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Abstract

Current diagnostic tools do not allow prognostic evaluation of patients with early

stage lung cancer or selection of patients that might benefit from adjuvant chemother-

apy. Therefore, the identification of novel prognostic markers in early-stage lung cancer

is paramount. In this scenario, the transcription factor HOXB7, belonging to the home-

obox family, has been shown to correlate with poor prognosis in different types of cancer

and recently also in stage I lung adenocarcinoma.

To better understand the prognostic implication of alterations in HOXB7 expres-

sion in lung cancer, we performed a bioinformatics analysis of multiple lung cancer

expression datasets in order to identify gene sets representing cancer-relevant biological

functions enriched in high-HOXB7 expressing tumors. We found several gene sets en-

riched in high-HOXB7 expressing tumors representing molecular mechanisms involved

in epithelial to mesenchymal transition, in cancer progression, and, interestingly, in

stemness and cellular reprogramming. Based on these results, we hypothesized that

HOXB7 may have a role in the expansion of the stem cell compartment in cancer, a

mechanism that has been shown to be a hallmark of enhanced tumorigenicity and of

increased metastatic potential.

Analysis of the stem-related surface marker CD90 revealed that overexpression of

HOXB7 in lung cells increases the CD90high sub population. CD90high, but not CD90low

cells, are able to form spheroids, which is an hallmark of stemness. Indeed, the sphere

forming efficiency of normal lung BEAS-2B cells was 22% and 1.64% in CD90high and

CD90low populations, respectively. In addition, we found that silencing of LIN28B coun-
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teracts the expansion of the CD90high population. LIN28B was recently described as

an oncogene that regulates the cancer stem cell compartment. We found that LIN28B

is under the direct transcriptional control of HOXB7. Therefore, we propose a novel

molecular mechanism driven by HOXB7 and can increase stem-like properties in lung

cells.

We further demonstrated that the HOXB7-LIN28B axis plays an important role in

reprogramming of adult cells into induced pluripotent stem cells (iPS). Indeed, HOXB7

may enhance the reprogramming efficiency achieved by the three genes OCT4, KLF4,

SOX2 in both mouse embryonic fibroblast and human epithelial BEAS-2B cells by

substituting MYC in the transcription factor cocktail of reprogramming factors used by

Yamanaka. Of note, LIN28B silencing strongly decreases the number of reprogrammed

colonies in high-HOXB7 expressing cells.

These findings suggest that HOXB7, through transcriptional induction of the LIN28B

gene, activates a program relevant for stem/iPS cell biology and for tumor progression,

possibly opening a new line of research for the development of more effective therapies

for metastatic lung cancer patients.
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Chapter 1

Introduction

1.1 HOMEOBOX gene family

The French zoologist Geoffroy Saint-Hilaire developed the unity of plan theory (the

unity of anatomical structures), shared by all vertebrates, in the early 19th century.

According to this theory, the body plane of various animal phyla is arranged in the

same way; the homologous parts (the ”body units”) remain associated in the same

order but may differ in form and size. In the 1940s, the American biologist Edward B.

Lewis began to study genes that drive the development of the body units in Drosophila

melanogaster (D. melanogaster), a highly specialized insect with two wings and three

body segments: head, thorax, and abdomen. Mutations in these genes lead to the

absence of a body unit, duplication of a body unit or replacement of a unit with another

one (homeotic transformation, from the Greek word Homoiosis, translates literally as

a process of making similar). Lewis identified a cluster of genes that, when mutated,

caused an extra pair of wings (bithorax complex) and the growth of legs from the head

instead of the antenna (antennapedia complex; i.e., Antp gene), and hypothesized thus

a common ancestry origin [Lewis, 1978].

In the late 1970s, the German biologists Christiane Nusslein-Volhard and Eric F.

Wieschaus identified 15 different homeotic genes that control the development of D.
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melanogaster [Nusslein-Volhard and Wieschaus, 1980]. They were awarded the Nobel

prize in 1995 together with Edward B. Lewis, ”for discovering the genetic control of

early embryonic development”(1). The homeobox is now considered ”the Rosetta Stone

of developmental biology” [Riddihough, 1992] because it specifies the regional identity

along the anterior-posterior axes in D. melanogaster and in mammals.

Homeotic genes are characterized by a highly conserved DNA sequence (homeobox),

composed of 180 bases that codes for a DNA-binding domain. The consensus 60-

polypeptide chain of the homeodomain is highly conserved. In fact, the mouse and

the Antp human homeobox b7 (HOXB7) differ only in two amino acids (although the

lowest common ancestor dates back to more than 500 millions years ago) [Kornberg,

1993].

The homeobox domain folds into three alpha-helices that are organized in a helix-

turn-helix structure. The third helix makes contact with the bases of the major groove

of DNA and recognizes the HOX-response elements with a TAA(A)T core sequence

[Gilbert, 1996].

The homeobox genes duplicated twice during the evolution of invertebrates into

vertebrates (Fig.1.1). Only one HOX cluster is present in D. melanogaster and it is

composed of 8 genes. In the mouse, instead, there are four clusters (HOX A, B, C,

and D) composed of ∼10 genes on four different chromosomes. Duplication of genes

may provide redundant genetic material. As a consequence, corresponding genes on the

separate linkage groups, called paralogs, are more functionally related to each other and

work together to give regional identity along the anterior-posterior axes. Combination

of mutations in more than one paralogous member gives rise to more severe axial

phenotypes than a single mutation does [Wellik, 2007].

As an example, the paralogous mouse genes HOXA-11 and HOXD-11 are both in-

volved in the formation of limb bones. A homozygous mutation in one of these genes

leads to malformation in the radius and ulna. In a double-mutant mouse, instead,

1The Nobel Prize in Physiology or Medicine 1995; http://www.nobelprize.org/nobel_prizes/

medicine/laureates/1995/
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Figure 1.1: HOX gene clusters. HOX genes specify the regional identity along the anterior-
posterior axes in D. melanogaster and in mammals. HOX genes within the cluster are ordered in the
3’ to the 5’ orientation and paralogous genes are aligned vertically [Pearson et al., 2005]. Homeobox
genes duplicated twice during the evolution of invertebrates into vertebrates. Only one cluster is
present in D. melanogaster and it is composed of eight genes. In the mouse, instead, there are four
clusters (HOX A, B, C, and D) composed of ∼10 genes on four different chromosomes. The figure is
adapted from Pearson et al., 2005.

these two bones are almost entirely absent [Davis et al., 1995]. There is a partial

conservation in HOXA11 gene function in humans. Its involvement in forearm mor-

phogenesis together with HOXA10 has been demonstrated and mutations in HOXA11

have been associated with radio-ulnar synostosis (fusion of the two bones) [Thompson

and Nguyen, 2000].

1.1.1 HOX genes and lung development

The expression of HOX genes begins during gastrulation with a spatial and temporal

pattern, a phenomena called colinearity [Pearson et al., 2005]. According to this model,

the HOX genes are expressed temporally in an order corresponding to their position

within the cluster. Thus, genes in the three prime part (3’) of each cluster (i.e., HOXA1,

HOXB1, HOXA2, HOXB2, etc.) turn on during early gastrulation with a more anterior

expression pattern, and genes in the five prime part (5’) are expressed later. This

temporal delay correlates with progressive generation and growth along the anterior-

posterior (AP) axis because 3’ genes are generally expressed in anterior tissues and

3
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Figure 1.2: Homeobox gene expression during developing mouse lung. HOX genes are
expressed temporally in an order corresponding to their position within the cluster, so that genes in
the 3’ part of each cluster (i.e., HOXA1, HOXB3, etc.) are expressed during the first embryonic days,
while genes in the 5’ part are expressed later. This phenomena is called temporal colinearity [Mollard
and Dziadek, 1997].

5’ genes are expressed in posterior tissues, after that the anterior somites are formed

[Wellik, 2007]. Each body segment is, thus, specified by a combination of functionally

active HOX genes, a so called ”HOX code”. Several studies demonstrate multiple roles

for the HOX genes in lung development and maintenance of its functionality in both

humans and mice [Grier et al., 2005]. In particular, homeobox genes from clusters

A and B are the most highly expressed genes during the branching development of

the mouse lung. These genes are characterized by temporal colinearity (Fig.1.2) and

differential restrictions in spatial expression domains [Mollard and Dziadek, 1997].

Moreover, expression patterns of HOXB5-9 in the pulmonary mesenchyme of a

developing chick have been analyzed [Sakiyama, 2000]. At day four of incubation,

before bronchial branching took place, these HOX genes showed a nested pattern of

expression, which would correspond to the morphological subdivisions of the lung as

morphogenesis proceeded. Indeed, while HOXB5 was expressed throughout the lung

and the airways, HOXB6 was expressed in the ventral half. In contrast, HOXB7 and

HOXB8 were expressed in the more ventral-distal regions and HOXB9 was first detected

4
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Figure 1.3: HOX gene expression during developing an adult human lung. Each box
represents a HOX gene: the open boxes represent HOX genes that were not identified by RT-PCR,
whereas the shaded boxes represent genes that were detected. The frequency at which positive clones
were identified is expressed by the number in the shaded box. The authors suggest that an altered
pattern of HOX gene expression may contribute to the development of pulmonary diseases [Golpon
et al., 2001].

at day eight in the most distal regions.

The predominantly expressed HOX genes in the human adult lung are those from

the 3’ end of clusters A and B [Golpon et al., 2001]. Among these, HOXA5 is the most

abundant, followed by HOXB2 and HOXB6, while HOXB7 is expressed at low levels.

Additional HOX genes from clusters C and D have been found to be expressed during

the development of a 12 weeks old fetus, as well as in diseased lung specimens such as

emphysema and primary pulmonary hypertension (Fig.1.3).

Due to the role of HOX genes in the development and organogenesis of the embryo

and with the breakthrough in the field of stem cells during the last two decades, new

efforts have been made to understand HOX genes-driven cell commitment into tissue

specific cell lineages.

5
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1.2 HOX genes, stem and cancer stem cells markers

Stem cells (SCs) are defined as cells with the ability to self-renew and to support

multilineage differentiation through symmetric and asymmetric cell division. The bal-

ance between these two modes of cell division is critical in the maintenance of tissue

homeostasis [Alison et al., 2010]. Symmetric cell division gives rise to two daughter

cells with SC properties, leading to the expansion of the SC pool. During asymmetric

cell division, instead, SCs generate one daughter cell that adopts a SC fate and becomes

quiescent and one daughter cell (the progenitor) that enters the transit-amplifying com-

partment and undergoes rapid proliferation/differentiation, generating mature cells of

a particular tissue.

HOX genes were found to be involved in tissue specific stem cell establishment

[Shah and Sukumar, 2010]. A detailed study was performed in order to understand the

role of HOXB1 in mediating the maintenance and the expansion of posterior neural

progenitor cells through the activation of Notch signaling and the JAK/STAT signaling

pathways [Gouti and Gavalas, 2008]. The authors suggested that it is possible to drive

the differentiation of embryonic stem cells (ESC) toward specific cell fates through the

timely expression of specific HOX genes, indicating that HOX genes are important reg-

ulators of the very early stages of differentiation. In line with these observations, major

studies were performed on hematopoietic stem cell self-renewal. Retrovirus-mediated

overexpression of human HOXB4 in mouse bone marrow cells efficiently regenerates the

most primitive hematopoietic stem cell compartment, increasing hematopoietic stem

cell self-renewal [Sauvageau et al., 1995]. Exogenous HOXB7 in hematopoietic progen-

itor/stem cells resulted in amplification of the putative hematopoietic stem cell pool

and myeloid-restricted progenitor differentiation [Carè et al., 1999]. A growing number

of scientific evidence shows that an increment of the SCs compartment is a driving

force in tumorigenesis.

6



A.Y. 2014-2015 1.2. HOX GENES, STEM AND CANCER STEM CELLS MARKERS

1.2.1 Cancer stem cell markers

Cancer stem cells (CSCs) are a rare subpopulation of cells within the tumor, bearing

stem cell-like properties. Clinically, the CSC content correlates with disease outcome,

indicating that the CSC compartment likely undergoes a greater expansion in tumors

with poor-prognosis compared to tumors with a good prognosis [Kim et al., 2005, Pece

et al., 2010, Alison et al., 2010]. Therefore, in the last decade, large efforts were made

to identify and characterize CSCs in order to better understand their biology and to

provide clinically effective tools to improve patient outcome. The first attempt to

isolate lung CSCs (using Hoechst 33342 dye exclusion) was reported in 2007 [Ho et al.,

2007]. A side population (SP) of several lung cancer cell lines showed an increased

tumorigenesis in vivo and invasiveness in vitro.

Other methods have been proposed for the isolation of human lung CSCs based

on: i) the increased activity of ALDH1, already reported to be a SC marker in several

human cancers [Jiang et al., 2009]; ii) cell resistance to drugs such as cisplatin, dox-

orubicin or etoposide [Levina et al., 2008]; and iii) the ability of CSCs to proliferate

and form cell clusters (tumor spheres) in absence of adhesion and in serum-free con-

ditions [Eramo et al., 2007]. Isolated lung CSCs cells were subsequently characterized

using membrane antigenes expression markers and showed to be positive for several

CSC specific biomarkers such as CD166 [Soh et al., 2012], CD133 [Eramo et al., 2007],

CD44 and CD90 [Lu et al., 2014, Wang et al., 2013, Yan et al., 2013]. These tumor

cells expressed also embryonic markers such as Oct-4, Sox2 and Nanog, confirming thus

their undifferentiated phenotype [Eramo et al., 2007].

1.2.2 HOX genes and cancer stem cells

Some HOX genes have been found to be involved in the maintenance of CSC prop-

erties. For example, HOXD9 is barely present in normal human brain tissue and as-

trocytes, but is highly expressed in glioma CSC and in a side population of SK-MG-1

cells (previously identified as enriched stem-like cells) [Tabuse et al., 2011].

7
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In colon, HOXA4 and HOXD10 are expressed in cells at the normal crypt bottom

(where stem cells reside), together with the stem markers CD166 and ALDH1. Inter-

estingly, HOXA4 and HOXD10 were found to be overexpressed in colon carcinomas

but not in normal colon tissue, suggesting a role for HOX genes in the maintenance of

normal stem cells and crypt renewal, contributing to the stem cell overpopulation that

drives colon tumorigenesis [Bhatlekar et al., 2014].

Given that HOX genes regulate a variety of cellular processes (including cell ad-

hesion, motility, signaling receptor, differentiation, apoptosis [Morgan, 2006] and, not

least, stem cell self-renewal), it is not surprising that an aberrant temporal-spatial ex-

pression pattern of HOX genes may drive not only an abnormal development during

embryogenesis but also malignancies in adulthood [Pearson et al., 2005].

