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ScienceDirect
Signaling is regulated by endocytosis at multiple levels along

endocytic routes. Endocytic control of signaling starts already

at the plasma membrane, where cells employ different

mechanisms to finely tune the type and strength of signals

emanating from the cell surface. Here, we will review some of

the most recently described endocytic mechanisms controlling

signaling at the plasma membrane, through the regulation of

internalization dynamics and through the integration of different

internalization pathways triggered by canonical chemical

stimuli or physical forces.
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Introduction
Signal location is a critical parameter that cells use to

decode complex signaling circuitries and to compute

specific biological responses. While signaling initiates

at the plasma membrane (PM), it requires membrane

dynamics for its sustainment/extinction and, more impor-

tantly, for its deconvolution. Endocytosis provides this

dimension through numerous mechanisms (for a review

see [1]) enacted in different subcellular compartments.

For instance, it provides spatial constraints to biomem-

brane-associated signaling molecules (e.g., PM versus

endosomes) and dictates differential access to signaling

effectors. Moreover, endocytosis regulates the internali-

zation and fate (i.e., recycling versus degradation) of

signaling molecules through distinct endocytic pathways

and/or via endosomal sorting. Finally, endocytosis is

critical in the control of membrane turnover and plasticity

in fundamental cellular programs, such as mitosis, adhe-

sion and migration, as well as in the relocalization of

signaling/adhesion molecules to PM ‘competent’ regions
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[1]. Through these integrated functions, endocytosis

determines signal strength and diversification of biologi-

cal outputs.

In this section, we will highlight recent evidence dem-

onstrating how endocytosis controls signaling at the PM

level (for signaling control at the endosomal level see

Chapter 7 of this issue), through the regulation of inter-

nalization dynamics and the integration of different in-

ternalization pathways triggered by canonical chemical

stimuli or physical forces.

Clathrin-coated pit dynamics regulate
signaling from the PM
Regulation of receptor levels at the PM, receptor avail-

ability, and ligand accessibility are established mecha-

nisms affecting the timing and strength of signaling

responses [1]. Another critical parameter in signal regula-

tion is clathrin-coated pit (CCP) dynamics. Recent

advances in live imaging and data analysis, which allow

the large-scale simultaneous detection of the endocytic

machinery and cargoes, have helped to establish that CCP

dynamics is directly controlled by the cargo [2��,3]. While

cargoes have been long regarded as ‘passengers’ in inter-

nalization structures, it is now clear that — at least in

some instances — they directly influence the formation

and maturation of CCPs [4,5] by locally communicating

with the endocytic machinery [6�]. Failure to recruit cargo

generates short-lived, abortive CCPs [7–9], revealing the

existence of an early checkpoint required to monitor the

fidelity of CCP formation, which depends on cargo,

dynamin and AP2 [10�]. For signaling receptors, this

might prolong the time available for clustering at the

PM and for the initiation of productive signaling.

Interestingly, different ligands can induce clustering of the

same cargo receptor in dynamically distinct CCPs. This is

the case of the cannabinoid receptor 1 (CB1R) that,

depending on the type of agonist, is clustered into CCPs

with different dwell times (i.e., the time required for the

receptor to be clustered in CCPs together with the adaptor

b-arrestin), which in turn affects the signaling output

(Figure 1a). Indeed, pits with long dwell times elicit

productive and robust b-arrestin-dependent ERK1/2 acti-

vation (Figure 1a, right), while pits with short dwell times

generate scarce b-arrestin signaling (Figure 1a, left) [11��].

Similar scenarios have been uncovered for receptor tyro-

sine kinases (RTKs), such as the RET (REarranged

during Transfection) isoforms, which are internalized

in CCPs displaying different kinetics [12]. Interestingly,

the different RET isoforms assemble specific signaling
Current Opinion in Cell Biology 2016, 39:21–27
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Endocytosis controls PM signaling through different mechanisms. (a) CCP dynamics control signaling. Left, the agonist WIN 55,212-2 induces

recruitment and internalization of the cannabinoid receptor (CB1R) through CCPs with fast dwell times, which results in trimeric G-protein (a, b, g)

signaling at the PM, but fails to generate productive b-arrestin-dependent signaling. Right, the agonist 2-AG recruits CB1R into CCPs with slow

dwell times allowing for both Gprotein and productive b-arrestin-dependent signaling, which leads to phosphorylation of Erk1/2 and cell

proliferation. (b) Left, different agonists differentially regulate signaling by activating distinct internalization pathways. WNT3a binding to its

receptor Frizzled (Fz) induces the formation of signalosomes at the PM that include LRP6, Dishevelled (Dvl) and Rab8, and which mediate

