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Introduction

Transition-metal oxides are one of the most studied class of mate-
rials, as a consequence of their rich and exotic physical properties,
mainly determined by the strong electronic correlations of the metal d
electrons.

The strong Coulomb repulsion U between two electrons occupy-
ing the same metal orbitals [Mott, 1990] is responsible for several
phenomena such as correlated metallic states, unconventional super-
conductivity, local moment formation and magnetism [Imada et al.,
1998]. Descending the periodic table of elements from 3d to 4d and
5d series, the d orbitals become more extended tending to reduce the
electronic repulsion U and thus quenching the correlation effects. On
the other hand, a new interaction gets progressively more relevant:
the spin-orbit coupling. The spin-orbit coupling (SOC) is an rela-
tivistic effect that links the orbital and spin angular momenta of an
electron and it is usually considered a small perturbation in the dis-
cussion of the electronic properties in solids. However, the strength
of SOC increases proportionally to Z4 ( Z is the atomic number)up
to the point of having important effects in atoms with high atomic
numbers [Hasan and Kane, 2010], [Qi and Zhang, 2011]. Therefore in
such materials there are several competing energy scales to consider:
the atomic on-site Hubbard interaction U, Hund’s coupling JH , the
SOC interaction λ, the crystal field and the electron kinetic energy
related to the hopping integral t.

A schematic "phase diagram" in terms of the relative strength of
the interaction U/t and the λ /t [Pesin and Balents, 2010] is reported
1. In this diagram the weak and strong correlation regions and the
weak and strong SOC regimes are compared. Conventional tran-
sition metal materials reside on the left hand side of the diagram,
where SOC is weak, and a conventional metal-insulator transition
may occur when U is comparable to the bandwidth. Upon increasing
SOC, when U/t � 1, a metallic or semi-conducting state at small
U may be converted to a semi-metal. When both SOC and U are
strong, they tend to cooperate in generating insulating states. The
narrow bands generated by SOC are more susceptible to Mott local-
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Figure 1: Schematic phase diagram
for electronic material as a function
of the electronic correlation U/t and
the SOC λ/t, where t is the hopping
amplitude. In the bottom-left corner
reside simple metals or band insulators.
In the top-left corner where the effect
of electronic correlation dominates,
lie Mott insulators. In the strong SOC
regime (bottom-right corner) we find
topological insulators. At the center
of the phase diagram where electronic
correlations and SOC cooperate, reside
5d TMOs like iridate [Witczak-Krempa
et al., 2013].

ization by U, which implies that the horizontal boundary in figure
1 shifts downward with increasing SOC. Including correlations first,
the U tends to localize electrons, diminishing their kinetic energy.
Consequently the on-site SOC is relatively enhanced. There is an
intermediate regime in which insulating states are obtained only
from the combined influence of SOC and correlations. These may be
considered spin-orbit assisted Mott insulators. A large number of
materials are characterized by this interesting correlated SOC regime.
The most prolific are iridates, weakly conducting or insulating ox-
ides containing iridium, primarily in the Ir4+ oxidation state. These
include a Ruddlesdon-Popper sequence of pseudo-cubic and planar
perovskites [Kim et al., 2008] [Fujiyama et al., 2012] [King et al., 2013],
hexagonal insulators (Na/Li)2IrO3 [Gretarsson et al., 2013] [Singh.,
2010] [Alpichshev et al., 2015] [Comin et al., 2012], a large family of
pyrochlores, R2Ir2O7 [Yanagishima and Maeno, 2001] [Qi et al., 2012],
and some spinel-related structures [Okamoto et al., 2007] [Kuriyama
et al., 2010].

In this work I will focus on the family of hexagonal insulators and
in particular, on Na2IrO3, that presents an insulating gap of ∼ 340
meV [Comin et al., 2012] which is already open at room tempera-
ture and does not show any significant temperature dependence.
Furthermore, this system is subjected to an antiferromagnetic tran-
sition, characterized by a zig-zag pattern, at TN ∼ 15 K. There are
two types of approaches that may be used to describe the physics of
these particular systems: the quasimolecular orbitals approach with
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small spin-orbit coupling and itinerant regime [Mazin et al., 2012]
versus the Je f f picture, with large spin-orbit coupling and localized
regime [Chaloupka et al., 2010], [Chaloupka et al., 2013] [Jackeli and
Khaliullin, 2009]. The most relevant energy scales of the Je f f picture
are the spin-orbit coupling λ and the Coulomb repulsion U. The Ir
5d t2g orbitals are written in terms of relativistic orbitals ( Je f f = 1/2
and Je f f = 3/2) and the combination of Kitaev-Heisemberg terms
[Chaloupka et al., 2010] leads to a various magnetic ground states,
including the zigzag antiferromagnetic order. On the other hand,
first-principles calculations suggest considerable delocalization of
electrons over individual Ir hexagons, thus allowing to build quasi-
molecular orbitals (QMOs). Sodium iridates are still the subject of
intense research to clarify the hierarchy of the Je f f and QMO pictures
in determining the insulating state [Foyevtsova et al., 2013] ,[Mazin
et al., 2012].

Here we tackle the physics of sodium iridates by adopting a non-
equilibrium viewpoint based on the use of ultrafast light pulses
combined in the so-called pump-probe experimental configuration.
The aim is to perturb the antiferromagnetic state of the system via
the excitation with a pump pulse and to observe the ultrafast recov-
ery of the ground state by means of a second delayed probe pulse.
Specifically, we will measure the dynamics of the pump-induced re-
flectivity variation in the zigzag antiferromagnetic and normal states
as a function of the probe energy and as a function of time delay
between the pump and the probe pulses. In this work we will start
from the reflectivity variation measurements on Na2IrO3 performed
by single-colour (1.55 eV) pump-probe experiments. As a second step,
we will present broadband pump-probe measurements in the 1.4− 2.2
energy range, that matches with the energy region of specific QMOs.
Thanks to these techniques we will be able to investigate:

• the timescale of the relaxation processes dynamics in the zigzag
antiferromagnetic and in the nonmagnetic phases;

• the modification of the optical properties during the processes in
the in zigzag antiferromagnetic and in the nonmagnetic phases;

The most striking observation is that when the sample is cooled
down and the zigzag phase is approached, the pump induces a nar-
row variation of the reflectivity of the system at about 1.7 eV. This
variation can be exactly reproduced by assuming a small redshift
of a narrow band at about 1.7 eV. Both the amplitude of the redshift
and the timescale necessary to achieve the maximum variation tend
to diverge as TN is approached. The timescale of this variation in-
creases from about 2 ps at 50 K to 8 ps at 12 K. These results are in
agreement with single-colour measurements already reported in the
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literature [Alpichshev et al., 2015],[Hinton et al., 2015], where the
change of dynamics observed at TN are interpreted as a confinement-
deconfinement transition, providing evidence of spin-liquid-type
physics in Na2IrO3, and therefore the evidence of Je f f model. On
the other hand, the broadband technique used in this work allows
accessing the variation of the optical conductivity over a broad en-
ergy range. Our results evidence that the narrow reflectivity variation
at 1.7 eV is compatible with the modification of a specific QMO,
in agreement with ab-initio density-functional-theory calculations
[Foyevtsova et al., 2013]. These results demonstrate that the valid-
ity of the Je f f and QMOs concepts strongly depends on the energy
scale considered: while the low-energy magnetic dynamics is well
described within a picture of localized moments, the QMOs becomes
well defined objects at binding energies larger than ≈ 1 eV.



1 Theoretical Background

1.1 Tight-binding and the electronic properties of solids

One of the earliest ways to classify the solid states of matter was
Metal and Insulator, based upon the conduction properties of elec-
trons. The first rigorous theory was derived by Paul Drude to explain
metals: the free electron theory. This theory successfully explained
the electrical properties of many metals but partially failed to explain
many thermodynamic properties. Sommerfeld rederived Drude the-
ory including the Pauli exclusion principle. Metals were assumed
as non interacting Fermi gases which successfully explained many
thermodynamic properties of metals where Drude models failed
[Ashcroft and Mermin, 2005]. As a first step, the interaction of the
electrons with the lattice formed by the ions can be treated as the
problem of free-electron wavefunctions interacting with a periodic
potential. The solution of this problem is based on the celebrated
Bloch theorem, which states that the electronic wavefunction will
assume the form:

Ψk(r) = u(r)eik·r (1.1)

where u(r + R) = u(r) maintains the lattice symmetry upon transla-
tion of a Bravais vector R. Therefore, the determination of the energy
levels (bands) in a solid relies on the solution of an eigenvalue prob-
lem in which the appropriate interaction term between the electrons
and the lattice is considered. In this framework, the equilibrium sepa-
ration of the atoms in lattice are the position at which the total energy
of the system is minimum. One of the simplest way from which one
can approach the calculation of the energy bands in solids is the
tight-binding approximation, or LCAO (linear combination of atomic
orbitals). In order to illustrate the basic principles of LCAO, let us
consider a periodic one-dimensional sequence of N equal atoms, like
in figure 1.1.

Figure 1.1: Atoms arranged in a regular
lattice give rise to a periodic potential.
Electron states of low energy can be
considered as localized at the atom
sites. The higher energy states, however,
extend further and can delocalize to
form itinerant electron states which
form bands.

In the case of negligible interaction among atoms, the same atomic
orbitals centered in the different lattice sites would have the same
energy; in the presence of interaction this N fold degeneracy is
removed and evolves into an energy band [Kittel, 2005]. Each of these



atoms contributes with a local orbital φa of energy Ea. We can use as
basis set the N orbital functions φa(x− tn) centered in the N atomic
sites tn to obtain the crystal wavefunctions. If we only consider
the hopping between the nearest neighbour sites, we have that the
diagonal matrix elements of H are all equal and the same happens
with the hopping integrals between the nearest neighbour orbitals,
usually indicated as t. We have:

E0 = 〈φa(x− xi)|H|φa(x− xi)〉 (1.2)

t = 〈φa(x− xi)|H|φa(x− xi±1)〉 (1.3)

In the tight-binding model, it is assumed that the ionic potentials
are strong. Therefore when an electron is captured by ion during its
motion through the lattice, the electron remains there for a long time
before leaking to the next ion. The tight-binding (TB) model is suite
to description of low-lying narrow bands for which the shell radius
is much smaller than the lattice constant and so the atomic orbital is
modified slightly by the other atoms in the solid. In order to calculate
the energy bands and hopping integrals of 1.1, it is necessary to start
from a suitable Bloch function for the problem:

Ψk(x) =
1√
N

N

∑
j=1

eikXj φv(x− Xj) (1.4)

where the summation extends over all the atoms in the lattice. The
function φv(x− Xj) is the atomic orbital centered around the jth atom;
it decay rapidly away from this point. The energy of the electron
described by Ψk(x) is given by

E(k) = 〈Ψk|H|Ψk〉 (1.5)

where H is the Hamiltonian of the electron using 1.4 and 1.5, we
obtain:

E(k) =
1
N ∑

j,j′
eikXj φv(Xj − Xj′)〈ψv(x− Xj′)|H|ψv(x− Xj)〉 (1.6)

E(k) = 〈ψv(x)|H|ψv(x)〉+ ∑
j

eikXj〈ψv(x)|H|ψv(x− Xj)〉 (1.7)

The first term gives the energy of the electron would have if it were
indeed entirely localized around the atom j=0, while the second
includes the effects of the electron tunneling to the various other
atoms. It is this term which is responsible for the band structure.

The expression for the Hamiltonian reads:

H = − h̄2

2m
d2

dx2 + V(x) (1.8)
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where V(x) is the crystal potential that we can split it in to a sum of
atomic potential Va(x) due to the atom at the origin and the potential
due to all the other atoms V′(x)

V(s) = Va(x) + V′(x) (1.9)

〈ψv(x)|H|ψv(x)〉 =〈ψv(x)|[− h̄2

2m
d2

dx2 + Va(x)]|ψv(x− Xj)〉

+ 〈ψv(x)|V′(x)|ψv(x)〉
(1.10)

The first term on the right is the atomic energy Ev while the sec-
ond term is an integral denoted by the constant −β, that is a small
quantity

β = −
∫

φ∗v(x)V′(x)φv(x)dx (1.11)

Let us now turn to the summation in 1.6. The term involving interac-
tion with a nearest neighbour at Xj = a

〈ψv(x)|H|ψv(x− a)〉 =〈ψv(x)| − h̄2

2m
d2

dx2 + Va(x− a)|ψv(x− a)〉

+ 〈ψv(x)|V′(x− a)|ψv(x− a)〉
(1.12)

The first term is a negligible quantity since the two functions φv(x)
and φv(x− a) do not overlap. The second term is a constant which we
shall call hopping term −t that is a overlap integral

γ = −
∫

φ∗v(x)V′(x− a)φv(x− a)dx (1.13)

Substituting the result into 1.6 and restricting the sum to nearest
neighbours only, one finds:

E(k) = Ev − β− 2γcos(ka) (1.14)

Equation 1.14 may be rewritten as

E(k) = E0 + 4γ sin2
( ka

2

)
(1.15)

where E0 = Ev − β− 2γ.

E(k)

�⇡

a

⇡

a

Ev

Eo

W= 4 | t | 

Figure 1.2: Energy band E(k) =
E0 + 2t cos(ka) for a tight-binding model
with a single orbital per site and nearest
neighbour interactions.

In figure 1.2 the energy E(k) is plotted versus k. The original
atomic level Ev has broadened into an energy band. The bottom of
the band, located at K = 0, is equal to E0 and its width is equal to 4t.
The bandwidth, 4t, is proportional to the overlap integral that in TB
model is supposed to be small.

In this treatment of TB model, we have seen how an atomic level
broadens into a band as a result of the interaction between the elec-
trons and the atoms in a periodic and perfect crystal. The states of



the band can be filled with electrons following the Pauli exclusion
principle and up to the level determined by the total electronic den-
sity. Furthermore, the electronic properties of conventional materials
can be satisfactorily explained within the "independent-electron"
approximation. In this picture, the eigenstates are independent of
the filling level of the bands. Each wavefunction can be treated as
that of an independent electron moving in an effective "mean-field"
determined by all other electrons.

Figure 1.3: Material classes according
to band filling: left panel: insulator or
semiconductor (partially filled bands
with the Fermi level in band gap);
center panel: metal (Fermi level inside
band); right panel: metal or semi-metal
(Fermi level inside two overlapping
bands).

As shown in figure 1.3 there are two main possible filling configu-
rations, which give rise to dramatically different electronic properties:
1) partially-filled band; 2) completely filled band. In the following,
we summarize the main configurations which can be obtained in
conventional solids.

• The bands can be either completely filled or empty when the
number of electrons per atom is even. Thus taking the complete
set of energy bands into account, the Fermi energy lies within the
energy gap separating highest filled and the lowest empty band.
There is a finite energy needed to add, to remove or to excite an
electron. If the band gap Eg is much smaller than the bandwidth,
we call the material a semiconductor while for Eg of the order of the
bandwidth, it is an insulator.

• If the number of electrons per unit cell is odd, the uppermost non-
empty band is half filled. Then the system is a metal, in which
electrons can move and excitations with arbitrarily small energies
are possible. The electrons remain mobile down to arbitrarily low
temperatures.

• In general, band structures are more complex. Different bands
need not to be separated by energy gaps, but can overlap instead.
In particular, this happens, when different orbitals are involved in
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the structure of the bands. In these systems, bands can have any
fractional filling (not just filled or half-filled). Systems, where two
bands overlap at the Fermi energy but the overlap is small, are
called semi-metals

1.2 Density Functional Theory (DFT)

As we have seen in the previous section, a crystal can be a metal
semi-insulator or insulator and it exhibits a high degree of symmetry.
Using this property Bravais defined classes of crystals, all differing
by the symmetry of the repeating unit composing the network of
atoms. Those repeating units (unit cells) are repeated uniformly in
the 3-dimensional space to form the infinitely extended solid. So, it is
possible to do theoretical simulations of the extended crystal lattice.
The task of simulating an infinitely extended system like a crystal,
often reduces to the simulation of a simple unit cell containing only a
few elements.

The Density Functional Theory (DFT), proposed by Hohenberg
and Kohn in 1964 [Hohenberg and Kohn, 1964], is a method used
for electronic structure calculations in which the ground state energy
of a electron gas in the presence of a external potential Vext can be
calculated exactly if its electron density n is known.

The ground state total energy E of the electron gas is given as a
unique functional (function of a function) of the density:

E ≡ E[n(r)] (1.16)

The hamiltonian Ĥ for the system of N electrons subject to an exter-
nal potential is

Ĥ = T̂ + V̂e−e +
N

∑
i=1

Vext(ri) (1.17)

where T̂ is the kinetic energy operator, V̂e−e is the electron-electron
interaction operator while the external potential will be the sum of all
ion-electron interactions in the solid 1. It is then defined a functional 1 ion is typically taken to mean a species

comprised of either a bare nucleus or a
nucleus and associated core electrons.

of density F[n] , independent of choice of the system and external
potential, such that:

F[n] = min
|Ψ|2→n

〈Ψ|T̂ + V̂e−e|Ψ〉

Given an external potential and a known functional F[n] of the
electron density, the ground state of the system is the minimum value
of

E[n] = F[n] +
∫

Vext(r)n(r)dr



The advantage of the DFT is that one only needs the density n(r),
that is function of only 3 space variables, instead of the usual 3N
variables associated with the many-electron wavefunction. The
main important thing in DFT, is to determine the expression for
the functional F[n]. The latter must include the kinetic energy of
electrons Ts[n], their classical Hartree Coulomb repulsion energy
EH [n] and their exchange correlation energies Exc[n]:

F[n] = Ts[n] + EH [n] + Exc[n] (1.18)

The exact expression for the kinetic energy functional and for the
exchange-correlation functional are however not known. Mainly,
there are two different formulations for Exc[n]: the Local Density
Approximations (LDA) and the Generalized Gradient Approximation
(GGA) [Burke and Wagner, 2013]. In the LDA formulation [Segall
et al., 2002], the exchange-correlation energy per electron at a point
r in space is assumed to be the exchange-correlation energy per elec-
tron in a homogeneous electron gas which has the same density as
the electron gas considered at the same point in space. The LDA is
clearly wrong, due to the simple fact that the electron density around
an atom cannot be assumed to be homogeneous. Nevertheless the
method not only has proven to be simple in formalism, but also
useful and very powerful in describing many properties of many sys-
tems. Of course, the approximation shows serious breakdown when
a system exhibits substantial electronic density spatial fluctuations.
In the GGA approach, one tries to correct the LDA approximation
by introducing a dependence on the gradient of the density, in order
to take into account the possible inhomogeneity of the electron gas
[Perdew et al., 1992].

1.3 Comparison of different energy scales in TMOs

The transition-metal oxides (TMO) are particular system that exhibit
a rich variety of phenomena, such as Mott transition, high-Tc super-
conductivity, ferromagnetism, antiferromagnetism, low-spin/high-
spin transitions, ferroelectricity, antiferroelectricity, colossal magne-
toresistance [Dagotto et al., 2003], charge ordering, and bipolaron
formation. The main actors in these phenomena are the d-electrons
of the transition metal (TM) ions surrounded by oxygen ions. In the
large majority of TMOs, the transition metal atoms are octahedrally
or tetrahedrally coordinated. The presence of these oxygens lifts the
fivefold degeneracy of the transition metal d-orbitals in a predictable
manner, which is covered in detail in numerous texts [Tokura and
Nagaosa, 2000], [Dagotto et al., 2003] and highlights that any com-
plete description of the physics of TMOs must include hybridization
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between the transition metal d-orbitals and oxygen p-orbitals. There
are TMOs that are highly conductive, as in the case of ReO3 that it
can be considered as a good metal whose properties are determined
from the band structure [Ishii et al., 1976]. On the other hand, there
are TMOs which violate the predictions of band theory, and where
fierce competition between electron localization and itinerancy dom-
inates the physics. NiO is such an example where, having an odd
number of electrons, band theory predicts a metallic state (see 1.1).
In reality, NiO is an insulator, which results from on-site Coulomb
repulsion (U) dominating over the ability of an electron to hop from
site to site, which is directly related to the bandwidth (W). These type
of materials are defined Mott-Hubbard (MH) insulators.

Furthermore there are TMOs, whose transition metals (TM) are 5d
orbitals, that are subject to a strong spin-orbit coupling interaction,
in addition to bandwidth and Coulomb repulsion. Due to their
extended orbitals and large spin-orbit coupling an unusual energy
hierarchy emerges, resulting in interesting electronic properties. In
many cases these properties can only be understood by treating
the interplay between electronic correlations, lattice structure and
spin-orbit coupling on the same level.

In the next sections we discuss in detail the competing interactions
to which TMOs are subjected.

1.3.1 Crystal Field

In the case of the free transition metal atom, the orbitals are energeti-
cally degenerate. However, the energy levels of the atom in a crystal
environment will be modified by the field due to neighbouring atoms.
The size and nature of the Crystal Field (CF) depends on the symme-
try of the local environment that is the arrangement of the O2− ions
(yellow spheres in the figure 1.4) surrounding the transition metal
atom (purple sphere in the figure 1.4). The most common form of
the ligand geometry in d-TMOs is octahedral, where the transition
metal atom is surrounded by six equidistant O2− ion. The ligand
O atoms have negative valence so the CF of electrons in the direction
of the ligand atom is higher than in other directions due to electro-
static repulsion. Hence, under CF, d3z2−r2 and dx2−y2 orbitals which
point towards z and x;y-axis respectively shift to higher energy by
forming eg (with orbitals strongly overlapping with the neighbouring
p-orbitals of the oxygen anions) energy state and dxy, dyz, dzx orbitals
shift to lower energy by forming t2g energy state (see the figure 1.4).
Energy difference between the two states for typical TMOs is 2-3 eV.