1.3 HOX genes and cancer

According to the oncogerminative theory of cancer development, HOX genes may

drive tumorigenesis by altering the same pathways that they physiologically control

during organogenesis [Bhatlekar et al., 2014]. Aberrations in the regulation and ex-

pression of HOX genes in cancer were originally described in 1999, when overexpression

of HOXA9 was identified by a microarray screening as a marker of poor prognosis in

patients with acute myeloid leukaemia [Golub et al., 1999]. Subsequent studies linked

the overexpression of HOXA9 to the induction of isulin-like growth factor 1 receptor

(IGF1R) and the consequent growth of leukemic cells [Whelan et al., 2008]. From then

on, several HOX genes have been linked to cancer processes in a variety of tissues,

some of them acting as oncogenes, others as tumorsuppressors [Shah and Sukumar,

2010]. As an example, HOXA5 may act as a tumor suppressor and induce apoptosis

by direct transcriptional activation of p53 [Raman et al., 2000], caspase 2 and caspase

8 (involved in the apoptotic signal transduction) [Chen et al., 2004]. Loss of HOXA5

expression through methylation of its promoter has been identified in more than 60%
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of breast carcinomas [Raman et al., 2000].

Concerning lung cancer, many members of the HOXC and HOXD clusters such as

HOXC4, HOXC8, HOXC9, HOXC13, HOXD8 and HOXD10(not expressed in normal

tissue) are strongly up-regulated in primary tumours. In particular, overexpression of

HOXC9 and HOXD10 is associated with an increased proliferation rate of the A549

lung cancer cell line [Plowright et al., 2009].

1.3.1 HOXB7 and cancer

HOXB7 was first associated with a higher proliferation rate in melanoma cell lines

through the direct transactivation of the basic fibroblast grow factor (bFGF). Indeed,

treatment with siRNA against HOXB7 inhibits cell proliferation and expression of

bFGF [Caré et al., 1996]. The bFGF promoter has been shown to be a HOXB7 target

in the SkBr3 breast carcinoma [Caré et al., 1998] and in IOSE-29 ovarian carcinoma

[Naora et al., 2001] cell lines. Increased expression of HOXB7 has been identified in

several cancer types: in leukemia [Storti et al., 2011], melanoma [Caré et al., 1996],

breast [Caré et al., 1998, Wu et al., 2006, Jin et al., 2012], colorectal [Liao et al., 2011],

pancreatic [Nguyen Kovochich et al., 2013] and oral cancer [De Souza Setubal Destro

et al., 2010], and, more recently, in lung cancer [Yuan et al., 2014, Bianchi et al., 2007].

Major studies have been performed in breast cancer. Preliminary data showed a 3

and an 18 folds increment in HOXB7 expression in primary and metastatic lesions,

respectively, compared with normal tissue [Wu et al., 2006]. Further analyses have

demonstrated a potential role for HOXB7 in breast tumorigenesis as a master switch of

proangiogenic factors [Carè et al., 2001], and as an epithelial to mesenchymal transition

(EMT) promoting factor [Wu et al., 2006]. Transfection of a human normal immortal-

ized breast cell line (MCF10A, negative for HOXB7 expression) with HOXB7 resulted

in the activation of the RAS pathway and the acquisition of a phenotype typical of

an occurred EMT; i) acquisition of a spindle-like shape; ii) reduction of E-cadherin

expression; and iii) expression of Vimentin. EMT is known to correlate in cancer with

9
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an increased malignancy by enhancing proliferation, migration and invasion of cancer

cells [Kalluri and Weinberg, 2009]. Alterations in the HOXB7 gene expression may

therefore play an important role during tumor progression by conferring, through the

induction of EMT, a metastatic potential to cancer cells. Unexpectedly, mammary

tumor onset in MMTV-HER-2/neu mice was inhibited when the mice were crossed

with MMTV-HOXB7 transgenic mice by ∼6 months. However, after a longer latency

the burden of HOXB7 overexpressing tumors was higher and, importantly, cancer cells

were more aggressive giving rise to more and larger metastasis [Chen et al., 2008].

Of note, no tumors were detected in HOXB7 overexpressing mice during two years of

observation, suggesting a role for HOXB7 in tumor progression rather than in tumori-

genesis. Primary mammary cell lines derived from MMTV-HOXB7/HER-2 showed an

increased expression of TGFβ2, which was identified as a HOXB7 transcriptional tar-

get [Liu et al., 2015]. In two recent works, overexpression of HOXB7 in breast cancer

was associated with poorer disease-free survival in estrogen receptor (ER) positive pa-

tients treated with tamoxifen. The authors showed how breast cancer cells may acquire

tamoxifen resistance through HOXB7-direct activation of the epidermal growth factor

receptor (EGFR) [Jin et al., 2012] and HER2 expression [Jin et al., 2015].

1.4 Lung cancer and HOXB7

Lung cancer alone accounts for more than one-quarter of all cancer deaths in both

women and men in the Unites States of America [Siegel et al., 2015] and in men in

Europe [Ferlay et al., 2013]. The low survival rate (18% at 5 years after diagnosis) is

primarily due to the high frequency of late diagnosis when the tumor has become unre-

sectable. Emerging lung cancer screening programs for high-risk individuals (>55years,

>30 pack-year) using low-dose Computed Tomography (LDCT) were recently shown

to be effective, reducing lung cancer mortality with ∼20% [Med, 2011], underlying the

importance of early diagnosis in lung cancer.
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1.4.1 Non Small Cell Lung Cancer staging

The two main types of lung cancer are small cell lung carcinomas (SCLC), charac-

terized by a scarce cytoplasmic content, and all others, grouped together as Non-Small

Cell Lung Cancer (NSCLC) due to their similar, yet different from that of SCLC, re-

sponse to treatment. SCLC show a good initial response to chemotherapy but most

patients relapse within 5 years; surgery treatment in SCLC is rarely used due to fre-

quent disease spread at diagnosis [Jett et al., 2013].

NSCLC have a limited response to chemotherapy treatment but are better charac-

terized genetically. New targeted therapies were recently proposed.

NSCLC accounts for more than 80% of lung cancers. According to the World Health

Organization’s classification of lung tumors they are divided into different types based

on the type of cells found in the tumor: squamous cell carcinoma, large cell carcinoma

and adenocarcinoma (the most predominant histological type, accounts for 32% of all

lung cancer) [Brambilla et al., 2001]. Adenocarcinomas commonly invade pleura and

mediastinal lymph nodes and metastasize to the brain and bones. Patients often have

a metastatic disease before the development of symptoms [Hirsch et al., 2008].

To determine the course and spread of lung cancer, a system based on three letters

(T, N and M) developed by the American Joint Committee for Cancer Staging and

End Results Reporting is used in the clinic. The letter T represents tumor size, N

represents regional lymph node involvement, and M represents distant metastases.

Numeric subscripts indicate the degree of dissemination. Stage I NSCLC is defined

by the clinical stage groupings T1 (or T2a), N0 and M0 which designates a small

localized tumor. Stage II NSCLC is defined as T1 (or T2), N1 and M0 which is a

primary tumor that has extended to regional nodes, or as T3 (or T2b), N0 and M0

characterized by a tumor mass bigger than 5cm (Fig.1.4).

Surgery is the treatment of choice for patients with stage I to IIIA NSCLC [Crinò

et al., 2010]. About 73% of patients with surgical-pathologic stage IA disease are

expected to survive more than 5 years following complete resection (58% for stage
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Figure 1.4: American Joint Committee on Cancer classification of Lung Cancer Staging.
Figure adapted from AJCC 7th edition staging posters

IB). There is no indication for adjuvant chemotherapy in stage I NSCLC at present

[Le Chevalier et al., 2005], even if it would be useful in improving patients prognosis.

Stage III NSCLC patients (any T, N3, M0) do not benefit from surgery alone and are

best managed by induction chemotherapy (neoadjuvant) with cispaltin-based drugs and

adjuvant chemotherapy or radiotherapy depending on the sites of tumor involvement

and the performance status of the patient after surgery. Still, more than 45% of patients

diagnosed with NSCLC have an advanced disease with distant metastases (i.e., stage

IV) [Walters et al., 2013], characterized by very large lesions involving distant sites

(Any T, any N, M1). Surgery is not an option and the benefit of cisplatin-based

chemotherapy to improve survival, which is used to palliate disease-related symptoms,

is dismal.

In recent years, the oncology community recognized NSCLC as a heterogenous

disease thanks to the identification of ”druggable” target mutations, such as EGFR,

KRAS, ALK, MET and ROS-1 (Fig.1.5). These findings have allowed the selection

of patients for targeted therapies and have improved the prognosis of patients with
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Figure 1.5: Molecular subsets of lung adenocarcinoma. The most common mutations in lung
adenocarcinoma. Figure adapted from Korpanty et al. [Korpanty et al., 2014].

advanced NSCLC [Korpanty et al., 2014].

1.4.2 Non Small Cell Lung Cancer biomarkers

Preclinical and clinical studies have identified EGFR mutations and amplification as

early events in the development of NSCLC, predominantly in adenocarcinoma [Herbst

et al., 2008]. The epidermal growth factor receptor (EGFR) is a transmembrane ty-

rosine kinases receptor. Mutations can occur in its catalytic domain, resulting in a

constitutive kinase activity. Since EGFR activates both the PI3K-Akt-mTOR and

the RAS-MAPK pathways, these events may lead to an enhancement in prolifera-

tion, resistance to apoptosis, invasion and angiogenesis. Mutations in the EGFR in

NSCLC are associated with good prognosis as they increase the sensitivity to EGFR

tyrosine kinase activity inhibitors (EGFR-TKIs) such as gefitinib and erlotinib. Nev-

ertheless, most patients that show an initial response will eventually relapse. The

second-generation EGFR-TKI afatinib demonstrated an increased overall response rate

and better progression-free and overall survival in a clinical setting. First-line treat-

ment with EGFR-TKIs is now clinically approved for EGFR mutation-positive NSCLC
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[Korpanty et al., 2014].

Another early event in lung cancer are mutations in KRAS, identified already in

1984: 30% of NSCLC are KRAS mutated, especially adenocarcinomas. K-RAS encodes

for a small GTPase-protein that can switches from an inactive (GDP-binding state)

to an active (GTP-binding) state. When it is active, the K-RAS protein activates

a signal transduction cascade, involving MAP Kinases, that leads to cell growth and

proliferation. Mutations are usually a single missense mutation at codons 12 (e.g., from

glycine to valine G12V) and less frequently at codons 13 and 61, involved in the amino

acid exchanges. Mutations prevent the hydrolysis of GTP, intrinsic or catalyzed by

the GTPase-activating proteins (GAPs ), thereby generating constitutively active and

potentially oncogenic RAS molecules.

EGFR and KRAS mutations are mutually exclusive, which can be due to the

fact that KRAS-MAPK is an important downstream signaling pathway of the EGFR,

explaining why KRAS mutation-positive NSCLC (which were associated with poor

prognosis already in the 1990s) are not sensitive to EGFR-TKIs [Suda et al., 2010].

Although mutations in KRAS are the most common mutations in NSCLC, targeted

therapies specific for patient presenting mutations in KRAS are not available.

The third most common molecular event occurring in lung adenocarcinoma is ALK

translocation and gene fusion (5%) [Korpanty et al., 2014]. The resulting protein shows

a constitutive activity and confers sensitivity to TKIs, such as crizotinib and ceritinib.

A target mutation has not been identified in 43% of lung adenocarcinomas [Ko-

rpanty et al., 2014]. In conclusion, the fraction of lung cancer patients for whom

targeted therapies are available, is still very small. Novel efforts must be dedicated to

the identification of new actionable molecular alterations, with significant diagnostic,

prognostic, or therapeutic implications, to improve therapy response and prognosis.
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1.4.3 Early stage lung cancer biomarkers and HOXB7

Although 73% and 58% of patients with stage IA and IB disease, respectively, are

expected to survive more than 5 years following complete resection [Crinò et al., 2010],

about 27% develop second primary tumors and/or regional and distant metastases

[Martini et al., 1995]. Current diagnostic tools, however, do not allow a precise prog-

nostic evaluation of patients with early stage lung cancer. Selection of patients that

might benefit from adjuvant chemotherapy is, thus, not possible. As a consequence, at

present there is no indication for adjuvant chemotherapy NSCLC patients with stage

I disease [Le Chevalier et al., 2005, Crinò et al., 2010]. The availability of accurate

prognostic markers might change this picture by allowing i) the selection of patients

at high risk of relapse to be included in clinical trials for new therapeutic strategies

and ii) the treatment of high risk patients with stage I disease as patients with more

advanced tumors.

Recently, we showed that in silico approaches can be effective for the identification

of potentially relevant cancer biomarkers. For example, we identified microRNA-based

biomarkers capable to risk stratify breast cancer patients [Monterisi et al., 2015]. The

study was based on meta-analysis of publicly available gene expression datasets in order

to extract information about the expression of intronic-microRNAs from the profile

analysis of the expression of their host genes. The microRNA signature composed by

miR-342, miR-483 and miR-1266 was capable to identify sub-types of breast cancer

with a high metastatic potential (see Appendix chapter 5).

Concerning lung cancer, previous studies in the laboratory led to the discovery of

a 10-gene prognostic signature in stage I lung adenocarcinoma, accurate enough to

correctly predict metastatic disease in patients with stage I lung cancer [Bianchi et al.,

2007]. Our signature showed an accuracy of 75% in an independent cohort of patients

with stage I disease, and outperformed other clinicopathological parameters such as

tumor stage (IA vs. IB), grading, age, sex and the presence of K-RAS mutations

(Fig.1.6).
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Figure 1.6: 10-gene prognostic signature in stage I lung adenocarcinoma. The plot reports
the 10-gene prognostic model applied to a cohort of stage I patients. Data are shown as the probability
of survival (y-axes) over time as a function of a favorable (red line) or unfavorable (green line) signature
[Bianchi et al., 2007].

Recently, we performed an extensive validation of the 10-gene signature using

formalin-fixed paraffin embedded (FFPE) tumor samples from an additional and inde-

pendent cohort of 507 lung cancer patients from the IEO hospital, including 351 stage

I lung adenocarcinomas. Stage I lung adenocarcinoma patients classified as high-risk

patients by the 10-gene signature displayed a 4-fold increase in the risk of death three

years post-surgery (univariate analysis: hazard ratio (HR)=4.0, p=0.03; multivariate

analysis: HR=4.2, p=0.03, ). Of note, the risk model improved the prediction when the

”10-gene risk” was added to traditional clinical and pathological parameters (age, sex,

smoking status and tumor stage; p=0.01, nested likelihood ratio test) were included

(E. Dama et al. manuscript in preparation).

