢n1 ¼ ⌢nϑ1

⌢nϕ1

� �
:

The second and smaller eigenvector defines the less important patterns of the data and might be related to
other local tectonic processes that, along with Africa-Eurasia convergence, define the observed regional
deformation pattern.

We obtain the Projected Data (black-filled circles in Figure 5a1) by ignoring the eigenvector that is related to
the smaller eigenvalue and by projecting the Mean Adjusted Data along the Principal Direction:

Projected Data ¼ ΔV1
projec

ΔV2
projec

… ΔVN
projech i

¼ ⌢nϑ1

⌢nϕ1

� � � V1
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� �
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ϑ � Vϑ

� �
… VN

ϑ � Vϑ
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ϕ � Vϕ
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ϕ � Vϕ

	 

… VN

ϕ � Vϕ

	 

2
4

3
5

After multiplying the Projected Data by the transposed Principal Direction and summing the average values,

Vϑ and Vϕ , we can obtain the Adjusted Data, which can be compared to the original GPS velocities:

Adjusted Data ¼ V1
ϑ
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V2
ϑ
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⋯ VN
ϑ
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V1
ϕ
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V1
ϕ
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⋯ VN
ϕ
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2
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" #
þ

⌢nϑ1

⌢nϕ1

" #
� ΔV1
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ΔV2
projec

⋯ ΔVN
projech i

:

We performed a standard statistical analysis over the residual velocities, that is, the differences between the
original GPS velocities and the estimated PCA velocities, to identify the GPS stations at which the recorded
velocities are inconsistent with the dominant tectonic mechanism that is associated with the Africa-Eurasia
convergence. The standard deviation of the residual velocities was computed for each component. GPS
stations at which both component residual velocities were higher than 2 times the related standard deviations
(green band in Figure 5a) were considered outliers.
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Figure 5. (a1 and a2) Results of the PCA analysis with the GPS-velocity database that covers the entire study area (Italy data
set). The red-filled squares represent the plot of the data in terms of the velocity components along the longitude, Vi

ϑ ,
and along the latitude, Vi

ϕ . The black empty squares represent the data after subtracting the average value for each
component (coincident with the red-filled squares). The black dashed lines correspond to the eigendirections. The black-filled
circles represent the Projected Data. The green band represents the 2σ interval after the first PCA iteration, Figure 5a1,
and after the last iteration, Figure 5a2. Stations that were located outside the green band were excluded after each itera-
tion. Panel a3 summarizes the results of the PCA analysis with the entire Italy dataset and with the different local datasets,
which are shown with different colors in Figure 2.
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We iteratively repeated the PCA and the successive statistical procedures and stopped at the seventh iteration,
when no outliers were identified based on the applied 2σ criterion (Figure 5a2).

Thus, after seven iterations, we identified a total of 48 GPS stations as outliers, which are listed in Figure 6a
along with their areal distribution. The velocities that were recorded by these stations and the related base-
line rates were excluded from the successive χ2 analysis.

An identical PCA procedure was performed for the Tyrrhenian, the north Adria and the Apulia domains.
Figure 5a3 summarizes the results. Figure 6 shows the outliers for the Tyrrhenian (b), north Adria (c), and
Apulia (d) subdomains.

6. χ2 Comparative Analyses

We compared the baseline rates that were predicted by the 15models to the baseline rates that were derived
from the GPS velocity solutions by means of a χ2 test. In the statistical test, we took into account both model
and data uncertainties, following the procedure that was described in Barzaghi et al. [2014] andMarotta et al.
[2015] after adapting it to the baseline rates:

χ2 ¼ RT C L
�GPS þ CL

�model
	 
�1

R;

where R is the difference between the GPS velocity-derived baseline rates and the geophysical model’s pre-
dicted baseline rates, CL

�GPS is the covariance matrix that is associated with the GPS velocity-derived baseline
rates andCL

�model represents the covariancematrix that is associated with the geophysical model’s baseline rates.

The comparative analysis was performed at the regional and local scales.

The χ2 test was performed for each pole separately, and the results were then averaged over all poles for
each model.

Figure 7a shows the results of the χ2 test for the entire study domain. All themodels, independently from the rheo-
logical stratification, show a clear increase in their agreement with the decrease in the percentage of transmitted
AF-EU convergence, with a maximum variation of approximately 15 in the χ2 values for the gra_gra_per model.

The gra_gra_per model was the worst at reproducing the regional deformation pattern for all the boundary
conditions configurations. This rheological stratification, which is somewhat softer than gra_dia_per and
qtz_dia_oli, exhibitedminimal χ2 values for 0% of the transmitted Africa-Eurasia convergence. The rheologically
harder models (gra_dia_per and qtz_dia_oli) exhibited comparable χ2 values, with a minimum corresponding
to 0–25% of the transmitted Africa-Eurasia convergence.