Figure 1.4: At left: undistorted octahe-
dron and TM ion in octahedral ligand
environment shown in a cubic coordi-
nate system. C3 is cubic 3-fold rotation
axis. In center: the splitting of d-orbital
by octahedral crystal field (CF). At right:
the space representation of eg and t2g
orbitals

1.3.2 Hund’s rule

In the atomic shell model the possible states for an electron are de-
termined by a set of quantum numbers n, l, ml , ms, which are known
as principle, orbital, orbital magnetic and spin magnetic quantum
number respectively. The Pauli exclusion principle states that each
quantum state can be occupied by one electron. The good quantum
numbers are the total orbital and total spin angular momentum for
given subshell l:

L = ∑ ml (1.19)

S = ∑ ms (1.20)

In a typical atom, which has more than one electron, most of these
fill up the lower-energy shells, producing both L and S equal to
zero. However, there may be partially unfilled higher-energy shells.
Thus the total electronic angular momentum of the atom J = L + S
will be determined by those outermost shells producing one of
(2L + 1)(2S + 1) possible values. These different combinations will
cost different amounts of energy, because the choice of spin angular
momentum affects the spatial part of the electron wave function, and
the orbital momentum affects how the electron travels around the
nucleus. The optimal value should allow the electrons to well avoid
each other thus minimizing the Coulomb repulsion energy.

• The states are occupied to maximize S, i.e.the electrons tend to
have theirs spins aligned. Electrons with parallel spins avoid each
other which reduces the Coulomb repulsion. Hence the ground
state of an incomplete shell in a free atom is that of a maximum
spin.

• The states are occupied to maximize the value of L, which means
the subshells with maximum |l| are preferential.
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• The total angular momentum J is obtained by combining L and S
depending on the level the shell is filled:

– less than half filled subshell, J = |L− S|
– more than half full subshell, J = |L + S|
– L = 0 and J = S if the subshell is exactly half-full

Hund’s coupling energy is basically the energy difference between
high spin state and low spin state energy saved by putting all the
spins in different ml states in parallel.

1.3.3 Spin-orbin coupling

Another important interaction in the TMOs is that between an elec-
tron’s spin magnetic dipole moment and the internal magnetic field.
It is called spin-orbit coupling (SOC). SOC is a relativistic effect,
which provides an interaction between the orbital angular momen-
tum (L) and electron spin in atoms. Usually it is considered a small
perturbation in the calculation of the band structure of solids. How-
ever, in heavy elements it can significantly increase, since it scales as
Z4.

v e-

r
+Ze

+Ze

-v

r
e-

Figure 1.5: Left: An electron moves in a
circular orbit, the motion as seen by the
nucleus. Right: The same motion, but
as seen by the electron.

In the electron’s instantaneous rest frame the nucleus with a
charge Ze orbiting around it (see figure 1.5) creates a magnetic field
of a magnitude

B =
µ0 I
2r

(1.21)

where I = Ze/T is effective current from the charge orbiting with a
period T in a hydrogen-like atom. The orbital angular momentum
of the electron is L = rmv = 2πmr2/T (in the nucleus rest frame)
and points in the same direction as B. So, using c = 1/

√
ε0µ0 the

expression 1.21 becomes

B =
1

4πε0

Ze
mc2r3 L (1.22)

Using the magnetic moment of the electron m = −(e/m)S and
the expression for magnetic field, one obtains the expression for
spin-orbit interaction

ĤSO =

(
Ze2

8πε0

)
1

m2c2r3 S · L (1.23)

that simplify it
ĤSO = λS · L (1.24)

The value of spin-orbit interaction λ is proportional to Z4
e f f (the

effective atomic number), so it plays a fundamental role in the prop-
erties of transition metal oxides. For example, the case for the 3d TM
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Figure 1.6: Comparison between the
atomic weight of 3d TM atom and 5d
TM atom.

elements such as Cu which has atomic number Z=29 and λ ∼ 0.01 eV,
while the iridium has Z =77 and λ ∼ 0.5 eV [Andlauer et al., 1976],
[Blazey and Levy, 1986]. Therefore For 5d elements λ becomes an
important energy scale, having value 0.4-0.5 eV, whereas it is only
0.05 eV for 3d elements. Moreover, it is found that in Iridium λ is
higher than its neighbours (e.g. Rhenium) in the same period [Clancy
et al., 2012].

1.3.4 Coulomb interaction

Two electrons in the same orbital will face some Coulomb repulsion
which will restrict the hopping of electrons to the next site. This
interaction localizes the electron in a single site and turns some
partially filled valence band metal into insulator, restricting electron
hopping. The Hubbard model is the first model which explains the
electron motion in a lattice considering electron correlation [Hubbard,
1964] and is believed to capture the main part of the physics of the
strongly correlated materials. To give a better way to compare the
tight-binding model with the Hubbard model it is useful to rewrite
the tight-binding wave function of one electron bounded to site i in a
second quantization 3D picture

φa(r−Ri)χ(σ) = c†
jσ|0〉 (1.25)

where χ(σ) is the the spinor function, c†
jσ is the creation operator

that creates one electron with spin σ on the site i. At this point the
tight-binding hamiltonian can be rewrite in the following way:
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H = −t ∑
<j,i,σ>σ

c†
iσcjσ tii = 0 tij = tji

The hopping hamiltonian is the sum over all hopping processes:
ciσ destroys an electron on lattice site j and c†

iσ creates the electron
on site i. By introducing the electron-electron interaction, the most
important interaction is between two electrons on the same site that
have experience of a strong Coulomb repulsions between each other.
Because of the Pauli exclusion principle there can maximally be only
two electrons per site with opposite spins. The correlation energy
between two electrons on the same site is given by:

U =
∫

dr1dr2|φa(r1)|2
e2

|r1 − r2|
|φa(r2)|2 (1.26)

and this energy can emerges only when a single site is doubly
occupied. So we can define the interaction hamiltonian as the sum
over all the doubly occupied sites:

HU = U ∑
i

n̂i↑n̂i↓ (1.27)

where niσ=c†
iσ ciσ is the electron number operator for spin σ on the

site i. niσ can assume just the values 0 or 1.
The one band Hubbard hamiltonian is the sum of the two terms:

H = −t ∑
<j,i>σ

(c†
iσcjσ + c†

iσcjσ) + U ∑
i

n̂i↑n̂i↓ (1.28)

Now if both U and t have finite value, in the U < t limit free electron
hopping will prefer a metallic state but in the U > t limit electrons
will be forced to localize in a single site and electric charge can not
flow through lattice hence it will give rise to a insulating state. This
is the first model to explain an insulating state of a material where
tight-binding model failed.

1.4 Conclusion

In the TMOs, TM ion contributes either 3d or 4d or 5d orbital. The
Hubbard model well describes those elements characterized by
localized outer orbitals as 3d and 4d because their energy bands are
narrow (∼ 3 eV) in comparison with the strong Coulomb repulsion
between electrons which is of the order of ∼ 8− 10 eV [Antonides
et al., 1977]. If we go down in the periodic table in figure 1.8, HSO

can not be treated as perturbation.
For 5d elements λ becomes an important energy scale, having

value 0.4− 0.5 eV, whereas it is only 0.05 eV for 3d elements. Hund’s
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Figure 1.7: In the half-filling case, when
the electronic correlations are weak (a)
the system is a metal with half-filled
band. When the correlations are strong
(b) an energy gap U is present due to
the energy cost in creating a doubled
occupation.

coupling JH has much higher value in 3d compared to 5d and it
decreases with the increase of bandwidth. In 3d materials like man-
ganites it plays a crucial role to achieve high spin state, it is order of
crystal field splitting of eg and t2g.[Salamon, 2001], [Tokura, 1999].
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Figure 1.8: Variation of different energy
scales Bandwidth (W), Coulomb
repulsion (U), Hund’s coupling (JH),
Spin-orbit coupling (λ) along 3d to 5d in
the periodic table.

In conclusion, we have seen that the interplay between these
three energy scales W,U, and SO and the strength of one on the
others needs a variety of different models to well describe the several
experimental evidences. The following table can help to summarize
the concepts:

Relative Energies Elements Theory Absolute Energies
SO, U � W Delocalized orbitals s and p Band Theory W ∼ 0.35 eV
SO, W � U Localized 3d orbitals Hubbard Model U ∼ 8− 10 eV
SO 'W ' U 4d and 5d orbitals Je f f model SO ∼ 0.4 eV



2 Physical properties of Na2IrO3

In this chapter we describe the physical properties and underlying
physics of the honeycomb lattice iridate Na2IrO3. After analysing
the crystal structure of Na2IrO3, we present the transport, magnetic,
and thermal properties of this system, performed by [Singh., 2010]
and [Liu et al., 2011]. These studies show the insulating behaviour
of Na2IrO3, with a gap of 340 meV, [Comin et al., 2012] and a anti-
ferromagnetic phase transition when the system is cooled down to
temperature of TN=15K. These features indicate that bulk Na2IrO3 is
a Mott insulator.

Finally, we discuss the electronic structure of the system in two
descriptions: the strong spin-orbit coupling limit, in which Ir atoms
can be described as localized magnetic moment through the Je f f

model , and small spin-orbit coupling limit in which the electron
present a itinerant behaviour and it is localized in quasi-molecular
orbital structures (QMO).

2.1 Crystal structure of Na2IrO3

The basic structure of Na2IrO3 is shown in figure 2.1. As we can
see in the panel a, the single crystal of Na2IrO3 is made up of layers
containing only Na atoms (yellow spheres) alternating NaIr2O6 layers
stacked along the c axis.
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approach), can be exceptionally misleading. In fact some of
the models energetically discussed in the community, while of
undeniable theoretical appeal, are not even qualitatively close
to the actual parameter range in Na2IrO3.

While this particular compound is very intriguing and
has been enjoying extraordinary popularity lately, we want
to emphasize that this strong dependence of the electronic
properties on details of the crystal structure is an important
result, whose relevance goes beyond specifically Na2IrO3 and
is likely true for many other materials based on honeycomb
transition-metal layers.

The paper is organized as follows. In Sec. II we review
the crystal structure and magnetic properties of Na2IrO3. In
Sec. III we provide details of the DFT calculations and the
projector method. In Sec. IV we present the results of the
electronic structure analysis without inclusion of spin-orbit
coupling and analyze the role of the structural distortions
in Na2IrO3. In Sec. V we investigate the role of spin-orbit
coupling and discuss the relation between the QMOs and the
relativistic orbitals (jeff). In this context, we discuss whether
the existing experimental situation can distinguish between the
DFT description (with the resulting itinerancy) and localized
(jeff = 1/2) models. We proceed with an analysis of the
single-site magnetic anisotropy in Na2IrO3 and find it to be
relevant (pure jeff = 1/2 states do not have any single-site
anisotropy). In Sec. VI we provide ab initio–derived estimates
for the parameters appearing in the Kitaev and Heisenberg
terms in Na2IrO3 and discuss the validity of the nnKH model
by considering the experimentally observed magnetic order
and attempts to explain it from a local point of view. Finally
in Sec. VII we present our conclusions.

II. CRYSTAL STRUCTURE AND MAGNETIC
PROPERTIES OF Na2IrO3

Na2IrO3 crystallizes in the monoclinic space group C 2/m
(No. 12)8 (see Fig. 1) and consists of Ir honeycomb layers
[Fig. 1(b)] stacked along the monoclinic c axis [Fig. 1(a)]
with an in-plane offset along a. Na ions occupy both the
interlayer positions and 1/3 of the in-plane positions at the
centers of Ir hexagons. This structure can be visualized as
proceeding from NaIrO2 with a CdI2 structure with triangular
IrO2 layers. In these layers 1/3 of the in-plane iridium atoms
are substituted by extra Na, i.e., its formula can be written as
Na(Na1/3Ir2/3)O2, which, multiplied by 3/2, gives the usual
formula of Na2IrO3.9

An idealized crystal structure of this kind corresponds to
having all nearest neighbor (NN) Ir-Ir and NN Ir-O distances
equal and Ir-O-Ir angles of 90 degrees. The experimental
structure of Na2IrO3 departs from the idealized case and shows
a few distortions: (i) orthorhombic distortion that introduces
inequality among NN Ir-Ir distances and among NN Ir-O dis-
tances, (ii) IrO6 octahedra rotations that place O atoms on the
faces of a cube containing an Ir hexagon (see Fig. 2 of Ref. 5),
and (iii) trigonal distortion which is a compression of the IrO6
octahedra in the c direction that induces a departure from 90
degrees of the Ir-O-Ir angles. In Sec. IV we will discuss the ef-
fect of these distortions on the electronic structure of Na2IrO3.

As shown by transport, optical, and high-energy spec-
troscopy studies,10,11 Na2IrO3 is an insulator with an energy

FIG. 1. (Color online) Crystal structure of Na2IrO3. (a) Projection
on the ac plane and (b) projection on the ab plane.

gap Eg of 340 meV. Magnetic susceptibility measurements
indicate a Curie-Weiss behavior at high temperatures with a
Curie-Weiss temperature !CW = −116 K and an effective Ir
moment µeff = 1.82µB. Na2IrO3 orders antiferromagnetically
below TN = 15 K with an ordered magnetic moment µord ∼
0.2µB. The fact that TN is much smaller than !CW may be
a signature of frustration, but it may be also caused by the
itinerancy of Ir 5d electrons5 as will be discussed in Sec. VI.

The magnetic pattern observed experimentally8 corre-
sponds to a zigzag ordering, in contrast to the prediction of

(c) Neel(a) zigzag (b) stripy ´

FIG. 2. (Color online) Possible antiferromagnetic patterns in a
honeycomb lattice.
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approach), can be exceptionally misleading. In fact some of
the models energetically discussed in the community, while of
undeniable theoretical appeal, are not even qualitatively close
to the actual parameter range in Na2IrO3.

While this particular compound is very intriguing and
has been enjoying extraordinary popularity lately, we want
to emphasize that this strong dependence of the electronic
properties on details of the crystal structure is an important
result, whose relevance goes beyond specifically Na2IrO3 and
is likely true for many other materials based on honeycomb
transition-metal layers.

The paper is organized as follows. In Sec. II we review
the crystal structure and magnetic properties of Na2IrO3. In
Sec. III we provide details of the DFT calculations and the
projector method. In Sec. IV we present the results of the
electronic structure analysis without inclusion of spin-orbit
coupling and analyze the role of the structural distortions
in Na2IrO3. In Sec. V we investigate the role of spin-orbit
coupling and discuss the relation between the QMOs and the
relativistic orbitals (jeff). In this context, we discuss whether
the existing experimental situation can distinguish between the
DFT description (with the resulting itinerancy) and localized
(jeff = 1/2) models. We proceed with an analysis of the
single-site magnetic anisotropy in Na2IrO3 and find it to be
relevant (pure jeff = 1/2 states do not have any single-site
anisotropy). In Sec. VI we provide ab initio–derived estimates
for the parameters appearing in the Kitaev and Heisenberg
terms in Na2IrO3 and discuss the validity of the nnKH model
by considering the experimentally observed magnetic order
and attempts to explain it from a local point of view. Finally
in Sec. VII we present our conclusions.

II. CRYSTAL STRUCTURE AND MAGNETIC
PROPERTIES OF Na2IrO3

Na2IrO3 crystallizes in the monoclinic space group C 2/m
(No. 12)8 (see Fig. 1) and consists of Ir honeycomb layers
[Fig. 1(b)] stacked along the monoclinic c axis [Fig. 1(a)]
with an in-plane offset along a. Na ions occupy both the
interlayer positions and 1/3 of the in-plane positions at the
centers of Ir hexagons. This structure can be visualized as
proceeding from NaIrO2 with a CdI2 structure with triangular
IrO2 layers. In these layers 1/3 of the in-plane iridium atoms
are substituted by extra Na, i.e., its formula can be written as
Na(Na1/3Ir2/3)O2, which, multiplied by 3/2, gives the usual
formula of Na2IrO3.9

An idealized crystal structure of this kind corresponds to
having all nearest neighbor (NN) Ir-Ir and NN Ir-O distances
equal and Ir-O-Ir angles of 90 degrees. The experimental
structure of Na2IrO3 departs from the idealized case and shows
a few distortions: (i) orthorhombic distortion that introduces
inequality among NN Ir-Ir distances and among NN Ir-O dis-
tances, (ii) IrO6 octahedra rotations that place O atoms on the
faces of a cube containing an Ir hexagon (see Fig. 2 of Ref. 5),
and (iii) trigonal distortion which is a compression of the IrO6
octahedra in the c direction that induces a departure from 90
degrees of the Ir-O-Ir angles. In Sec. IV we will discuss the ef-
fect of these distortions on the electronic structure of Na2IrO3.

As shown by transport, optical, and high-energy spec-
troscopy studies,10,11 Na2IrO3 is an insulator with an energy

FIG. 1. (Color online) Crystal structure of Na2IrO3. (a) Projection
on the ac plane and (b) projection on the ab plane.

gap Eg of 340 meV. Magnetic susceptibility measurements
indicate a Curie-Weiss behavior at high temperatures with a
Curie-Weiss temperature !CW = −116 K and an effective Ir
moment µeff = 1.82µB. Na2IrO3 orders antiferromagnetically
below TN = 15 K with an ordered magnetic moment µord ∼
0.2µB. The fact that TN is much smaller than !CW may be
a signature of frustration, but it may be also caused by the
itinerancy of Ir 5d electrons5 as will be discussed in Sec. VI.

The magnetic pattern observed experimentally8 corre-
sponds to a zigzag ordering, in contrast to the prediction of

(c) Neel(a) zigzag (b) stripy ´

FIG. 2. (Color online) Possible antiferromagnetic patterns in a
honeycomb lattice.
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Figure 2.1: The crystallographic struc-
ture of Na2IrO3. The Na, Ir and O
atoms are shown as yellow, purple, and
grey spheres, respectively. Panel a: the
view perpendicular to the c axis show-
ing the layered structure with layers
containing only Na atoms alternating
slabs of NaIr2O6 stacked along the c
axis. The IrO6 octahedra are shown in
pink with the purple Ir atoms sitting in
the middle. Panel b: one of the NaIr2O6
slabs viewed down the c axis to high-
light the honeycomb lattice of Ir atoms
within the layer. The Na atoms occupy
voids between the IrO6 octahedra.

Within the NaIr2O6 layers the edge sharing IrO6 octahedra from



honeycomb lattice and each octahedra are connencted with the three
other neighbouring octahedra. From the panel b of the figure 2.1 we
can observe the hexagonal structure made of six Ir-atoms (purple
spheres). This crystal structure is obtained by a powder x-ray diffrac-
tion scans of single crystals by [Singh., 2010]. An idealized crystal
structure of this kind corresponds to having all nearest neighbour
Ir-Ir and Ir-O distances equal and Ir-O-Ir angles of 90◦ . The experi-
mental structure of Na2IrO3 shows a few distortions compared to the
experimental structure:

• orthorhombic distortion that introduces inequality among NN Ir-Ir
distances and among NN Ir-O distances;

• IrO6 octahedra rotations that place O atoms on the faces of a cube
containing an Ir hexagon;

• trigonal distortion which is a compression of the IrO6 octahedra
in the c-direction that induces a departure from 90 degrees of the
Ir-O-Ir angles (see figure 2.2);

Figure 2.2: The compression of IrO6
octahedron along the stacking leads
to the decrease of O-Ir-O bond angles
across the shared edges.Measurement
was done by Ye et. al [Ye et al., 2012]

Na2IrO3 single crystals were grown by self-flux method [Singh.,
2010] and preoriented by Laue diffraction, and then cleaved in situ at
a base pressure of 5× 10−11 mbar, exposing the (001) surface.

2.2 Electrical resistivity

In this section we present the transport studies performed on
Na2IrO3 by Singh et. al [Singh., 2010].

In figure 2.3 the in-plane resistivity ρ(T) measured on Na2IrO3

single crystal, between T=80 and 350 K, is reported. The value
ρ(350K) ∼ 21Ω cm and the temperature dependence indicate
that Na2IrO3 is an insulator. The resistivity data as a function
of (T)−1 on logarithmic plot and the resistivity data as a function
of (T)−1/4 on logarithmic plot are reported in panel a and in panel
b of the figure 2.3, respectively. The experimental data follow a
ρ(T) ∝ exp[(∆/T)1/4] behaviour between 100 and 300 K with devi-
ation at higher and lower T [Singh., 2010] and similar temperature
dependence was observed for other systems [Cao et al., 1998].

In the section 2.1 we have seen that the crystal structure of
Na2IrO3 is very layered structure, stacked along c-axis 2.1. But
because of the monoclinic geometry of the system, there is an
anisotropy in the resistivity. In fact measured the resistivity in two
configuration of the Na2IrO3 plate: the resistivity of along the ab
plane (Rab) and the resistivity along c-axis (Rc) (see figure 2.4).
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Figure 2.3: The in-plane electrical
resistivity ρ versus temperatures T for
a single crystal of Na2IrO3. The inset
a shows the ρ versus 1/T data on a
semi-log scale. The inset b shows the ρ
versus 1/T1/4 data on a semi-log scale.
Measurement was done by Singh et.
al[Singh., 2010]
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Figure 2.4: Normalized resis-
tivity Rab and Rc measured for
Na2IrO3.Measurement was done by
Singh et. al[Singh., 2010]

We can observe that the value of R(T)/R(350K) along c-axis is 3
order of magnitude higher than along ab-plane at 75 K.