Our 10-gene signature includes HOXB7 among other genes (E2F1, E2F4, MCM6,

RRM2, SF3B1, NUDCD1, SERPININB5, HSPG2 and SCGB3A1). A recent work

using an independent approach (i.e., immunohistochemistry) confirmed, indeed, that

HOXB7 is a prognostic biomarkers in lung adenocarcinoma [Yuan et al., 2014]. A

precise molecular mechanism through which HOXB7 promotes lung cancer progression

and metastatic spreading remains unknown. We believe that understanding the role

of HOXB7 in lung cancer could be useful in the identification of actionable targets to

develop novel therapeutic strategies for metastatic lung cancer.
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Chapter 2

Materials and methods

Cell culture

A549, NCI-H358, HEK-293T and Phoenix-amphotrophic cells were cultured in Dul-

becco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum

(FBS), 2 mM L-glutamine (Glu), 100 U/ml penicillin and 100 U/ml streptomycin

(P/S) at 37◦C in a humidified incubator with 5% CO2. BEAS-2B cells were cultured in

Bronchial Epithelia Basal Medium (BEBM) supplemented 0.5 ng/ml EGF, 500 ng/ml

hydrocortisone, 0.005 mg/ml insulin, 0.035 mg/ml Bovine Pituitary Extract (BPE), 500

nM ethanolamine, 500 nM phosphoethanolamine, 0.01 mg/ml transferrin, 6.5 ng/ml

3,3’,5-triiodothyronine, 500 ng/ml epinephrine and 0.1 ng/ml retinoic acid at 37◦C in

a humidified incubator with 5% CO2 in fibronectin coated plates.

Mytomycin-treated Mouse Embryonic Fibroblast (MEF mitotically inactive) and

mitotically active Oct4-EGFP-MEFs were cultured in DMEM supplemented with 20%

FBS, 100 U/ml P/S and 2 mM Glu at 37◦C in a humidified incubator at low oxygen

condition (3%). Mytomycin-treated MEFs require 0.1% gelatin coated plates.

Primary cells were established from lung primary tumors from patients operated at

the European Institute of Oncology (Milan, Italy) and that had given their informed

consent for the research use of human biological materials. Tissues were dissociated

mechanically into small pieces with scissors and digested enzymatically with collagenase
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type 1 (Invitrogen, 150 u/ml collagenase in DMEM supplemented with P/S and Glu).

Cell suspensions were filtered through a 70 µm filter to eliminate cell aggregates. Red

blood cells were lysed using ACK Lysing Buffer (Lonza). Epithelial cells were plated

in adhesion conditions on collagen coated plates and grown at 37◦C in a humidified

incubator with 5% CO2 in EPI LUNG medium (HAM’S F12 and DMEM 1:1, 1% FBS,

1% Glu, 1% P/S, 0.2% amphotericin, 10 µg/ml transferrin, 1 µg/ml hydrocortisone, 1

µg/ml insulin, Hepes pH 7.5 10 mM, 50 µM ascorbic acid, 15 nM sodium selenite, 0.1

mM ethanolamine, 50 ng/ml colera toxin, 10 nM EGF, 35µg/ml BPE and 10 nM T3).

Colony formation assay

A fixed number of cells was seeded in complete medium in 10 cm plates and incu-

bated for 10 days: i) 500 BEAS-2B cells; ii) 5.000 A549 cells; and iii) 1.000 NCI-H358

cells. Colonies were visualized by staining with 1ml/plate of crystal violet (1% w/v in

35% EtOH, Santa Cruz) for 5 minutes at room temperature. The number of colonies

was determined using the analyze particles tool of the ImageJ program.

Cell proliferation assay

BEAS-2B cells were seeded in triplicates in 6-well plates (40.000 cells/well). Biorad

TC10 automated cell counter was used to count cells every 24 hours for 4 consecutive

days.

Soft agar assay

1% and 0.5% low melting agarose was used for the bottom and the top agar, respec-

tively. NCI-H358 cells were seeded in triplicates within the top agar (10.000 cells/ml;

4ml/well in 6-well plates) and allowed to grow for three weeks at 37◦C. Colonies were

stained with 5mg/ml Thiazolyl Blue Tetrazolium Bromide (MTT, Sigma).
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Transwell migration assay

NCI-H358 cells were starved for 24 hours in serum depleted medium, plated on

the upper layer of a cell permeable membrane and incubated for 14 hours at 37◦C. We

used 10% serum medium as chemotactic stimulus and 0% medium as control. Migrated

cells were stained with DAPI and images were acquired with a fluorescent microscopy,

whereafter cells were counted.

Pneumosphere assay

Cells were plated in low adherent 12 well plates (coated with poly-HEMA, Sigma

Aldrich) at a density of 1500 cells/ml in serum-free mammary epithelial medium

(MEBM, Lonza) supplemented with 1% glutamine, 1% penicillin-streptomycin antibi-

otics, 5 µg/ml insulin, 0.5 µg/ml hydrocortisone, 2% B27 (Invitrogen) 20 ng/ml EGF

and human b-FGF, 4 µg/ml heparin and 1 mg/ml methylcellulose (Sigma Aldrich).

All images were acquired with a DMI6000 B Leica microscope using a 5x objective

lens and LAS-AF image software (Leica). The sphere forming efficiency (SFE) was

calculated automatically using a home-made macro developed with Java and run on

the Fiji software (ImageJ). Criteria for sphere selection were: area ≥ 50 µm; roundness

= 0.30-1.00. %SFE = (n◦ of spheres / n◦ of plated cells) x 100

Stable gene overexpression and gene silencing

For HOXB7 overexpression, HOXB7 open reading frame (ORF, 674bp) was cloned

into the EcoRI site of a standard retroviral pBABE vector (carrying Hygromicin re-

sistance cassette). Primer sequences: FW- GCCAAATTATGAGTTCATTG; REV-

TTTCTCCATCCCTCACTCTT.

For LIN28B overexpression, we used a pBABE-hLIN28B carrying puromycin resis-

tance (addgene).

Production of retroviral particles was performed, briefly, through transfection of

semi-confluent Phoenix-amphotrophic cells by calcium phosphate precipitation in the
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presence of 25 µM chloroquine. Supernatants of transfected cells were collected twice

every 12 hours and freshly used to infect target cells.

For HOXB7 dowregulation, two different short hairpin oligos were designed using

the web available tool pSICO - oligomaker 1.5 (Table.2.1). Forward and reverse an-

nealed oligos were cloned into the pSICOR vector according to Jacks Lab’s protocol

(http://web.mit.edu/jacks-lab/protocols/pSico.html). For LIN28B silencing,

we designed three different short hairpin RNAs (Table.2.1). Production of lentiviral

particles was achieved by plasmids expressing viral proteins GAG, POL, ENV, REV

and co-transfection with lentiviral vectors into semi-confluent HEK-293T cells by cal-

cium phosphate precipitation in the presence of 25 µM chloroquine. Supernatants of

transfected cells were collected 36 hours post transfection and concentrated by centrifu-

gation. Viral particles were resuspended in PBS and used for infection after freezing

at -80◦C.

TUNEL assay

A549 cells were harvest 48 hours post infection with pSICOR vectors, fixed with

2% formaldehyde, stained with In Situ Cell Death Detection Kit, Fluorescein (Roche)

and propidium iodide (PI, 2.5µg/ml) and acquired on a FACS Calibur instrument (BD

Biosciences).

CD90 staining and FACS-sorting

PE hCD90 (BD Pharmingen) staining was performed on lung cancer cell lines and

primary cells. 5x106 cells were stained with the antibody (pure) for 1 hour at room

temperature and subjected to FACS sorting: Influx cell sorted equipped with a 488 nm

laser and with a band pass 575/26 nm optical filter for R-phycoerythrin (PE) detection

(BD). CD90high, CD90low and CD90intermediate cells were collected.
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Gene to silence oligo name oligo sequence

HOXB7 sh - FW2
TGAAAGAATTTCACTACAATTTCAAGAGAATT
GTAGTGAAATTCTTTCTTTTTTC

HOXB7 sh - REV2
TCGAGAAAAAAGAAAGAATTTCACTACAATT
CTCTTGAAATTGTAGTGAAATTCTTTCA

HOXB7 sh - FW3
TGACTGTGGGTCTGGACTAATTCAAGAGATT
AGTCCAGACCCACAGTCTTTTTTC

HOXB7 sh - REV3
TGACTGTGGGTCTGGACTAATTCAAGAGATT
AGTCCAGACCCACAGTCTTTTTTC

LIN28B sh - FW1
TGCAGAGATCTCAGAACGGTTTCAAGAGAAC
CGTTCTGAGATCTCTGCTTTTTTC

LIN28B sh - Rev1
TCGAGAAAAAAGCAGAGATCTCAGAACGGTT
CTCTTGAAACCGTTCTGAGATCTCTGCA

LIN28B sh - FW2
TGTATAGGGGAACAGTATTTTTCAAGAGAAAA
TACTGTTCCCCTATACTTTTTTC

LIN28B sh - Rev2
TCGAGAAAAAAGTATAGGGGAACAGTATTTTC
TCTTGAAAAATACTGTTCCCCTATACA

LIN28B sh - FW3
TGCAGCTGCACTGACTTTAATTCAAGAGATTA
AAGTCAGTGCAGCTGCTTTTTTC

LIN28B sh - Rev3
TCGAGAAAAAAGCAGCTGCACTGACTTTAATC
TCTTGAATTAAAGTCAGTGCAGCTGCA

Table 2.1: List of short hairpin oligos. Short hairpin oligos were designed using the web tool
pSICO - oligomaker 1.5 in order to be cloned into the pSICOR vector to obtain gene silencing according
to Jacks Lab’s protocol (http://web.mit.edu/jacks-lab/protocols/pSico.html). FW = forward
oligo; REV = reverse oligo.
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Dual-Luciferase Reporter Assay

Promoter sequences of LIN28B were cloned upstream of a promoterless firefly lu-

ciferase reporter cassette of pGL3 basic vector (Promega). Customized primers were

designed in order to amplify the promoter sequences of interest from the BAC clone

RP11-633H9 (Table.2.2). For the cloning strategy, we took advantage of the one-step

TOPO TA Cloning, passing through an intermediate into pCR2.1 TOPO vector.

Region Primer sequence Amplicon

2Kb
FW-TGGTAGTGGACTTTTAAAATGTCAG
REV-TTGGTGTACAAATACATCGACTGGA

2239

1Kb
FW-TGGTAGTGGACTTTTAAAATGTCAG
REV-CGTGACTTTGTCAATTACATGC

1016

Intron
FW-TACGCTCGAGAAGGAACAGGACAAAAAAGT
REV-TACGCTCGAGAAGGAACAGGACAAAAAAGT

1066

Table 2.2: List of primers used for cloning of LIN28B promoter constructs. Customized
primers were designed in order to amplify the promoter sequences of interest from the BAC clone
RP11-633H9: 2Kb, 1Kb and Intron. FW = forward primer; REV = reverse primer. Amplicon length
is expressed in base pair.

Phoenix cells were transfected with the pBABE-HOXB7 or pBABE-EV construct

in combination with the different pGL3 constructs and the Renilla luciferase expression

vector under the control of the herpes virus thymidine kinase (HSV-TK). Luciferase as-

say was performed according to Dual-Glo Luciferase Assay System Protocol (Promega).

Chromatin immunoprecipitation assay

HOXB7 ORF was cloned into a pCDNA3.1 N-term-FLAG frame A vector in EcorI

site. A549 cells were transfected with LIPO2000 reagent (Invitrogen) in order to ex-

press the HOXB7-FLAG protein. 48 hours post infection, cells were fixed with 1%

formaldehyde and chromatine was sonicated with Branson Digital Sonifier. For im-

munoprecipitation, anti-FLAG M2-Agarose beads (Sigma), Anti-Histone H3 antibody

(ab1791 abcam) and protein A Sepharose CL-4B (GE Healthcare) were used. 1% of

DNA (obtained through immunoprecipitation after de-crosslinking) was used for PCR

amplification with QuantiFast SYBR Green PCR Kit (Qiagen) using specific primers
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designed with the Primer3 software (http://primer3.ut.ee/) along the LIN28B pro-

moter sequence (Table.2.3). The Chan2 and Chan3 primers were used by Chang and

colleagues [Chang et al., 2009]. the EGFR primers are described in [Jin et al., 2012].

Primer Primer sequence In silico PCR / Reference

a
FW-CTATCCTGGCGGCTCCTCT
REV-CCCAAGAGCTGGAGGACATA

chr6:105404070+105404147

b
FW-GCCCTATGTCCTCCAGCTC
REV-CCCAGTTTTCCAGCCTAACA

chr6:105404124+105404198

c
FW-FWGCTGGAAAACTGGGCTGTTA
REV-CACAGGTTTCTCTGCCATCTC

chr6:105404185+105404262

d
FW-ACTGCCATGGAATAGCTGAA
REV-GGGAGGGGGTCGTTTAAATA

chr6:105,404,551-105,404,627

Cha2
FW-TGTAATTGACAAAGTCACGTGTGC
REV-TCCTCTCTCCAGTTTCTGGCC

Chang et al. 2009

Cha3
FW-GCAAATAACGCTGGATTCAGTG
REV-AGAGCTACTAGTTAAGGCACATGGG

Chang et al. 2009

EGFR
FW-CAAGGCCAGCCTCTGAT
REV-CCCCTTTCCCTTCTTTTGTT

Jin et al. 2012

Table 2.3: List of primers used for ChIP. Customized primers a, b, c and d were designed with
Primer3 software along LIN28B promoter sequence. The Chan2 and Chan3 primers are described in
[Chang et al., 2009] and the EGFR primer in [Jin et al., 2012].

Cell reprogramming

Mitotically active MEFs were infected with the lentiviral vector expressing OCT4,

KLF4 and SOX2 (OKS, was a kind gift from Dr. Naldini) and with the pBABE-

HOXB7 or pBABE-EV viral constructs produced as mentioned above. One day after

infection, cells were harvested and cultured on mitotically inactivated monolayer feeder

cells in ESC medium (DMEM-F12 1:1 supplemented with 20% KnockOutTM Serum

Replacement, 1 mM L-glutamine, 100 U/ml penicillin, and 100 U/ml streptomycin, 0,1

mM non-essential amino acids, 1/500 home-made leukaemia inhibitory factor and 0.1

mM 2-β-mercaptoethanol) at 37◦C in a humidified incubator at low oxygen conditions

(3%).

A slightly different ESC medium was used to reprogram BEAS-2B cells after OKS

infection: DMEM-F12 1:1 supplemented with 20% KnockOutTM Serum Replacement,
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1 mM L-glutamine, 100 U/ml penicillin, 100 U/ml streptomycin, 0,1 mM non-essential

amino acids, 10 ng/ml FGF and 0.05 mM 2-β-mercaptoethanol)

Alkaline phosphatase assay

Alkaline phosphatase staining was performed using the Vector Red Alkaline Phos-

phatase Substrate kit (Vector Laboratories), following manufacture’s instructions, two

and three weeks post infection for MEF and BEAS-2B reprogrammed cells, respectively.

Teratoma assay

iPSC were cultured in ESC medium for three passages. 2x106 cells were injected

subcutaneously into NOD-SCID mice. The mice were sacrificed by cervical dislocation

2-3 weeks after injection and tumors were isolated and fixed in 4% formaldehyde.