The behavior of the models in response to the changes in boundary conditions, i.e., the variation in the trans-
mitted convergence, suggests that an important portion of the Africa-Eurasia convergence is not transmitted
through the Calabrian Arc, in which the subduction or accommodation of the rigid micro-blocks absorbs
part of the push force because of the plate collisions, as already suggested by previous statistical analyses
[Splendore et al., 2010; Marotta et al., 2015].

To verify the stability of this major result, we performed the χ2 analysis within the Tyrrhenian, north Adria,
and Apulia subdomains, (Figures 7b, 7e, and 7f, respectively). When the χ2 analysis was limited west of the
Apennine Front (Figure 7b), the general χ2 trend did not change, with a slight increase in the agreement
between the models and data, and the minimum χ2 value occurs for the gra_dia_per model at 25% of
the transmitted Africa-Eurasia convergence.

When the χ2 analysis was performed at the smaller scale of the south and north Tyrrhenian, the results showed
that in the north Tyrrhenian the χ2 values did not vary, either for large variations in the percentage of the
transmitted Africa-Eurasia convergence (Figure 7d), while a χ2 trend similar to that obtained in the entire
Tyrrhenian was predicted in the south Tyrrhenian, with even lower values of χ2 (Figure 7c) in the north
Tyrrhenian, which indicates that deformation at long distances is not affected by variations in the boundary
conditions along the Calabrian Arc complex. Furthermore, a softer lithosphere (gra_gra_per stratification) in
this subdomain better reproduces the local deformation pattern. These results were confirmed by the χ2

analysis in the north Adria subdomain (Figure 7e), where models showed much less sensitivity to changes
in boundary conditions. Thus, only distinguishing a best fit lithosphere stratification (gra_gra_per) in both the
north Tyrrhenian and north Adria domains, rather than a best fit model, is possible.
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Figure 6. Lists of the GPS stations that were excluded after the PCA analysis from the (a) entire Italy data set and from the
(b) Tyrrhenian, (c) north Adria, and (d) Apulia subsets. Different colors indicate the different PCA iterations for each station.
The brown lines indicate the principal plate boundaries from Figure 1.
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Figure 7. Results of the χ2 test that was performed for the baseline rates at both the (a) regional scale of the entire study
area and the local scale of the (b) Tyrrhenian; (c) south Tyrrhenian, (d) north Tyrrhenian, (e) north Adria, (f) and Apulia.
The χ2 values are averaged over the poles and are represented as a function of the % of transmitted convergence. The red
lines and squares correspond to the gra_gra_per models, the blue lines and squares correspond to the gra_dia_permodels,
and the green lines and squares correspond to the qtz_dia_oli models. The colored circles in the insets of each panel
indicate the GPS stations that were used in the χ2 analysis.
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The comparison between the χ2 values at the regional scale of the entire study area and the Tyrrhenian to those
that were obtained at the scale of the subdomains suggests that accounting for long baselines that connecting
GPS stations near the Calabrian Arc complex to GPS stations at high latitudes, where the deformation is not
sensitive to variations in the boundary conditions along the limited border of the Calabrian Arc, worsened the
agreement between the data and the model, especially for high percentages of transmitted Africa-Eurasia
convergence (compare Figure 7c to Figures 7a and 7b).

Figure 8. Large-scale strain pattern that is predicted along the baselines that cross the Tyrrhenian domain with respect to (a1) AJAC and (b1) MILA for the best fit
model gra_dia_per.25 (red lines indicate shortening; green lines indicate elongation). Continuum lines are used when a good agreement between the predicted
and geodetic strain rate is obtained. Dashed lines are used when the predicted and geodetic strain rates exhibit opposite trends but reconcile within their
uncertainties. In Figures 8a2 and 8b2, the predicted (red for shortening and green for elongation) and geodetic (filled black rectangles for shortening and gray
rectangles for elongation) baseline rate values are compared with their uncertainties for poles (a2) AJAC and (b2) MILA. The text is colored in blue when
the predicted and geodetic baseline rate values agree, light blue is used when the predicted and geodetic baseline rate values reconcile within their uncertainties,
and black is used when the agreement is poor.
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The χ2 of the Apulia domain (Figure 7f), which is close to the Calabrian Arc complex, became affected by
variations in the boundary conditions, with gra_gra_per.0% being the best fit model. Furthermore, the higher
values of χ2 indicated that the agreement between the model and data in this domain worsened. This effect
is foreseeable being the entire Adria domain considered to be kinematically independent from the Tyrrhenian
domain [e.g., D’Agostino et al., 2011; Serpelloni et al., 2010; Battaglia et al., 2004].