2.3 Magnetic susceptibility

Another study performed on Na2IrO3 by Singh et. al concerns the
magnetic susceptibility (χ), i.e. how the system responding to a
magnetic field.

In panel a of the figure 2.5, the inverse magnetic susceptibility
1/χ = H/M as a function of temperature in applied magnetic field
H = 2 T for a collection of single crystals of Na2IrO3 is reported
[Singh., 2010]. High temperture susceptibility follows Curie-

T(K) T(K)

Figure 2.5: Panel a: Inverse magnetic
susceptibility 1/χ =H/M versus
temperature T for a collection of
randomly oriented single crystals of
Na2IrO3 in a magnetic field H=2T. The
solid curve through the data is a fit by
the expression χ = χ0 + C/(T − θ) and
the dashed curve is an extrapolation to
T=0. Panel b: the anisotropic magnetic
susceptibilities χc and χab versus T.
The inset shows the χc (T) data at low
T to highlight the broad maximum
at T=23 K. The arrow indicates the
onset temperature TN=15 K for the
long-ranged antiferromagnetic ordering.
Measurement was done by Singh et.
al[Singh., 2010]

Weiss (CW) behaviour:

χ = χ0 +
C

T − θW
(2.1)



where C is a material-specific Curie constant and θW is the Curie tem-
perature. The data in panel a of the figure 2.5 are fit by the formula
2.1 with χ0, C and θW as fitting parameters [Singh., 2010]. By inspec-
tion of the fitting results, Singh et.al show that the Ir4+ moments are
in an effective spin Se f f =1/2 state and the high negative θW =−116 K
implies that the underlying interactions are strongly frustrated .

It was also noted that, as in the case of the resistivity, there is an
anisotropy in the magnetization measurements. The anisotropic
magnetic susceptibilities are shown in the panel b of the figure 2.5.
χc and χab are the magnetic susceptibilities measured with H=2 T
applied along the c-axis and perpendicular to the c-axis, respectively.
The data deviate from the CW behaviour below about T=100 K and
pass over a broad maximum at about 23 K before dropping abruptly
below T∼ 15 K. The sharp drop below TN is associated with the
onset of long-ranged antiferromagnetic ordering in Na2IrO3 while
the broad maximum above the ordering is most likely associated with
short ranged order seen commonly in low-dimensional magnetic
materials .

2.4 Heat capacity of Na2IrO3

Heat capacity is a useful thermodynamic tool to detect any structural
and magnetic phase transition. An object’s heat capacity C is defined
as the ratio of the amount of heat energy transferred to an object and
the resulting increase in temperature of the object,

C ≡ Q
∆T

, (2.2)

assuming that the temperature range is sufficiently small so that the
heat capacity is constant. More generally, because heat capacity does
depend upon temperature, it should be written as

C(T) ≡ δQ
dT

, (2.3)

The heat capacity for a solid system has three part :

• lattice heat capacity (Clat ∝ T3);

• electronic heat capacity (Cel ∝ T);

• magnetic heat capacity (Cm ∝ Tα)

In the panel a of the figure 2.6, the heat capacity divided by tempera-
ture C/T versus temperature T data for single crystals of Na2IrO3 in
a zero magnetic filed H is reported.

The anomaly at TN=15 K for Na2IrO3 confirms the bulk nature
of the antiferromagnetic ordering observed in the χ data in 2.5. The
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Figure 2.6: Panel a: The heat capacity
divided by temperature C/T versus
T data between T=1.8 K and 40 K for
single crystals of Na2IrO3 and the
lattice contribution Clattice/T versus
T. The inset shows the C/T versus T
data in H=0 and 7 T applied magnetic
field. Panel b: The difference heat
capacity ∆C and difference entropy ∆S
versus T data between T=1.8 and 40 K.
Measurement was done by Singh et. al
[Singh., 2010]

inset panel a of the figure 2.6 shows the C/T versus T data between
T=12 and 19 K, measured in H=0 and H=7 T. The slight depression
of TN in an applied magnetic field indicates the antiferromagnetic
nature of the ordering.

The magnetic heat capacity (∆C(T)) is obtained subtracting lattice
heat capacity (Clat) from the sample heat capacity (C), since that for
an insulator Cel is zero. The panel b in figure 2.6 shows the ∆C(T)
and the difference entropy ∆S(T) obtained by integrating the ∆C(T)
/T versus T data. It indicates also a reduced ordered moment and
spreading of magnetic entropy much above TN clearly tells that the
system is highly frustrated system.

2.5 Magnetic structure of Na2IrO3

Na2IrO3 magnetic structure was first predicted from resonant x-ray
magnetic scattering (RXMS) measurement performed by Liu et. al
[Liu et al., 2011] . Their results show that Na2IrO3 has a long-range
antiferromagnetically ordered ground state below TN and that the
ordering is three dimensional. From the azimuthal dependence of
the magnetic peaks, the ordered magnetic moment is determined
to be mainly along the crystallographic a direction. Two magnetic
ordering structures are found to be possible candidates: zig-zag and
stripy. Combining the experimental data with a set of constrained
first-principles calculations, Liu et. al propose the zig-zag phase as
the most likely ground state.

These results are confirmed by inelastic neutron scattering mea-
surements on Na2IrO3 performed by Choi et.al , whose they report
the first observation of dispersive spin wave excitations of Ir mo-
ments [Choi et al., 2012]. The dispersion can be quantitatively ac-
counted for by including substantial further-neighbour in-plane
exchanges which in turn stabilize zig-zag order.

In figure 2.7 the different spin structures are reported: (a) Néel (b)



Figure 2.7: (a) Néel (b) zig-zag (c) stripy
spin structure in honeycomb lattice.
(d) Position of the magnetic Bragg
peaks in reciprocal space for different
spin-configurations. Measurement was
done by Liu et.al [Choi et al., 2012]

zig-zag (c) stripy. Difference between zig-zag and stripy structure is
very small: zig-zag can be depicted as antiferromagnetically coupled
ferromagnetic spin chains and stripy is ferromagnetically coupled
antiferromagnetic spin chains, if viewed along a-crystallographic axis
of honeycomb lattice [Choi et al., 2012]. Another difference is that
coupling between shortest Ir-Ir distance in Na2IrO3 is ferromagnetic
in case of zig-zag and it is antiferromagnetic in case of stripy. From
the spin density functional theory calculation [Liu et al., 2011] it was
concluded that zig-zag spin-structure has lower energy so it is the
true magnetic structure of Na2IrO3.

2.6 Electronic structure under strong SOC limit

In the section 1.3 we have seen that in 5d−TMO materials, like Iri-
dates, all the energy scale λ, JH and U become almost same order of
magnitude. In particular under strong the spin-orbit coupling limit,
HSO can not be treated as perturbation, so L and S do not commute
with the total atomic Hamiltonian. From the LS coupling total mo-
mentum J = L + S is the good quantum number in the strong SOC
coupling and can have the value from |L + S| to |L− S|. In this section
we want to analyse the electronic structure of Na2IrO3 under a strong
SOC limit and we will see how the insulating behaviour and the
magnetic ground state, that we have seen in literature, are described
by Je f f model and Heisemberg-Kitaev model. respectively

2.6.1 Je f f model scenatio

The transition metal atom in Na2IrO3 is the Iridium whose atomic
configuration is [Xe]4 f 145d74s2. In these kind of compounds (e.g
Ir2IrO3, Sr2IrO4 etc..) Ir4+ ion forms covalent bond with O−2 ion
sharing 4 valence electron of Ir. Two electrons come from 4s orbital
and another 2 from 5d orbital. Hence the iridates valence band has
5d5 state, half filled 5d-orbital. The crystal field of oxygen ligands
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splits the degenerate 5d-states into two different states t2g and eg.
Since in 5d Hund’s coupling energy is of the order of 0.6 eV, which is
much smaller than CF splitting (2− 3 eV), the 5 electrons will be in
lower t2g state. If we turn on the SOC, we have to define the orbital
angular momentum |L| of the t2g orbital. Angular momentum matrix
element for all the 5 electrons in t2g will be given by 〈t2g|L|t2g〉.
Resulting angular moment matrix element is same as for the p orbital.
Hence orbital angular moment of 5d-orbital L = 2 is quenched to Le f f

= 1 in iridates by crystal field. The effective spin angular momentum
is Se f f = 1/2 having one hole t2g in 5d-orbitals. By LS coupling total
angular momentum the 3-fold degenerate t2g is split into Je f f = 1/2
state and doubly degenerate Je f f = 3/2 state due to strong SOC [Kim
et al., 2008]. Among 5 electrons, 4 electrons are in the Je f f = 3/2
orbital and one is in the Je f f = 1/2 orbital. In this interpretation, the
system shows a metal behaviour where the partially filled Je f f = 1/2
band is split from Je f f = 3/2 by a spin-orbit coupling term λSO=0.5
eV. With the inclusion of Coulomb interaction (U=1− 2 eV) occurs
a further split of partially filled Je f f = 1/2 band into ground state,
lower Hubbard band (LHB), and first excited state upper Hubbard
band (UHB), separated by U. In this way Je f f =1/2 LHB will be filled
and Je f f =1/2 UHB will be empty. In figure 2.8 a schematic drawing
of Je f f = 1

2 model is reported. Electron in the spatially extended
5d orbital has very small U which can not split t2g alone but it is
much easier to split narrower Je f f =1/2 band by small U. Hence this
insulating state is mainly due to strong SOC as we can see in figure
2.9.

t2g

eg

Jeff =1/2

Jeff =3/2

CF 2-3 eV

SOC  0.5 eV

5d5 

J=|L-S|=1/2
J=|L+S|=3/2

+ U

Figure 2.8: Splitting of 5d5 state under
octahedral crystal electric field (CF) and
spin orbit coupling (SOC). Schematics
of electronic level splitting of Je f f =1/2
spin-orbit Mott insulating state. Red
arrows represent 5 spins. Schematic
drawing is based upon [Kim et al.,
2008] by Kim et. al.

2.6.2 Heisemberg-Kitaev model

In the section 2.5 we have seen that the ground state of Na2IrO3

present a zig-zag antiferromagnetic order [Choi et al., 2012] [Liu et al.,



t2g

SOC
U

SOC

Jeff =1/2 UHB

Jeff =1/2 LHB

Jeff =3/2
Jeff =3/2

Jeff =1/2

metal metal insulator

CF (2-3 eV) + SOC (0.5 eV) + U (1-2 eV)

a b c
Figure 2.9: a) Partially filled t2g orbital,
splitting of it: b) by strong spin orbit
coupling (SOC) into partially filled
Je f f =1/2 and filled Je f f =3/2 state.
c) Further splitting of partially filled
Je f f =1/2 band into filled LHB and
empty UHB by Coulomb repulsion U.
Schematic drawing is based upon [Kim
et al., 2008] by Kim et. al.

2011]. This type of ground state is explain by Heisemberg-Kitaev
model (HK).

By inspection of the crystal structure in panel b of the figure 2.1
we can observe that each IrO6 octahedron is connected to three neigh-
bouring octahedra so that three t2g orbitals of that Ir-ion participate
in three different non equivalent hopping with three neighbouring
Ir-ion mediated by the oxygen. In particular the two edge sharing
octahedra form 90◦ Ir-O-Ir as reported by [Chaloupka et al., 2010].
From the panel a of the figure 2.10, we can see that along xx bond
hopping happens between two neighbouring Ir t2g orbital |xz〉 and
|xz〉 via O px orbital, similarly for along yy bond hopping happens
between |xy〉 and |yz〉 orbital via O py and for zz bond hopping
happens between |xz〉 and |yz〉 orbital via O py .

O
Ir

Na

a b
Figure 2.10: Honeycomb lattice of
Na2IrO3. b) Edge sharing octahedra
forms 90 Ir-O-Ir bond. [Jackeli and
Khaliullin, 2009]

Chaloupka et. al. derived the total spin-Hamiltonian for hon-
eycomb Na2IrO3 with the nearest neighbour (NN) interactions as
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[Chaloupka et al., 2013]:

H = −K ∑
<i,j>γ

Sγ
i Sγ

j + J ∑
<i,j>

Si · Sj (2.4)

The first term represents Kitaev exchange via three distinct NN
bonds referred as γ(=x, y, z) and K is the Ising-like ferromagnetic
coupling between the NN Ir-spins. The second term represent the
antiferrmagnetic Heisemberg exchange between NN spins where J
is the AF spin-coupling. This term has a vector relation, so whatever
is the spin direction of a Ir-atom, the NN spin will be in opposite
direction.

To determine a phase diagram, 2.4 is parametrized as K =2α and J
=1− α [Chaloupka et al., 2013]

HHK = −2α ∑
<i,j>γ

Sγ
i Sγ

j + (1− α) ∑
<i,j>

Si · Sj (2.5)

At α=0 only Heisenberg term contributes, HK model shows a Néel
ground state. At the opposite limit α=1 2.5 corresponds to the exactly
solvable Kitaev model with short-range spin liquid state [Kitaev,
2006]. There is also an intermediate state which α=1/2 and the
ground state present a AF state with spins polarized in the direction
of one of the crystallographic axis. Hence HK model gives three
ground states shown in phase diagram in figure 2.11. Under TN ,
Na2IrO3 shows a zig-zag (α=1/2) ground state in short-range regime,
while has a quantum spin liquid (α=1) in al long range regime.

Figure 2.11: (a) Phase diagram of
Heisenberg-Kitaev (HK) model with AF
Heisenberg and FM Kitaev, reprinted
from [Chaloupka et al., 2010] (b) Phase
diagram of the generalized HK model
containing all four combination of
FM and AF; Kitaev and Heisenberg
interaction, reprinted from [Chaloupka
et al., 2013].

2.7 Electronic structure under small SOC limit: QMO interpretation

In the strong SOC limit localized Je f f states, described by Je f f model,
it was assumed that the energy scales are W<λ<U, where W ≈ 4t
is the d-electron band width, t the effective hopping parameter, λ

the SOC parameter and U the on-site Coulomb repulsion. In this
limit the electrons are on-site localized. However the single electron
hopping t and the bandwidth for 5d orbitals is 1.5− 2 eV [Mazin et al.,



2012] and therefore it is unrealistic to expect a completely localized
regime. The single electron hopping t would be an important factor
which could give itinerant description of Na2IrO3. In this section
we want to discuss the case in which the electronic structure is dom-
inated by the formation of quasi-molecular orbital (QMOs) which
involves six Ir atoms arranged in an hexagon [Mazin et al., 2012].

Starting from the non-relativistic case (without the inclusion of
SOC effects), Mazin et. al. had performed DFT calculations and
obtaining the relative band structure of Na2IrO3. In figure 2.12

the band structure of nonmagnetic Na2IrO3 for the experimentally
determined crystal structure [Choi et al., 2012] is reported.
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TABLE I. Nonrelativistic total energies obtained within DFT
for the experimental, ESexp , and the three idealized, Si (i = 1,2,3),
Na2IrO3 crystal structures. Energy is given per unit cell containing
two formula units.

Structure Sexp S1 S2 S3

ESi
− ESexp (mRyd) 0 0.95 78.90 180.01

neighbors calculated for the four structures are given in Table II
and schematically represented in Fig. 3. We consider the
following rationale for labeling of the hopping parameters
Eq. (3). In the experimental structure of Na2IrO3 there are two
first NN Ir-Ir distances and two second NN Ir-Ir distances due
to the fact that the Ir6 hexagons are not perfect. We denote the
corresponding Ir t2g - Ir t2g hopping parameters as t1 and t1̄
for the first NN and, respectively, t2 and t2̄ for the second NN
hoppings. Further, we have various possible hoppings between
equal and different t2g orbitals. Regarding first NN, we denote
t1 O and t1̄ O the hoppings between unlike t2g orbitals via O p
states [Fig. 3(a)]. t1σ and t1̄σ denote NN direct hoppings of

σ type. t1∥ and t1̄∥ denote NN hoppings between like orbitals
lying in parallel planes. In the ideal structure such hoppings
consist of linear combinations with equal weight of ddπ and
ddδ bonds. t1⊥ and t1̄⊥ denote NN hoppings between unlike
orbitals lying in perpendicular planes [see Figs. 3(b) and 3(c)].

Regarding the second NN hopping parameters, t2 O and
t2̄ O denote hoppings between unlike orbitals via O p and Na
s states [Fig. 3(e)]. t2a and t2b (t2̄a and t2̄b) denote hoppings
between like orbitals as shown in Fig. 3(d) and t2c, t2d , and
t2e (t2̄c, t2̄d , and t2̄e) denote hoppings between unlike orbitals
[Fig. 3(e)].

A. Experimental crystal structure

Previous electronic structure calculations5 have identified
the dominant hopping integrals for Na2IrO3 to be t1 O and t2 O
[as well as t1̄ O and t2̄ O; further on, if not explicitly stated
otherwise, we refer to both equivalent t1 (t2) and t1̄ (t2̄) when
writing t1 (t2)]. In Table II column Sexp we present the complete
list of hopping parameters up to the second nearest neighbors.
A TB model based only on these hopping integrals provides

TABLE II. Nearest neighbor (NN) and second NN hopping integrals in meV between Ir t2g orbitals for the experimental structure and three
idealized structures S1, S2, S3 of Na2IrO3 (see text and Appendix for a description of the structures and parameter labeling). The NN = 0 data
are Ir t2g on-site energies and interorbital hoppings; the NN = 1 and NN = 1̄ (NN = 2 and NN = 2̄) data are hoppings over nonequivalent
(due to orthorhombic distortion) NN (second NN) Ir bonds.

NN Sexp S1 S2 S3

0 xy → xy −448.8 −422.9 −422.8 −601.1
xz → xz −421.5 −421.8 −421.2 −601.1
yz → yz −421.5 −421.8 −421.2 −601.1

xy → xz, xy → yz −27.8 −26.4 −21.2 −13.5
xz → yz −23.1 −25.2 −18.8 −14.7

1 xy → xy (t1∥) 47.7 34.1 27.8 120.8
xy → xz, xy → yz (t1 O) 269.6 268.5 231.7 209.7
xy → xz, xy → yz (t1⊥) −25.6 −16.6 43.7 −5.3
xz → xz, yz → yz (t1∥) 30.0 33.2 17.2 118.9
xz → xz, yz → yz (t1σ ) −20.7 3.5 −66.5 −381.6

xz → yz (t1⊥) −21.4 −16.4 41.7 −4.9

1̄ xy → xy (t1̄σ ) 25.4 0.2 −65.5 −382.8
xy → xz, xy → yz (t1̄⊥) −11.9 −17.6 46.9 −5.3
xz → xz, yz → yz (t1̄∥) 33.1 33.9 21.2 120.5

xz → yz (t1̄ O) 264.4 264.8 228.7 211.7

2 xy → xy (t2a) −3.5 −2.6 −18.9 2.0
xy → xz, xy → yz (t2 O) −75.8 −77.4 −94.7 −82.1
xy → xz, xy → yz (t2c) −36.5 −35.3 −52.1 −38.5
xy → xz, xy → yz(t2d ) 12.5 10.1 1.7 6.9
xy → xz, xy → yz (t2e) −21.4 −19.2 −7.3 1.9
xz → xz, yz → yz(t2a) −0.6 −3.1 −16.6 1.4
xz → xz, yz → yz (t2b) −1.5 −1.6 −1.0 5.7

xz → yz (t2e) −18.6 −19.0 −7.1 2.4
xz → yz (t2d ) 10.2 10.2 2.4 6.6

2̄ xy → xy (t2̄b) −1.4 −1.4 −1.2 5.7
xy → xz, xy → yz (t2̄e) −19.0 −19.2 −8.4 2.1
xy → xz, xy → yz (t2̄d ) 9.3 10.2 0.7 7.5
xz → xz, yz → yz (t2̄a) −1.4 −3.0 −17.7 1.5

xz → yz (t2̄ O) −77.0 −78.0 −95.2 −81.9
xz → yz (t2̄c) −30.4 −35.1 −51.6 −38.9
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Figure 2.12: Left: The Ir 5d t2g band
structure of Na2IrO3 obtained with DFT
calculations in the generalized gradient
approximations (GGA). Right: Nearest
neighbour (NN) and second NN
hopping integrals in meV between Ir t2g
orbitals for the experimental structure
of Na2IrO3. The NN =0 data are Ir
t2g on-site energies and interorbital
hoppings; the NN =1 and NN =1 (NN
=2 and NN =2) data are hoppings over
non equivalent NN (second NN) Ir
bonds

From the electronic structure calculation is evident that the leading
channel is the nearest neighbour (NN) O-assisted hopping between
unlike orbitals. The panel b of the figure 2.12 shows the complete list
of the hopping parameters up to the second nearest neighbours. We
can identified the dominant hopping integrals for Na2IrO3 to be t10

(≈ 270 meV) and t20 (≈ 75 meV) for NN and second NN hopping
respectively. Starting from the dominant hopping (t10), let us consider
an electron on a given Ir in a particular orbital state, say, dxy, this
electron can hop to a neighbouring state of dyz symmetry, located at
a particular NN site. From there, it can hop further into a dxy state
on the next site and after six hops it returns to the same state and
site from where it started. This means that in the NN O-assisted
approximation, where the hopping parameter t10 is about 270 meV,
every electron is fully localized within six sites, forming a hexagon,
as depicted in the figure 2.13 [Mazin et al., 2012].

Figure 2.13: Most relevant O p-assisted
hopping paths in idealized honeycomb
structure, reprinted from [Mazin et al.,
2012].

Each Ir belongs to three hexagons, thus three different t2g orbitals
on each Ir site belong to three different quasi-molecular orbitals
(QMO)( see figure 2.14 ). Six QMOs localized on a particular hexagon
form six levels grouped into the lowest B1u singlet with the odd
parity, the highest A1g with the even parity, and two doublets E1g and
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E2u with even and odd parity respectively.

