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SUPPORTING INFORMATION ON EXPERIMENTS 

Degeneration of the K>4PTCDA phase. 

In the results section of the main manuscript a higher intercalation phase is mentioned which 

exceeds an effective ratio x = 4. The structural properties of this phase are not discussed in detail 

as it tends to decompose in UHV at room temperature within about an hour (depending on the 

content of this phase on the surface). This hampers any supporting ST[H]M measurements. 

Figure S1 (left) shows the corresponding LEED image of the K>4PTCDA shortly after 

preparation. Note that the superimposed simulation of the reciprocal lattice (green) is optimized 
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to give a possible explanation of the K>4PTCDA structure by considering all visible diffraction 

spots. However, the assignment of this structure lacks confirmation by ST[H]M. The mentioned 

recrystallization of the K>4PTCDA phase, which is accompanied by the reformation of the 

already discussed K4PTCDA phase, is shown in Figure S1 (center). As can be seen in the red 

zoom boxes, the intensities of the spots associated with the K>4PTCDA and K4PTCDA phases 

change continuously. This illustrates the emergence of the K4PTCDA phase while the 

K>4PTCDA content vanishes. This process results in a sample showing only the K4PTCDA 

structure (shown in Figure S1 (right)), which can therefore be assigned as the K intercalated 

PTCDA phase exhibiting the highest K content that is long-term stable at room temperature. 

 

Figure S1. LEED images showing the degeneration of the K>4PTCDA phase, accompanied by 

the renewed formation of the K4PTCDA structure. The recrystallization occurs at room 

temperature within approximately 70 min. Samples exhibiting only the K>4PTCDA phase (left) 

and the K4PTCDA phase (right) are connected by a series of LEED images (center) showing 

their time-dependent coexistence. The red zoom boxes contain certain contrast-enhanced 

sections of the LEED images, exhibiting diffraction spots of both structures. The simulation of 

the reciprocal unit cell of the associated KxPTCDA structure (x  > 4 green, x = 4 blue) and the 

silver surface orientation along (01) and (10) (yellow) are superimposed. All possible rotational 

and mirror domains are considered for the simulation. 

Contrast variation in ST[H]M. 

In the Methods and Results sections of the manuscript we state that the ST[H]M contrast 

strongly depends on the tunneling parameters. Figure S2 shows a series of STHM images taken 

of the K4PTCDA phase with varying bias voltages while measuring in constant height mode. For 

the parameters set in Figure S2 (a), the potassium atoms are visible, but not as prominently as the 

PTCDA molecules. Additionally, not all the K atoms are imaged and the PTCDA exhibits a 
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different appearance than shown in Figure S2 (b). Changing the parameters to the ones used in 

Figure S2 (c), the potassium atoms become much more pronounced at the expense of the 

visibility of the PTCDA molecules. However, an optimal simultaneous visibility of PTCDA and 

K-related features can be obtained only for parameters close to the ones chosen in Figure S2 (b), 

where all K atoms are visible, including the mentioned “ghost feature”, and also PTCDA 

displays submolecular resolution.  

 

Figure S2. Bias voltage (VT) dependency of the STHM contrast for images of the K4PTCDA 

phase measured in constant height mode. Each image, showing the same sample section, exhibits 

a significantly different visibility of PTCDA and potassium-related features. 

 

SUPPORTING INFORMATION ON MODELLING 

Unit cells used in the simulations of the intercalated interfaces KxPTCDA/Ag(111). 

As described in the Methods section of the main manuscript, to generate a commensurate 

structure necessary for the periodic boundary simulations, we had to modify the primitive lattice 

vectors of the substrate surface. Their lengths together with their enclosed angles are summarized 

in Table S1. To test the impact of those modifications on the electronic structure of the metal, we 

calculated the resulting work function as well as lattice relaxations. Bottom layers 1, 2 and 3 of 

the Ag substrate were fixed and the top two layers 4 and 5 were allowed to relax during the 

optimization calculations. Δz
surf

 indicates the height difference between the 5
th

 and 4
th

 layers 

after relaxation and Δz
bulk

 indicates the height difference between the 1
st
 and 2

nd
 layers. The 

quantity in the last column of Table S1 shows how much the top two layers have relaxed with 

respect to the bottom three layers (which essentially represent the bulk). The work function is in 

all cases within 0.04 eV from the value obtained for a lattice constant optimized using PBE, and 

the lattice relaxation is in good agreement with the experiment. For calculating K3PTCDA and 