internalization via caveolae. This allows phosphorylation of LRP6 by CK1g kinase and b-catenin accumulation, leading to cell proliferation. In

contrast, the Wnt pathway antagonist, DKK1, recruits LRP6 to clathrin-mediated endocytosis (CME), which ultimately leads to b-catenin

degradation and signal extinction. Right, signal strength (extracellular ligand concentration) controls EGFR signaling by activating distinct

endocytic pathways: CME and non-clathrin endocytosis (NCE). At low doses of EGF, �90% of the EGFR is internalized via CME, which primarily

leads to recycling and sustainment of signaling, resulting in cell proliferation. At high doses of EGF, the EGFR becomes significantly ubiquitinated,

concomitantly with the activation of NCE (note, however, that CME persists). NCE targets EGFRs mainly to degradation in the lysosome causing

long-term attenuation of signaling. C. Physical and mechanical stimuli, such as temperature (left) or PM tension (right), control endocytic routes

and signaling. Left, in Drosophila at low temperatures, Notch is constitutively internalized mainly via Deltex-mediated endocytosis, which does not

require cholesterol and allows signaling activation. At higher temperatures, Sudex-mediated endocytosis is enhanced, which is dependent on

cholesterol and leads to Notch degradation. This pathway acts to compensate for the increased ligand-dependent signaling occurring at high

temperatures. This dual mechanism ensures thermal balance of Notch signaling during development. Right, under low PM tension (top), assembly

of the clathrin coat is sufficient to deform the PM and CME does not require the actin cytoskeleton. Bottom, under high PM tension (i.e., on the

apical side of polarized cells, or in cells subjected to mechanical stretching), clathrin assembly is unable to counteract the tension force, and

invaginations stall; actin polymerization then provides the energy needed to complete membrane bending. Hip1R is the link between the

assembling clathrin coat and actin polymers. CCPs in this latter case have an extended lifetime, which is necessary to allow Hip1R to be recruited

and actin polymerization to occur.
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complexes and are connected to distinct developmental

roles, raising the possibility that internalization kinetics

might influence RTK biological outputs.

Endocytic routes and receptor fate
Several signaling receptors can be internalized through

multiple endocytic routes, the activation of which

depends on the cellular context and environmental con-

ditions. Notably, these different endocytic routes are

coupled to distinct receptor fates [1,13].

The Wnt signaling pathway is critical for development

throughout evolution and is controlled by distinct endo-

cytic pathways [14]. When Wnt binds to its receptor,

Frizzled (Fz), it induces clustering of Fz and of the co-

receptor LRP6 (low density lipoprotein receptor-related

protein 6), followed by recruitment of Dishevelled (Dvl)

and formation of signalosomes, which include scaffolding

proteins (Axin1) and kinases (GSK3b and CK1g kinases)

[15]. In mammalian cells, different entry routes are used

by the LRP6-Fz complex and are associated with distinct

outputs (Figure 1b, left); specifically, clathrin-mediated

endocytosis (CME) and caveolar endocytosis, which lead

to receptor degradation and signaling, respectively [16].

The molecular mechanisms underlying the different

endocytic routes are starting to be dissected. Upon

WNT3a stimulation and Fz-LRP6 activation, Rab8 is

recruited by Dvl to the PM, where it interacts with LRP6

and engages its guanine exchange factor (GEF)

RABIN8, promoting caveolar endocytosis of the

LRP6-signalosome complex (Figure 1b, left) [15,17].

Internalization of the complex promotes sequestration

of GSK3b into multivesicular bodies (MVBs) and

inactivation of the b-catenin destruction complex,

inducing b-catenin stabilization and signaling via

CK1g [16,18��,19]. LRP6 can also bind the WNT3a

antagonist, Dickkopf (DKK), which removes LRP6 from

lipid rafts (where CK1g is localized) and diverts its

endocytosis from the caveolar to the CME pathway,

ultimately resulting in enhanced b-catenin degradation

and signal extinction (Figure 1b, left) [16,19]. There are

additional layers of complexity, though, as suggested by

findings that, depending on the level of the adaptor

protein Dab2 in the cell, WNT3a can also direct the

Fz-LRP6 complex into the CME pathway, thereby lead-

ing to signal attenuation [20�].

The above findings highlight the relevance of the cellular

context in the integration of endocytosis and signaling, a

notion further supported by studies in lower organisms.