Figure 2.14: (a) Schematic plot of
a Ir hexagon. b) A quasimolecular
composite orbital on a given hexagon.
c) Three neighbouring quasi-molecular
orbitals [Mazin et al., 2012].

The projections of the total density of states of Na2IrO3 onto the
quasi-molecular orbitals in non relativistic case and in nonmagnetic
phase are reported in the panel a of the figure 2.17. Under these con-
ditions the system present a metallic behaviour. The addition of the
O-assisted NNN hopping t20 connects unlike NNN t2g that belong
to the same QMO and therefore retains the complete localization
of individual QMOs. In figure 2.15 the comparison between band
structure (red symbols) obtained by means of DFT (without spin-
orbit coupling) and the tight-binding models (blue symbols) based on
nearest neighbours up to 16 Angstrom ere reported.
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FIG. S4. Band structure of Na2IrO3 (red symbols) shown together with the tight-binding models that include only nearest
neighbors (top left), up to next nearest neighbors (top right), up to third nearest neighbors (bottom left) and neighbors up to
16 Å (bottom right).

the accuracy of the density functional theory itself, and
on the border of the technical accuracy of existing band
structure codes.

In Fig. S8 we show the density of states for some mag-
netic orderings considered in our fully relativistic calcu-
lations. Note that the zigzag ordering preserves the non-
magnetic pseudogap at the Fermi level, while the stripy
ordering destroys it.

Finally some considerations about the Hubbard U are
at place. In fact, there are two ways of defining U in this
case. As usually, the actual value of U depends on which
orbitals it is being applied to. For instance, it is well
known that in Fe pnictides the appropriate value of U
acting on the Wannier functions combining Fe d and As
p states is more than twice smaller that that acting on ac-
tual atomic d orbitals since the screening effects change
depending on the basis of active states considered. In
molecular solids, such as fullerides, the atomic value of
U often appears completely irrelevant, and the physically
meaningful value of U is the (much smaller) energy of
Coulomb repulsion of two electrons placed on two molec-
ular orbitals. In the case of Na2IrO3 one has a choice of

using an atomic U ∼ 1.5-2 eV, realizing that the results
will be strongly affected by the fact that electrons are lo-
calized not on individual ions, but on individual QMOs,
or of constructing U in the QMO basis. The former way
is readily available in such formalisms as LDA+U but
it may be a poor choice for the description of a system
based on quasi-molecular orbitals.
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Figure 2.15: Band structure of Na2IrO3
(red) shown together with the tight-
binding models that include only
nearest neighbours (top left), up to next
nearest neighbours (top right), up to
third nearest neighbours (bottom left)
and neighbours up to 16 Angstrom
(bottom right).

In the nonrelativistic calculations the states are almost purely
QMOs, ordered as B1u, E1g, A1g, E2u with increasing energy [Mazin
et al., 2013]. The real-space representation of the QMOs in Na2IrO3 as
a function of binding energy is reported in figure 3.3.

Turning on the spin-orbit coupling in the DFT calculations [Mazin
et al., 2012] [Comin et al., 2012], we can observe a strong relativistic
splitting in the upper two bands. In the panel b of the figure 2.20

the band structure and the density of states with the inclusion of
spin-orbit coupling are reported. By inspection of the density of
states and the band structures (the green dots in figure 2.18) [Mazin
et al., 2012] obtained by GGA+SO calculations , we can observe that
the lowest subbands hardly exhibit any spin-orbit effect, even though
the spin-orbit parameter λ in Ir is ∼ 0.4-0.5 eV.
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Figure 2.16: Real-space representation
of the QMOs in Na2IrO3 as a function
of binding energy obtained by the
Wannier projector method [Foyevtsova
et al., 2013].

Figure 2.17: Density of the states
of Na2IrO3 projected onto the six
quasi-molecular orbitals for a) a nonrel-
ativistic and b) a relativistic calculation
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Figure 2.18: Electronic band structures
and density of states of Na2IrO3 in non
relativistic (solid purple line) and in
relativistic regime (dotted green line)
[Mazin et al., 2012] .

The density of states of Na2IrO3 projected onto the six quasi-
molecular orbitals in the relativistic case, reported in panel b of
figure 2.17, shows the QMOs mixing by spin-orbit interaction. The
QMOs mixing in the relativistic regime is due to QMO energy and
parity. QMOs with the same energy and different parity will be the
most affected by the spin-orbit interaction and they will mix between
them. In contrary, QMOs with different energy and same parity
will not be affected by spin-orbit interaction. In fact, the spin-orbit
coupling has the main effect of heavily mixing among themselves
only the highest-in-energy three QMOs A1g (even parity) and two
E2u (odd parity), leaving almost completely unaltered the lowest-in-
energy three QMO ,B1u and two E1g, having different parity but also
different energy. By inspection of the DOS in relativist case we can
observe a suppression of the states at EF therefore the system shows
a insulating behaviour.
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Figure 2.19: Ir 5d t2g DOS and band
structures for Na2IrO3, obtained
with a)GGA, b) GGA+SO, and c)
GGA+SO+U. Calculations was done by
Li et. al [Li et al., 2015]

In order to have a good description of the experimentally observed
optical gap in Na2IrO3, a Coulomb repulsion (Ue f f =2.4 eV) had to
be included in the DFT calculations. In the figure 2.19 the density
of states obtained with GGA+SO+U of Na2IrO3 projected onto the
six QMOs are reported. With the inclusion of Coulomb repulsion U,
a 340 meV gap can be obtained as reported experimentally [Comin
et al., 2012]. In figure 2.20 we report the band structures and the DOS
for Na2IrO3 within GGA, GGA+SO and GGA+SO+U performed
by [Li et al., 2015]. One of the most relevant effects of the QMO
scenario of scenario is the capability to resolve in four bands what
was before a unique band assigned by the Je f f scenario to Je f f = 3/2.
In particular, the spin-orbit coupling leads to a clear predominance
of the Je f f =1/2 characteristic in the upper quartet reconciling QMO



Figure 2.20: Ir 5d t2g DOS and band
structures for Na2IrO3, obtained
with a)GGA, b) GGA+SO, and c)
GGA+SO+U. Calculations was done by
Li et. al [Li et al., 2015]

scenario with an almost-localized moment scenario (Je f f scenario)
that would much more easily lead to the zig-zag magnetic ordering.
Moreover, the spin-orbit coupling has the main effect of heavily
mixing among themselves only the highest-in-energy three QMO
(A1g and 2E2u), leaving almost completely unaltered the lowest-in-
energy three QMO (2E1g and B1u).



3 Optical properties at equilibrium of Na2IrO3

In this chapter we describe the optical equilibrium properties of
Na2IrO3. As a first step to interpret the experimental optical prop-
erties, we will discuss the optical conductivity calculated by density
functional theory (DFT), including spin-orbit coupling (SO) and
correlation effects (U). We will show how the main features of the ex-
perimental dielectric function of Na2IrO3 can be naturally explained
within the Quasi Molecular Orbital picture [Li et al., 2015]. In this
framework the main factor in determining the strength of the optical
transitions is the parity of the quasi-molecular orbitals involved as
initial and final states [Mazin et al., 2013]. Finally, we will present
the results of the fitting of the multi-Lorentz model to the experi-
mental optical conductivity of Na2IrO3 and we will compare the
experimental results with the calculated one.

3.1 Optical costants

The dielectric function, ε(ω), is a material-dependent complex func-
tion describing, in the frequency domain, the response of a material
to an externally applied electric field ~E(ω): ~D(ω) = ε(ω)~E(ω) where
~D(ω) is the displacement electric field. From the microscopic point of
view, ε(ω) is related to the optical transitions in the material, that de-
pend on the specific material band structure. From the macroscopic
point of view, all the optical properties can be calculated starting
from ε(ω). In particular:

• The reflectivity R(ω). At normal incidence is given by:

R(ω) =

∣∣∣∣∣
1−

√
ε(ω)

1 +
√

ε(ω)

∣∣∣∣∣

2

(3.1)

• The complex index of refraction n(ω) = n1(ω) + in2(ω) is

n(ω) =
√

ε(ω) (3.2)

• The complex optical conductivity σ(ω) = σ1(ω) + iσ2(ω) is

σ(ω) = i
ω

4π
(ε(ω)− 1) (3.3)



• Other useful relations (the frequency dependence is omitted) are:

ε1 = n2
1 − n2

2, ε2 = 2n1n2 (3.4)

n1 =
√
(|ε|+ ε1)/2, n2 =

√
(|ε| − ε1)/2 (3.5)

ε1 = 1− 4πσ2/ω, ε2 = 4πσ1/ω (3.6)

The ε(ω), n(ω) and σ(ω) are causal response functions (in the
sense that no effect can occur before the cause ) and their real and
imaginary parts are mutually related by the Kramers-Kronig integral
relations that allow to calculate the imaginary/real part if the corre-
sponding real/imaginary part is known. The only requirement is that
the measured quantity (real or imaginary) should be available over
an infinite (or extremely broad) spectral range [Wooten, 2013]. The
Kramers-Kronig dispersion relations for the dielectric function ε(ω)

are:

ε1(ω)− ε∞ =
1
π

P
∫ +∞

−∞
dω′

ε2(ω
′)

ω′ −ω
(3.7)

ε2(ω) = − 1
π

P
∫ +∞

−∞
dω′

(ε1(ω
′)− ε∞)

ω′ −ω
(3.8)

where P denotes the Cauchy principal value [Wooten, 2013].

3.2 Lorentz model

Optical spectroscopy constitutes a powerful tool to investigate the
electronic properties of solids, since it provides direct information
about the underlying electronic structure [Wooten, 2013]. The most
common models for reproducing a generic dielectric function are the
classical Drude and Lorentz models. The Drude model is applied to
describe the optical properties of a large number of metals while the
Lorentz model describes well the optical properties of the dielectric
materials. These classical models explain the response to a external
electric field ~E(ω) of bound or free electrons in a solid. Basically, the
Lorentz model treats an atom with electrons bound to the nucleus in
much the same way as a small mass can be bound to a large mass by
a spring. With this assumption an electron with mass m and charge
e, when interacts with a electric field ~E(t) =

∫ ∞
−∞

~E(ω)e−iωtdω, is
subject to:

• a driving force: −e~E(ω)

• a restoring forced (Hooke’s law): −mω2
0~r
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• a viscous dumping: −mγ(d~r/dt)

where γ is the damping term,~r is the displacement, ω0 is the reso-
nant frequency and ~E is the external electric field.

The motion of an electron bound to the nucleus is described by:

m
d2~r
dt2 + mγ

d~r
dt

+ mω2
0~r = −e~E(t) (3.9)

There are two approximations in the equation 3.9:
a) the nucleus has been assumed to have infinite mass and
b) the interaction of electron with the magnetic field of the light

wave is neglected.
In the frequency-domain, the solution to 3.9 is:

~r =
−e~E(ω)/m

(ω2
0 −ω2)− iγω

(3.10)

Considering N atoms per unit volume, the macroscopic polarization
is ~P

~P = −Ne ·~r = Ne2~E(ω)/m
(ω2

0 −ω2)− iγω
(3.11)

We can write the relative dielectric function as

εr(ω) = 1 +
ω2

p

(ω2
0 −ω2)− iγω

(3.12)

where:

• ωp =
√

Ne2

ε0
m is the plasma frequency of the material;

• ω0 is the resonant frequency of the oscillator;

• γ is the damping term. It is inversely proportional to the electron
scattering rate τ;

The equation 3.12 is the Lorentz model and describes a resonant
response to a time-varying electric field. Typically, to characterize the
response of dielectric and metallic materials we have to use several
(n)different oscillators. Equation 3.12 thus becomes:

εr(ω) = ε∞ + ∑
n

ω2
p,n

(ω2
0,n −ω2)− iγnω

(3.13)

where ε∞ takes into account the effect of high-energy interbands
transitions, which are usually not included in the model. Ideally
when including all the possible interband transitions, we would have
ε∞=1. In figure 3.1 we plot the dielectric function ε(ω) (panel a), the
refractive index n(ω) (panel b), the conductivity σ(ω) (panel c) and
the reflectivity R(ω)(panel d) for a Lorentz oscillator, using 3.13.
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Figure 3.1: a dielectric function, b the
refractive index from the equation 3.2, c
the conductivity from the equation 3.3
and d the reflection from the equation
3.1. The material is modelled to consist
of a single Lorentz oscillator of 3.13,
with parameters ε∞=4, ω0=0.38 eV,
ωp=0.5 eV, γ=0.02 eV. The real and
imaginary parts of the optical constants
are plotted as blue and red, respectively.

If the oscillator is centered at zero frequency ω0 = 0, the equation
3.12 becomes

εr(ω) = 1−
ω2

p

ω2 + iγω
(3.14)

and in terms of the conductivity

σ(ω) = εo
ω2

p

γ − iω
= εo ω2

p

[
τ

1 + ω2τ2 + i
ωτ2

1 + ω2τ2

]
(3.15)

This model, generally called the Drude model, describes unbound
charges and is useful for characterizing the response of good metals
to electromagnetic waves.

3.3 Optical conductivity and ab-initio band structure calculations

In the section 2.7 of the previous chapter, we have discussed the
electronic band structure of honeycomb lattice iridate, as calculated
from density function theory (DFT). The reported DFT calculations
were performed in both GGA [?] and LDA [Comin et al., 2012]
approaches and both of them gave similar results. The theoretical
results are in agreement with the experiments [Comin et al., 2012],
[Sohn et al., 2013]. In this section we discuss the Na2IrO3 optical
conductivity obtained by ab-initio calculations [Li et al., 2015].

The imaginary part of the interband contributions to the dielectric
function is proportional to the real part of the optical conductivity
(see 3.6), and it can be expressed as [Ferber et al., 2010]:

Reσii(ω) ∝
1
ω ∑

c,v

∫
dk|pi;c,v,k|2δ(εck − εvk −ω) (3.16)
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where pi is the matrix element of the momentum operator along
the electric field polarization of the incoming light, ω is the energy
of the photon, cK denotes a state in conduction band with energy εck

while vK denotes a state in valence band with the energy εvk .

Figure 3.2: panel a:Density of the
states of the Na2IrO3 obtained with
GGA+SOC+U and panel b:The calcu-
lated optical conductivity for Na2IrO3
(blue solid line) and the 4 peaks that
represent the contributions from differ-
ent d− d transitions. [Li et al., 2015]

With the optimized atomic parameters and setting zig-zag antifer-
romagnetic order phase, first principle calculations are performed in
which relativistic effects and Coulomb repulsion (Ue f f =2.4 eV) are
taken into account. In the panel a of the figure 3.2 Li. et al present
the Ir 5d t2g density of states for Na2IrO3, obtained with GGA+SO+U.
The valence states vs are labeled by the letters a, b, c, and d while the
conduction state cs is labeled by a. In the panel b of the figure 3.2
(the solid blue line), Li. et al present the calculated optical conductiv-
ity in the low-energy region. The optical conductivity, obtained by
DFT calculations, shows a multi-peak behaviour where the dominant
peak is centered at ω=1.5 eV. Through the 5 states in the panel a it is
possible to characterize the different features present in the optical
conductivity; Li. et. al. identify 4 peaks A,B,C, D that correspond to
the optical transitions from a, b, c, d to e states, respectively. These
distinct peaks, that correspond to the contributions from different
d − d transitions, reveal the quasi-molecular orbital nature of the
electronic structure of Na2IrO3 [Mazin et al., 2012]. We have seen



in the section 2.7 of the previous chapter, the features of the quasi-
molecular orbitals, obtained in non-relativistic condition, in which
their real-space representation are depicted in figure 3.3.
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E1g

B1u

Binding Energy

Figure 3.3: Real-space representation
of the QMOs in Na2IrO3 obtained by
Wannier projector method as a function
of binding energy

By inspection of the six real-space representation of the QMOs in
Na2IrO3 as a function of binding energy, we can discuss their parity.
The g-orbitals (A1g, E1g) have even (gerade) parity, which means
that the orbitals structures within each QMO are symmetric with
respect to origin, i.e they remain unchanged after reflection. The
u-orbitals (E2u, B1u) have odd (ungerade) parity, which means that
the orbital structures have the opposite symmetry, i.e they change
after reflection. When including spin-orbit coupling (SO) and the
correlation effects (U), the QMO nature of the structures observed
in the DOS (see figure 3.4). Therefore, we can argue that the states
a, b, c, d, and e are predominantly of even, odd, even, odd and odd
respectively.
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Figure 3.4: Density of the states of the
Na2IrO3 projected onto the six quasi-
molecular orbitals that are obtained
with GGA+SOC+U

The strength of the optical transitions depends on the coupling be-
tween the valence and conduction bands and this is measured by the
magnitude of the momentum matrix elements coupling the valence
band states (vs) and the conduction band state (cs): | < vs|~p|cs > |2,
where ~p is the transition moment operator. Therefore, in accordance
with the selection rule, transitions between states of the same parity
will be strongly suppressed whereas transitions between states of
different parity will dominate. In these terms, since the dominat-
ing contribution predicts an odd parity in conduction states cs, the
even parity valence states (a and c) will have much contribution
than the odd parity valence states (b and d). The characteristics of
the peaks shown, in panel b of figure 3.2, reflect the parity of the
quasi-molecular orbitals: the peaks B and D, that are related to the
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transitions b and d to e, are weaker than the peaks A and C, that
are related to the transitions a and c to e. In particular we note that
the structure centered at h̄ω=1.5 eV is strongly asymmetric, thus
suggesting the presence of two neighbouring contributions with
the same even parity. This is in agreement with the calculated band
structure which reveal a multi-structure nature of the E1g QMOs, as a
consequence of the partial loss of their original degeneracy.

3.4 Equilibrium optical properties of Na2IrO3

In this section we describe the experimental equilibrium optical
properties of Na2IrO3 , measured at different temperatures and in
0.7-2.5 eV energy range.

In figure 3.5 we report the real part of the optical conductivity
σ1(ω) of Na2IrO3 at different temperatures. In the inset of the figure
3.5 the reflectivity R(ω) has been reported. The optical response of
the sample as a function of temperature was obtained using com-
bined reflectivity and ellipsometry measurements on the (001) surface
of a freshly cleaved crystalline platelet. These measurements have
been performed at the quantum materials group of the University
of Geneva. By inspection of the reflectivity reported in the inset of
figure 3.5, we observe that the reflectivity is almost constant in the
energy range between 0.7 eV and 1.7, eV while it starts decreasing in
the 1.7-2.5 eV range.
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Figure 3.5: The real part of the
optical conductivity of Na2IrO3,
measured by static ellipsometry at
T=50, 100, 150, 200, 250, 300 K. In inset
the reflectivity of Na2IrO3 at T=50 K
obtained by the same technique

The optical conductivity σ1(ω) data in figure 3.5 (measured at
different temperatures) is characterized by a a manifold of structures
in the 1-2 eV energy range due to the interband transitions that
involves the Ir t2g orbital states, while the transitions involving the
oxygen 2p bands are confined to higher energy (> 2.5 eV) [Comin



et al., 2012] ). From the figure 3.5 we can observe that at a frequency
of about 1.6 eV, the amplitude of σ1 at room temperature is slightly
less intense than σ1 at T=50 K. This effect is temperature-related:
the decrease in temperature causes a narrowing of each transition
structures (oscillators).

In order to disentangle the role of the different t2g orbitals in
determining the dielectric function, a sum of the Lorentz oscillators
3.13 is used to reproduce the optical conductivity σ1 of the system.
We have seen in section 3.1 that all the measurable optical quantities
(reflectivity, optical conductivity, etc.) can be expressed in terms
of the complex frequency -dependent dielectric function ε(ω) =

ε1(ω) + iε2(ω), therefore the most important issue is the modelling
of the ε1 and ε2. In order to have a correct model to fit the dielectric
functions, the number of oscillators in the Lorentz model 3.13 has to
be as small as possible. In the the panel a of figure 3.6, we report
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Figure 3.6: In panel a the optical
conductivity at T=50 K and the Lorentz
oscillators, as result from the fitting
procedure, are reported. The six
oscillators, the parameters of which are
reported in 3.1, represent the interband
transitions of the Ir t2g orbitals. In
panel b The real and imaginary parts
of the dielectric function of Na2IrO3,
measured by static ellipsometry at T=50
K, is reported. Solid lines are the fit to
the data, performed with the Lorenz
model using the same parameters as
those used in the optical conductivity

the real part of the optical conductivity (blue solid line) and the fit
to the data (solid black line). The minimum number of oscillators
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in our model to get the fit to the optical data is five, labeled as A,
B, C, D and E. The parameters of the oscillators, represented by the
eigenfrequency (ω0), the plasma frequency (ωp) and the damping
(γ), are reported in table 3.1. In panel b the real part (blue) and
imaginary part (red) of the dielectric function with their respective
fits (solid black line) are reported.

Na2IrO3 static optical parameters T= 50 K
Position (eV) Plasma Frequency (eV) Width (eV)

A 0.75 0.46 0.14

B 1.08 0.36 0.17

C 1.39 2.88 0.99

D 1.66 1.097 0.32

E 1.97 0.77 0.46

Table 3.1: Lorentz model parameters
used in the fit to the optical constants of
the Na2IrO3 at T= 50 K

From the table 3.1 we can observe that the main contribution
is given by the oscillators centered at ω0=1.39 eV and ω0=1.66 eV
whose their spectral weights (ωp) are much higher than the other
oscillators. The fitting results show similarities with the ab-initio
results described in 3.3.