Western blot assay

Cells were harvested in Ripa buffer (50 mM Tris HCl pH 7.4, 150 mM NaCl, 1

mM EDTA, 1% Triton, 0.2% SDS, 1% NaDeoxicolate and Protein Inhibitors cocktail

CALBIOCHEM). Western blott was performed according to standard procedures: sam-

ples were prepared in Laemmli loading buffer (5x: 10% SDS, 50% Glycerol, 300mM

TRIS HCl, 0.5 M DTT (Dithiothreitol) and 0.02% Bromophenol blue), loaded into

10% acrylamide gels and transferred to nitrocellulose membranes. Antibodies used

against human proteins: HOXB7 (Abcam), LIN28B (Cell signalling), Vimentin (Santa

Cruz), E-cadherin (BD), N-cadherin (BD), GAPDH (Abcam), FLAG (Sigma Aldrich),

Actin (Sigma Aldrich), Tubulin (home-made) and HA (Babco); and anti-mouse and

anti-rabbit (Biorad) as secondary antibodies.

Immunofluorescence assay

Cells were fixed with 4% formaldehyde for 10 minutes at room temperature, perme-

abilized in 0.1% Triton and incubated with specific antibodies: Vimentin (Santa Cruz),
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E-cadherin (BD), N-cadherin (BD). CY3 goat anti-mouse or anti-rabbit were used as

secondary antibodies. The nuclei were stained with DAPI. All imagines were acquired

with a fluorescence microscopy, excited with ultraviolet light and detected through a

blue/cyan filter.

Immunohistochemestry

Teratoma samples were processed in consecutive sections and stained with haema-

toxylin and eosin. Immunostaining for desmin, protein S-100 and pan-cytokeratin

(AE1/AE3) were performed by the Molecular Pathology Division at the IEO hospital.

RNA extraction and RT-qPCR

TRIZOL reagent (Invitrogen), choloroform and isopropyl alcohol were used for total

RNA isolation from cells. From FFPE archival lung tumor samples RNAeasy FFPE kit

(QIAGEN) was used. RNA was quantified by Nanodrop (Agilent Technologies). Total

RNA (1 ug) was retrotranscribed with QuantiTect or miScript Reverse Transcription

Kit (Qiagen). mRNA and miRNA expression profiles were obtained by QuantiTec

or miScript Primer Assays (Table.2.4-2.5) using QuantiFast or miScript SYBR Green

PCR Kit (Qiagen). For HOXB7 mRNA quantification, specific primers were designed

(Table.2.6). For LIN28B we used primers described by Viswanathan and colleagues

[Viswanathan et al., 2009]. Amplification reactions were performed with LightCycler

480 (ROCHE) using the manufacturer’s recommended cycling conditions. Relative

expression ratios of miRNAs were obtained using the 2ddCT method: raw data, i.e.,

cycle threshold (Ct) values, were exported to Excel (Microsoft) and were normalized to

the Ct of a housekeeping gene and then to the reference sample. Results are expressed

as mean ± standard deviation calculated from at least two technical replicas.
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Gene QuantiTec Primer Assay
ABCG2 Hs ABCG2 1 SG
ALCAM / CD166 Hs ALCAM 1 SG
ALDH1A1 Hs ALDH1A1 1 SG
CD24 Hs CD24 va.1 SG
CD44 Hs CD44 1 SG
CD90 / THY1 Hs THY1 1 SG
E-CADHERIN / CDH1 Hs CDH1 1 SG
EGFR Hs EGFR 1 SG
EPCAM Hs EPCAM 1 SG
FGF2 / bFGF Hs FGF2 1 SG
GAPDH Hs GAPDH 2 SG
GUSB Hs GUSB 1 SG
ITGA6 Hs ITGA6 1 SG
KLF4 Hs KLF4 1 SG
LIN28 Hs LIN28 1 SG
MYC Hs MYC 1 SG
NANOG Hs NANOG 2 SG
N-CADHERIN / CDH2 Hs CDH2 1 SG
PODXL Hs PODXL va.1 SG
POUF5F1 / OCT4 Hs POUF5F1 1 SG
PROM1 Hs PROM1 1 SG
RRN18S Hs RRN18S 1 SG
SNAI1 Hs SNAI1 1 SG
SNAI2 Hs SNAI2 1 SG
SOX2 Hs SOX2 1 SG
TWIST Hs TWIST1 1 SG

Table 2.4: List of QuantiTec Primer Assay.

Gene miScript Primer Assay
SNORD61 Hs SNORD61 11
SNORD72 Hs SNORD72 11
Let-7a Hs let-7a 1
Let-7b Hs let-7b 1
Let-7c Hs let-7c 1
Let-7d Hs let-7d 2
Let-7e Hs let-7e 2
Let-7f Hs let-7f 1
Let-7i Hs let-7i 1

Table 2.5: List of miScript Primer Assay.
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Gene Customized primer sequence
HOXB7 FW CTGGATGCGAAGCTCAGG
HOXB7 REV CAGGTAGCGATTGTAGTGAAATTCT
LIN28B FW GCCCCTTGGATATTCCAGTC
LIN28B REV TGACTCAAGGCCTTTGGAAG

Table 2.6: List of customized RT-qPCR primers. LIN28B primers were described by
Viswanathan and colleagues [Viswanathan et al., 2009]. FW = forward primer; REV = reverse
primer.

Gene Set Enrichment Analysis

Gene sets enrichment analysis was performed using GSEA software (Subrama-

nian, Tamayo, et al., (2005, PNAS 102, 15545-15550). Gene Sets (total of 3273

gene sets, C2 category) were downloaded from the MSIGDB database (http://www.

broadinstitute.org/gsea/msigdb/index.jsp). A gene set was considered signifi-

cantly enriched when the nominal p-value was less than 0.05 after 1.000 random shuf-

fling of the experimental labels.

Genomatix

Genomatix is a software tool that utilizes a large library of matrix descriptions for

transcription factor binding sites to locate matches in DNA sequences (www.genomatix.de).

We used genomatix to search for an enrichment of homeodomain transcription factor

binding sites in the 1Kbp sequences upstream and downstream of the LIN28B TSS.

27

http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp




Chapter 3

Results

3.1 Biological relevance of HOXB7 in lung cancer.

As previously discussed, HOXB7 was shown to be overexpressed in leukemia [Storti

et al., 2011], melanoma [Caré et al., 1996], breast [Caré et al., 1998, Wu et al., 2006, Jin

et al., 2012], colorectal [Liao et al., 2011], pancreatic [Nguyen Kovochich et al., 2013]

oral cancer [De Souza Setubal Destro et al., 2010] and more recently in lung cancer

[Yuan et al., 2014, Bianchi et al., 2007]. We set out to characterize the molecular

mechanisms underlying HOXB7-mediated regulation and pathogenesis of lung cancer.

3.1.1 Analysis of HOXB7 expression in lung cancer expression

datasets suggests a role in stemness and reprogramming.

We performed a meta-analysis of high-throughput gene expression datasets of large

cohorts of lung cancer patients in order to evaluate the correlation of HOXB7 ex-

pression with other genes involved in cancer relevant pathways. We took advantage

of three publicly available gene expression datasets comprising a total of ∼1000 lung

adenocarcinoma samples:

The LUAD dataset of The Cancer Genome Atlas (TCGA) collection: 499 lung ade-

nocarcinomas profiled by RNA-seq.
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Michigan cohort : 442 primary lung adenocarcinomas profiled by Affymetrix (Gene-

Chip Scanner 3000 or 2500), collected by a consortium of four institutions: Uni-

versity of Michigan Cancer Center (UM), Moffitt Cancer Center (HLM), Memo-

rial Sloan-Kettering Cancer Center (MSK) and the Dana-Farber Cancer Institute

(DFCI) [Beer, 2008]).

Tokyo Cohort : 226 lung adenocarcinomas subjected to expression profiling by Affy-

metrix (U133Plus2.0 arrays), consisting of 168 stage I and 58 stage II lung ade-

nocarcinoma samples collated at the National Cancer Center Hospital, Tokyo

[Okayama et al., 2012].

We analyzed the mRNA expression profiles generated for thousands of genes from

these datasets in order to correlate the gene expression profile of HOXB7 with a col-

lection of gene sets. With gene set, we refer to a group of genes that share a common

regulation, biological function or chromosomal location. We used the Gene Set Enrich-

ment Analysis (GSEA), a computational method that permits the assessment of gene

sets differentially enriched between two biological states (e.g., high versus low HOXB7

expression) [Subramanian et al., 2005].

Before running the GSEA, lung cancer patients were ranked according to HOXB7

expression level and divided into two classes: HOXB7-high (above the third quartile of

HOXB7 expression distribution) and HOXB7-low (below the first quartile of HOXB7

expression distribution). Profiled genes were thus ordered in a ranked list by the

software according to their differential expression. We then interrogated the GSEA

software in order to determine whether members of a specific gene set tended to occur

towards the top (or the bottom) of the ranked list, in which case the gene set was

associated with the class distinction. This approach permitted us to determine which

gene-sets correlate positively (”enriched”) with HOXB7-high lung cancer patients in a

total of 3700 samples, representing the entire collection of known molecular pathways.

Among the top scores (nominal p-value <0.05), we identified gene-sets involved

in cell proliferation, epithelial-to-mesenchymal transition (EMT), neoplastic transfor-
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mation and in tumor progression and metastasis (Fig.3.1). The involvement of these

gene-sets was expected due to previous reports describing the involvement of HOXB7 in

these pathways [Caré et al., 1996, Wu et al., 2006]. Expression analysis of single genes

known as EMT markers, such as N-cadherin and TWIST1, were significantly upregu-

lated in HOXB7-high patients in the three database, SNAI1 in the LUAD and Tokyo

cohorts and SNAI2 in LUAD cohort (p-value was calculated by the nonparametric

Wilkoxon test; Fig.3.2), further confirming the bona fide of our analysis.

We also analyzed the expression level of FGF2 and EGFR, which are known HOXB7

transcriptional targets [Caré et al., 1998, Jin et al., 2012]. We found that both were,

indeed, upregulated in HOXB7-high tumors (Fig.3.2).

All together these results confirmed the potential and reliability of the GSEA and

that of our approach to identify molecular pathways possibly modulated by a candidate

gene.

The GSEA also revealed the expression of several enriched gene-sets (p-value <0.05)

representing mechanisms involved in stem cell (SC) biology and in induced pluripotent

cells (iPS), suggesting a novel role for HOXB7 in modulating these cancer-relevant

pathways. To further investigate this important finding, we analyzed in details the

gene expression profile of 16 genes that are known or putative SC and IPS markers

in these publicly available gene expression datasets. We found that 7 genes (44%)

were indeed upregulated upon HOXB7 overexpression: ALDH1A1, BMI-1(COMMD3),

CD24, CD49f (ITGA6), CD90 (THY1), LIN28B and SOX2 (Fig.3.2).

In conclusion, the GSEA and gene expression analysis suggest an association for

HOXB7 with the activation of a transcriptional program relevant for stem cell biology

in cancer, which may support tumor onset and progression. Our findings prompted us

to further investigate the possible role of HOXB7 in cancer stem cell biology and lung

tumor progression.
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NES           p-value
JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP 1.62 0.018

SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP 1.58 0.013
SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP 1.64 0.027

ANASTASSIOU_CANCER_MESENCHYMAL_TRANSITION_SIGNATURE 1.62 0.042
ANASTASSIOU_CANCER_MESENCHYMAL_TRANSITION_SIGNATURE 1.95 <0.001

SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP 1.94 0.008
GOTZMANN_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP 1.89 <0.001
ECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP 1.81 0.01

CHANG_CYCLING_GENES 1.56 0.021
REACTOME_SYNTHESIS_OF_DNA 1.55 0.041

CHANG_CYCLING_GENES 2.12 0.002
REACTOME_DNA_REPLICATION 1.89 0.004
REACTOME_G1_S_TRANSITION 1.87 0.004

WANG_NEOPLASTIC_TRANSFORMATION_BY_CCND1_MYC 1.8 0.004
BARIS_THYROID_CANCER_UP 1.75 0.002

KAPOSI_LIVER_CANCER_MET_UP 1.74 0.004
IIZUKA_LIVER_CANCER_PROGRESSION_L0_L1_UP 1.87 0.002

LIU_PROSTATE_CANCER_UP 1.76 0.014
LIAO_METASTASIS 1.84 <0.001

LI_WILMS_TUMOR_VS_FETAL_KIDNEY_2_UP 1.82 0.002
CHANDRAN_METASTASIS_UP 1.8 0.001

RAMASWAMY_METASTASIS_UP 1.75 0.011
CROMER_TUMORIGENESIS_UP 2.29 0.001

VECCHI_GASTRIC_CANCER_EARLY_UP 2.02 0.001
SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 2.02 0.006

JAEGER_METASTASIS_UP 1.97 <0.001
WINNEPENNINCKX_MELANOMA_METASTASIS_UP 1.93 0.01

RAMASWAMY_METASTASIS_UP 1.82 0.006
LEE_LIVER_CANCER_SURVIVAL_DN 1.79 0.016

MIKKELSEN_IPS_WITH_HCP_H3K27ME3 1.92 <0.001
MIKKELSEN_ES_HCP_WITH_H3K27ME3 1.74 0.013

BENPORATH_ES_2 1.6 0.019
CONRAD_STEM_CELL 1.48 0.029

BENPORATH_ES_1 1.65 0.014
GUENTHER_GROWTH_SPHERICAL_VS_ADHERENT_UP 1.49 0.032

WONG_EMBRYONIC_STEM_CELL_CORE 1.83 0.002
MEISSNER_NPC_HCP_WITH_H3K27ME3 1.8 0.002

STEM/iPS
Michigan Cohort

Tokyo Cohort

EMT

PROLIFERATION

CANCER

Michigan Cohort

Tokyo Cohort

Tokyo Cohort

LUAD-TCGA

Michigan Cohort

Tokyo Cohort

A.

B.

NOM p-value: 0.013 NOM p-value: 0.002

NOM p-value: 0.006 NOM p-value: 0.014

LUAD-TCGA

LUAD-TCGA

LUAD-TCGA

Figure 3.1: Analysis of HOXB7 expression in lung cancer expression datasets suggests a
role in stemness and reprogramming. A. Analysis of gene expression datasets (LUAD-TGCA,
Michigan cohort and Tokyo cohort) of ∼1000 lung adenocarcinomas. Patients were ranked according
to their HOXB7 expression and divided into two classes: HOXB7-high (above the 75th percentile) and
HOXB7-low (below first quartile). GSEA of more than 3700 gene sets revealed top scoring gene sets
in tumor progression, metastasis, EMT, SC homeostasis and iPS, all of which correlate positively with
high HOXB7 expression (Nominal p-value: <0.05). B. Four enriched plots are reported as examples.
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Figure 3.2: Hierarchical cluster analysis of STEM markers and EMT markers and two
known HOXB7 transcriptional targets (EGFR and FGF2). The markers were collected by
literature search and analyzed in three independent cohorts of lung tumors (adenocarcinoma), pro-
filed by RNA-seq (LUAD-TCGA cohort) and Affymetrix microarray (Michigan and Tokyo cohorts).
Hierarchical clustering analysis was performed using the log2 of the mean gene expression ratio of
HOXB7-high and HOXB7-low expressing tumors. The -log(10)p-value values to shows the signifi-
cance of the differential expression (p<0.05 corresponds to -LogP>1.3). P-values were calculated by
the non parametric Wilcoxon test.
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3.2 HOXB7 overexpression in lung cells augments

a sub-population with stem-like properties.