Here, the differential impact of endocytic pathways on

Wnt signaling is less clearly defined [21,22]; however,

differently from mammalian cells, CME appears to exert

a positive role in the regulation of both the non-canonical

(b-catenin-independent) [23–25] and canonical (b-cate-

nin-dependent) Wnt signaling pathways [26].
www.sciencedirect.com 
An additional level of control, conserved in evolution, is

exerted by the ZNFR3/RNF43 transmembrane Ub

ligases [27]. These enzymes promote the continuous

ubiquitination, constitutive endocytosis and lysosomal

degradation of Fz, thus regulating receptor availability

at the PM [28,29]. ZNFR3 and RNF43 are also direct

transcriptional targets of b-catenin in the WNT3a signal-

ing pathway, thus constituting a negative-feedback loop

[30,31�]. This loop can, in turn, be inhibited by secreted

R-Spondins [32] that antagonize ZNFR3/RNF43, stabi-

lizing Fz receptors and increasing Wnt signaling strength

[30,31�]. In summary, the emerging picture is that Wnt

signaling is finely tuned by endocytosis, through mecha-

nisms regulated by the cellular context and environmen-

tal cues.

In the case of the transforming growth factor receptor b

(TGFbR) and epidermal growth factor receptor (EGFR),

CME and various forms of non-clathrin endocytosis

(NCE) are associated with distinct receptor fates, al-

though with opposite outcomes as compared with

LRP6-Fz in mammalian cells. For these receptors,

CME is predominantly associated with receptor recycling

and sustainment of signaling, while NCE mainly directs

receptors to degradation and signal extinction [33,34]. For

the EGFR, NCE occurs through different mechanisms

[35–37]. In all cases, however, NCE is activated only

when the ligand is present at high, nearly saturating, doses

(>10 ng/ml) (Figure 1b, right). One mechanism involves

the conversion of a linear gradient of EGF into an almost

all-or-nothing EGFR ubiquitination (Ub) response,

which in turn leads to the sharp activation of NCE and

to receptor degradation [38]. Thus, NCE likely protects

cells from overstimulation under conditions of excess

ligand. A combination of mathematical modeling and

wet-lab experiments revealed that EGFR ubiquitina-

tion — and its recruitment into NCE — is critically con-

trolled by EGFR levels [39�]. Indeed, in cells displaying

high EGFR levels — a hallmark of some cancer cells–the

receptor is inefficiently ubiquitinated while being highly

phosphorylated/activated [39�]. The prediction here is

that, under these conditions, EGFR would escape inter-

nalization through NCE and the ensuing signal extinc-

tion, thereby providing a proliferative advantage to cancer

cells.

Of note, a second level of analogical-to-digital control of

EGFR signaling intensity occurs in the endosomal com-

partment, where increasing EGF concentrations induce a

proportional increment in the number of endosomes, so

that the number of active EGFRs/endosome remains

constant. A linear EGF gradient is thus converted into

‘quanta’ of signaling receptor. In addition to the EGFR,

other receptors, such as hepatocyte growth factor receptor

(HGFR) or nerve growth factor receptor (NGFR), can

induce ‘quanta’ of different magnitudes, which correlate

with distinct biochemical and biological outputs in
Current Opinion in Cell Biology 2016, 39:21–27



24 Cell regulation
specific cellular context ([40��], see also Chapter 7 of this

issue).

Similarly, endocytosis-controlled modalities of analogi-

cal-to-digital conversion of signals have been described

in the establishment/decoding of morphogen gradients

during development, as well as in the control of collec-

tive cellular motility in physiology and in cancer [41].

For instance, it has recently been shown how malignant

lymphocytes, traditionally regarded as individual

movers, have an intrinsic tendency to gather into

clusters that display unique migratory and chemotactic

properties [42]. These collective entities, at variance

with single cells, display chemotactic prowess in

shallow chemokine gradients and are resistant to the

chemorepulsion that normally results from increases in

gradient steepness. Not surprisingly, endocytic

dynamics are at the core of these processes, although

the precise molecular mechanisms remain to be eluci-

dated [42].

Physical stimuli and regulation of endocytic
pathways
Physical stimuli, such as temperature or mechanotension,

are emerging as important and specific activators/regula-

tors of endocytic routes. Notch signaling during Drosophi-
la development is maintained across a wide range of

temperatures through a compensation mechanism relying

on distinct internalization pathways [43��]. Ligand-inde-

pendent endocytosis of Notch occurs through two routes

with distinct lipid and temperature requirements

(Figure 1c, left). At low temperatures, Notch is mainly

internalized via Deltex-mediated endocytosis, which

occurs through glycosylphosphatidylinositol (GPI)-nega-

tive endosomes in a cholesterol-independent manner,

and leads to Notch signaling activation. At higher tem-

peratures, Sudex-mediated endocytosis is activated, char-

acterized by GPI-positive endosomes and cholesterol

sensitivity. This pathway dampens signaling by targeting

receptors for lysosomal degradation, thereby counterba-

lancing the increased ligand-receptor binding kinetics

occurring at high temperature [43��]. The net result is

thermal robustness of Notch signaling. Moreover, tem-

perature might control the cholesterol-enriched pathway

by directly influencing membrane fluidity and tension

(see also below). These regulatory mechanisms are clearly

relevant in ectothermic organisms; it will be interesting to

investigate whether they apply also to endothermic

organisms, to specific organs/tissues or under inflamma-

tory conditions.