3.5 The relation between the Na2IrO3 optical conductivity and the QMO
picture

In this section we compare the results of the calculated optical con-
ductivity (panel b of figure 3.2), presented in section 3.3, to the
experimental optical conductivity reported in panel a of figure 3.6.

Both the experimental and calculated optical conductivities show
the presence of a dominant peak at about ω=1.5 eV. In the analysis
performed by Li.et.al, four interband transitions are identified whose
intensities are related to the parity of the underlying quasi-molecular
orbital nature of the electronic structure of Na2IrO3. On the other
hand, the Lorentz model dielectric function fitting results to the
Na2IrO3 , show that the minimum number of the Lorentz oscillators
is five and that the peak at ω=1.5 eV in the ab-initio analysis 3.2 can
be seen as the contribution from two different transitions, identified
as the Lorentz oscillators C and D in the experimental results of
figure 3.6.

The optical conductivity is an important measure of the underly-
ing molecular orbital structure in Na2IrO3. In figure the panel a 3.7
a sketch of the GGA+ SO+U (S=0.6 eV and Ue f f =2.4 eV) density of
states, projected onto the quasi-molecular orbitals, is depicted. The
states of the same parity (b and e in figure 3.7) have weak optical
transitions whereas states of different parity (a, c and d ) have strong
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Figure 3.7: In [a] the density of the
states with the valence states a (even),
b (odd), c(even), d (even) e (odd) and
the conduction state cs (odd) are repre-
sented. In [b] the optical conductivity
σ(ω) calculated by the five peaks, that
correspond to the transitions from the
valence states to conducting state.
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optical transitions. The different contribution of these optical transi-
tions are represented by the Lorentz oscillators, as reported in panel
b 3.7.





4 Experimental setup

4.1 Introduction

The electronic and optical properties of materials (e.g. resistivity
and dielectric function) stem from the complex interplay between
the lattice, electronic and spin degrees of freedom , which generally
interact on a timescale that ranges from 10−15 s to 10−9 s, or longer.
Pump-probe spectroscopic techniques allow us to recover the dy-
namics of the electronic and optical properties on the femtosecond
or picosecond timescales. Pump-probe spectroscopy can be used to
determine the non equilibrium dynamics of electron-electron inter-
actions [Groeneveld et al., 1995], to examine the coupling between
electron, phonon and spin subsystem [Beaurepaire et al., 1996], to
photoinduce nonthermal phase transitions [Cavalleri et al., 2001]
[Yonemitsu and Nasu, 2008] and clarify to the electronic structure of
complex materials [Demsar et al., 2003a].

In this chapter, after introducing the basics and methods for the
ultrafast time-resolved pump-probe spectroscopy, we describe in de-
tail the developed techniques. Three kinds of pump-probe techniques
are described: single-color pump-probe setup, single-color pump
supercontinuum-probe setup and dual-color ASynchronous OPtical
Sampling (ASOPS) pump-probe setup. The last part of the chapter is
dedicated to the time-domain THz spectroscopy and, in particular, to
the setup that has been developed and employed in the present work.

4.2 Time-resolved optical spectroscopy: general remarks

The pump-probe technique measures the transient optical properties
of materials with a temporal resolution that exceeds the electrical
bandwidth of the conventional solid-state devices employed for
electrical measurements. Typically, the train of pulses produced by an
ultrafast laser source is divided in two beams: the more intense one,
the pump beam, is used to excite the sample, while the less intense
one, the probe beam, is used to measure the pump-induced change
of the optical properties of the sample. To overcome limitations in



the response-time of the electronics, the pump-probe spectroscopy
technique adopts an all-optical sampling method to reconstruct the
signal. The ultrafast time domain signal is reconstructed by probing
the pump-induced change of the reflectivity (or transmissivity) at a
given time delay and repeating the measurements multiple times for
each time delay. We will describe in the next sections the different
ways to detect pump-probe signals.

In an ultrafast pump-probe measurements, the minimum time
resolution is limited by the pump and probe pulses temporal lengths.
The quantity that we measure in this work is the difference between
the reflectivity of the excited system Rpumped(ω, τ) (that depends of
the delay between pump and probe beams τ ) and the reflectivity
of the equilibrium system Runpumped(ω), divided by the equilibrium
reflectivity:

∆R
R

(ω, τ) =
Rpumped(ω, τ)− Runpumped(ω)

Runpumped(ω)
(4.1)

This quantity depends on the delay between pump and probe pulses
(τ) and on the probe photon energy ω.

4.3 Single-color pump-prope technique

4.3.1 Laser system

The first stage of the laser system is a diode pumped Nd:Yag laser
(Coherent Verdi V10) which provides continuum monochromatic
output with a wavelength of λ=532 nm and maximum output power
of 10 W. This laser pumps a Ti:Sapphire oscillator (Coherent Mira
900) converting the input continuous wave beam into a train of ultra-
fast pulses characterized by a wavelength λ=800 nm and a temporal
width of 120 fs. The output beam has horizontal polarization with
a repetition rate of 76 MHz. The technique used to generate these
pulses is the Kerr Lens Mode Locking which allows to induce a fixed
phase difference between the cavity modes. The Ti:Sapphire crystal in
Mira cavity is both the active medium which, pumped by the Verdi,
emits light at about 800 nm and the nonlinear crystal responsible
of the Kerr-lens modelocking. In fact the Ti:Sapphire crystal has a
refractive index which depends of the beam intensity. Initially the
modes change phase randomly; when they are in phase, the beam is
focused and passes through the slit located after the crystal and the
system stabilizes in this state which is energetically favorable.

Kerr medium

Intensity

Aperture

CW

pulsed

Figure 4.1: Scheme of Kerr lens effect
with low intensity (red line) and high
intensity (green line) light.

The last component of the laser system is the cavity dumper which
is an acousto-optical switch that allows to vary continuously the
repetition rate of the laser from 1 MHz to single shot and to increase
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the energy per pulse as compared to the conventional cavities. This
instrument is based on the acousto-optical effect for which an inten-
sity modulation in a material generated by an acoustic wave induces
a refractive index modulation of the material. The beam which passes
through the crystal (silica) is partially diffracted at an angle that de-
pends on the modulation periodicity. While the diffracted pulses are
sent out of the cavity, the non-diffracted beam continues his path in
the cavity, thus accumulating energy. The output energy per pulse
from Mira oscillator and cavity dumper is about 40 nJ at 543 KHz of
repetition rate. This laser system is exploited for single-color pump-
probe experiments and for single color-pump supercontinuum-probe
setup.

4.3.2 Lock-in amplifier detection

The ∆R/R signals are usually very small, in the order a few µV.
Accurate measurements can be made even when the small signal is
obscured by noise sources many thousands of times larger.

Figure 4.2: Lock-in amplifier
Lock-in amplifiers are used to detect and measure very small vari-

ations in the signal (down to a few nanovolts) and use a technique
known as phase-sensitive detection to single out the component of
the signal at a specific reference frequency and phase. Noise signals,
at frequencies other than the reference frequency, are rejected and
do not affect the measurement. To obtain a differential signal, the
procedure is to acquire the reflected signal R with (”pumped”) and
without (”unpumped”) the pump beam, and performing the differ-
ence with the correct parity. To modulated the pump beam, the most
common way is to use an optical chopper, that is a device constituted
by a disk with a mask of regular holes, designed in order to achieve a
50% duty cycle for the modulation. The laser beam is chopped by the
disk at a frequency ranging from ∼ 1 Hz to ∼ 100 kHz. The lock-in
amplifier can extract a large electrical signal, only a that component
which has a frequency equal to that of an external reference. In a
lock-in based pump probe experiment, we modulate the pump beam
and the chopper frequency reference is brought to the lock-in. If the
pump pulse has an effect on the optical properties of the system, the
lock-in output will be only the pump induced variation of the optical
properties.

There are two types of approach as to measure a pump-probe
trace using lock-in detection. The first consists in acquiring the
signal point-by-point, modifying the relative delay and subsequently
acquiring the signal. In order to obtain a good S/N it is necessary to
have a high signal average (typically 1 s per different delay) .

The second approach consists in scanning quickly the delay



between pump and probe, and acquiring continuously and syn-
chronously the ∆R/R signal. This method requires a fast delay stage
and constitues an advantage because, since every scan is completed
on a time of the order of 1 s, it helps to suppressing the disturbing
effects related to the laser source fluctuations. The limit of this ac-
quisition technique is that the temporal windows of the acquisition
should be kept as small as possible (of the order of 10-50 ps) since
many scans are needed (usually 1000 scans give a good S/N). The
speed of the delay stage (in ps/s), vD, and the acquisition time win-
dow tW of the acquisition system set the temporal resolution of the
measurements according to the following formula of :

∆τ(ps) = vD(ps/s) · tW(s). (4.2)

Considering a repetition rate source of 543 KHz and the pump beam
modulated at fchop = 3 KHz, tW has to be greater (at least 10 times)
than f−1

chop, and in our single pump-probe measurements tW = 5 ms.

4.3.3 Single-color pump-probe experimental setup

At the output of the laser source (see section 4.3.1), the beam is di-
vided in two parts by a beam splitter (BS): 70% of the incident beam
is transmitted (pump) while the remaining 30% is used as probe.
The temporal delay between the two beams is varied by a motorized
high-precision translational stage, placed on the pump path, which is
controlled via software and allows to change the optical path in step
of 0.1µm. The optical delay between the pump and probe beams is
converted into the time coordinate by dividing by the speed of light.
The intensity of both beams is tuned by an intensity attenuator given
by an half-wave plate (λ/2) and a polarizer (P). In this type of mea-
surements the pump and the probe beams have the same wavelength
(λ = 800 nm) and are focused on the sample by two piano-convex
lenses of 20 cm and 10 cm focal length. The superposition of the
pump and probe beams is monitored by a CCD camera equipped
with a 10x magnifying objective. In order to avoid any possible inter-
ference effect, the pump and probe polarizations are cross-polarized.
The probe reflected by the sample is parallelized with a lens of the
same focal length f and is refocused on a photodiode (PD). Since
the relative variations of the probe are very low (if the total reflected
signal corresponds to a voltage on the detector of 1 V, the relative
reflectivity variation typically amounts to ∆R/R ≈ 10−5) the signal
acquisition is based on the lock-in detection (see section 4.3.2) refer-
enced to the modulation of the pump beam by means a mechanical
chopper, at a frequency of 3 kHz. For these kind of measurements
is used the method of ”fast scan”, in order to reduce the noise for
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the intensity drift of the laser system or the oscillations of the closed-
cycle cryostat. In figure (4.3) the single-color pump-probe setup is
depicted.

Ti:Sapphire IR Laser

Green CW 
diode laser

Cavity
 dumper

Closed-cycle
 cryostat

Lock-in amplifier

PD

BSHR Mirror

Chopper

Sample

T:70%

R:30% Lens

+Polarizer�/2

Computer

Stage

Figure 4.3: Experimental singlecolor
pump-probe setup

4.4 Single-color pump-Supercontinuum prope technique

In this pump-probe technique the main important feature is the spec-
tral resolution related to the probe pulse, which is a broadband pulse
with a wide energy content. This type of pulse is generated by focus-
ing the quasi-monochromatic probe beam (λ=800 nm) into a photonic
crystal fiber. The laser system used for this type of measurements is
Ti:Sapphire (Coherent Mira 900) coupled with the cavity dumper.

4.4.1 Probe-Supercontinuum generation

Supercontinuum generation is a process in which the quasi-monochromatic
laser light is converted into light with a broad spectral bandwidth,
while the spatial coherence remains high. The spectral broadening
is accomplished by propagating optical pulses through a strongly
non linear fiber. The physical processes behind supercontinuum
generation in fibers can be very different, depending particularly on
the chromatic dispersion and length of the fiber, the pulse duration,
the initial peak power and the pump wavelength. When femtosec-
ond lasers are used (as in our case), the spectral broadening can be
dominantly caused by the combination of self-phase modulation and
dispersion. If the dispersion characteristic of photonic crystal fibers
is designed in such a way that the dispersion is zero close to the
pump pulse wavelength (that in our case is λ=800 nm, fondamental
of Ti:Sapphire lasers), the incoming pulse remains short upon propa-
gation in the fiber, and the high peak intensities make it non-linearly
interact with the core. The desired dispersion characteristic for the
a PCF is obtained thanks to a microstructured cladding, which is



usually composed of a regular pattern of holes which surround the
core [Dudley et al., 2006].

Figure 4.4: A section of the same fiber
reveals its actual inner structure.

The photonic crystal fiber in our setup is the CrystalFiber Fem-
toWhite 800. This fiber is 12 cm long and its core diameter is 1.6
µm. After propagation into the fiber, the pulse is broadened into
a white-light continuum which ranges from 450 to 1600 nm. This
fiber is polarization maintaining, thus the supercontinuum is linearly
polarized, in the same direction of the incoming pulse.

4.4.2 Array detection system

The photonic crystal fiber generates a spectrum in the range of 450-
1600 nm. However, this range is limited by the sensibility range
of the detectors that covers in the spectral range 200-1050 nm. The
detector that we employed is the Hammamatsu S8380-128Q, which
is composed of 128 pixel, each 50µm wide. The total active area, on
which the supercontinuum is dispersed through the prism, is 6.4
mm long. The dispersion characteristic of the prism on the sensor
is numerically calculated by taking into account the prism material
refraction index and the prism dispersion law [Cilento et al., 2010].
The calibration of the array, that is the correspondence pixel-to-
wavelength, is made selecting a specific wavelength by means of an
interference filter and by recording its position on the sensor. About
4% of the supercontinuum beam is sampled before the interaction
on the sample and used as the reference beam. For the acquisition of
the transient spectrum ∆R/R(ω, τ) at fixed delay, we have to acquire
the Rpumped(ω, τ) and Runpumped(ω). For each transient spectrum
at fixed pump-probe delay, 2000 spectra ∆R/R(ω) are recorded
and averaged. To obtain a time and frequency resolved map of the
material optical response, many ∆R/R(ω) for different delays τ, must
be collected. Usually, we record scans of 6 ps length. No lock-in
technique is possible with this acquisition scheme. This is due to
the array sensors which make available the data in a serial form:
the voltage information, that is proportional to the illumination,
for the 128 pixels is provided on the same electrical line at 2 MHz.
Thus, the data acquisition can be performed solely by digitizing
the train voltage values for 128 pixels. This limits the final S/N to
a value around 10−4, with an acquisition time of about 1 s. The
acquisition is performed simultaneously for both the sensors (signal
and reference), and the pixel-by-pixel ratio of the two voltages is
immediately computed.

The acquisition is synchronized to the laser trigger (the modula-
tion is on the pump beam by means of the mechanical chopper) in
such a way that the same number of pulses is acquired for every spec-
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trum, and a constant illumination level is generated, independently
of the laser repetition rate. Each spectrum is the result of the accu-
mulation 256 laser pulses since the limit is given by the acquisition
boards, which cannot handle a trigger event rate of more then a 4-5
kHz. Each scan timing is about 15 min.

4.4.3 Single-color pump-Supercontinuum prope experimental setup

The experimental setup for single-color pump supercontinuum probe
measurements is depicted in figure4.5.
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Silver Mirror
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Figure 4.5: Experimental single color
pump supercontinuum probe setup

At the output of the laser source, the beam is divided in two part
by a beam splitter (BS): the 70% of the incident beam is transmitted
(pump) while the remaining 30% is used to generate the supercontin-
uum light. The temporal delay between the two beams is controlled
by a motorized high-precision translational stage, placed on the
pump line. A low frequency chopper (20 Hz) is placed along the
pump path to modulate the pump beam and perform differential
measurements of the transient reflectivity variation. Then, the pump
beam passes through a motorized lambda/half waveplate, followed
by a fixed polarizer, to allow for a precise control of the pump inten-
sity. The pump beam is focused at the sample position through a 20
cm focal length lens, while the supercontinuum beam is propagated
by means of silver mirrors and it is focused at the sample position
thanks to a 10 cm focal length achromatic doublet. The superposi-
tion of the pump and probe beams is monitored by a CCD camera
equipped with a 10x magnifying objective. The probe reflected by the
sample is recollected through a 10 cm focal length spherical mirror
and is directed towards a prism, which disperses the different wave-
lengths in different spatial positions. A 20 cm focal length achromatic
doublet is placed after the prism; , the linear array sensor is placed in
the focus of the doublet.



4.5 ASynchronous OPtical Sampling pump-probe technique

In the conventional pump-probe technique, as we have seen in the
sections 4.3 and 4.4, the pump and the probe are usually originated
from a single mode-locked laser beam and then divided by a beam-
splitter. The relative time delay between the two beams is achieved
by a mechanical stage that changes the distance of one of the two
beams, typically the pump. However, the most important drawback
of this conventional method is the beam alignment instability for
long delays of the stage (in addition to the slow acquisition time).
This issue is irrelevant if we are interested in dynamics of the order
of picosecods (e.g a delay time of 10 ps requires a delay of 1.5 mm),
but it becomes serious when we want to study slower dynamics
(e.g a delay of 10 ns would require a delay of 1.5 meters, making
it impossible to maintain beam alignment). Asynchronous optical
sampling (ASOPS) differs from the traditional pump-probe setup
in its approach to control the time delay between the pump and the
probe beams.

4.5.1 ASynchronous OPtical Sampling pump-probe technique

The ASOPS technique is able to overcome the issues of alignment
by creating the time delay via a small difference in the repetition
rate (∆ f ) of two synchronized femtosecond lasers. If the repetition
rates of the two lasers are fprobe and fpump= fprobe + ∆ f where ∆ f is
the detuning, the time delay between each pair of pump and probe
pulses will increase as multiple of

∆τ =
∆ f

fprobe · fpump
=

∆ f
fprobe · ( fprobe + ∆ f )

(4.3)

The ASOPS approach involves no moving parts (no translation
stages) and thus eliminates the instability problem inherent to the
delay line method. The maximum time delay of the scan is 1/ f . The
time-resolution of the measurements is then given by two other
factors: the width of the pulses and the bandwidth the detection
electronics. The bandwidth B of the detection electronics is 350 MHz.

The detuning ∆ f can be selected in the range 1 Hz-10 KHz; for
example with a typical ∆ f =1KHz, the time resolution is ∆τ=100 fs
and it takes 1/ f =1 ms to complete the scan.

The ASOPS system consists of a pair of fiber laser, each driven
by a passively mode-locked fiber ring laser with Erbium as active
medium. Each laser generates a train of pulses with a central wave-
length of 1560 nm, a repetition rate of around 100 MHz and a pulse
length of about 200 fs. One laser (the slave laser) is phase-locked to
the other laser (the master laser) to synchronize the two repetition
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Figure 4.6: ASOPS scheme . In top)
Actual sample response. In the middle)
Pump (1560 nm) and probe (780 nm)
pulses with frequency offset gradually
increasing the time gap between them.
In bottom) The detected signal.

rates. The repetition rate difference is maintained via a feedback loop
and piezo motors. The 1560 nm beam generated by the slave laser is
sent to the second harmonic generation module. Inside this module,
the beam goes through a periodically poled lithium niobate (PPLN)
crystal and frequency-doubled to 780 nm. The beam coming out of
the PPLN crystal goes through a dichroic mirror and separates into
a 780 nm beam and a 1560 nm beam [Stoica et al., 2008]. The output
power of both of ASOPS lasers is ∼ 150 mW.

4.5.2 ASynchronous OPtical Sampling detection

In order to measure the transient reflectivity with the ASOPS tech-
nique we don’t use the lock-in amplifier detection scheme, but simply
a balanced amplified photodetector (BPD). Balanced photodetection
is realized when two phohtodiodes are connected such that their
photocurrents cancel with each other. In this case, it is necessary to
equalize the DC optical power that hits upon each photodiode by
using a variable neutral density filter. When this is done, the effective
output of the balanced pair of photodiodes is zero until there is some
difference in the intensity of one of the beams (pump-induced).

Figure 4.7: Electronic scheme of Bal-
anced Photodetector.

When this occurs, it causes the pair to become "unbalanced" and
a net signal appears on the output. In particular the reflected probe
beam is detected by "input +" port (see figure 4.7 ) of the balanced
detector, meanwhile a small percentage of the probe beam that
does not interact with the sample is detected by "input −" port. The
subtracted signal from the two ports is sent to the data acquisition
board on a computer. For the measurements we use a detuning ∆ f =1



kHz that allow us to investigate dynamics of 10 ns with a resolution
of ∆τ=150 fs and the time for a single scan is very fast, 1 ms.

4.5.3 ASOPS experimental setup

The figure 4.8 shows a sketch of the experimental ASOPS setup. The
1560 nm beam from the master laser acts as the pump beam, while
the 780 nm beam from the slave laser acts as the probe beam. The
intensity and polarization of each beam is adjusted by a half-wave
plate coupled with a polarizer. As a consequence of the asynchronous
sampling scheme, the paths of the probe and the pump beams not
necessarily must be the same. A reference probe beam is required in
order to detect the reflectivity variation by the balanced amplified
photodetector. The 780 nm laser path is divided in two part by a
beam splitter: the 70% of the incident beam is transmitted and used
to probe the reflectivity variation, while the remaining 30% is used
as the reference. Pump and probe beams are focused on the sample
with a piano convex lens of 20 cm and 10 cm. Since the pump beam
is invisible to CCD camera (λ=1560 nm), the superposition of the
pump and probe beams is found generating the sum of frequency
(SHG) using non-linear crystal (BBO) and then fixing the probe
beam (λ=780 nm, visible) with the CCD camera. The probe

Closed-cycle
 cryostat

Sample

Stage

-+

Computer BPD

1560 nm
pump

780 nm
probe

+Polarizer�/2

BS R:70% T:30%

Figure 4.8: Experimental ASOPS setup

reflected by the sample is parallelized with a 10 cm local length lens
and is refocused on the photodiode "input+" port. The balanced
photodetector measures the difference in intensity between the
probe pulse (which contains the pump-induced sample reflectivity
variation) and the reference pulse. The intensities and the phase
shift of these pulses are carefully equalized before the differential
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acquisition. In order to do that, a translational stage is place on
the reference line. When the pulses impinge on the fast detector
exactly at the same time, the difference between them will be zero. A
variable neutral filter is used to equalize the optical power impinging
upon each photodiode.