We set out to study the effects of forced HOXB7 expression in a lung cell model sys-

tem in order to clarify the role of HOXB7 in lung cancer progression. We analyzed the

expression of HOXB7 in a panel of lung cancer cell lines and identified a low-HOXB7

expressing normal lung cell line, BEAS-2B (Table.3.1, Fig.3.3 and Supplementary Fig.

5.1). We stably overexpressed HOXB7 (Fig.3.4 A and Fig.3.6 D) in these cells upon

retroviral infection with a pBABE-HOXB7 construct (carrying the full length coding

sequence of HOXB7) or a pBABE empty vector (EV). Importantly, in the HOXB7 over-

expressing cells we scored an increased expression of the previously described HOXB7

target genes, the bFGF (FGF2) and EGFR genes [Caré et al., 1998, Jin et al., 2012],

suggesting the functionality of the exogenous protein (Fig.3.4 B).

Cell line Source Tissue Genetics
BEAS-2B normal lung normal bronchus SV40 T antigen, p53 wt
NCI-H1975 lung adenocarcinoma primary tumor EGFR and PIK3CA mut, p53 wt

NCI-H358 bronchioalveolar carcinoma primary tumor K-Ras mut, p53 negative
NCI-H2228 lung adenocarcinoma primary tumor p53 wt
NCI-H23 adenocarcinoma primary tumor K-Ras and p53 mut
CALU-3 lung adenocarcinoma pleura-effusion K-Ras wt, p53 mut
NCI-H838 lung adenocarcinoma pleura-effusion p53 wt
A549 lung adenocarcinoma primary tumor K-Ras mut, p53 wt

Table 3.1: Lung Cell Lines. Data were collected from the ATCC database and the TP53 web site:
http://p53.free.fr/Database/Cancer_cell_lines/NSCLC.html

We then analyzed the gene expression profile of a panel of lung SC/iPS markers in

BEAS-2B cells by qRT-PCR (for a total of 14 genes) and found that five of these genes

were indeed induced upon HOXB7 overexpression (SOX2, NANOG, CD90/THY1,

LIN28 and LIN28B; Fig.3.5 A), confirming the in silico analysis by GSEA. Of note, we

could not appreciate any induction of CD44, CD166, EPCAM, PODXL, ABCG2 and

OCT4 (Fig.3.5 A).

Based on these results, we then assessed whether HOXB7 expression could be func-
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Figure 3.3: Expression of HOXB7 in NSCLC and BEAS-2B cell lines. The mRNA ex-
pression of HOXB7, (analyzed by RT-qPCR) varied grately between the different cell lines. The
normal lung epithelial cell line BEAS-2B showed a low HOXB7 mRNA expression. The NCI-H358
lung bronchoalveolar carcinoma cell line (defined as early stage lung adenocarcinoma [Brambilla et al.,
2001]) showed undetectable levels of HOXB7. The Calu-3, NCI-H838 and A549 cell lines displayed
the highest expression levels of HOXB7 mRNA (∼30 fold more than BEAS-2B).
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Figure 3.4: Overexpression of HOXB7 in BEAS-2B increases the expression of known
HOXB7 transcriptional targets. A. Overexpression of HOXB7 by retroviral infection of pBABE-
HOXB7 or control empty vector (EV) was verified by RTqPCR. B. RT-qPCR analysis of two known
HOXB7 transcriptional targets FGF2 (bFGF) and EGFR. *, significant p-value (p<0.05; Student’s
t-test, two tailed).

35



3.2. HOXB7 OVEREXPRESSION IN LUNG CELLS AUGMENTS A SUB-POPULATION WITH
STEM-LIKE PROPERTIES. A.Y. 2014-2015

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

BEAS-2B-EV BEAS-2B-HOXB7  

SF
E

 

BE
A

S-
2B

-E
V

 
BE

A
S-

2B
-H

O
X

B7
 

5 x 

5 x 

A.

B. C. p=0.021

0 

2 

4 

6 

8 

10 

12 

SOX2 

NANOG 

CD90
/T

Hy1 

LIN
28

B 

LIN
28

 

ALDH1A
1 

PODXL 

ABCG2 

ALCAM
/C

D16
6 

IT
GA6/C

D49
f 

POU5F
1/O

CT4 
M

YC 

EPCAM
 

CD24
 

CD44
 

m
R

N
A

 ex
pr

es
sio

n 
ra

tio
 n

or
m

al
iz

ed
 

to
 G

U
SB

 an
d 

BE
A

S 
EV

 BEAS-2B EV 

BEAS-2B HOXB7 

*

* *
*

*

*

Figure 3.5: Overexpression of HOXB7 in BEAS-2B lung cells increases stem cell prop-
erties. A. A panel of lung SC markers and genes involved in iPS (for a total of 14 genes) analyzed
by RTqPCR in BEAS-HOXB7 and control cells (BEAS-EV). *, significant p-value (p<0.05; Student’s
t-test, two tailed). B. Representative images of pneumospheres in cells overexpressing HOXB7 and in
control cells. C. Quantification of the sphere forming efficiency (SFE) in cells overexpressing HOXB7
and in control cells (n=2).
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tionally related with the stem cells compartment. We performed a ”pneumosphere

assay”, following the protocol used for generating mammospheres, as described by

Dontu and colleagues [Dontu et al., 2003]. This assay consists in growing epithelial

cells in vitro under anchorage-independent conditions (we used tissue culture plates

that impair the adhesion of cells) in a growing medium that is depleted of serum com-

ponents in order to preserve the undifferentiated state of the cells. In these conditions,

only stem or progenitor cells are able to survive and grow as clonal spheroids, defined

as pneumospheres. We can thus assume that the number of formed clonal spheroids

is proportional to the number of stem cells present in the initial population [Dontu

et al., 2003]. Our results were encouraging: the BEAS-2B-HOXB7 cells showed a 3.1%

sphere forming efficiency (SFE) (Fig.3.5 B-C), which was a two-fold increase of the

SFE derived from the control cells (1.5%).

This finding shows BEAS-2B-HOXB7 cell are enriched in stem cell properties (i.e.,

ability to grow as spheres in non adhesion and serum-free conditions), further sup-

ported by the observation of an occurred EMT in these cells (Fig.3.6). Indeed, gain of

stem cell properties has been recently linked to EMT, revealing a convergence among

these two processes [Mani et al., 2008, Kong et al., 2010]. The BEAS-HOXB7 cells

appeared scattered and were characterized by a spindle-like shape, whereas control cells

maintained their cobblestone-like phenotype, typical of epithelial cells (Fig.3.6 A). We

then monitored known EMT markers for 7 weeks post infection. Already in the sec-

ond week post infection, the BEAS-2B-HOXB7 cells showed an increased expression of

the mesenchymal markers N-cadherin and Vimentin (Fig.3.6 C). On the contrary, no

significant changes in E-cadherin expression were detected even two months post infec-

tion (Fig.3.6 B-D). Previous studies have reported the achievement of EMT without

concomitant loss of E-cadherin expression [Hollestelle et al., 2013].

In line with the expected behavior of mesenchymal cells [Kalluri and Weinberg,

2009], cells overexpressing HOXB7 showed an induced proliferative advantage, as shown

by previous studies in breast cancer and melanoma cells [Caré et al., 1996, Wu et al.,
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Figure 3.6: Overexpression of HOXB7 in BEAS-2B cells induces EMT. A. Light mi-
croscopy images of BEAS-2B-HOXB7 cells and empty vector (EV) control cells (4x magnification).
B. Immunofluorescence staining of cells as in A: Vimentin (red), E-cadherin (green), cell nucleus (blue,
stained with DAPI) (20x magnification). C. RT-qPCR analysis of EMT marker genes (N-cadherin
(N-cad), E-cadherin (E-Cad) and vimentin) in cells as in A. *, significant p-value (p<0.05; Student’s
t-test, two tailed). D. Expression of HOXB7 and EMT markers (N-cadherin (N-cad), E-cadherin
(E-Cad) and Vimentin) in cells as in A were analyzed by WB analysis; actin, loading control. Whole
cell lysates were collected every week post infection for seven weeks.
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Figure 3.7: Overexpression of HOXB7 in BEAS-2B cells increases cell proliferation. A-
B. Number and filled area of formed colonies by BEAS-HOXB7 and control cells (wt and EV, n=2).
C. Cell proliferation assay in BEAS-2B-HOXB7 and control cells (n=2).

2006]. Colony formation assay revealed a 42% increase in colony number in BEAS-

2B-HOXB7 cells compared to control, even though control cell colonies occupied a

comparable area of the plate surface (Fig.3.7 A-B). Cell proliferation assay confirmed

the proliferative advantage in HOXB7-overexpressing cells (Fig.3.7 C).

We then selected the lung cancer cell line NCI-H358, characterized by undetectable

levels of HOXB7 (Fig.3.8 A-B), in order to study the effects of overexpressing HOXB7

in a cancer contest. After infection with the pBABE-HOXB7 retroviral construct or

the EV control, we found that HOXB7 was indeed able to increase cell proliferation,

in line with our results obtained in HOXB7-overexpressing BEAS-2B cells. Colony

formation assay in HOXB7-expressing NCI-H358 cells resulted in a 4-fold and 22-fold

increase in colony number in normal conditions and in serum depleted condition, re-

spectively, compared to control cells (Fig.3.8 C-D). NCI-H358-HOXB7 cells showed

also an increased ability to form colonies in non-adhesion conditions (2.3-fold increase,

Fig.3.8 F) and sustained migratory phenotype (10-fold faster in transwell assay com-

pared to control cells, Fig.3.8 D). We also observed an induction of EMT upon HOXB7

overexpression: the expression of Vimentin and N-cadherin was induced and that of

E-cadherin was downregulated (Fig.3.9).
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Figure 3.8: Overexpression of HOXB7 in H358 lung cancer cells increases proliferation
and migration. A. Western blot (WB) analysis of HOXB7 expression in H358-HOXB7 and control
cells (wt and EV); Actin: loading control. B. RT-qPCR analysis of HOXB7 mRNA expression in cells
as in A. C-D. Crystal violet staining (D) and quantification (C) of BEAS-HOXB7 and control cell
colonies (wt and EV) grown in 1% and 10% serum (n=3). D. Transwell migration assay of cells as in
A grown in 0% and 10% serum. F. Quantification of colonies grown in non-adhesion conditions (soft
agar, n=2). P-values were calculated using Student’s t-test, two tailed.
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Figure 3.9: Overexpression of HOXB7 in H358 lung cancer cells induces EMT. A.. Light
microscopy images of H358-HOXB7 and control (EV) cells (10x magnification). B. Immunofluores-
cence staining of vimentin (red), E-cadherin (E-cad, green) and cell nucleus (blue, stained with DAPI)
in cells as in A (60x magnification). C. WB analysis of EMT markers (N-cadherin (N-cad), E-cadherin
(E-cad) and ZEB1) on whole cell extracts. GAPDH and Actin: loading controls.D. RT-qPCR analysis
of EMT marker genes (E-cadherin (E-cad), N-cadherin (N-cad) and vimentin). *, significant p-value
(p<0.05; Student’s t-test, two tailed).
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3.2.1 The CD90high cells form spheres and are enriched upon

overexpression of HOXB7.

In order to further characterize stem properties in HOXB7-high expressing cells, we

examined the gene expression profile of the panel of the lung SC/iPS markers analyzed

by qRT-PCR (Fig.3.5 A). The surface stem marker CD90 showed a 4.5-fold induc-

tion and was one of the most upregulated genes in BEAS-HOXB7 cells. CD90, the

glicosylphosphatidylinositol-anchored glycoprotein THY1, has recently been proposed

and characterized as a lung cancer stem cell marker in A549 and H446 lung cancer cell

lines [Yan et al., 2013] and in primary lung cancer cells [Wang et al., 2013]. Further-

more, breast stem-like cells require CD90 to sustain the cancer stem cell compartment

[Lu et al., 2014]. Therefore, we used CD90 as a stem marker to further characterize

the interplay between HOXB7 expression and the stem cell compartment.

We first analyzed the cell surface expression of CD90 in BEAS-2B cells by FACS

analysis using a human CD90 monoclonal antibody. CD90 was heterogeneously ex-

pressed in BEAS-2B control cells (Fig.3.10). The bulk population presented a comet

shape with a head negative for CD90 (56.9%), a central body with an intermediate

expression (21.24%) and a tail of few cells characterized by high CD90 levels (4.43%)

(Fig.3.10 A). On the contrary, in BEAS2B-HOXB7 overexpressing cells the bulk pop-

ulation resulted more homogeneously distributed along the x-axis of the plot, with a

5-fold increase of the CD90high population (21.45%) compared to control cells (Fig.3.10

B).

We then performed a SFE assay using BEAS-2B sorted cells and found that the

CD90high populations were clearly the ones able to form spheres both in control and in

BEAS-HOXB7 cells (22.75% and 14.71% SFE, respectively). Sphere forming efficiency

ranged between 1.64% and 00.4% in the CD90int and CD90low populations, respec-

tively (Fig.3.11). Subsequent RTqPCR analysis revealed a 1.5-fold increase of HOXB7

expression in CD90high cells compared to CD90low cells (Fig.3.10 C).

We also quantified the CD90 content in two primary lung cancer cell lines with
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Figure 3.10: CD90 is enriched upon HOXB7 overexpression in BEAS-2B cells. A-B.
Representative images of two FACS analyses of the CD90 cell surface marker in BEAS-HOXB7 and
control (EV and un-stained) cells. Three populations were highlighted: CD90high (purple), CD90int

(green) and CD90low (orange). C. Expression analysis of the CD90 cell surface marker and HOXB7
by RTqPCR with total RNA extracts from CD90high, CD90int and CD90low cells. P-values were
calculated using Student’s t-test, two tailed).
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Figure 3.11: The CD90high cells form more spheres than CD90int and CD90low BEAS-
2B cells. A. Representative images of pneumospheres in cells overexpressing HOXB7 and in control
cells (EV) sorted according to CD90 expression. Images were acquired a 5x objective lens. B.
Quantification of the sphere forming assay performed with CD90-sorted cells; data are reported as
SFE=% of grown spheres over the total number of seeded cells (n=1 in technical triplicates. P-values
were calculated using Student’s t-test, two tailed).
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high and low HOXB7 endogenous levels, established from two patients operated at

the IEO hospital (Fig.3.12 A): i) a 76-year old patient diagnosed with a Stage IIa

adenocarcinoma and negative for HOXB7 (assessed by RTqPCR analysis); and ii) a

78-year old patient diagnosed with a Stage IIa lung adenocarcinoma and positive for

HOXB7 expression (RTqPCR data in fig.3.12 A). FACS analysis revealed that CD90

was expressed only in 2.1% of cells from the first patient but in 19.7% of cells from the

second patient (positive for HOXB7 expression, Fig.3.12 B).