The different best fit lithospheric stratifications in different areas of the study domain, including gra_dia_per
in the south Tyrrhenian and gra_gra_per in the surrounding areas, reflect lateral heterogeneities in the
lithospheric composition.

The best fit model gra_dia_per.25% in Figures 8a1 and 8b1 shows two examples of the large-scale strain
pattern that is predicted along the baselines that cross the Tyrrhenian area. Although the model tends to
underestimate the intensity of the regional strain rate (Figures 8a2 and 8b2), good agreement between
the observed and predicted strain rates is obtained, with compression (red solid lines) characterizing the
NW-SE baselines and extension (green solid lines) characterizing the SW-NE baselines. Dashed lines indicate
baselines that reconcile within their uncertainties, although the predicted and observed strain rates exhibit
opposite trends (Figures 8a2 and 8b2). Disagreement between the modeled and predicted strain pattern
occurs only along the baselines that connect the poles to a few GPS stations (black text in Figure 8).

In the south Tyrrhenian, the agreement between the predicted and the observed baseline rates is better, and
the deformation style and the intensity of the strain rate are also reproduced along several baselines (Figure 9).

Figure 9. Local strain rate pattern that is predicted along the baselines that cross the south Tyrrhenian, which were computed with respect to poles (a1) PLAC and
(b1) CAGL, for the best fit model gra_dia_per.25 (red lines indicate shortening; green lines indicate elongation). Continuum lines are used when a good agreement
between the predicted and geodetic strain rates is obtained. Dashed lines are used when the predicted and geodetic strain rates exhibit opposite trends but
reconcile within their uncertainties. In Figures 9a2 and 9b2, the predicted (red for shortening and green for elongation) and geodetic (filled black rectangles for
shortening and gray rectangles for elongation) baseline rate values are compared with their uncertainties for poles (a2) PLANC and (b2) CAGL. The text is colored in
blue when the predicted and geodetic baseline rate values agree, light blue is used when the predicted and geodetic baseline rate values reconcile within their
uncertainties, and black is used when the agreement is poor.
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7. Conclusions

This application of a novel statistical analysis strengthens the role of the Calabrian Arc complex in controlling
the intraplate propagation of the tectonic stress that is related to the Africa-Eurasia convergence to the north.

In particular, a thermomechanical model was used to predict the strain rate along baselines that cross the area
from the Calabrian Arc complex to the Alpine domain at both the regional and local scales. The predicted strain
pattern was then compared to that derived from the GPS velocity solutions though a χ2 test, in which both the
data and model uncertainties were taken into account.

The implementation of a preliminary outlier detection scheme based on PCA enabled the identification and
exclusion of GPS stations that may not be representative of the main tectonic process of interest from the
comparative χ2 test.

Our results suggest that the study area must be paved by a heterogeneous lithosphere that is characterized
by a granite-type upper crust, diabase-type lower crust, and peridotite-type lithosphere mantle in the south
Tyrrhenian and a granite-type upper crust, granulite-type lower crust, and peridotite-type lithosphere mantle
in the surrounding area to reproduce the regionally observed SE-NW compression and SW-NE extension.

Furthermore, our results indicate that an important portion of the Africa-Eurasia convergence is not trans-
mitted through the Calabrian Arc to high latitudes. In particular, at least 75% of the convergence is either
absorbed by subduction or accommodated within the microblocks when the strain pattern is analyzed at
the local scale in the surroundings of the Calabrian Arc.

In both cases, our results confirm that the Africa-Eurasia tectonics affect the deformation to the northern
border of the Alps and beyond [Marotta and Sabadini, 2004]. However, small variations in tectonic forcing
along the limited border of the Calabrian Arc can affect the deformation in the south Tyrrhenian.

Appendix A: Mathematical Formulation of the Problem andValues of the Parameters
That Were Used in the Analysis

A1. Mathematical Formulation of the Problem
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Energy equation

∇ � K∇Tð Þ þ ρH ¼ 0

uϑ and u⌢
ϕ are the velocity components along the longitude ϑ and the colatitude

⌢

ϕ , respectively; S is the
crustal thickness; HL is the lithosphere thickness; ρc and ρm are the densities of the crust and mantle; K is
the thermal conductivity; T is the temperature; and H radiogenic heat production.

μ ¼ 1= ε�ð Þ∫
HL

0

σydy Effective viscosity;

σBrittle = β r ρ g; β = 3 (thrust) 1.2 (strike slip) 0.75 (normal)

σy=min{σBrittle, σDuctile } Lithosphere strength

σDuctile ¼ ε�
ε�o

	 
1
n � exp Ea

nRT

� �
; ε� ¼ 10�19 ÷10�16 s�1
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