4.6 Closed-cycle cryostat

To cool down the samples studied in the experiments we use an
closed-cycle cryostat (DMX-20) to allow the temperature of the sam-
ple be varied in the range 10-350 K. A water-cooled compressor
cycles high-purity helium at a high pressure through heatsick within
a vacuum chamber. Thermal energy from the heatsink flows into the
cooler gas, the gas is pumped out, raised to high pressure again, and
the excess heat is transferred to water at room temperature, before
the gas is cycled back through. This system has the advantage of only
requiring electricity and water, the helium itself being contained inter-
nally and thus can be run for long periods of time uninterrupted.

Figure 4.9: closed-cycle cryostat DMX
20.

The internal structures within the cryostat are made from oxygen-
free high thermal conductivity copper (OFHC) and the sample holder
is directly coupled with the cryostat cold finger. Such a cryostat is
strongly affected by mechanical vibrations: the motor that alternates
which gas line is connected to the heatsink and the compressor
is very mechanically noisy. To avoid the problem related to the
vibrations the cold finger has been mechanically separated by the
vibrating parts of the cryostat. In order to move the cryostat, and
therefore the sample, along its x-y-z axes keeping the decoupling
between the motors and the a three-axis manipulator has been ad-hoc
developed. The temperature near to the sample region is accurately
measured with a calibrated Cernox sensor and is controlled by a
controller (Lake shore). The latter has a PID feedback system that
stabilizes the sample within ±0.1 K from the set temperature. The
system is kept in UHV thanks to a pumping system composed of a
scroll pump combined with a turbomolecular pump. A base pressure
in the order of 10−8 mbar can be reached inside UHV chamber. The
UHV chamber is equipped with UHV optical window, through
which the pump and probe impinge on reach the sample.

4.7 Time-domain terahertz spectroscopy setup

Terahertz (THz) frequency electromagnetic radiation lies between in-
frared and millimetre wave radiation in the electromagnetic spectrum.
Figure 4.10 illustrates the THz band in the electromagnetic spectrum,
which merges into the neighbouring spectral bands .



Figure 4.10: Terahertz band in the
electromagnetic spectrum.

The units that are frequently used in the THz science are the
following:

• Frequency: ν = 1 THz

• Period: T= ν = 1ps

• Angular frequency: ω = 2πν = 6.28 THz

• Wavelength: λ = c/ν = 300µm

• Wavenumber: k̂ = k/2π = λ = 33.3 cm−1

• Photon energy: hν = h̄ω = 4.14 meV

• Temperature: T=hν/kB = 48 K

There are many different approaches for the generation and detec-
tion of THz radiation which include both coherent and incoherent
systems. Coherent system can be divided into continuous-wave or
pulsed systems. We will focus on the pulsed THz systems, since we
will start from an ultrashort pulsed source. Pulsed THz emission
under excitation of ultrashort laser pulses has been observed from
different materials such as metal, semiconductors, superconductors,
organic and inorganic materials and air plasma. The emission of
pulsed THz radiation can be attributed to various effect: photocon-
ductive antenna structure [Auston et al., 1984], optical rectification
[Chuang et al., 1992], transient current effect, coherent polariza-
tion oscillations, coherent phonons, coherent plasmon oscillations
[Dekorsy et al., 1995], [Garrett et al., 1996], [Kersting et al., 1997],
transitions in coupled quantum wells and ultrafast modulation of the
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superconductivity in high Tc superconductors. The most common
mechanisms for broadband pulsed THz emission from semicon-
ductors using ultrashort pulses are photoconductivity and optical
rectification in nonlinear crystals.

4.7.1 Photoconductive mechanism

A photoconductive antenna (see figure 4.12) consists of two metal-
lic electrodes that are depositated onto a semiconductor substrate
(typically GaAs). The substrate is photoexcited with ultrashort laser
pulses with energy above the gap which cause electron-hole pairs
to be generated in the semiconductor. These photocarriers are then
accelerated by the applied external DC bias voltage, which creates a
transient current gradient and radiates THz pulses. The polarization
of the THz wave is parallel to the bias field, which is perpendicular
to the gap between the two electrodes. The laser pulses need to have
an energy larger than the bandgap of the semiconductor to generate
photo-induced free carriers [Tani et al., 2006]. Because of the pulsed
nature of the laser beam, the amplitude of this current is a function
of time and, thus, the derivative of the current with respect time
generates the THz pulse.

V

NIR pulse
THz pulse

e
h

Si lens

V

NIR pulse

Figure 4.11: Photoconductive emission
mechanism. Photocarriers, generated
from the antenna substrate under
excitation of NIR pulses, are accelerated
by the external bias voltage and emit
transient THz pulses.

ETHz =
Ae

4πε0c2z
∂N(t)

∂t
µEb (4.4)

where A is the area of illumination, ε0 is the permittivity in vac-
uum, c is the speed of light, e is the electron charge, z is the penetra-
tion of the laser pulse into the semiconductor, µ is the mobility of the
carriers, Eb is the bias field, and N the density of photo-carriers.



4.7.2 Electro-optical rectification

In this mechanism, the optical excitation causes a change in the po-
larization of the crystal by exploiting the nonlinearity of the material
to produce sum-frequency and difference-frequency polarization
components. For ultrashort NIR pulses, the polarization components
with difference frequencies are in the THz range [Chuang et al.,
1992], [Greene et al., 1992]. The THz field in terms of second-order
nonlinear polarization components can be written as :

ETHz(Ω) ∝
∂J(Ω)

∂t
=

∂2P(Ω)

∂t2 = χ(2) ∂2Elaser(Ω)

∂t2 (4.5)

where χ is the second-order susceptibility tensor, Elaser is the incident
excitation electric field and P2(Ω) is the second-order polarization at
frequency Ω = ω1 −ω2.

Electro-optical rectification does not need bias to realize THz gen-
eration. For a given material, the radiation efficiency and bandwidth
are affected by factors such as thickness, laser pulse duration, ab-
sorption and dispersion, crystal orientation, and phase matching
conditions [Khurgin, 1994]. In particular:

• Laser pulse duration. The shorter is the duration of the laser
pulse, the wider is the bandwidth of the THz spectrum.

• Absorption. It refers to the absorption of the laser pulse and the
THz waves by the material. The higher is the absorption, the lower
is the THz output power.

• Phase matching. An optimal THz wave generation occurs when
the group velocity of the laser pulse is equal to the phase velocity
of the THz pulse.

• Dispersion. It refers to the fact that the different frequency com-
ponents contained in the laser pulse can propagate at different
velocities within a material. Dispersion affects the phase matching
characteristics of the crystal and it has a major impact on band-
width and radiation efficiency. The higher the dispersion, the more
difficult is to achieve phase matching and, therefore, narrower
bandwidth.

• Crystal thickness. the thinner is the crystal, the broader is the
bandwidth of the THz pulse because different matching conditions
have smaller effect due to the reduced interaction length. How-
ever, thinner crystals tend to generate lower output powers and
introduces secondary echoes very close to the main THz pulse
that reduces the practical scan length, and thus, the frequency
resolution.
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Many nonlinear materials are used for THz emission via the optical-
rectification mechanism: semiconductors such as GaAs [Wu and
Zhang, 1997], ZnTe, InP , InAs [Gu et al.], [Reid et al., 2005] or dielec-
tric crystals such as lithium tantalate (LiTaO3) or organic materials,
polimers and metals such as gold. Among them, ZnTe is the most fa-
vorable as THz wave emitter because of its high nonlinear coefficient,
high damage threshold, and best phase matching characteristics
with Ti:Sapphire laser (far-infrared pulses). The range of ZnTe spans
approximately 0.1-3 THz. The tensor property of χ implies that the
nonlinear process will strongly depend on the orientation of the light
polarizations with respect to the crystal axes. For normal incidence
the more efficiently cut for the ZnTe crystal is in the < 110 > orien-
tation and the angle between the near-IR pulse polarization and the
in-plane axis [110] of the crystal is ≈ 54.7◦ .

NIR pulse
THz pulse

�(2)

nonlinear
crystal

SHG pulse (!1 � !2)

(!1 + !2)

(!1,!2)

Figure 4.12: Optical rectification
mechanism. The incident NIR pulse
exploits the nonlinearity property of the
crystal and generates sum frequency
(SHG) and difference frequency (DFG)
components.

4.7.3 Therahertz Detection: Electro-optical sampling

The emission mechanism of electro-optical rectification (and also
for photoconductive antenna) can be reversed and used for the
detection of THz pulses. Electro-optical sampling is based on the
Pockels effect, in which the birifrangence properties of a material
are induced or modified by the application of an electric field. In
the electro-optical sampling method, the THz field is measured by
the change it causes on the birifringence of ZeTe crystal [Lee, 2009].
Such changes in the birifrangence of the crystal can be measured by
analysing the polarization properties of an optical probe beam going
through the crystal. To measure the THz waveform with electro-
optical sampling a balanced measurement is usually adopted. A
schematic representation of electro-optical sampling is depicted in



figure 4.14. A linearly polarized optical probe beam goes through a
polarizer and then travels through the nonlinear crystal; a quarter
wave plate (QPW) located after the nonlinear crystal changes the
ellipticity of the probe beam and a Wollaston prism (WP) separates
the two perpendicular components of the elliptical polarization. The
difference of the intensity of the perpendicularly-polarized beams
(horizontal and vertical) is detected by a differential balanced photo-
diode. When no THz wave is illuminating the nonlinear crystal, the
ellipticity of the probe beam can be set so that the two intensities are
equal and the net current from the differential photodiodes is zero.
When the THz wave illuminates the nonlinear crystal, the electric
field associated with the THz wave changes the birifrangence of the
material and, thus, changes the ellipticity of the sampling beam (800
nm). This variation of the ellipticity breaks the balance between the
two beams with different polarization and, therefore, a net current,
that is proportional to the amplitude of the electric field of the THz
wave„ is generated on the differential photodiode. Scanning the
probe beam at different delays respect than the THz beam on the
nonlinear crystal, we can reconstruct the THz waveform.

NIR pulse
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ZeTe
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QPW WP Balanced Detector
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�(2)

THz pulse

+

-

+

-

Figure 4.13: Electro-optical sampling
mechanism. Probe polarizations with
and without a THz field are depicted
before and after the polarization optics.

4.7.4 Terahertz Time-Domain Spectroscopy setup

A schematic representation of the THz time domain spectroscopy
setup is illustrated in figure 4.15. The modelocked Ti:Sapphire (see
section 4.3.1) provides a train of femtosecond optical pulses that are
divided into two arms. One laser beam (95%) is used to generate the
THz radiation by means of a ZnTe nonlinear crystal. The second laser
beam (5%) is used to detect the generated THz radiation by means of
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time 2�t 3�t 4�t 5�t 6�t�t

Figure 4.14: Electro-optical sampling
mechanism. Many sampling pulses
(red) interact with THz pulses (blue)
at different positions. In this way is
possible to reconstruct the time-domain
THz waveform

electro-optical sampling. In this latter beam, the sampling line, it is
placed a stage which is controlled via software and allows to change
the path length of the sampling pulse, in order to detect the the entire
THz waveform.

Ti:Sapphire IR Laser

Green CW 
diode laser

Cavity
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Figure 4.15: Optical rectification
mechanism. The incident NIR pulse
exploits the nonlinearity property of the
crystal and generates sum frequency
(SHG) and difference frequency (DFG)
components.

To generate the THz radiation, the 800 nm Ti:Sapphire pulses are
focused into the ZnTe nonlinear crystal with 10 cm focal length lens.
The nonlinear crystal used for THz generation has <110> orientation
with a thickness of 1 mm. The THz pulses (and also the residual
part of 800 nm pulses) are collimated with a 5 cm focal lenght TPX
lens and focused into the sample with a 15 cm parabolic mirror.
After the TPX lens a white paper is put on the THz line so that the
THz radiation goes through the paper without absorption while
the residual 800 nm radiation is blocked. The THz beam is then
collimated with a second 15 cm parabolic mirror and focused into
the ZnTe nonlinear sampling crystal with a 5 cm focal length TPX
lens. The latter parabolic mirror has a central hole of 3 mm diameter.
In this way the sampling 800 nm pulses are collinear with the THz
pulses for the electro-optical sampling. The sampling beam output
of the nonlinear crystal is parallelized with 5 cm focal length lens
and then collected in the electro-optical sampling scheme (see section
4.7.3 ). The ZnTe nonlinear crystal used for the optical sampling has



the same type of cut of the generation one, but has a thickness of 0.5
mm. The acquisition scheme is lock-in based (see section 4.3.2). The
differential balanced photodiode signal is sent to the lock-in amplifier
that measure the difference of sampling beam intensity polarizations
that come out from the Wollaston prism (WP). To maximize the
S/N we modulate the THz beam with a chopper that works at 3
kHz, which is used as the reference for lock-in detection. The THz
detection is point-by point, modifying the relative delay between THz
pulse and sampling pulse and subsequently acquiring the signal. The
water vapour shows strong absorption lines in the THz frequency
bands. The water content and relative humidity of the environment
would therefore significantly influences on the THz frequency spectra
at certain frequencies [Slocum et al., 2013]. In offer to minimize the
water line absorption, a plexiglas box , fluxed by gaseous nitrogen, is
built around the THz line.

4.7.5 From time-domain to frequency-domain data

Through the electro-optical sampling we are able to reconstruct the
THz pulse electric field in the time domain. To switch from the time-
domain data to frequency-domain we compute a Fourier Transform
of the acquired signal. The general result of computing the Fourier
transform is a complex function, which provides amplitude and
the phase information of the THz field detected [Kauppinen and
Partanen]. In this way the real and the imaginary parts of the optical
properties (refractive index, dielectric function, conductivity) of a
material can be measured without indirect methods such as Kramers-
Kronig transformations. The Discrete Fourier Transform (DFT) and
Inverse Discrete Fourier Transform (IDFT) are the practical method to
computed the FT and are calculated as:

DFT : Yk =
N−1

∑
n=0

xn · e−2πi k
N n (4.6)

IDFT : xn =
1
N

N−1

∑
k=0

Yk · e−2πi k
N n (4.7)

Therefore computing the DFT, the waveform is multiplied by a
sampling window. The multiplication of the waveform x(t) and the
sampling window w(t) means that the FT is the result of

In the FT, frequency resolution (∆ f ) and bandwidth (B) are func-
tionally related to the window lenght (T) and the sampling interval
(∆t) respectively [Oppenheim et al., 1989] . Three main aspects
should be considered in a THz-time domain measurement

• Frequency resolution versus window length. Frequency reso-
lution (∆ f ) is inversely proportional to the window length.The
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longer the window length is, the higher the frequency resolution
that we can get.

• Bandwidth versus sampling rate (Nyquist-Shannon theorem).
An analog signal (THz field pulse) can be perfectly reconstructed
if the sampling rate fSR is at least twice the bandwidth B, which
is defined as the highest frequency component of the signal. Typ-
ical THz system have a bandwidth of 3 THz, which requires a
sampling frequency of at least 6 THz.

• Etalon effect. Most THz system show echoes of the original THz
pulse due to the reflection of the THz pulse at the interferences
of the optical elements such as beam splitters and lenses. If such
echoes are included in the Fourier Transform, the result is a spec-
trum with interference features knows as Etalon effect that make
the analysis of the spectrum very difficult. One way to solve the
problem is to limit the maximum frequency resolution (i.e to
reduce the length of the scan).





5 Single color pump probe measurements
on Na2IrO3

Introduction

In this chapter we report time-domain reflectivity measurements on
Na2IrO3, as a function of temperature and probed and by 1.55 eV
(λ=780 nm) pulses. We will present two different pump-probe setups,
which have been developed to investigate the relaxation dynamics
on very different time windows: in the conventional pump probe
setup, based on Ti:sapphire oscillator, the delay between the pump
and the probe is tuned by a mechanical translator which controls
the difference of the relative optical path of the two beams; in the
second scheme, the time resolution is obtained by exploiting the
frequency detuning between two high repetition rate fiber lasers.
In the later case, the dynamics can be easily investigated up to the
nanosecond timescale without the use of any mechanical stage. These
measurements evidenced a specific dynamics, which diverges as TN

is approached. After few nanoseconds, the energy excess provided
by pump pulse is dissipated and the system cools down recovering
the initial condition before the excitation. Our conclusion is that the
dynamics probed by the 1.55 eV pulses is directly proportional to the
magnetic dynamics of the systems.

5.1 Single-colour pump-probe measurements at room temperature

In this paragraph we report the measurements of reflectivity vari-
ation as a function of delay time (τ) between pump and probe per-
formed at T= 300 K, on Na2IrO3. The quantity that we measure is:

∆R/R(τ) =
Rexc(τ)− Req

Req
(5.1)

where Req is the static reflectivity of the system and Rexc(τ) is the
reflectivity after a time τ from the pump excitation. In these measure-
ments both pump and probe pulses have the same energy of 1.55 eV



(i.e λ = 800 nm). Once that signal ∆ R/R(τ) is optimized at high
pump fluence (∼ 450µJ/cm2), we decrease the pump power until
a fluence of 8µJ/cm2 is reached. In figure 5.1, the red trace is the ∆
R/R(τ) signal, measured at room temperature. At negative delays,
i.e. before the pump excitation, the reflectivity variation is zero. At
τ = 0, i.e. when the pump and probe overlap in time, we suddenly
observe a negative reflectivity variation with amplitude of 1.2 · 10−4.
At positive delays (τ > 0) the measured reflectivity variation is still
negative and gradually recovers the equilibrium value, exhibiting
a dynamics characterized by two different timescales. In order to
study more deeply the ∆R/R(τ) dynamics, the following double
exponential function has been fitted to the data:

f (τ) = y0 + A1exp

(
−τ

τ1

)
+ A2exp

(
−τ

τ2

)
(5.2)

where τ1, A1, τ2, A2 are the time and amplitude values of the first
and the second exponential, respectively. As we can see in figure 5.1
the double exponential function well describes the measured dynam-
ics. The two timescales which characterize the dynamics, turn
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Figure 5.1: The red trace represents
time-resolved optical signal (in reflec-
tivity) measured on Na2IrO3 at room
temperature. The blue is the double
exponential function 5.2 fitted to the
data. This double exponential func-
tion is characterized by two relaxation
dynamics: τ1 = 200 fs and τ2 = 2000 fs

out to be τ1 = 200± 10 fs and τ1 = 2000± 50 fs. Once characterized
the dynamics of the reflectivity variation at room temperature, we
cool down the sample at T= 10 K, i.e. below its Néel temperature
(TN = 15 K) and we performed a low temperature measurements
with the same the time resolution and time window. Since at low
temperature the specific heat significantly decreases [Singh., 2010],
the pump-probe measurement can be strongly affected by the local
average heating related to the mean power of the laser beams. To
avoid this effect, the pump fluence was kept at 8µJ/cm2, correspond-
ing to an average power of 90 µW. Below TN we can see that the
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reflectivity variation has a minimum value of ∼ −1 · 10−4 (a little
bit less than the room temperature) but after several picoseconds
the reflectivity variation becomes positive. Using the same fit
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Figure 5.2: The red trace represent the
reflectivity variation signal measured
on Na2IrO3 at room temperature. The
black one is the reflectivity variation on
Na2IrO3 at T= 10 K.

formula (5.2) for the measured signal at low temperature (black trace
in figure 5.2) we find that the amplitude A1 and the time τ1 of the
first exponential have the same values than those at room tempera-
ture. The second exponential parameters, however, are much greater
respect than room temperature; we found that at 10 K, τ2 = 7000± 100
fs (instead of τ2 = 2000± 100 fs at room temperature ) and also the
amplitude A2 of the second exponential is about one of magnitude
larger than that at room temperature.

5.2 Single-color pump-probe as function of the pump fluence and the
temperature

In order to clarify the role of the excitation fluence in determining
the relaxation dynamics, a study as a function of the pump fluence
at fixed temperature T= 10 K has been carried out. Figure 5.3 re-
ports the reflectivity variation at four different pump fluences: 30
µJ/cm2, 80 µJ/cm2, 160 µJ/cm2, 320 µJ/cm2. The probe fluence is
maintained at 8µJ cm2. The measured ∆R/R(τ) signals in figure 5.3
are normalized and shows a different behaviour as the pump fluence
is increased. In details: at 30 µJ/cm2 pump fluence (black trace)
the negative fast reflectivity transient is accompanied by a slower
positive component; increasing the pump fluence to 80µJ/cm2 (red
trace) we see that, while the fast component of the reflectivity vari-
ation remains almost constant, the slow positive signal is partially
quenched as compared to the scan obtained at lower fluence. This dif-
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Figure 5.3: The time-resolved reflectiv-
ity traces on Na2IrO3 at four different
pump fluences are reported. Both the
pump and the probe are set to ω = 1.55
eV

ferent behaviour in the slower dynamic as function of pump fluence
can be attributed either to single energy pulse effect or to average
heating that changes the sample temperature. In order to answer this
question, we studied ∆ R/R(τ) at T= 10 K as a function of pump
fluence at two different pulses repetition rate: 543 KHz and 181 KHz.
The 2D plot of figure 5.4 and figure 5.5 describes ∆R/R as a function
of pump fluence at two different pulse repetition rate. The color scale
represents the amplitude of the reflectivity variation, ∆R/R(τ, F). In
panels b) of figure 5.4 and 5.5 two ∆R/R traces at two different pump
fluences are described: the black trace is taken at 25 µJ/cm2 while
the red one is taken at 52 µJ/cm2. Comparing these results we can
conclude that the different ∆R/R(τ) in figure 5.4 is because of the
higher repetition rate, and so the average heating, than repetition rate
of figure 5.5.