K5PTCDA on Ag(111) the same unit cells as for K4PTCDA were used (with an appropriately 

reduced or increased number of K atoms, respectively). 
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Table S1. The rounded epitaxy matrix M’, resulting commensurate Ag substrate unit cell vectors 

𝑠1 and 𝑠2 as well as the angle between them γ = ∡(s⃗1, s⃗2), substrate work function, surface 

interlayer spacing Δz
surf

 and the comparison to the bulk interlayer spacing Δz
bulk

. All values are 

given for bare Ag(111) substrates for the pristine surface with optimized lattice constants (PBE) 

and for the modified surfaces later used to accomodate commensurate K2PTCDA and K4PTCDA 

structures. Experimental values are given for comparison. 

 

 
Epitaxy 

matrix M’ 
|𝒔⃗⃗𝟏|, |𝒔⃗⃗𝟐| [Å] 𝛄 [°] 

Work 

function 

(eV) 

Δz
surf [Å] 

Δz
surf-Δzbulk 

[Å] 

K2PTCDA [
3 0
1 6

] 
2.9718, 

2.8690 
118.03 4.46 2.36 -0.06 

K4PTCDA [
7 6
1 7

] 
2.9799, 

2.9173 
120.96 4.49 2.39 -0.05 

PBE - 
2.9460, 

2.9460 
120.00 

4.46 

(4.45 [1]) 
2.375 -0.03 

Experiment - - - 

4.46, [2]  

4.5, [3]  

4.74 [4]  

- -0.06 [5] 

 

At first glance the relation between the epitaxy matrix for K4PTCDA listed in Table S1 and that 

in Table 1 in the main manuscript is not obvious. Still they are directly related: The rounded 

version of the epitaxy matrix shown in the manuscript required for constructing a commensurate 

superstructure is (
   3.5 3
−2.5 4

). Subsequently, a 2×2 supercell is created from that matrix. This 

results in a structure commensurate with the Ag(111) surface, as shown by the blue lines in 

Figure S3. The disadvantage of this structure is that it contains 4 PTCDA molecules per unit cell, 

which makes it extremely costly to simulate. This led us to pick an alternative commensurate 

unit cell depicted by the green lines in Figure S3, corresponding to an epitaxy matrix (
7 6
1 7

), 

which contains only two molecules. 
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Figure S3. Possible supercells that can be used as commensurate adsorbate structures to 

approximately describe the K4PTCDA layer on Ag(111). Red dots and lines mark the Ag(111) 

substrate lattice and unit cell, while black ones refer to the adsorbate layer according to the 

rounded epitaxy matrix (
   3.5 3
−2.5 4

) (schematic PTCDA molecules are shaded grey to help guide 

the eye). The commensurate super cells corresponding to the epitaxy matrices (
   7 6
−5 8

) and 

(
7 6
1 7

) are shown in blue and green, respectively. 

 

Optimized structures obtained for K2PTCDA, K3PTCDA, K4PTCDA, and K5PTCDA, are shown 

in Figure S4, Figure S5, Figure S6, and Figure S7. The simulated STM images for K3PTCDA 

and K5PTCDA are given in Figure S8 and Figure S9, respectively. 

 

 

Figure S4. Side (left) and top view (right) of the optimized structure obtained for K2PTCDA on 

Ag(111). 
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Figure S5. Side (left) and top view (right) of the optimized structure obtained for K3PTCDA on 

Ag(111). 

 

Figure S6. Side (left) and top view (right) of the optimized structure obtained for K4PTCDA on 

Ag(111). 
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Figure S7. Side (left) and top view (right) of the optimized structure obtained for K5PTCDA on 

Ag(111). 

 

Figure S8. Simulated constant current STM image obtained for K3PTCDA at VT = 0.6 V and   

iso = 0.3 meÅ-3. 

 

Figure S9. Simulated constant current STM image obtained for K5PTCDA at VT = 0.8 V and    

iso = 0.3 meÅ-3. 
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Layer formation energies. 

