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Environmental conditions and community evenness
determine the outcome of biological invasion
Karen De Roy1,*, Massimo Marzorati1,*, Andrea Negroni2,*, Olivier Thas3,4,*, Annalisa Balloi5, Fabio Fava2,

Willy Verstraete1, Daniele Daffonchio5 & Nico Boon1

Biological invasion is widely studied, however, conclusions on the outcome of this process

mainly originate from observations in systems that leave a large number of experimental

variables uncontrolled. Here using a fully controlled system consisting of assembled bacterial

communities, we evaluate the degree of invasion and the effect on the community func-

tionality in relation to the initial community evenness under specific environmental stressors.

We show that evenness influences the level of invasion and that the introduced species can

promote functionality under stress. The evenness–invasibility relationship is negative in the

absence and neutral in the presence of stress. Under these conditions, the introduced species

is able to maintain the functionality of uneven communities. These results indicate that

communities, initially having the same genetic background, in the presence of the same

invader, react in a different way with respect to invasibility and functionality depending on

specific environmental conditions and community evenness.
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B
iodiversity has been shown to significantly influence
invasion in disparate aquatic and terrestrial environ-
ments1,2. Biodiversity correlates positively3, negatively4 or

neutrally5 with the capacity of species to invade resident
communities. Many factors, such as nutrient availability3,
scale6, functional niches7, environmental stressors8, facilitation
or competition9 and biodiversity10 can co-occur, driving the
invasion process and influencing the final outcome. The available
studies, mainly based on observations, do not take into account
intrinsic system effects and a large number of non-controlled
variables are present (climatic conditions, soil type, soil microbial
community, presence of symbiotic or antagonistic partners and so
on.)11,12. These confounding factors and the reciprocal
interactions may lead to opposite conclusions on the role of a
specific parameter, even in closely related ecosystems4,5.
Experiments conducted under controlled conditions give the
opportunity to target some of these confounding factors,
eventually explaining the inter-system variability, despite the
fact that this approach is a simplification of the reality.

In this study, we applied the approach used by Wittebolle
et al.,13 which is well suited for validating ecological theories and
can be run under fully controlled conditions. The effect of an
introduced species (termed the ‘invader’) on ecosystem
functionality was investigated in relation to the initial evenness
of the native community. We decided to focus on evenness and to
maintain a high level of richness because natural and
anthropogenic activities primarily influence the relative
abundance of species long before a species is threatened by
extinction14,15.

Results
Rationale of the experimental setup. The impact of initial
community evenness on invasibility and the effect of the invader
on the functionality of the resident community, that is, deni-
trification, were assessed by the use of assembled denitrifying
bacterial communities. To exclude other confounding factors that
could influence invasion, our tests were conducted with a com-
plex medium to avoid nutrient limitation, an assembled com-
munity composed of bacteria occupying the same functional
niche (the capability for nitrite respiration), isolated from the
same sample of homogenized activated sludge and without prior
history of adaptation to prevailing environmental conditions, and
an invader incapable of denitrification. A total of 17 denitrifying
strains from four phyla (Supplementary Table S1) were mixed in
different proportions to create 3,192 microcosms (Supplementary
Data 1,2) with different levels of initial evenness but with the

same richness. This number of strains represents a high richness,
which ensures a good functionality15; the complete range of
evenness, expressed by the Gini coefficient (that is, 0 being a
complete even community and 1 the most uneven community),
was covered (Supplementary Fig. S1). The microcosms were
arranged in 96-well plates and incubated under two distinct
conditions: no stress and salinity stress. Salinity stress was chosen,
because it cannot be readily altered by the microorganisms and
was shown to have a significant impact on the functionality of the
community16. An open ecosystem (that is, a system that has an
input of matter, for example, microorganisms17) was simulated
by challenging the assembled community with an introduced gfp-
tagged, salt-resistant, non-denitrifying species—the invader—at a
concentration of 0.1 and 1% of the initial total cell number
(Supplementary Fig. S2). In contrast, the control experiment with
no introduced species simulated a closed ecosystem. After 20 h of
anaerobic incubation, the percentage of nitrite removal was used
as a measure of functionality of the community. The total number
of cells and the number of gfp-tagged invader cells were analysed
by flow cytometry to determine the invasion coefficient and the
resident community cell number. The invasion coefficient,
ranging from 0 (not invaded) to 1, corresponds to the
proportion of invader cells to the total cell count, while the
community cell count (CCcommunity) is equal to the total number
of cells subtracted by the number of invader cells. Each of the
response variables—functionality, invasion and CCcommunity—has
been analysed with additive quantile regression models18. By
design, all of the models included terms for the row, column and
plate effects. The effect of the Gini coefficient was modelled non-
parametrically with a smoother spline, either unconstrained or
with a monotonicity constraint (increasing or decreasing)
(Table 1).