Mammalian cells are constantly subjected to environmen-

tal mechanical forces that regulate PM tension [44]. A

tight bidirectional regulation exists between membrane

tension, the extracellular matrix (ECM) and endocytosis

(see Section 3 of this issue), which can be harnessed by

cancer cells to establish invasive programs [45]. Through
Current Opinion in Cell Biology 2016, 39:21–27 
membrane recycling and turnover, endocytosis can

influence the physical properties of the PM. In addition,

through trafficking of adhesion molecules, endocytosis

regulates cellular communication with the ECM [46]. In

turn, endocytosis is regulated by external forces through

the activation of specific internalization pathways [44], as

exemplified by the endocytic dynamics of integrins.

Integrins display different endocytic responses to me-

chanical forces, which influence their signaling [47].

Endocytosis of integrin-beta3 is controlled by ECM-orig-

inated cues: RGD (Arg-Gly-Asp) ligands immobilized on

supported lipid membranes cannot generate traction on

the engaged integrin nor promote its clustering and

removal from the PM via CME. Conversely, the increase

in force, obtained by using rigid RGD ligands immobi-

lized on glass, induces the reinforcement of the actomy-

osin network and the recruitment of focal adhesion

adaptors, such as talin, resulting in CME inhibition and

focal adhesion formation [48�]. Thus, mechanical forces

control the balance of adhesion signaling versus integrin

turnover.

The cortical actin cytoskeleton functions both as a sensor

and as a transducer of membrane tension. During phago-

cytosis, a bidirectional crosstalk between membrane ten-

sion and the actin cytoskeleton allows for pseudopodia

extension and particle engulfment. Upon particle engage-

ment, Rac1 is activated and the actin cytoskeleton pushes

the PM forward [49�]. As a consequence of PM stretching,

membrane tension increases, leading to inactivation of

Rac1 and to its redistribution from the pseudopodia to the

cell center, thereby promoting actin reorganization in the

pseudopodia and induction of actin-mediated exocytic

events at the site of engagement. The newly exocytic-

delivered membranes relieve membrane tension and

allow wrapping of the particle [49�]. Thus, continuous

communication exists between the PM, deformed by

particle engagement, and the actin machinery required

for phagocytosis to progress.

Also in CME, the action and recruitment of the actin

cytoskeleton is regulated by membrane tension

(Figure 1c, right) [50��]. At variance with yeast, in mam-

malian cells CME proceeds also in absence of actin

polymerization [51]. However, the scenario changes

under conditions of high membrane tension in which

actin recruitment via the clathrin-light-chain adaptor

Hip1R becomes essential. Mechanistically, membrane

tension opposes clathrin polymerization and hinders

the closure of CCPs by varying the membrane budding

energy [52�]. This provides enough time for assembly of

actin filaments via Hip1R, rescuing the stalled coat

(Figure 1c, right) [50��]. Since actin-dependent and -

independent CCPs have distinct lifetimes [50��], it is

tempting to speculate that they might influence the

retention time of signaling molecules and receptors, thus

regulating signaling outputs.
www.sciencedirect.com
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Outlook: mechanotransduction, cell context
and endocytosis at the system level
Membrane tension is a critical stimulus to which cells

packed in a tissue, or a culture dish, are subjected [53].

Recent studies showed that endocytic pathways are di-

rectly controlled by local cell density in culture [54��].
This is achieved through a PM-based mechanism, cen-

tered on focal adhesion kinase (FAK), which senses local

crowding and responds by controlling membrane lipid

composition, via a feedback loop that does not require the

exchange of a ‘chemical signal’ between cells [55]. These

data show that local crowding (and, most likely, mechani-

cal forces) contributes to the generation of single-cell

heterogeneity of endocytic pathways [55].

Single-cell heterogeneity has been previously described

for different cellular processes (e.g., gene transcription

[56]) and cell signaling pathways influenced by endocy-

tosis, including calcium signaling [57], and NF-kB [58]

and Erk signal transduction pathways [59]. Interestingly,

when single-cell variability is taken into account in the

analysis of endocytosis data from perturbation screenings,

it improves the statistical significance of the results

[60,61,62�,63].

Overall, these studies highlight the importance of moni-

toring endocytic and signaling events at the system level,

coupling single cell measurements to quantitative

computational analysis of large datasets and mathematical

modeling, to untangle the impact of the endocytic ma-

chinery on cell regulation.
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