In the panel c) of figure 5.4 we report an intensity plot of ∆R/R at
fixed delay time, τ = 6 ps. The amplitude of the positive component
progressively decreases as the average heating is increased. This
analysis of the measurements as a function of the pump fluence
demonstrates that different slower dynamics are due to different
temperatures of the sample that is caused by the average heating.

In order to clarify the temperature dependence of the photoin-
duced relaxation dynamics, we performed detailed measurements in
the vicinity of TN , as reported in figure 5.6

The measurements have been performed a fixed pump fluence
of 15 µJ/cm2. As shown In figure 5.6, the dynamics of the ∆R/R(τ)
signal remains almost constant down to a temperature of about 60 K,
below which the positive and slow component starts to develop. In
order to quantitatively analyse the temperature-dependent signal, the



single color pump probe measurements on na2iro3 85

50

45

40

35

30

25

6543210-1

Delay (ps)

P
um

p 
flu

en
ce

 

P
um

p 
flu

en
ce

 (
µ
J
/
cm

2
)

(�R/R)norm

1.0

0.5

0.0

-0.5

-1.0
6543210-1

(µ
J
/
cm

2
)

(�
R

/
R

) n
o
r
m

50

45

40

35

30

25

1.21.00.80.6

50

45

40

35

30

25

6543210-1

2.01.00.0 ?
 LineProfileY(�R/R)norm

Rep rate 543 KHz 
a

b

c

Figure 5.4: Time-resolved reflectivity
on Na2IrO3. [a]The 2D plot are Time-
resolved reflectivity for different pump
fluences when the sample is at T= 10 K
and the repetition rate of laser pulses is
543 KHz. In [b] two temporal cut in 2D
at 25µJ/cm2 (black) and 51µJ/cm2 (red).
In [c] a fluence cut in 2D plot (green
line) at fixed delay τ = 6 ps.
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Figure 5.5: Time-resolved reflectivity
on Na2IrO3. [a]The 2D plot are Time-
resolved reflectivity for different pump
fluences when the sample is at T= 10 K
and the repetition rate of laser pulses is
181 KHz. In [b] two temporal cut in 2D
at 25µJ/cm2 (black) and 51µJ/cm2 (red).
In [c] a fluence cut in 2D plot (green
line) at fixed delay τ = 6 ps.
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function 5.2 has been fitted to the data reported in figure 5.6.
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Figure 5.7: The temperature depen-
dence of the τ2 (blue dots) dynamic
obtained by the fit function 5.2. In
the inset τ1 dynamic (red dots) as a
function of temperature is reported

Figures 5.7 and 5.8 report the values of the decay times (τ1 and
τ2) and amplitudes (A1 and A1) of the exponential functions as a
function of the temperature. While both the amplitude and decay
time of the fast dynamics are constant in the entire temperature
range, the slow dynamics turns out to be strongly temperature-
dependent as TN is approached. Both the amplitude and decay
time tend to diverge at T → TN . Interestingly, the slow component
is detected already at a relatively large temperature, 50 K, which
represents a temperature range much larger than the expected width
of a conventional second-order phase transition at TN . This outcome,
suggests that the system manifests magnetic correlations well above
the onset of long range zig-zag order at TN . This observation is in
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agreement with entropy measurements, which pointed out the high
degree of magnetic frustration of the Na2IrO3 [Singh., 2010]. More in
general, the divergence of the relaxation time in proximity of a phase
transition has been reported on other iridates and in many other
systems subject to a phase transition [Hinton et al., 2015] [Alpichshev
et al., 2015].

5.3 ASynchronous OPtical Sampling (ASOPS) measurements

In the previous section we discussed the behaviour of Na2IrO3 as a
function of temperature and pump fluence. These results showed
that approaching TN = 15 K an additional picosecond dynamics,
related to the photoinduced quench of the magnetic order, appears in
the relaxation process. As discussed in section 5.2 the slow timescale
can be attributed to the time needed to quench the local magnetic
order, after the impulsive photoinjection of high-energy electron-
hole excitations. On a longer timescale, which is out of the explored
time window, the system will eventually relax back to the equilib-
rium state through the cooling via phonons and the thermal bath.
In order to investigate the recovery of the equilibrium state, which
is expected to happen on the nanosecond timescale, we extended
the time window of the previous measurements by adopting a novel
Asynchronous Optical Sampling Technique (ASOPS), as introduced
in section 4.5. With the ASOPS technique it is possible to study
∆R/R(τ) of Na2IrO3 with 200 fs time resolution up to 10 ns of time
delay maintaining the alignment between pump and probe pulses.
The asynchronous optical sampling (ASOPS) technique employs two
separate femtosecond mode-loked lasers with different repetition rate



f1 and f2 respectively, to generate the pump and the probe pulses.
The difference in repetition rate is the source of the optical delay
(for details see section 4.5). Compared to the standard pump probe
technique (in which the delay between the two pulses is made by a
transitional stage), in ASOPS-based measurements the main differ-
ences are the different repetition rate of pulses (100 MHz instead of
543 KHz) and the photon energy of the pump pulses (0.78 eV instead
of 1.55 eV).
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Figure 5.9: The red trace represents
a time-resolved optical signal (in
reflectivity) measured on Na2IrO3 by
means of the ASOPS technique. The
pump energy is 0.78 eV. The black line
trace is the double exponential function
5.2 fitted to the data. This double
exponential function is characterized by
two relaxation dynamics called τ2 = 7
ps and τ3 = 200 ps. The details of the
dynamics within the first 200 ps are
reported in the inset.

In figure 5.9 we report the reflectivity variation at T= 10 K, as mea-
sured by the ASOPS technique. The data reported in figure 5.9 show
the complete dynamics, from the initial non-thermal excitation of
electron-hole pairs to the cooling down process for τ > 1 ns. Interest-
ingly, the ASOPS measurements demonstrate that the build-up time
of the positive signal contains two different dynamics (see inset of
figure 5.9). While the first one corresponds to the slow dynamics of
∼ 7 ps measured through the conventional technique, the second one
represents an additional build-up time dynamics (τ3) on the 200 ps
timescale. Eventually, the system cools down via the energy exchange
with the thermal bath and recovers the initial state within 10 ns.

Using the double exponential fit function 5.2 to analyze ∆R/R(τ)
measurements at different temperatures of figure 5.11 up to τ = 4000
ps , we find that the second dynamics τ2 is temperature dependent,
similarity to what observed in the conventional pump probe mea-
surements discussed in the section 5.2, while the third dynamics
show a temperature independent behaviour which we attribute to
the further local heating of the area excited by the pump pulse. On a
longer timescale (> 1 ns) the system eventually cools down via heat
diffusion in the bulk.
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10 ps, and these are compared with the
fit results obtained with conventional
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In addition the ASOPS measurements also suggest that the
temperature-dependent reflectivity variation in the vicinity of TN

does not depend on the pump photon energy. we have understood
that the different reflectivity behaviour across TN is not correlated
with pump pulse energy.

By combining the conventional pump-probe technique combined
with the ASOPS technique reported in this chapter, we were able
to perform a comprehensive temperature-dependent study of the
reflectivity variation on Na2IrO3 at ωprobe = 1.55 eV. The results
demonstrate that the relaxation dynamics is characterized by four
different dynamics, which depend on sample temperature while
they are not affected by the change in the pump photon energy (1.55
eV and 0.77 eV). Here I summarize the four different relaxation
dynamics of ∆ R/R:

• the first temporal dynamic, τ1 = 200 fs, is independent from the
temperature. We attribute it to the relaxation across the Mott gap.

• τ2 = 2 → 8 ps is strongly temperature-dependent and exhibit
the tendency to diverge when TN is approached. This dynamic is
related to the perturbation of the magnetic state of the system.

• the third temporal dynamic τ3 ∼ 200 ps is temperature indepen-
dent and it can attributed to the further demagnetization of the
system related to the local heating in the excited area.

• the system recovers its ground state by dissipating the locally
accumulated excess energy via heat dissipation in the bulk.

Discussion

The time-resolved measurements on Na2IrO3 unveiled a complex
dynamics which contains four different typical time scales, that are
related to specific excitation/relaxation processes in the system.

• Ultrafast relaxation dynamics (τ1)

The pump pulses of 1.55 eV photons excites electrons within the Ir

2g manifold and causes electron transition from a Je f f = 3/2 band
into the upper Hubbard band (UHB), as shown in figure 5.12 (see
chapter 1 description Je f f ). This is expressed by a rapid decrease
in the reflectivity that thus tracks the cooling of the electrons. The
ultrafast relaxation of high-energy electron-hole excitations has
been already observed and discussed in both Na2IrO3 and Sr2IrO4

[Alpichshev et al., 2015] and [Hsieh et al., 2012]. The effective
cooling is mediated by electron-electron interactions and by the
coupling to optical phonons on the 100 − 200 fs timescale. At
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Figure 5.12: Schematic drowning
that the initial fast decay process is
governed by energy relaxation of
photoexcited electrons and holes
towards the band edges via optical
phonon emission [Hsieh et al., 2012]

the end of this ultrafast process, a non-thermal population of
electron-hole excitations remains trapped at the gap edges.

• Coupling to the magnetic state (τ2)

After the fast relaxation of e-hole excitations, the electron-hole
excitations can recombine across the gap by emitting magnetic
excitations that perturb the magnetic background, in both the
long-ranged zig-zag magnetic phase and in the highly frustrated
state at T>TN in which magnetic correlations persists even in the
absence of long-range magnetic order ([Alpichshev et al., 2015]).
Since this relaxation process is mediated by magnetic excitations, it
is reasonable that it depends on the magnetic state and, therefore,
on the temperature of the system. At low temperatures (AFM
regime), these magnetic excitations perturb the system bringing
it as close as possible to the disordered phase. In this picture, the
small energy of the coherent magnetic excitations (spin waves)
(∼ 5 meV [Choi et al., 2012]) as compared to the gap energy of 340
meV, which is the total energy that needs to be dissipated during
the recombination process, make the lifetime exponentially large
(τ2 = 1 → 8 ps).

• Thermalization and Cooling (τ3 and τ4) The production of mag-
netic excitations and the consequent perturbation of the zig zag
phase, take place in a non-thermal regime, in which the distri-
bution of the charge carriers and of the bosonic (magnetic and
phononic) excitations cannot be described by simple thermody-
namic expressions. On a longer timescale (τ3 ∼200 ps), the energy
exchange between the charge excitations and the reservoir con-
stituted by the magnons and phonons will lead to a progressive
thermalization at a local effective temperature larger than the
equilibrium one.
Once established a quasi-thermal distribution, the system eventu-
ally release all the energy locally stored in the excited area via heat



diffusion towards the bulk. This leads to the slow cooling down,
which is described by the fourth dynamics, τ4 ∼10 ns.

The results obtained on Na2IrO3 by single-colour pump-probe tech-
niques are in agreement with previous experiments on similar sys-
tems. For example, it has been shown in [Alpichshev et al., 2015] and
[Li et al., 2015] that, approaching TN = 15 K in Na2IrO3 there is a
change in both the amplitude and the sign of the reflectivity variation
signal. These different ∆ R/R variations between the nonmagnetic
and the antiferromagnetic states of the system are interpreted by
[Alpichshev et al., 2015] and [Li et al., 2015] as a consequence of the
photo-demagnetization of the system. As it has been reported by [Li
et al., 2015], photo-demagnetization occurs via the local distortion of
magnetic order in the neighbourhood of each of the non-equilibrium
quasiparticles. According to [Alpichshev et al., 2015], ∆R/R corre-
sponds to a non equilibrium population of unoccupied and occupied
sites (see figure 5.12). The positive reflectivity variation at low tem-
perature is attribuited to the binding of these excitations due to the
energy cost of deforming the zig-zag magnetic structure.

The entire set of results presented here, along with the outcome
of experiments already reported in the literature, suggest that the
dynamics probed by the 1.55 eV pulses is directly proportional
to the magnetic dynamics of the systems. These findings raise an
important issue about the origin of such a signal and the microscopic
mechanism that allows to mirror the low-energy physics related to
the magnetism (5 − 10 meV) in the high-energy optical properties.
This issue will be tackled in the next chapter, in which we will report
multi-colour transient reflectivity measurements on Na2IrO3.



6 Optical spectroscopy out of equilibrium
measurements on Na2IrO3

6.1 Introduction

In the previous chapter we have described the reflectivity variation
on Na2IrO3 probed by the 1.55 eV pulses as a function of tempera-
ture. We have observed the onset of a specific dynamics in the ∆R/R
signal, which tends to diverge as the TN is approached, thus suggest-
ing a direct relation with the magnetic state of the system. By means
of both conventional and ASOPS pump-probe techniques the time
relaxations of the system have been studied in the 100 fs-10 ns time
window.

In this chapter we extend the study of the reflectivity variation to
a broader energy range (1.4− 2.1 eV) using the white light produced
by a photonic fiber seeded by a Ti:sapphire oscillator. Exploiting the
spectroscopic information and analysing the experimental results
with a the differential dielectric function approach, we demonstrate
that our results are well interpreted in the frame of Quasi Molecular
Orbital scenario, introduced by [Mazin et al., 2012].

6.2 Optical spectroscopy measurements on Na2IrO3

In this section we present a study of time and energy resolved pump
probe reflectivity measurements on Na2IrO3 at three different tem-
peratures: T=10 K, T=20 K and T=50 K. This kind of measurements
provides a spectroscopic information which will be crucial in mod-
elling the origin of the measured reflectivity variation. In order to
have a spectroscopic measurements, the ultrashort infrared pulses
(with ωprobe=1.55 eV i.e λ=780 nm) are focused into a photonic crystal
fiber that generates supercontinuum pulses with an energy range of
1.4-2.1 eV. The setup used for this type of measurement is described
in chapter 4.

The quantity that we measure with time resolved optical spec-
troscopy is the transient reflectivity ∆R/R, which includes the probe



energy information ω, i.e ∆R/R (ω, τ), where τ is the pump-probe
delay. This quantity is defined as:

∆R/R(ω, τ) =
Rexc(ω, τ)− Req(ω)

Req(ω)
(6.1)

where Req(ω) is the static reflectivity and Rexc(ω, τ) is the excited
reflectivity which depends on pump probe delay τ. In figure 6.1 we
report the time and energy resolved reflectivity ∆R/R(ω, τ) at three
different temperatures, T=10 K (below TN), T=20 K (above TN) and
T=50 K ( above TN). These measurements are performed by pump
pulses of energy h̄ωpump=1.55 eV and fluence of 40 µJ/cm2. The
temporal range scanned in the experiments shown in 6.1 is 2 ps. In
the central panels of figure 6.1 (panels b1, b2 , b3 ) the 2D plots of
∆R/R(ω, τ) at three different temperatures are reported. The colour
of these plots indicates the sign of the reflectivity change: red for pos-
itive variation, blue for negative variation. Comparing the 2D plots
of figure 6.1, we note a dramatic change of the ∆R/R signal when
the temperature is decreased from 50 to 10 K. In particular, the differ-
ences are more pronounced at a delay of about 1 ps and in a narrow
energy region, extending from 1.5 to 1.7 eV. For each 2D plot we take
a time domain trace at h̄ωprobe=1.55 eV (panels c1, c2, c3) and energy-
domain traces at fixed τ = 1.5 ps (panels a1, a2, a3 ) in order to better
analyze the time and spectral resolved optical measurements. The
time-domain traces at h̄ωprobe=1.55 eV (panels c1, c2, c3) at the three
different temperatures, show the same ralaxation dynamics than
those observed by single color measurements presented in chapter
5. By inspection of the three energy resolved graphs (panels a1, a2,
a3), we can note the different trend of ∆R/R(ω) as a function of probe
energy. In panel a1, at T= 10 K, we can see a positive increase of ∆R
up to 1.7 eV; above this energy the ∆R/ R signal becomes negative
up to a photon energy of about 1.8 eV. Finally, in the 1.9 − 2.1 eV
energy range, the signal turns positive and reaches its maximum at
about 2.1 eV. This spectrally-localized component of the ∆R/R signal
is not observed at T= 50 K (panel a3) in which ∆R/R(ω) presents a
negative plateau in the 1.4-1.8 eV energy range for all the time delays.

Thanks to the extended probed energy range (1.4-2.1 eV), it is
possible to spectrally characterize the reflectivity variation as a
function of temperature.

6.3 Differential model

In the section 5.2 we have extensively discussed the different re-
laxation dynamics of the ∆R/R signal, as measured at 1.55 eV for
different temperatures. Using the fit function in 5.2 we observed that
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Figure 6.1: The temporally and spec-
trally resolved plots for reflectivity
variation on Na2IrO3 at thre different
temperatures: T= 10 K,T= 20 K, T= 50
K (panel b. The cuts at τ = 1.5 ps pump
probe delay are reported in panel a,
evidencing the spectral structure of
transient signal. The temporal cut of
2D plots at probe energy ωprobe = 1.55
eV are reported in panel c and they
are in agreement with measurements
performed with single-color probe. (see
figure 5.6)

approaching the magnetic phase at TN=15 K, the second dynamics
(τ2>1 ps) presents a divergence that is attributed to a photoinduced
demagnetization ([Alpichshev et al., 2015] and [Hinton et al., 2015]).
In this section we introduce a model to quantitatively analyse the
transient spectral measured on Na2IrO3, called differential dielectric
function approach. This model allows to establish a precise relation-
ship between the time-resolved optical signal in the energy domain
and the pump-induced modification of the equilibrium dielectric
function of the system. In order to adopt the differential approach,
an essential requirement is that the equilibrium optical properties
of Na2IrO3 are completely characterized. In chapter 3 we have seen
the equilibrium optical properties of Na2IrO3 and in particular we
have seen how the equilibrium complex dielectric function can be
reproduced by a model composed of a sum of Lorentz oscillators,
representing the interband transitions that involves the Ir t2g orbitals.
This model constitutes the static equilibrium dielectric function εeq

(ω,T) and will be the starting point of the differential approach. The
quantity that we have measured is described in the formula 6.1 where
Req(ω) is related to εeq (ω) through the formula 3.1 and Rexc(ω, τ) is
the excited reflectivity which is related to non-equilibrium dielectric
function, indicated with εexc (ω, τ). The differential approach consists
in using the static dielectric function model equilibrium parameters
and to change as few parameters as possible in order to reproduce
the ∆R/R(ω) signal.



6.3.1 Differential dielectric function fitting

In figure 6.2 we present ∆R/R(ω) traces at T=10 K represented by
blues squares, and T=50 K represented by the red dots. The reflec-
tivity variation signals in figure 6.2 are as a function of probe energy
(1.4-2.1 eV) for a fixed delay time of τ=1.5 ps. The blue and red solid
lines in figure 6.2 represent the results of the fitting of the differential
dielectric function model to the ∆R/R(ω).
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Figure 6.2: ∆R/R (ω) experimental data
at T= 50K (red dots) and T= 10K (blue
squares). The pump-probe delay is
fixed at τ = 1.5 ps. Solid lines are the fit
to the data.

The fits to the data are obtained keeping unchanged the static
dielectric function model parameters except for the oscillator param-
eters centered at 1.66 eV (the D oscillator in figure 3.7 described in
section ??). In particular, the parameters that we have modified from
the static model are the following:

• The differential fit of ∆R/R at T=10 K (blue solid line) is ob-
tained by keeping all the equilibrium parameters fixed, except
for the eigenfrequency ω0 and for the plasma frequency ωp of D
Lorentzian oscillator (see figure 6.3).

• The differential fit of ∆R/R at T=50 K (red solid line) is obtained
by keeping all the equilibrium parameters fixed, except for the
plasma frequency ωp of D Lorentzian oscillator (see figure 6.4).

The differential fits results show that when the system is above TN ,
the reflectivity variation respect to the static reflectivity presents a
change in spectral weight in the oscillator centered at 1.66 eV. Instead
when the system from the normal state phase switches in the anti-
ferromagnetic phase, the oscillator at ω0=1.66 eV is shifted to lower
energies.
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Figure 6.3: Lorentz oscillators used
in the differential dielectric function
model for ∆R/R(ω) at T=10 K. The
oscillators represented by dashed line
are also those used for the static dielec-
tric function model. From this picture
we can see that the only variation be-
tween static and differential Lorentz
oscillators, is the D oscillator plasma
frequency plasma frequency (ωp) and
its eigenfrequency (ω0).
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Figure 6.4: Schematic drawing of
the Lorentz oscillators used in the
differential dielectric function model
for ∆R/R(ω) at T=50 K. The oscillators
represented by dashed line are also
those used for the static dielectric
function model. From this picture
we can see that the only variation
between static and differential Lorentz
oscillators, is the D oscillator plasma
frequency plasma frequency (ωp).

The change in the D oscillator spectral weight in the T=50 K trace
is due to the pump-induced thermomodulation effect. The temper-
ature variation modifies the reflectivity of the sample because of a
broadening of the occupation of the states near EF. This modifies the
sample absorption, and therefore the reflectivity. The amplitude of
the reflectivity change, strongly depends on the probe photon energy
[Schoenlein et al., 1987], [Eesley, 1983].