Invasion in the absence of stress. Under different environmental
conditions, the intrinsic characteristics of a microbial community
influence its susceptibility to invasion and its functional stability.
In the absence of salt, invasion increased with an increasing Gini
coefficient (Fig. 1a) and was observed both at a low and high
initial concentration of the invader: 0.1% (Po0.001) and 1%
(Po0.001) of the total cell count, respectively, (Supplementary
Table S2). A higher initial concentration of the introduced strain
produced a higher level of invasion (Po0.001). The presence of
the invader affected the performance of the community by low-
ering the overall denitrifying functionality (Po0.001), indepen-
dent of the degree of evenness (Fig. 1b) without influencing the
growth of the community (Fig. 1c). Therefore, under conditions

Table 1 | Model selection for the three response variables.

Response variable Model 0% 0.1% 1% 0% 0.1% 1%
No salt No salt No salt Salt Salt Salt

Invasion (t¼0.5) P (C versus M) NA 0 0 NA 0.86 0.99
P (M versus UC) NA 0.07 1 NA — —
Selected model NA MI MI NA C C

Functionality (t¼0.1) P (C versus M) 0.29 0 0.15 0 0 0.16
P (M versus UC) — 0.03 — 0 0.97 —
Selected model C UC C UC MD C

Log CCcommunity (t¼0.5) P (C versus M) NA 0.30 0.74 NA 0 0
P (M versus UC) NA � � NA 0.14 0
Selected model NA C C NA MD UC

C, constant Gini effect; M, monotonic Gini effect; MD, Gini effect decreasing; MI, Gini effect increasing; NA, not applicable; UC, unconstrained model.
The effect of Gini on the t¼0.5 or the t¼0.1 quantile of each response variable was modelled non-parametrically. Forward model selection was based on likelihood ratio tests performed at the 5% level
of significance (P). C was tested versus M, either MD or MI. If P40.05, the constant model was the best, and the model selection was completed. If Po0.05, the UC was compared with the M versus
UC. In the latter case: if P40.05, M was selected; UC was selected if Po0.05. ‘—’: statistical test not conducted because the previous model was selected. Upper line percentages are initial invader
concentrations.
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of no stress, the Gini coefficient was positively correlated with the
degree of invasion and neutrally correlated with the CCcommunity.

Invasion in the presence of stress. In the presence of salt
(Fig. 1d), the degree of evenness did not influence the invasibility
of the community (P¼ 0.86 and P¼ 0.99 for 0.1% and 1%
invader, respectively). However, the functionality of the com-
munity was strongly influenced by the introduction of the invader
(Po0.001) (Fig. 1e). Under salinity stress and in the absence of
invasion, nitrite was only partially reduced by the denitrifying
communities with a high Gini coefficient. These data confirmed
what was previously shown, that communities with a high initial
evenness have a higher potential to counteract the effect of a
sudden selective stress than communities with a low initial
evenness16. If the same communities were exposed to an invader,
no negative correlation between functionality and the Gini
coefficient was observed. The functionality was maintained at a
high level over the complete range of evenness if the communities
were challenged with the highest invader concentration. Similar
to the effect observed under the conditions without salt, the
presence of the invader under the stress condition had no effect
on community growth (P¼ 0.365) (Fig. 1f). The functionality of
invaded communities was always lower under non-stressed
conditions compared with stress conditions (Po0.001), while
invasion was higher under non-stressed conditions and
community growth was similar, all independently of the degree
of evenness (Supplementary Fig. S3).