Taken together, these results confirmed that HOXB7 is capable of expanding a

subpopulation of cells with the stem cells characteristic (i.e., ability to grow as spheres)

and is characterized by a cell surface marker recently shown to be tightly linked to

cancer stem cells [Lu et al., 2014].

3.3 HOXB7 activates the transcription of LIN28B,

a gene involved in cancer stem cells biology and

tumor progression.

When we analyzed the expression profile of a panel of lung SC markers and genes

involved in stem/iPS cells in BEAS-2B cells, we found SOX2, NANOG, CD90, LIN28

and LIN28B to be strongly induced upon HOXB7 overexpression (Fig.3.5).

Expression modulation of both the homologs LIN28 and LIN28B was an important

finding for us for two main reasons: i) LIN28/B plays a role in EMT [Liu et al., 2013],

in stem cell homeostasis [Newman et al., 2008] and in cancer stem cells [Shyh-Chang

and Daley, 2013]; and ii) LIN28/B is involved in lung cancer and other cancer types

[Viswanathan et al., 2009].

We, therefore, reasoned that LIN28/B could represent an important effector for

HOXB7 signaling in lung cancer and actually represent a link between HOXB7 modu-

lation of the SC-like compartment and lung cancer progression.
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Figure 3.12: The stem marker CD90 is enriched in a high-HOXB7 expressing lung
primary cell line compared to a low-expressing one A. RT-qPCR analysis of HOXB7 and
LIN28B expression. Total RNA was extracted from primary lung cancer cells stabilized from two
patients operated at the IEO hospital. P-values were calculated using Student’s t-test, two tailed. B.
Representative images of one FACS analysis of the CD90 cell surface marker in the two primary cell
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3.3.1 Correlation of HOXB7 and LIN28B expression.

We initially determined the correlation between HOXB7 and LIN28/B expression

in lung cancer patients and in a panel of lung cancer cell lines. Real-Time PCR analysis

revealed a strong correlation in 7 out of the 8 cell lines (87.5%) between HOXB7 and

LIN28B (Fig.3.13 A) but only in 4 out of 8 cell lines (50%) between HOXB7 and LIN28

(Fig.3.13 B). Indeed, it was more likely to find LIN28B over expressed when HOXB7

was expressed at higher levels and vice-versa.

Moreover, as already discussed, gene expression analysis of TCGA lung adenocarci-

noma patients showed a significant enrichment of LIN28B in HOXB7-high lung tumors,

while LIN28 expression was not enriched (Fig.3.13). Interestingly, both HOXB7 and

LIN28B resulted significantly more expressed in cancer samples (468 adenocarcinomas)

compared to normal lung tissues (58 samples) from the LUAD dataset (Fig.3.14). Of

note, we also found LIN28B (but not LIN28) among the top-ten upregulated genes in

a HOXB7-overexpressing myeloma cell line, profiled by expression microarray [Storti

et al., 2011].

The coexpression of HOXB7 and LIN28B was also verified in a set of primary lung

adenocarcinomas (N=22, R=0.6; p-value = 0.004; Fig.3.13 C) originally screened by

qRT-PCR [Bianchi et al., 2007] and in the previously discussed primary lung cancer

cell lines established from two lung adenocarcinomas (Fig.3.12 A).

From a molecular point of view, LIN28B gene codes for a RNA binding protein

that regulates the maturation of Let-7 microRNA family members, blocking their sub-

sequent maturation [Newman et al., 2008]. In our model system, western blot and

immunofluorescence analysis of BEAS-2B cells confirmed the increased expression of

LIN28B in HOXB7 overexpressing cells (Fig.3.15 B-C), which was accompanied consis-

tently by a ∼40% reduction of six out of eight let-7 miRNA family members (Fig.3.15

D). These finding are similar to the results obtained in NCI-H358 cells overexpressing

HOXB7 (Fig. 3.16) and are in line with the massive Let-7s dowregulation observed in

BEAS-2B cells upon overexpression of LIN28B (Supplementary fig. 5.2). .
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Figure 3.13: Correlation of HOXB7 and LIN28B expressions in lung cancer cells. A. RT-
qPCR analysis of HOXB7 and LIN28B expression performed on RNA extracts from NSCLC cell lines.
Data are normalized to GUSB and BEAS-2B expression. B. HOXB7 and LIN28A expression profile
in cells as in A. C. RNA expression profile of 22 paraffin embedded, primary lung adenocarcinomas.
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Figure 3.14: HOXB7 and LIN28B are more expressed in cancer samples compared to
normal lung tissues. *Reads Per Kilobase per Million (RPKM) mapped reads of HOXB7 and
LIN28B in primary tumors (468 adenocarcinomas) compared to normal lung tissues (58 samples)
from the LUAD dataset. P-values were calculated by the non parametric Wilcoxon test.

Conversely, downregulation of HOXB7 in BEAS-2B cells upon infection with a

lentiviral vector carrying short hairpin RNAs against HOXB7 (Supplementary fig.5.3)

produced a strong down-modulation of LIN28B expression, both at mRNA and protein

levels (Fig.3.17 A-B), accompanied by a 3-6 fold increment in the expression of Let-7

microRNA family members compared to BEAS-2B-scr control (Fig.3.17 C).

These observations further support the existence of a transcriptional network regu-

lated by the transcription factor (TF) HOXB7 and the RNA binding protein LIN28B

and we decided to further investigate this possibility.

3.3.2 Promoter analysis of the LIN28B gene.

To elucidate whether LIN28B could be a transcriptional target of HOXB7, we ana-

lyzed LIN28B promoter region looking for possible HOXB7 binding sites. We analyzed

a ”2Kb” region, starting 1kb upstream of the LIN28B Transcriptional Starting Site

(TSS) and extended to 1kb downstream of the TSS. We took advantage of the Geno-

matix suite software in order to identify the HOX predicted TF binding site (Fig.3.18

and Fig. 3.19 A) and the UCSC Genome Browser (UCSC, University of California

Santa Cruz) to calculate the sequence conservation of the predicted TF binding sites
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Figure 3.15: BEAS-2B-HOXB7 cells show increased LIN28B expression and concomitant
Let-7s downregulation. A-B. RTqPCR and WB analysis of LIN28B expression performed on the
whole cell extracts from BEAS-2B cells infected with pBABE-Hygro-EV or pBABE-Hygro-HOXB7.
C. Immunofluorescence of LIN28B expression (blu=DAPI, red=LIN28B). D. Expression ratio of Let-
7s microRNA family members, relative to BEAS-2B-EV cells by RT-qPCR analysis of cells as in A.
*, significant p-value (p<0.05; Student’s t-test, two tailed).
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in Let-7s microRNA down-modulation. A. RTqPCR analysis of HOXB7 and LIN28B expres-
sion performed on RNA extracts from H358 cells infected with pBABE-Hygro-EV or pBABE-Hygro-
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RT-qPCR analysis of cells as in A. *, significant p-value (p<0.05; Student’s t-test, two tailed).
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Figure 3.17: Silencing of HOXB7 in BEAS-2B determines the down-regulation of LIN28B
and the up-regulation of Let-7s. Silencing of HOXB7 in BEAS-2B cells infected with the lentivec-
tor construct pSICOR-shLIN28B, BEAS shHOXB7. Negative control: pSICOR-scr). A-B. RT-qPCR
and WB analysis of HOXB7 and LIN28B expression in BEAS shHOXB7 and control cells. C. Expres-
sion ratio of Let-7s microRNA family members by RT-qPCR analysis of cells as in A. *, significant
p-value (p<0.05; Student’s t-test, two tailed).
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among 46 vertebrates (Fig.3.19 B). In the 1Kb region upstream of the TSS region

(i.e. 1Kb region) we found an enrichment of predicted HOX TF binding sites with

highly conserved sequences (Fig.3.19 B). Additional predicted TF sites were present

within the first intron of LIN28B (i.e., Intron region, [Chang et al., 2009, Iliopoulos

et al., 2009]). In order to verify the HOXB7 transactivation activity on the LIN28B

promoter, we decided to use a luciferase reporter assay and to perform a Chromatin

Immunoprecipitation (ChIP) analysis.

3.3.3 HOXB7 is involved in transcriptional activation of LIN28B:

Luciferase assay

Dual-Luciferase assay setup

Dual-Luciferase reporter assay system consists in the expression and measurement

of two individual reporter enzymes within a single system. In our case, the expression

of the firefly luciferase under the control of different LIN28B promoter constructs was

normalized to the expression of the Renilla reinforces (known as sea pansy) luciferase,

which was under the control of the herpes virus thymidine kinase (HSV-TK) consti-

tutive promoter. The TK promoter provided a moderate but constant expression of

renilla luciferase to give an internal control of transfection efficiency. In order to re-

duce the signal crosstalk during the assay, we performed a co-transfection experiment

to optimize the ratio of the co-reporter vectors added to the transfection mixture.

We co-transfected cells with a pGL3-SV40 promoter vector (constitutively active)

and a pRL-TK vector at different ratios. From this set-up experiment, we concluded

that 1:0.05 is the best ratio to suppress the occurrence of trans effect between promoter

elements and provides a low but constant level of luciferase control activity (Fig.3.18

A).

We then cloned three different LIN28B promoter constructs upstream the luciferase

reporter gene into a pGL3 vector, according to the promoter scheme shown in figure
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Figure 3.18: Dual-Luciferase reporter assay setup A. Luminescence produced by cells trans-
fected with a pGL3-SV40 promoter vector and a pRL-TK vector, at different ratios (1:1, 1:0.1, 1:0.05,
1:0.02, SV40 and TK). B. Activity of the 2Kb promoter reporter construct in Phoenix cells with or
without p65-HA expression normalized to Renilla luciferase expression; not transfected cells as control
(mock). C. WB analysis of p65-HA expression on whole cell extracts from Phoenix cells (anti-HA
WB); Vinculin: loading control.

3.19: pGL3-2Kb, pGL3-1Kb and pGL3-Intron.

In order to test the promoter functionality of our constructs, we co-transfected

Phoenix Amphotropic cells with: i) a vector carrying the HA-tagged p65 subunit of

NFkB, know to transactivate LIN28B expression through binding to the first intron re-

gion [Iliopoulos et al., 2009]; ii) a pGL3-2Kb vector (containing all promoter sequence);

and iii) a pRL-TK vector as normalizer. Reporter activity increased almost by 20 folds

when p65-HA was overexpressed compared to controls (overexpression of p65-HA was

assessed by western blot using a commercial monoclonal antibody anti-HA, Fig.3.18B).
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Luciferase assay revealed HOXB7-induced transcriptional activation of LIN28B

By luciferase assay, we found that HOXB7 was indeed able to induce up to 22-

fold higher reporter activity with the 2Kbp-construct compared to control cells not

overexpressing HOXB7. Similarly, luciferase induction was obtained using the 1Kb

region upstream of the TSS of LIN28B. Conversely, induction of the reporter gene was

impaired when the Intron sequence was used as promoter (Fig.3.19 D-E).

These experiments confirmed that HOXB7 is involved in LIN28B transcriptional

activation and that the preferential HOXB7 binding region lies within the 1000 bp

region upstream of the LIN28B TSS.

3.3.4 HOXB7 is involved in LIN28B transcriptional activa-

tion: ChIP assay

Setting-up ChIP assay conditions

In order to determine whether HOXB7 is associated with the promoter region of

LIN28B, we decided to perform a Chromatin Immunoprecipitation assay (ChIP). This

technique requires four main steps: i) Crosslink of DNA and associated proteins (chro-

matin); ii) Chromatin sonication to obtain 200-300bp DNA fragments; iii) Immunopre-

cipitation of the cross-linked DNA-protein fragments with a specific antibody; and iv)

De-crosslinking and enrichment of specific DNA sequences by RTqPCR with specific

primers. We set up and optimized these steps as follows:

Antibody setup.

We initially tested a HOXB7 monoclonal antibody by IP but it failed to efficiently

immunoprecipitate the protein (Fig. 3.20 D). Thus, we decided to take advantage
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Figure 3.19: HOXB7 induces LIN28B transcriptional activation. A. Schematic representa-
tion of the genomic region extending from -1000bp upstream of the transcriptional starting site (TSS)
of LIN28B to +1049bp downstream of the TSS (including the sequence for the first exon, blue bar,
and the first intron). In pink, the predicted homeodomain transcription factor binding sites (predicted
using Genomatix software). The qPCRamplicon is represented by the black line. B. The phyloP plot
depicts evolutionary conservation between 46 vertebrate species. Predicted conserved sites are assigned
positive scores (blue), while sites predicted to be fast-evolving are assigned negative scores (red). C.
Schematic representation of the LIN28B promoter sequences cloned in pGL3 basic vector. D. The
activity of promoter reporter constructs in Phoenix cells with high HOXB7 expression (normalized
to low HOXB7 expression). Values represent relative firefly luciferase activity normalized to Renilla
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of a pCDNA-FLAG-HOXB7 construct in order to overexpress a FLAG-protein

(an analogous strategy was adopted by Jin and colleagues [Jin et al., 2012]) in our

cells. Protein overexpression was achieved through transfection of plasmid DNA

in Phoenix Amphotropic cells and A549 lung cancer cells. Immunoprecipitation

of FLAG-HOXB7 with an anti-FLAG antibody or anti-FLAG beads increased

the IP efficiency (Fig. 3.20 E-F).

For the ChIP experiment, we used an antibody directed against Histone H3 as a

positive control for the IP step and a generic IgG directed against an unrelated

cytosolic protein (e. g. anti-DPDC1B) as a negative control, defining thus the

background of the assay.

Primer setup.

We designed four couples of primers in order to obtain amplicons along the 1Kb

promoter region, as shown in fig. 3.21. Using the PCR tool of Genome Browser

PCR tool (https://genome.ucsc.edu/cgi-bin/hgPcr), we aligned amplicons

to the genome to control for their target specificity (human genome assembly:

Feb 2009 GRCh37/hg19, Table.2.3). The chromatin to be used as template for

RTqPCR was then sonicated: the ratio between template quantity and cycle

detection appeared to be linear, a prerequisite for a successful ChiP (Fig. 3.20A).