The layer formation energies per molecule of the different phases of KxPTCDA on Ag(111) were 

calculated using the following equation: 

 

Elayer(KxPTCDA) = N
-1

 ∙ (E(KxPTCDA) – E(Ag(111)) – N ∙ E(PTCDA) – M ∙ E(K)) (1) 

 

The various energies refer to the energies per unit cell and energy of individual atoms or 

molecules, respectively. N is the number of PTCDA molecules in the unit cell and M that of K 

atoms. The geometries of the combined systems and of the fundamental constituents were fully 

optimized; the geometries of intermediate stage situations (like the free-standing K2PTCDA 

layer) were left as determined for the respective combined system. The calculated layer 

formation energies per molecule for the distinct KxPTCDA phases are listed in Table S2.  

 

Table S2.  Layer formation energy per molecule (or atom in the case of pristine K) Elayer for the 

distinct phases of KxPTCDA, pristine PTCDA, and pristine potassium on Ag(111). All quantities 

used for the calculation of Elayer according to equation (1) are listed. 

 

 

  

Ag(111) 

lattice 

parameters 

as in: 

E(KxPTCDA)

(eV) 

E(Ag(111)) 

(eV) 
N 

E(PTCDA) 

(eV) 
M 

E(K) 

(eV) 
Elayer(eV) 

K/Ag(111) -118.62 -116.00 0 -287.72 1 -0.12 -2.49 

PTCDA/ 

Ag(111) 
-1009.14 -425.40 2 -287.72 0 -0.12 -4.01 

K2PTCDA -531.32 -231.74 1 -287.72 2 -0.12 -11.61 

K3PTCDA -1160.50 -554.95 2 -287.72 6 -0.12 -14.69 

K4PTCDA -1168.60 -554.95 2 -287.72 8 -0.12 -18.61 

K5PTCDA -1174.32 -554.95 2 -287.72 10 -0.12 -21.35 
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Electronic properties of the adsorbate layer. 

 

In the calculated density of states we see that the LUMO is filled to a significant extent for 

PTCDA on Ag(111), an effect that is well documented in experiments[6,7] and in simulations.[1] 

The LUMO-derived band shifts to higher binding energies upon K deposition in K2PTCDA and 

K4PTCDA on Ag(111). Further insight into the involved charge-transfer processes can be gained 

from an analysis of the molecular and atomic charges (of PTCDA and K respectively) in the 

involved species. To that aim we performed a Bader Charge Analysis[8] based on the charge 

densities calculated with VASP. This analysis reveals that the negative charge on each PTCDA 

molecule increases upon potassium deposition, i.e., the charge per molecule increases from 1.1 

electrons for PTCDA/Ag(111) via 1.7 electrons per molecule for  K2PTCDA/Ag(111) to 1.9 

electrons per molecule in K4PTCDA/Ag(111). Interestingly, while for PTCDA/Ag(111) the 

electrons transferred to PTCDA obviously originate from the Ag substrate, the net charges on the 

Ag atoms are apparently hardly affected by the interaction with the adsorbate in 

K2PTCDA/Ag(111), i.e., there the negative net charge on PTCDA directly correlates with an 

approximately equally large positive charge on the K atoms and the Bader charge on the Ag 

substrate is negligibly small. In the case of K4PTCDA/Ag(111) the decrease of the electron 

density on the K atoms additionally gives rise to an increased electron density in the Ag substrate 

(1.1 electrons per K4 cluster in the K4PTCDA phase; i.e., the K atoms transfer electrons to the 

PTCDA molecules and to the Ag substrate, which results in a net charge of every K atom of       

~ -0.8 electrons). 

Technical details regarding the Bader charge analysis: We used version 0.95 of the Bader Charge 

Analysis code released by the Henkelman group.[9-12] For producing reliable charge densities 

for the analysis, we reran the VASP calculations applying the so-called aedens module to write 

out also the core-densities from the PAW calculations and used accurate settings especially for 

enforcing a more dense mesh in the FFT procedure. 

 

Frontier states of a charged K4 cluster. 

 

In order to better understand the nature of the dominant feature between the K atoms in the 

ST(H)M experiments on the K4PTCDA system, we calculated the electronic properties of a K4 

cluster arranging the atoms at exactly the same positions at which we find them when optimizing 

the full K4PTCDA/Ag(111) interface. The respective lowest unoccupied state of the four-fold 

positively charged cluster (i.e., a cluster in which each K atom has lost an electron, which 

according to the above mentioned Bader charge analysis very well represents the situation of K4 

at the interface) is shown in Figure S10. 
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Figure S10. Lowest unoccupied molecular orbital (LUMO) of a K4
4+ four-fold positively 

charged cluster (K is represented by purple balls). 