Discussion
Several previous studies attempted to correlate invasion with the
composition of the invaded community and some of these studies

experimentally addressed the effect of invasion on ecosystem
functioning19. In our work, the degree of evenness was negatively
correlated with the susceptibility of the community to invasion in
the absence of an external stress, as previously shown in grassland
communities4,20,21. However, under stress conditions, the
evenness–invasibility relationship became neutral, and the
invasion potential was only associated with the initial amount
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Figure 1 | Invasion in the absence and presence of salinity stress. The individual plots show invasion (a,d), its effect on functionality (b,e) and the growth

of the community (c,f) in relation to the Gini coefficient in the absence (a–c) and presence (d–f) of salinity stress. Black crosses, blue triangles and red

squares indicate the residuals at an initial invader concentration of 0, 0.1 and 1%, respectively, after correction for the row, column and plate effects. Black

(0%), blue (0.1%) and red (1%) lines show the fits after model selection (Table 1).
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Figure 2 | Niche overlap of the available carbon sources. Number of

carbon sources available for the invader that are not used by the even (grey

bar)/uneven (black bars) mixes. The grey dotted line represents the level of

carbon consumption of the even mix. The amount of available carbon

sources for the invader—which was able to use 40 out of 95 carbon

sources—was much lower with an even community as compared to most of

the uneven mixes.
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of the invader. The effect of invasion on the functionality
depended strongly on the environmental conditions: the
functionality at a high Gini coefficient was enhanced under
stress and lowered under non-stress conditions.

The diversity–invasibility hypothesis states that a high species
richness confers a high degree of invasion resistance22. However,
it has also been reported that a positive relationship between
diversity and invasibility can occur3,6,10. In the present study, we
found that, even at a fixed high richness, the relative abundance of
the species (that is, evenness) is an essential factor that
determines the invasibility of the community (Fig. 1a). This
effect can be explained by the potential niche overlap for carbon
sources between the community and the invader. As shown in
Fig. 2, the niche overlap (consumption of carbon sources) was
much higher with an even community as compared with most of
the uneven mixes. Therefore, invasion is facilitated in uneven
communities. In addition to biodiversity, environmental stress
influenced the invasion potential. In fact, the level of invasion in
two identical communities (same richness, evenness and species
composition) in the presence of the same resources depended
strictly on the presence of a stress.

Current debate also focuses on the effect of the invasion of an
ecosystem on the functioning of the system23–25. In this study, we
confirmed that the degree of evenness is a key element for
preserving the overall functionality in a closed community16. In
fact, the functionality of an even community could be maintained
under both stressed and non-stressed conditions. Conversely, the
functional stability of a highly uneven community is endangered by
salinity stress (Fig. 1e, black line). The same effect on functionality
was also observed in an open community. In this situation,
however, the overall functionality of an uneven community was
preserved at high levels of the invader, although the introduced
species, a non-denitrifier, made no direct contribution to the
existing functionality (Fig. 1e, red line). This result suggests that a
closed system is sensitive to functionality loss when exposed to
fluctuating environmental conditions13,26 (Fig. 3, bottom right). An
open system in which non-native species have the ability to invade
the resident community may be more resistant to stress than a
closed system and can maintain or even improve its functionality
when an invader is present.

Our aim was to evaluate what could be the impact of human
activities—that tend to modify the composition of natural

communities—on invasibility and functionality under different
environmental conditions. We showed that the same community,
with the same genetic background, in the presence of the same
invader behaved differently depending on specific environmental
conditions and its evenness. Despite our conclusions rising from
these observations are firstly pertinent to our ecological system,
we suggest to consider it as a possible interpretation model that
could have analogies in other systems including the macro-
ecology systems. Under stress conditions an invasive species can
preserve the indigenous functionality, whereas under non-stress
conditions the functionality can be threatened. In the latter case
evenness has a crucial role in determining the community
resistance to invasibility and in preserving ecosystem function-
ality. Thus, on the one hand, invasion can support ecosystem
resilience and services24, whereas on the other hand, it can be
considered negative towards conservation biology23,25. Hence, in
case of putative imposition of ecological management, both
potential impacts of invasion warrant careful consideration.

Methods
Experimental design. In this study, we used 210 mixtures with different evenness
values, corresponding to unique Gini and dominant species combinations. These
mixtures were created following a stochastic exchange search algorithm for D-
optimal designs27 according to the following procedure. The first step was the
random construction of a design. The relative abundances of the 17 species were
randomly assigned. Five 96-well plates were randomly filled with the mixtures, with
adjacent duplicates of each mixture. Negative controls were positioned in the centre
and the corners of each plate to assess potential row, column and plate effects. We
computed the D-optimality criterion for this random design and a linear model,
with factor effects for the row, column, invader and salt stress, a random effect for
the plate, and a linear and quadratic effect of for the Gini. In the next step, the
mixtures were randomly exchanged between positions and plates, and the D-
optimality criterion was computed for each new design; this procedure was
repeated 1,000 times. The best design with the largest D-optimality criterion was
selected as the quasi D-optimal design. The complete procedure, starting from the
construction of the random design, was also repeated 10,000 times. From the
10,000,000 evaluated designs, the design with the largest D-optimality criterion was
selected for this study. During the optimization process, the convergence of the
D-optimality criterion was monitored to ensure that the final selected design was
sufficiently well converged.