To test for the presence of HOXB7 on the Intron region, we took advantage of

one couple of primers used by Chang and colleagues when performed the ChIP

against MYC on the LIN28B promoter (Chan3). We also used the primer couple

”Chan2”, designed to anneal close to the TTS of LIN28B (Table.2.3) [Chang et al.,

2009]. As positive control, we used primers that anneal to the EGFR-promoter

region used by Jin and colleagues to demonstrate HOXB7 and EGFR-promoter

direct interaction [Jin et al., 2012].

Chromatin sonication setup.

We optimized the setting for the chromatin sonication in order to obtain 200-300
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bp long DNA fragments, the optimal suggested size for ChIP experiments. Ten

cycles resulted enough to obtain the right size of DNA fragments (as visualized

in the agarose gel of fig. 3.20 C) and did not affect DNA integrity (RTqPCR

cycle detection remained unchanged even after several cycles of sonication; Fig.

3.20 B).

ChIP assay revealed a direct involvement of HOXB7 in LIN28B transcrip-

tional activation.

ChIP analysis revealed up to a 15.4 fold increment in HOXB7 binding to the LIN28B

promoter region in HOXB7 expressing cells compared to EV control (primer d, fig. 3.21

A). The fold increment in HOXB7 binding decreased to 2.7 and 4.4 folds moving along

the 2kb region toward the 3’ or 5’-end respectively (primer d, fig. 3.21 A).

To increase the resolution of this experiment, we tested anti-FLAG beads instead of

the monoclonal antibody. We found that the HOXB7 LIN28B-promoter binding was

increased up to 30 folds in the 1kb region and 6 folds in the first intron (Fig.3.21 B).

As control, we observed a ∼10 fold increase in HOXB7 binding to the EGFR promoter

regions, in line with a previous study [Jin et al., 2012].

We further validated these data by immunoprecipitation of the FLAG-HOXB7 pro-

tein transiently transfected into A549 lung adenocarcinoma cells. A sustained HOXB7

binding to LIN28B 1kb region was obtained (up to 18-folds with primers ”d”) while the

signal was dramatically reduced when a FLAG peptide competed for the binding with

the beads, demonstrating the specificity of our ChIP experiment (Fig.3.21 C).

In summary, we have identified a region upstream of the LIN28B TSS sufficient for

HOXB7-dependent transcriptional activation in Phoenix and A549 cells. The HOXB7-

mediated induction of LIN28B may suggest a possible mechanism of action of HOXB7

relevant for lung cancer and for stem/tumor-initiating-cell biology.
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Figure 3.20: ChIP assay conditions setup. A. Primer setup: the plot shows the relative ratio
between template quantity and cycle detection. X-axis: quantity of sonicated chromatin used as
template for PCR; Y-axis: difference in cycle detection (Delta CT) relative to detection with 20ng
template. B.Sonication setup: cycle detection (Y-axis) at increased number of chromatin sonication
cycles (from 4 to 12 cycles). 5ng of the template were loaded in the PCR mixture. C.Sonicated
chromatin was loaded into a 1% agarose gel in order to visualize the magnitude of the DNA fragments.
DNA marker: 100pb NEB. D. Antibody setup: HOXB7 immunoprecipitation (IP) with anti-HOXB7
(4ug) from 1mg of NCI-H358 cell lysate overexpressing (+) or not (-) HOXB7. Input: 50ug cell lysate.
SUP: supernatant. A generic IgG direct to an unrelated cytosolic protein (e. g., anti-DPDC1B)
was used as negative control. The samples were loaded into a 12% acrylamide gel and WB with
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Figure 3.21: ChIP assay revealed the presence of HOXB7 on LIN28B promoter region.
A. Schematic representation of LIN28B promoter region highlighted with predicted homeodomain
transcription factor binding sites (pink) and phyloP plot. B. ChIP with anti flag. Fold increase
of % input in cells overexpressing FLAG-HOXB7 Phoenix cells and control cells (EV); input: 1%
of starting chromatin; IP controls: anti-IgG or anti-H3. PCR amplification was performed with
six different couples of primers (a, b, c, d, Chan2 and Chan3). C. ChIP with anti-FLAG beads.
Fold increase of % input in cells overexpressing FLAG-HOXB7 cells and control cells. D. ChIP was
performed with beads anti-FLAG in A549 cells overexpressing FLAG-HOXB7 (or FLAG-EV). A flag
peptide was added to the IP mixture to compete for the binding.
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3.4 Silencing of LIN28B prevents HOXB7-mediated

increase of stem markers in BEAS-2B cells.

To explore the interaction of HOXB7 and LIN28B in the biology of cancer cells,

we knocked down the LIN28B gene in BEAS-2B cells using lentiviral infection with

a pSICOR vector carrying short hairpin RNAs specific for LIN28B (we used shRNA

oligo3, the best performing oligo in A549 cells: 85% of LIN28B silencing; fig.5.4 A).

After selecting infected cells with puromycin, a 60% LIN28B silencing efficiency was

scored in BEAS-2B, which was, however, biologically sufficient to allow 2.5 fold increase

in the expression of mature Let-7 microRNAs, compared to BEAS-scr control cells

(Fig.3.22 C).

We then overexpressed HOXB7 in BEAS-2B cells and assessed whether subsequent

LIN28B induction by HOXB7 was abrogated by the short hairpin RNA construct.

Indeed, we scored a 2-folds induction of LIN28B in BEAS-scr cells (compared to cells

infected with pSICOR-scr and pBABE-EV), while the overexpression of HOXB7 in

BEAS-shLIN28B led to a LIN28B expression comparable to control cells, BEAS-scr-

EV (Fig.3.23 A-B).

In order to understand whether and which of the HOXB7-dependent phenotypes

may require LIN28B activation to occur, we went back to analyze the expression of the

panel of EMT and Stem marker genes by RTqPCR.

In BEAS-scr-HOXB7 cells we obtained a significant induction (p <0.05, Student’s

t-test, two-tailed) of N-cadherin and Vimentin (12.6 and 7.8-fold induction respectively

compared to BEAS scr-EV cells), which is in line with an epithelial to mesenchymal

transition (Fig.3.23 C). Interestingly, the lack of LIN28B induction upon HOXB7 over-

expression in the BEAS shLIN28B + HOXB7 did not impair the induction of these

mesenchymal markers (11.7 fold induction for N-cadherin and 7.1-fold Vimentin), which

suggests that HOXB7 drives EMT gene regulation independently of LIN28B activation,

possibly through the direct induction of TGFb as recently published [Liu et al., 2015].
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Figure 3.22: Silencing of LIN28B in BEAS-2B determines Let-7s upregulation. Down-
regulation of LIN28B in BEAS-2B cells by infection with the lentivector construct pSICOR-shLIN28B
(negative control: pSICOR-scr). Three single clone populations of BEAS shLIN28B were selected. A
Expression analysis of LIN28B by RTqPCR in BEAS-shLIN28B cells (bulk and clone populations)
normalized to LIN28B expression in BEAS-scr cells. B. WB analysis of LIN28B in BEAS-scr BEAS-
shHOXB7 and BEAS-shLIN28B bulk cells. C. Expression ratio of Let-7s microRNA family members
by RT-qPCR analysis of cells as in B. *, significant p-value (p<0.05; Student’s t-test, two tailed).
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Figure 3.23: Silencing of LIN28B in BEAS-2B cells prevents HOXB7-dependent induc-
tion of stem marker genes. BEAS-2B cells were first infected with pSICOR shLIN28B construct
(or pSICOR-scr as control) and then with pBABE-HOXB7 construct (or pBABE-EV as control). The
shLIN28B prevents the induction of LIN28B when HOXB7 is overexpressed. Gene expression analysis
of A. HOXB7, B. LIN28B, C. EMT and D. stem/iPS markers was performed by RTqPCR. *, genes
significantly enriched in scr +HOXB7 cells respect to scr +EV cells and significantly dowregulated in
shLIN28B +HOXB7 cells respect to scr +HOXB7, when there is not any significant difference between
gene expression in shLIN28B +EV and scr +EV (p-values were calculated using Student’s t-test, two
tailed).
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Conversely, the up regulation of seven stem marker genes (SOX2, NANOG, ABCG2,

ALCAM/CD166, ITGA/CD49f, POUF5F1/OCT4 and CD90) observed in HOXB7

overexpressing cells was prevented upon LIN28B silencing. In some cases the expression

level was comparable to that of control cells, scr+EV (Fig.3.23).

We then analyzed the surface stem marker CD90 by FACS analysis. CD90high pop-

ulation, which positively correlates with sphere forming capacity, resulted more than

halved in shLIN28B + HOXB7 cells compared to control cells, scr + HOXB7 (11.47%

and 25.5% of cells, respectively; Fig.3.24 A). Interestingly, also in shLIN28B + HOXB7

cells the CD90high population was the highest HOXB7 expressing cell population, fol-

lowed by CD90int and, lastly, by CD90low population (Fig.3.24 B). Indeed, stem marker

gene analysis revealed an axis between HOXB7 and LIN28B with a possible role in the

regulation of genes involved in stem cell biology.

New emerging evidences are also highlighting a novel important role for LIN28B

in cell reprogramming processes [Chien et al., 2015]. This finding in a cancer related

contest is intriguing because it is known that aggressive tumor cells may loose charac-

teristics of the tissue of origin and acquire a more undifferentiated phenotype in order

to drive metastatisation[Kim et al., 2005, Pece et al., 2010, Alison et al., 2010]. Cell

reprogramming allows, indeed, terminally differentiated cells to revert to an undiffer-

entiated and stem-like condition [Takahashi and Yamanaka, 2006]. We thus wondered

whether HOXB7, through the induction of LIN28B, may participate to this cancer

relevant feature, as already suggested by our GSEA analysis (Fig.3.1).

3.5 HOXB7 enhances the efficiency of cell repro-

gramming.

According to Yamanaka and colleagues, only four TFs are sufficient to convert

mouse embryonic fibroblast (MEFs) into iPS cells: SOX2, OCT4, KLF4 and c-MYC

[Takahashi and Yamanaka, 2006]. All four TFs are not essential, as two of them
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Figure 3.24: Silencing of LIN28B in BEAS-2B cells prevents HOXB7-dependent induc-
tion of the stem marker gene CD90. A. FACS analysis of the CD90 cell surface marker in BEAS
shLIN28B+HOXB7 cells and control (scr+HOXB7 and un-stained) cells. Three populations are high-
lighted according to the expression of CD90 (high, low or intermediate): CD90high in purple, CD90int

in green, CD90low in orange. B. Expression analysis of of CD90 and HOXB7 by RTqPCR with total
RNA extracts from the CD90high, CD90int and CD90low populations of BEAS shLIN28B+HOXB7
cells. P-values were calculated using Student’s t-test, two tailed.
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can be substituted with other genes and efficient cell reprogramming will still occur.

Indeed, it has been shown that the LIN28B gene can stand in for c-MYC to form iPS

(Yamanaka and Tanabe, 2011; Patent number: 8993329), supported by the fact that

c-MYC activates the transcription of LIN28B [Chang et al., 2009]. The LIN28B/Let-7

axis has been shown to play a critical role in the reprogramming of normal human oral

terminally differentiated cells (i.e., keratocyte) into iPS together with OCT4, SOX2

and NANOG [Chien et al., 2015].

Thus, we reasoned that HOXB7 might take part in cell reprogramming processes

by substituting c-MYC in Yamanaka’s transcription factor cocktail similar to LIN28B.

3.5.1 HOXB7 positively contributes to reprogramming of mouse

embryonic fibroblast.

In order to verify this hypothesis, we used MEFs derived from a mouse carrying a

knock-in of EGFP coding sequence in the 3’-UTR of endogenous Oct4 to expressed GFP

concomitantly with Oct4 expression in iPS cells [Unternaehrer et al., 2014]. We infected

these fibroblasts with a lentiviral vector expressing human OCT4, KLF4 and SOX2

(OKS) together with a pBABE-HOXB7 or a pBABE-EV construct. The reprogrammed

(iPS) colonies were then visualized by alkaline-phosphatase assay: two weeks post

infection a ∼30 fold increase of iPS colonies was visible when HOXB7 was overexpressed

compared to control (Fig.3.25 A-C). Indeed the reprogramming efficiency was 0.21%

and 0.43% in MEF-OKS-HOXB7 cells and 0.006% and 0.014% in control cells after

two and three weeks, respectively.

Finally, to verify that full reprogramming was achieved, we isolated two iPS clones

obtained by OKS expression alone or with HOXB7 (both resulted positive for GFP

expression; Fig. 3.25 B). We tested their ability to differentiate along the three em-

bryonic lineages through the formation of teratomas. Differentiation was assessed by

combining hematoxylin/eosin with immunohistochemical stainings for lineage-specific

markers (Desmin and S-100 for mesodermal, and Cytokeratin for ectodermal lineages)
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Figure 3.25: HOXB7 positively contributes to MEF reprogramming. A. Alkaline phos-
phatase staining of control MEFs (lower row) and MEFs overexpressing HOXB7 (upper row) two
weeks post infection with a lentiviral vector expressing OCT4, KLF4 and SOX2 (OKS). B. Light
microscopy (left) and Oct4-driven GFP fluorescence (right) images of iPS clones isolated from cells as
in A. C. Quantification of iPS colonies obtained two or three weeks post lentiviral transduction with
the indicated constructs (n=1).
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Figure 3.26: iPS clones can give rise to a complete teratoma. Hematoxylin and eosin staining
and immunohistochemical (IHC) analysis of representative sections of teratomas generated from OKS
control or OKS+HOXB7 iPSC cells. Stainings for the ectoderm marker cytokeratin (on the left) and
the mesoderm markers S100 (in the middle) and desmin (on the right) are displayed.

(Fig.3.26). We found that both iPS clones had the potential to give rise to differenti-

ated tissue derived from all three primary germ layers: epithelial annexes (ectoderm),

cartilage and muscles (mesoderm) and gut epithelium (endoderm). In conclusion, we

were able to achieve full reprogramming of mouse fibroblasts with OCT4, KLF4 and

SOX2. The reprogramming was ∼30 fold more efficient in combination with HOXB7

overexpression.

In order to quantify the strength of HOXB7 in affecting reprogramming processes,

we will next compare reprogramming efficiency using OKS+HOXB7 constructs or the

canonical four-TFs protocol (i.e., OKS+MYC).
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3.5.2 HOXB7 positively contributes to reprogramming of hu-

man lung BEAS-2B cells by activating LIN28B.

Cell reprogramming may play a critical role in lung cancer progression, giving rise

to stem-like cells resistance to chemotherapy and cause tumor relapse [Suvà et al.,

2013]. Thus, studying this process in our human epithelial BEAS-2B cell line model

system was challenging.