One clearly sees that the lowest unoccupied molecular orbital (LUMO) for K4
4+ originates from a 

bonding, in phase superposition of potassium hybrid orbitals, which is characterized by a 

massive wave function amplitude between the K atoms strongly reminiscent of the feature seen 

in STM. In passing, we note that an equivalent orbital is found as the HOMO-1 in the neutral 

cluster showing that the occurrence of that orbital is not an artifact of the calculations on the 

highly charged cluster. Moreover, also when using a hybrid-functional (here B3LYP) the said 

orbital is obtained as the LUMO of K4
4+. 

Details of the computation: The calculations on the K4 clusters were performed using 

Gaussian09[13] and employing the PBE[14] functional in conjunction with the 6-311G(d,p) 

basis set.[15] 

 

Critical assessment of the Tersoff-Hamann approach; s- vs. p-type character of the tip 

wave function. 

 

Martínez et al.[16] have suggested that one of the origins of the improved resolution for H-

sensitized tips is the increased p-type character of the tip wave function, which raises the 

question to what extent applying the Tersoff-Hamann approach is appropriate (as it assumes an 

s-type tip). This question shall be addressed in the following. 

First it should be stressed that assumptions made in the Tersoff-Hamann approach should not be 

confused with properties of actual electronic states at the tip. As already described in the original 

paper by Tersoff and Hamann, “the s-wave treatment here is not intended as an accurate 

description of a real tip, but rather as a useful way of parameterizing the effect of finite tip 

size”.[17] This approximation is rather done, as the tunneling matrix element becomes 

particularly simple, when treating the tip “as a locally spherical potential well where it 

approaches nearest the surface” and then considering only the solution with an s-type angular 

momentum.[17] Another reason why a strictly atomistic interpretation of the s-type tip wave 
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function is not useful here is the averaging procedure we applied (for details see Methods 

section).  

Still, applying the Tersoff-Hamann approach is useful for obtaining qualitative and here also 

semi-quantitative insight. This is because at a reduced tip-to-sample distance it can be viewed as 

the simplest model of a tip providing atomic resolution. This approximation, of course, does not 

capture the ∂Ψ/∂z “character” of the tunneling matrix element for a pz-type wave function, but as 

shown by Chen for an Al(111) surface, the lateral resolution of a dz2 tip becomes comparable to 

that of an s-wave model at a significantly reduced (i.e., smaller than experimentally possible) tip-

to-sample distance.[18] Moreover, Olsson et al.[19] have shown for chemisorbed O2 on Ag(110) 

that simulating STM assuming a pz-type tip yields essentially identical constant-current STM 

profiles as when considering an s-type tip at a distance reduced by 1 Å. As far as px- and py-type 

tips are concerned, these would indeed create significant differences in the shape of the STM 

images.[20] Such contrast can, for example, be obtained when scanning with a CO 

functionalized tip.[20] It is a priori not clear, where such states would originate from in an 

STHM experiment, in particular, as Martínez et al. have shown that the H2 molecules dissociate 

on the Au tip; similar results were apparently obtained for tungsten tips.[16] Moreover, we do 

not see any indications for px/py character in the experimental data. 

Another reason, why resorting to a Tersoff-Hamann approach at effectively reduced distances is 

useful is that merely accounting for the ∂Ψ/∂z “character” of the tunneling matrix element very 

likely would not yield a fully quantitative description either. In STHM one potentially encounters 

a very complex situation in which the sensitizing molecule directly couples with the molecules 

that are measured; i.e., the electronic structure of the tip and the sample is altered by the 

measurement process. For example, Martínez et al.[16] describe significant shifts in the positions 

of the PTCDA electronic states relative to EF induced by the tip (in particular, the H atom at the 

tip) in the STHM experiment. Alternatively, the hydrogen between tip and sample acts as a 

transducer, transforming short ranged Pauli repulsion induced forces into a change in tunneling 

conductance with a therefore strong dependence on local properties.[21] This is in agreement 

with the experiments, where a drastic change of contrast is achieved, once the hydrogen is 

trapped successfully in the tunneling junction (see Methods section). A comprehensive study 

along these lines would require testing a tip against a well-studied reference surface,[22] which 

is clearly beyond the scope of the present work.  
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