Laboratory methods. A chromosomally gfp-tagged Pseudomonas sp. and 17
denitrifying strains (Supplementary Table S1) were stored in ready-to-use aliquots
at � 80 1C. For each experiment, the strains were cultured for 48 h and subcultured
for 40 h in trypticase soy broth at 28 1C under aerobic conditions to obtain actively
growing microorganisms. The denitrifying strains were diluted to 107 cells ml� 1

Low gini
even

Invader

Stress

No stress

Invader Invader

Medium gini High gini
uneven

Figure 3 | Graphical summary of the main observations. Microcosms, composed of seventeen denitrifying strains (blue cells, different shapes), have been

assembled with different levels of initial evenness (different proportion of cells), from a low to high Gini coefficient. These microcosms were challenged

with a non-denitrifying invader (green cells) under stressed and non-stressed conditions. The ecosystem functionality (size of circles) and invasibility

(number of green cells) were measured. Invasion was generally lower in the presence of salt stress than in the absence of salt. Under no-stress conditions,

the presence of the invader negatively affected the community and its functionality, whereas the same relationship was positive under stress conditions.
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and the invader to 1.5� 107 cells ml� 1, as measured by flow cytometry (CyAn
ADP LX, Dako, Heverlee, Belgium). Communities with different degrees of initial
evenness were created by mixing the diluted denitrifying strains in different pro-
portions. Each mixture was divided into three aliquots. No cells of the invader were
added to the first aliquot (0% invader); to the second and third aliquot, the invader
was added so that the number of invader cells in the mixtures was 0.1 and 1% of
the total number of cells, respectively. These mixtures were used to assemble
microcosms in duplicate in multiwell plates, according to the design, using a
BioRobot 3000 (Qiagen, Venlo, The Netherlands). The mixtures were 1:1 diluted in
trypticase soy broth supplemented with 12 mM nitrite and optionally supple-
mented with 4% (w/v) NaCl (for the salinity stress) to obtain a final concentration
of 6 mM nitrite and 2% NaCl. The plates were incubated anoxically for 20 h at
28 1C, and the optical density (620 nm) was measured. The relative abundance of
the invader cells and the total cell count of the invaded communities were deter-
mined by flow cytometry, and the residual nitrite concentration was determined
with the Montgomery reaction.

In order to identify a potential niche overlap, an anaerobic metabolic fingerprint
(using 95 different carbon sources of the Biolog AN microplate (Hayward, USA)
and 6 mM nitrite as electron acceptor) was made for 17 uneven communities (each
with one different dominant strain), the perfectly even community and the invader.
For each mix, we determined the unique available carbon sources for the invader
by subtracting the carbon sources used by a single mix from those used by the
invader itself.

Statistical analysis. Each of the response variables (functionality, invasion and
CCcommunity) has been analysed with additive quantile regression models18.
A separate analysis was performed for each invader/salt combination. The Gini
effect was modelled non-parametrically using a smoother spline, either
unconstrained or with a monotonicity constraint (increasing or decreasing). The
smoothing parameter was optimized by minimizing the Akaike’s Information
Criterion. All hypothesis tests were based on generalized likelihood ratio tests
performed at the 5% level of significance. For forward model selection the testing
sequence was: (1) no Gini effect versus a monotonic Gini effect (increasing or
decreasing, depending on the Akaike’s Information Criterion), (2) monotonic Gini
effect versus an unconstrained Gini effect. Additive quantile regression models
have been used to analyse the response variables at the 50, 10 and 90% quantiles.
Quantile regression extends ordinary regression models in the sense that a
particular quantile of the conditional response distribution is modelled instead of
the mean28. The choice for this method is motivated by the variable shapes of the
conditional response distributions as a function of the Gini coefficient. Results of
the Gini effects are only reported for the analyses at the 50% quantile (median),
unless Gini effects were only established at the 10% or 90% quantiles. Analyses
were conducted with the quantile set at either 50% (invasion and CCcommunity) or
10% (functionality). The partial residuals, shown in the graphs of the model fits,
were always constructed relative to the 50% quantile regression model that corrects
for row, column and plate effects. The axis of the residuals of the functionality and
invasion response variables were rescaled to obtain values between 0 and 1, with 0
the lowest and 1 the highest measured value.
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