When the system is cooled below TN , the D oscillator changes
spectral weight but also its frequency. While the spectral weight
change is observed at any temperature and can be attributed to the
thermomodulation effect, the frequency change of the oscillator D
reflects a modification of the band structure that is related to the
onset of zig-zag order. In section 3.3 ab-initio calculations of the
optical conductivity of Na2IrO3 (with the inclusion of the spin-orbit
interaction and the Coulomb repulsion), the E1g state projected on
QMO in figure 3.4 presents a sizeable overlap with the states near EF

. The transition from the normal state to antiferrmomagnetic state
implies a change in the linear combinations of the QMOs close to
EF and in conducting states and, as a result of its sizeable overlap, a
change of the E1g state as well. On the other hand, the B1u QMO at



1.5 eV binding energy (see figure 3.4) retains almost its pure nature
and its overlap with the states at EF is very small. As a consequence,
it is barely affected by the rearrangements of the states at EF associ-
ated to the onset of zig-zag order. This picture is supported by the
fact that no variation of the optical transition E is observed at low
temperature.

Thanks to the non-equilibrium approach and the spectroscopic
information, we have been able to detect the shift in energy of the E1g

state that correspond to the optical transition represented by the D
oscillator.

6.4 Discussion

Reconnecting with the relaxation process discussed in the section 5.3,
the broadband probe pulse allow us to describe he dynamics of the
high-energy (1.5-2.5 eV) electronic properties. From the analysis of
the non-equilibrium spectroscopic informations, when the system
is in the zig-zag antiferromagnetic state, we can distinguish the
following relaxations processes:

• For τ0<100 fs the λ=800 nm pump pulse photoexcites the system
by inducing transitions from the valence band into the conduction
band. The excitation process thus creates a highly non-thermal
distribution of high-energy (1.5 eV) electron-hole excitations.

• For τ1 ∼ 200 fs the high-energy electron-hole excitations relax
through electron-electron interactions and coupling to optical
phonons. This relaxation process leads to the accumulation of elec-
trons (holes) at the bottom (top) of the conduction (valence) band.
The effective cooling is mediated by electron-electron interactions
and by the coupling to optical phonons.

• For τ2>1 ps the hot distribution of electrons and holes can re-
combine by multi-magnon emission, which perturb the magnetic
background. This process, that involves energy of the order of
several meV, can be detected in an energy scale of the order of eV
thanks to QMO picture. The E1g state, with binding energy of 1 eV,
is affected by the perturbation of the magnetic order since it has a
sizeable overlap with the conducting states. On the other hand, the
B1u state, centered at binding energy of 1.5 eV and isolated from
the other states, is not affected by the perturbation of the magnetic
order.
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6.5 Conclusion

With the combined spectral and temporal resolution we have demon-
strated that the quasi-molecular orbital picture introduced by [Mazin
et al., 2012] to describe the Na2IrO3 electronic properties. The time
and energy-resolved reflectivity variation measured at three different
temperatures have been reported in this chapter. Thanks to the spec-
tral resolution we have seen the different transient optical response
of Na2IrO3 in a spectral range among 1.4 eV and 2.1 eV, when the
system is in a antiferromagnetic (below TN=15 K) and in normal state
(above TN=15 K). We have seen that the antiferromagnetic transition
leads to a positive reflectivity variation in a certain spectral range (1.5-
1.7 eV) on a timescale of several picoseconds. This dynamic is related
to the demagnetization process and is connected to eV energy scales
thanks to the quasi-molecular orbital (QMO) scenario [Mazin et al.,
2012], discussed in section2.7 and in section 3.3. DFT calculations, in
which spin-orbit interaction and Coulomb repulsion are included,
[Li et al., 2015], support the description of the optical properties in
terms of QMOs description. One specific QMO ( E1g state), despite
having a binding energy centered at 1 eV, has a sizeable overlap with
the state close to EF. This overlap makes it possible to detect the
demagnetization process pump-induced when the system is in the
antiferromagnetic zig-zag transition (5-10 meV) also at optical energy
range.





7 Time-domain THz spectroscopy on α−CaCr2O4

In this chapter we discuss the characterisation of THz time-domain
spectroscopy (THz-TDS) setup, described in section 4.7.4. After
introducing the main THz spectroscopy studies on a different kinds
of materials, we present the crystal structure and the main physical
properties of a frustrated triangular magnet α−CaCr2O4. This system
reveal an interesting features in THz-frequency range, when his
temperature drops below TN=43 K. In order to characterize the
setup, we present the THz signal acquired in standard atmospheric
environment and the signal in a N2 environment an we will calculate
the size of the THz beam focus through knife edge method. Finally
we discuss the THz-TDS on α−CaCr2O4 an we will discuss of the
results obtained.

7.1 Terahertz spectroscopy

In the section 4.7.4 we have seen the hallmarks of the THz radiation.
One THz corresponds to a photon energy of about 4 meV. As a result,
measurement of the THz electromagnetic response in the ≈ 0.1-50
THz range yields insight into a particularly relevant spectrum of
excitations in complex materials [Basov and Timusk, 2005]. These
include, for example, the conductivity of itinerant charges, plasmons,
and polarons, as well as transitions across internal exciton states,
quantized levels of nano-confined carriers, superconducting gaps and
different spin excitations. In particular in antiferromagnetic materials
the resonance occurs at THz frequencies and a lot of measurements
on antiferromagnetic crystals such as NiO, MnO [Sievers III and Tin-
kham, 1963a], NiF,MnF2 [Sievers III and Tinkham, 1963b] [Richards,
1963], CoCl2 FeCl2 [Jacobs et al., 1965]. The ability to perform pulsed
time dependent measurements and record phase information by
coherent detection has made THz spectroscopy a important tool for
time dependent magnetic studies [Song et al., 2013] [Yoshikiyo et al.,
2014]. Furthermore, THz spectroscopy is also an important comple-



mentary technique to inelastic neutron scattering measurements, that
is the higher standard technique for measuring the spin-wave dis-
persion across the Brillouin zone and magnetic excitations [Matsuda
et al., 2012]. The sensitivity of polarised neutrons to chiral symmetry
in spin lattice ordering has assisted THz investigations in identifying
novel excitations associated with atomic vibrations, that are both and
magnetically active [Chaix et al., 2013]. In figure 7.1 polarised THz
spectroscopy is used to identify electrically and magnetically active
excitations based on the orientation of the THz field relative to the
crystallographic axes. The dispersion of the excitations is measured
by complementary inelastic neutron scattering.

(a)

(b)

Figure 7.1: a THz spectroscopy and
b inelastic neutron scattering mea-
surements in the analysis of electro-
magneto spin waves in Ba3NbFe3Si2O14
performed by Chaix et.al [Chaix et al.,
2013].

Relevant important are the studies on magnetodielectric materials
that are characterized by a strong coupling of magnetic and dielectric
properties and as a consequence different spin excitations. One
of these are the electromagnon [Pimenov et al., 2006] that is an
elementary excitation of the magnetoelectric interaction induced
by the electric field and characterized by a spin resonance in the THz
frequencies [Pimenov et al., 2008].

7.2 Crystal structure and physical properties of α−CaCr2O4

Geometrical frustration is an important feature in magnetism, where
it stems from the relative arrangement of spins. A typical charac-
teristic of magnetically frustrated systems is the lack of long-range
magnetic behaviour order down to temperatures far below the en-
ergy scale of the exchange interactions. Instead of adopting a unique
magnetic ground state a low temperatures, a magnetically frustrated
system typically remains unordered, because its desired ground state
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in non-existent within the given lattice geometry [Ramirez et al.,
2001]. This ground state can be highly degenerate leading to exotic
physical states like spin liquid behaviour. The simplest frustrated
system is the triangular lattice antiferromagnet where all magnetic
interactions between nearest neighbours are equal.

α−CaCr2O4 is a distorted triangular lattice antiferromagnet. The
triangular layers of Cr3+ ions are only slightly distorted with four
different nearest neighbour distances. They build up two zig-zag
and two chain patterns running along the c-axis. This special dis-
tortion and competing next nearest neighbour interactions makes
α−CaCr2O4 a good compound for studying frustration effects on
the physics of an antiferromagnet. The magnetic Cr3+ ions lie in an
octahedral environment and are characterized by a half-filled t2g shell
giving rise to spin 3/2 and quenched orbital angular momentum
which ensure that the magnetic interactions are isotropic . They

a) b)
Figure 7.2: a Crystal structure of
α−CaCr2O4. In b the respective triangu-
lar plane [Schmidt et al., 2013].

form distorted triangular layers stacked along the a axis, with two
layers and eight magnetic ions per unit cell. In figure 7.2 the crys-
tal structure of α−CaCr2O4 and its respective triangular plane are
represented.

Figure 7.3: Coplanar 120
◦ spin structure

of the Heisenberg triangular-lattice
antiferromagnet [Mourigal et al., 2013].

There are four slightly different nearest neighbour Cr3+ in-plane
distances, which are organized into zig-zag and chain patterns. The
magnetic structure was determined by utilizing neutron powder
diffraction [Toth et al., 2011], single crystal diffraction and spherical
polarimetry [Chapon et al., 2011]. With a Curie-Weiss temperature
of θCW=−564 K and a Néel temperature of TN =42.3 K the system
is clearly geometrically frustrated and exhibits a planar 120◦ spin
structure in the crystallographic in the ac plane. A optical transmis-
sion spectroscopy on α−CaCr2O4 in the near-infrared to visible-light
frequency range was performed by Schmidt et.al [Schmidt et al.,



2013]. In figure 7.4 Schmidt et.al present the absorption spectra

a b
Figure 7.4: Panels a and b show the
absorption spectra for various temper-
atures in the different frequency range
in the E‖ c condition. Measurement
was done by M. Schmidt et.al [Schmidt
et al., 2013]

of α−CaCr2O4 in the magnetically ordered phase at different tem-
peratures in the frequency region of the 4A2 → 2E and 4A2 → 2T1

crystal-field excitations which depend on the polarization of the light
with respect to the crystallographic axis in the investigated plane,
for the electric field of the incoming light polarized parallel to the
crystallographic c (E‖ c). This study reveals that the fine structure
is much more intense E‖ c configuration than in E‖ b, which points
toward a corresponding selection rule.

7.3 Time-domain THz spectroscopy measurements in air and nitrogen
environment

In this section we present and discuss the THz measurements per-
formed in atmospheric and controlled environment. These measure-
ments are performed with the setup discussed in section 4.7.4.

Both for the generation that for the detection (described in sections
4.7.2 and 4.7.3 ), we use the ZnTe nonlinear crystal which through the
800 nm ultrashort laser pulse produces a ultrashort THz pulse with
a useful bandwidth in the range of 0.3-2.8 THz, In the figure 7.5 we
present the THz pulse (panel a) and its Fourier transform (panel b)
after free propagation in air. By inspection of the THz spectra we can
observe several peaks, that are caused by absorption and re-radiation
from molecules in air, in which water vapour is the predominant
process.
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Figure 7.5: Electric field ETHz(t) of
the THz waveform in atmospheric
environment (panel a) and its Fourier
transform (b).
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Figure 7.6: Comparison of transmit-
tance spectra obtained by our measure-
ment and transmittance that we have
found in the literature [Xin et al., 2006] .

Comparing the water vapour transmission spectrum [Yun-Shik,
2008] with our THz spectrum (see figure 7.6) we can see several
peaks in THz spectrum corresponding to different lines of water
vapour absorption spectrum [Xin et al., 2006]. The most intense
and large peak includes the two higher peaks of water absorption
spectrum at 1.66 and 1.72 THz other three small peaks at 1.6, 1.76
and 1.8 THz.

In order to create a water vapour free environment along the THz
beam path, necessary to get a clean spectrum, we encompass the THz
path with a plexiglass box wherein the pure N2 gas is fluxed.

In figure 7.7 we present the THz pulse and its Fourier transform
measured in a N2-saturated environment. As we can see, the N2

spectrum is significantly cleaner than air spectrum. A closer look at
the N2 spectrum reveals that a peak centered at 1.6 THz still remains.
This can be attributed to the absorption from phonon difference
modes in ZnTe crystal, as reported in literature Chen et al. (2001) see
inset in figure .

The THz pulse is focused on the sample by a 15 cm focal length
off-axis parabolic mirror. In order to determine THz beam focus
we used the Knife-edge technique: a set of measurements of the
normalized transmitted power of the THz pulse as a function of
the knife-edge position are record through a photodiode coupled
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Figure 7.7: Electric field ETHz(t) of
the THz waveform in N2-saturated
environment (panel a) and its Fourier
transform (b).

to lock-in amplifier. The lock-in amplifier records the integral of the
gaussian THz beam up to the position of the knife edge. In the figure
7.8 we present the normalized beam profiling data. By fitting the
distribution function to the data we determine the standard deviation
σ and hence the full width at half maximum (FWHM) of the THz
pulse using the formula .

FW H M = 2
√

2 ln 2 · σ (7.1)

Finally we determine the THz beam focus to be in the order of
1100 µm.

7.4 Time-domain THz spectroscopy measurements on α−CaCr2O4

In the section 7.2 we have seen the study of optical transmission
spectroscopy on α−CaCr2O4 in the near-infrared to visible-light
frequency range done by Schmidt et.al [Schmidt et al., 2013]. In this
section we want to perform time-domain THz spectroscopy (THz-
TDS) measurements on α−CaCr2O4 at different temperatures in
order to characterise the system in low-frequency domain.

For these kind of measurements the α−CaCr2O4 c axis is oriented
in plane of the THz electric field, i.e E‖ c. In the panel a and in panel
b of the figure 7.9 we present the THz electric pulses in time and
frequency domain transmitted through α−CaCr2O4 at various tem-
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peratures, in a free-water-vapour condition. The reference signal, i.e
the THz pulse and spectra measured without sample, is represented
in the panel a and b of the figure 7.9 by the grey line. By inspec-
tion of the frequency-domain measurements we can observe that
at room temperature the sample frequency spectra is the same as
reference spectra, with a small absorption peak centered at 1.6 THz
due to ZnTe phonon mode. This means that at room temperature
α−CaCr2O4 is completely transparent to the THz pulse. When the
sample is cooled down, we can observe an absorption peak at 1.63
THz (6.75 meV) just below the TN K of the system. By lowering the
temperature, the THz measurements reveals that this mode splits
into two modes around T=28 K. The first mode, at 1.63 THz, exhibits
a local maximum around T=22 K while the second has a local max-
imum centered at 1.8 THz at T=15 K. In figure 7.10 we present the
α−CaCr2O4 frequency-domain absorbance at different temperatures.

The THz spectra measured at various temperatures from 300 K to
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Figure 7.10: Temperature evolution of
absorbance spectra of of α−CaCr2O4.

15 K reveal an absorption peak at 1.65 THz that arises at 35 K and an
additional peak at 1.8 THz that arises at 28 K, when the THz electric
field is parallel to c-axis of the crystal. These excitations, that taking
place under TN , may be attributed both electric and magnetic order-
ing properties of the system. Magnetoelectric (ME) coupling creates
a new quasiparticle excitation at THz frequencies, the electromagnon,
and this new class of excitations has been observed in several or-
thorhombic manganites TbMnO3, GdMnO3 [Pimenov et al., 2006],
DyMnO3 [Kida et al., 2008], TbMn2O5, YMn2O5 [Sushkov et al.,
2007], Ba2Mg2Fe12O22 [Kida et al., 2009] and in BiFeO3 [Cazayous
et al., 2008].

7.5 Conclusion

In this chapter the we have discussed the characterisation of THz
time-domain spectroscopy (THz TDS) setup and we have performed
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a preliminary spectroscopic measurements on frustrated triangular
magnet system .

For the generation and the detection of the THz pulses we em-
ployed the optical rectification process and electro-optic effect, de-
scribed in section 4.7.2 and in section 4.7.3. The electro-optic process
allows the direct measurement of the THz electric field which implies
a considerable advantage as compared to conventional spectroscopy,
since information about the amplitude and the phase of the electric
field can be simultaneously retrieved. From the free propagation of
the THz pulse, we have measured the absorption spectrum, in THz
region, of the air. In particular we have seen how the water vapour
in the air can absorbs most of THz spectrum and how remedy this
shortcoming by isolating the THz path in a free-water vapour envi-
ronment. The THz beam focus was calculated, through the knife edge
method. Finally, THz time-domain measurements were performed on
a frustrated triangular magnet α−CaCr2O4. The system turns out to
be completely transparent to electric radiation in the range of 0.3-2.8
THz (1.3-12 meV) at room temperature. When the system is cooled
below TN up to T=15 K, a couple of structures are observed: a first
absorption peak centered at 1.63 THz (6.75 meV) starting to raise at
35 K while at 28 K a second peak centered at 1.8 THz (7.5 meV) was
detected. In according with the other literature results, these two
modes are due to the rotational mode of the spiral spin plane that
becomes active when Thz electric field is set parallel to to c-axis of
the crystal.

An additional improvement of this setup will be the introduction
of a optical pump pulse in order to to perform optical pump-THz
probe measurements at low temperature. Optical-pump THz-probe
experiments determine transient changes of the THz dielectric re-
sponse. THz probes provide the necessary spectral selectivity in
ultrafast studies to resonantly reveal optical coherences, transient
correlations and phase transitions, or relaxation processes with meV-
scale signatures. In cuprate superconductors, manganites, and other
correlated materials ultrafast THz studies can discern basic interac-
tions and phase transitions via thermally inaccessible perturbations
of the correlated ground state ([Kaindl et al., 2005]; [Averitt et al.,
2001]; [Demsar et al., 2003b]; [Prasankumar et al., 2005]).





8 Conclusions

The main work in this thesis has been the study of out-of-equilibrium
physics of honeycomb lattice iridates Na2IrO3. Thanks to the pump-
probe technique, the reflectivity variation as a function of delay
time between the pump pulse (1.55 eV, 800 nm) and the probe pulse
were performed, in the nonmagnetic and antiferromagnetic state
of the system. In addition, a spectroscopic study of the system was
made using a microstructure optical fiber seeded by the output of a
Ti:Sapphire laser to generate supercontinuum spectrum in the energy
range 1.4-2.2 eV. The results we have achieved are the following:

Single-color pump probe measurements The time-resolved differ-
ential reflectivity ∆R/R signals are obtained through ultrashort
pulses with temporal length of ∼ 100 fs, and photon energy of
h̄ω=1.55 eV. The time resolution is in the order of the pulse length
while the temporal window is in the order of 7 ps. The measure-
ments were performed at various temperature, above and below
the TN=15 K, and all of them were characterised by two dynamics.
The first one, τ1=200 fs didn’t show any temperature-dependence.
The second one, instead, showed a heavy temperature-dependence
and the time scale of this variation increase from about 2 ps at 50
K to 6 ps at 12 K.
These type of measurements didn’t describe all the relaxation dy-
namics because the time window of 7 ps is too short. We have
therefore completed the relaxation dynamics through Asyn-
chronous Optical Sampling (ASOPS) Technique, where the time
resolution was in the order of ∼ 200 fs and the time window was
in the order od 10 ns. Thanks to this technique we were able to
describe the entire reflectivity variation relaxation dynamics on
Na2IrO3 at various temperatures. These dynamics are in agree-
ment with the literature results [Alpichshev et al., 2015] and
[Hinton et al., 2015], and they can be explained as:

τ1 : after that the pump photoinduce photoelectrons in the con-
duction band and a photoholes in the valence band, there is a
decreasing of reflectivity variation and the system is cooled by



electron-electron and the electron-phonon coupling.

τ2 :the electron-hole excitations can recombine across the gap
by emitting magnetic excitations that perturbs the magnetic
background. The time scale necessary to perturb the system,
bringing it to the disordered state, is much longer when the
system is at low temperatures.

τ3 : the energy exchange between the charge excitations and the
reservoir constituted by the magnons and phonos will lead to
thermalization at a local effective temperature.

τ4 : the system release all the energy locally stored in the excited
area via heat diffusion towards the bulk.

These time-domain measurements are interpreted as a conse-
quence of the photo-demagnetization and revealed the validity of
Je f f model, where the spin-orbit coupling splits the t2g levels of Ir
in two main bands: the lower energy band Je f f =3/2 and the higher
energy band Je f f =1/2, opening the gap across the Fermi level.

Single-color pump supercontinuum-probe measurements : By
adding the spectral information on the time-resolved measure-
ments we were able to understand the reason why we see a di-
vergence in the ∆R/R signal, when the system is in the magnetic
phase, at the photon-energy h̄ω=1.55 eV thousand times greater
than magnetic energies. By comparing the differential fitting in
out-equilibrium with the fitting results in equilibrium condition,
five transitions are necessary to reproduce the experimental results.
These number of Lorentz peaks are well in agreement with the
band structure calculated by Foyevtsova.et.al [Li et al., 2015] where
the quasi-molecular orbital (QMO) scenario was adopted. The
out of equilibrium spectroscopy on Na2IrO3 showed the presence
of these fine structure. In particular, when the zigzag antiferro-
magnetic phase of the system is destroyed by the pump pulse, we
see a redshift of a specific QMO centered at binding energy of 1
eV, since it has a sizeable overlap with the conducting states. On
the other hand, the QMO centered at binding energy of 1 eV and
isolated from the other states, is not affected by the perturbation of
the magnetic order.

In conclusion, from the time and energy resolved pump-probe
technique we have observed that in Na2IrO3 both scenarios Je f f and
QMO are realized, but in different energy scales. Je f f scenario is
realized close to the Fermi level and it is necessary to explain the
relaxation dynamics in the time resolved pump-probe measurements.
QMO scenario is realized in the deeper valence bands, and it is nec-
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essary to explain the energy scales where a divergence in reflectivity
variation is measured as TN is approached.
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