We forced the expression of OCT4, KLF4 and SOX2 (OKS) in BEAS-2B-EV and

BEAS-2B-HOXB7 cells and waited three weeks in stem conditions before evaluating

their pluripotent status by alkaline phosphatase staining. In line with the reprogram-

ming experiment in MEFs, HOXB7 overexpression positively contributed to generating

iPS colonies from BEAS-2B cells. Reprogramming efficiency was more than doubled:

we obtained 0.29% of iPS colonies from BEAS-HOXB7-OKS cells and 0.11% from

control cells (p=0.02; fig.3.27 A-B). When we induced cell reprogramming with the

canonical set of four genes (e.g., OKS+MYC), we were not able to stabilize any iPS

colony due to over-proliferation of epithelial cells induced by the MYC oncogene, as

already observed in other studies [Xu et al., 2013].

In order to understand whether HOXB7-induced reprogramming efficiency requires

LIN28B increased expression, we forced the expression of OCT4, KLF4 and SOX2

(OKS) in BEAS-scr +HOXB7 and BEAS-shLIN28B +HOXB7 cells and assessed their

capability to form iPS colonies. Pluripotent colonies were visualized by alkaline phos-

phatase assay. We scored a 1.4-fold reduction in BEAS-shLIN28B cells compared to

scr cells (p=0.08, fig.3.27 C). We analyzed also a BEAS-shLIN28B clone characterized

by 90% of gene silencing (BEAS shLIN28B clone #3, Fig.3.22 A). With this clone,

overexpression of HOXB7 was impaired in positively contributing to reprogramming,

scoring a 0.01% of reprogramming efficiency (p=0.0001, fig.3.27 C).

These results pointed to a role for HOXB7 in the activation of a transcription pro-

gram, involving the LIN28B pathway, relevant for stem/iPS cell biology. Since it is

known that the enhancement of stem cell compartment increases tumor aggressiveness,
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Figure 3.27: HOXB7 increases the efficiency of cell reprogramming in BEAS-2B cells.
A. Alkaline phosphatase staining of BEAS-2B overexpressing HOXB7 and control cells two weeks
post lentiviral transduction of the construct for the expression of OCT4, KLF4 and SOX2 (OKS).
B. Quantification of the alkaline phosphatase assays (n=2, p-values were calculated using Student’s
t-test, two tailed.). C. Quantification of the alkaline phosphatase assays, including analysis of the
reprogramming efficiency in BEAS-2B cells carrying shRNAs for silencing LIN28B and scrambled
control (scr, n=2).
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the mechanism we proposed can, at least in part, explain the role of HOXB7 in lung

cancer progression. Further analysis is required to elucidate whether HOXB7 may

have an oncogenic role in lung cancer and whether it might be involved in chemother-

apy resistance, which would suggest it as a candidate for novel molecularly targeted

therapies.
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Discussion

4.0.3 HOXB7 expression is prognostic in patients with early-

stage of lung adenocarcinomas.

We have previously shown that a increased expression of HOXB7 is a hallmark of

adverse prognosis in lung cancer patients [Bianchi et al., 2007]. Our study integrated

the gene expression profile of three cohorts of lung cancer patients to identify genes

correlating with poor prognosis, and a gene signature derived from a cancer cell model

system (E1A infected terminal differentiated mouse myotubes forced to reenter the

cell cycle). Recently, HOXB7 was confirmed to be a prognostic biomarker in lung

adenocarcinoma patients using an independent approach (i.e., immunohistochemistry)

[Yuan et al., 2014].

In line with these reports, we found that HOXB7 is significantly more expressed in

cancer samples by comparing gene expression analysis of 468 lung adenocarcinomas and

58 lung normal tissue samples from the LUAD-TCGA dataset. However, the precise

molecular mechanism through which HOXB7 promotes lung cancer progression and

metastatic spreading is still unknown.

Previous studies in breast cancer have highlighted a role for HOXB7 in the induc-

tion of EMT [Wu et al., 2006], a process that plays an important role during tumor

progression [Kalluri and Weinberg, 2009]: excessive epithelial cell proliferation and ac-
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quisition of motility and invasiveness, typical characteristics of mesenchymal cells, are

thought to herald metastatic dissemination. Of note, we demonstrated that HOXB7

overexpression drives EMT in the normal lung cell line BEAS-2B and in the lung cancer

cell line NCI-H358, suggesting that the mechanism is shared among physiological and

pathological condition. Indeed, EMT has been described as a cell-biological program

that allows remodeling of cells primarily during normal embryonal development and

wound healing repair. More recently, EMT has been associated with tumor metastasis,

enabling cancer cell dissemination (Thiery, 2003).

During the formation of metastasis, cancer cells seem to require the ability to reach

the secondary tissue sites, proliferate and participate in the reconstruction of a new

tissue (i.e., a macroscopic metastases), exhibiting stem-like capabilities. This obser-

vation raised a still ongoing debate about the possibility that the EMT may generate

cells with properties of stem cells, revealing a convergence between these two processes

[Mani et al., 2008, Kong et al., 2010]. We thus wondered whether HOXB7 may be

involved in lung cancer stem cells processes.

4.0.4 A novel role for HOXB7 in acquisition of cancer stem-

like properties.

To better understand the effect of alterations in HOXB7 expression in the contest of

lung cancer, we used an in silico approach (GSEA analysis) to try to identify biological

functions specifically altered in high-HOXB7 expressing lung cancers. Strikingly, in

addition to gene-sets representing molecular mechanisms involved in EMT and cancer

progression, we scored a significant enrichment of genes/pathways involved in stemness

and cell reprogramming, upregulated in high-HOXB7 lung tumors. We have shown in

an experimental model that HOXB7 was able to expand a subpopulation of cells with

stem cells characteristics (i.e., anoikis resistance) and characterized by a cell surface

marker that was recently shown to be tightly linked with cancer stem cells: the CD90

[Lu et al., 2014].

72



A.Y. 2014-2015

CD90 is a glicosylphosphatidylinositol-anchored glycoprotein (THY1) expressed by

mesenchymal cells. It was recently shown to be required for the physical interaction

between breast cancer stem cells and cells of the stem niche [Lu et al., 2014]. CD90

expression was characterized in lung cancer cell lines (A549 and H446 cells [Yan et al.,

2013]) and in primary lung cancer cells [Wang et al., 2013]. CD90 has also been

proposed to be a lung cancer stem cell marker. We have showed that the CD90high

population in BEAS-2B cells was ∼15-fold more proficient to form spheroids in a pneu-

mosphere assay. Thus, CD90high cells were those that retained the stem cell property

of anoikis resistance.

Importantly, the CD90high population was overrepresented in HOXB7-high express-

ing primary lung tumors and in HOXB7 overexpressing BEAS2B cells, further pointing

to a role for HOXB7 in the expansion of cancer stem cells/tumor-propagating cells. En-

largement of the stem cell compartment in cancer has been shown to be a hallmark of

enhanced tumorigenicity and increased metastatic potential [Kim et al., 2005]. There-

fore, our hypothesis is that HOXB7 may enhance tumor aggressiveness by inducing

EMT and expanding the cancer stem cell compartment.

4.0.5 HOXB7 transcriptionally activates a gene involved in

stem cell features sustainment and tumor progression:

the LIN28B.

Among the stem marker genes found enriched in high-HOXB7 expressing lung tu-

mors and cell lines, we identified LIN28B as a HOXB7 transcriptional target.

Analysis of the promoter region revealed an enrichment of homeodomain transcrip-

tion factor motives in a 1kb region upstream of the LIN28B TSS. Cloning of this

region upstream of a promoterless firefly luciferase reporter cassette was sufficient to

drive HOXB7-dependent reporter activity, while MYC and NF-kB directly activate

LIN28B expression through a binding in the first intron [Chang et al., 2009] [Iliopoulos
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et al., 2009].

Accordingly, with HOXB7 transcriptional control of LIN28B expression (verified by

chromatin immunoprecipitation), we found the two genes concomitantly expressed in

lung cell lines and primary tumors; moreover LIN28B expression levels were modulated

upon HOXB7 overexpression or downregulation in BEAS-2B and NCI-H358 cells.

The identification of LIN28B as a HOXB7 target was an important finding for us

since it could explain the mechanism by which HOXB7 induces the expansion of a cell

subpopulation with stem cell characteristics. Indeed, the LIN28B gene was recently

described as ”an emerging oncogenic driver in cancer stem cells” [Zhou et al., 2013].

LIN28B is a RNA binding protein with two homologs in mammalian, LIN28 and

LIN28B, that share more than 70% of protein sequence identity. Both genes are re-

ported to be aberrantly expressed in about 15% of human cancer cell lines and in

primary tumors and have been associated with poor clinical prognosis [Viswanathan

et al., 2009]. When overexpressed in NIH-3T3 cells, LIN28/B drive tumorigenesis in

vivo characterized by delayed latency and evidence of local invasion [Viswanathan et al.,

2009]. Physiologically, LIN28/B are highly expressed in stem and progenitors cells but

are silenced during cell differentiation, inversely proportional to Let-7 microRNAs, a

known family of oncosupressor genes [Viswanathan and Daley, 2010]. The best char-

acterized course of action consists in direct binding of LIN28/B to Let-7 microRNA

precursors (pre-Let-7s), recruitment of a non-canonical poly (A) polymerase, TUTase4

(TUT4), and the subsequent uridylylation of pre-Let-7s [Heo et al., 2009], which blocks

Dicer processing and further maturation of microRNAs [Newman et al., 2008]. These

events lead to the subsequent derepression of Let-7s canonical targets, such as RAS,

MYC, HMGA2 and LIN28/B itself, further sustaining cell proliferation and transfor-

mation. Interestingly, there is a positive loop involving MYC and LIN28B as MYC

was found on LIN28B promoter, resulting in its transcriptional activation [Chang et al.,

2009]. This last observation may explain why it was possible to substitute MYC with

LIN28B within the original reprogramming group of transcription factors (Yamanaka
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4.1. HOXB7 POSITIVELY CONTRIBUTES TO CELL REPROGRAMMING BY ACTIVATING

LIN28B.

and Tanabe, 2011; Patent number: 8993329), and inspired us to verify whether HOXB7

might take in part in cell reprogramming by substituting c-MYC in Yamanaka’s tran-

scription factor cocktail.

In our experimental model we found that HOXB7 requires, at least in part, the

action of LIN28B to sustain the expansion and viability of subpopulation of cells with

stem cell characteristics. The CD90high population, which positively correlates with

sphere forming capacity, resulted more than halved upon LIN28B silencing in HOXB7

overexpressing cells compared to control cells.

This line of investigation was also supported by the GSEA predictions and the iden-

tification of four pivotal stem marker genes (correlating with HOXB7 overexpression) in

cell reprogramming and differentiation into pluripotent stem cells (iPS): SOX2, KLF4,

NANOG and LIN28B [Takahashi and Yamanaka, 2006, Yu et al., 2007, Chien et al.,

2015].

4.1 HOXB7 positively contributes to cell reprogram-

ming by activating LIN28B.

New studies have recently underlined the parallelism between oncogenic transfor-

mation and cell reprogramming from terminally differentiated cells into iPS [Suvà et al.,

2013]. Indeed, during oncogenic transformation, cancer cells may acquire SC-like prop-

erties, such as unlimited self-renewal and pluripotent potential. Several studies were

thus focused on the understanding of the mechanisms shared between cellular repro-

gramming and oncogenic transformation. Historically, cell reprogramming was first

achieved by somatic cell nuclear transfer (SCNT) into an enucleated oocyte (1952).

The system was efficient but laborious. In 2006 Takahashi and Yamanaka developed

a more feasible method to obtain pluripotent cells: starting from a combination of 24

genes, they identified four transcription factor (SOX2, KLF4, OCT4 and c-MYC) as

the minimal ”cocktail” able to convert mouse embryonic fibroblast (MEFs) into ES-
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like cells, the so called induced pluripotent stem cells (iPS) [Takahashi and Yamanaka,

2006]. Importantly, those reprogramming factors are bona fide oncogenes.

In order to fully reprogram differentiated cells, only the core factors OCT4 and

SOX2 are strictly required while the other TFs may enhance reprogramming efficiency

and can be substitute by other genes, such as NANOG and LIN28 [Yu et al., 2007].

Interestingly, both genes are shown to be involved in carcinogenesis as well [Jeter et al.,

2015, Viswanathan et al., 2009].

Further evidences underline the importance of LIN28/B during reprogramming. In

a very recent work, LIN28B was silenced during reprogramming of a normal human oral

keratocyte to reprogramm using the Yamanaka 4-gene protocol: silencing of LIN28B

efficiently impaired the reprogramming [Chien et al., 2015]. Conversely, only in the

presence of LIN28B the three genes OCT4-SOX2-NANOG were able to give rise to iPS

cells.

We have shown that HOXB7 enhanced cell reprogramming efficiency through the

three genes OCT4, KLF4, SOX2 in both mouse embryonic fibroblast and in human

epithelial BEAS-2B cells. However, LIN28B silencing counteracted the expression of

many stem/iPS marker genes in BEAS-2B-HOXB7 cells and strongly decreased the

number of iPS colonies obtained upon HOXB7 overexpression. These observations

suggest that the HOXB7 transcriptional activation of LIN28B is fundamental for the

HOXB7 activation of a transcription program relevant for stem/iPS cell biology.

Further studies are required for the assessment of whether the mechanism we have

described might have an impact on tumor initiation (e.g. upon limiting dilution and

serial in vivo xenotransplantation assays). The identification of tumor initiating cells

may ultimately lead to more effective prognostic tools and therapies for metastatic lung

cancer.
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Figure 5.1: FISH analysis of HOXB7 gene locus in lung and breast cancer cell lines.
A. FISH analysis of two lung cancer cell lines (NCI-H358 and A549) and peripheral blood cells as
control: HOXB locus (17q21.32) in red; chromosome 17 centromere in green. Only one copy gain
involving the entire chromosome was detected in both cell lines (also the 17 centromere specific probe
gave one signal). B. RTqPCR analysis of HOXB7 expression in three breast cancer cell lines. C.
HOXB7 expression and FISH analysis in three breast cell lines revealed a strong correlation of HOXB7
expression with the copy number.
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Figure 5.2: Overexpression LIN28B in BEAS-2B cells resulted in the down-regulation
of Let-7 microRNAs. A. Overexpression of LIN28B by infection with the retroviral pBABE-
hLIN28B construct (addgene) or control empty vector (EV) and was verified by RTqPCR analysis.
B. Expression ratio of Let-7s microRNA family members by RT-qPCR analysis of cells as in A (relative
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Figure 5.3: Silencing of HOXB7 in A549 cells induces apoptosis. HOXB7 was silenced in
A549 lung cancer cells by infection with lentiviral vectors carrying shRNA against HOXB7. Control:
pSiCOR empty vector (EV). A. RT-qPCR analysis of HOXB7 expression revealed a 50% and 90% gene
silencing with oligo1 and oligo2, respectively. B. Quantification of colony formation assay highlighted
an impairment in cell proliferation upon down-regulation of HOXB7 (50% and 70% reduction with
oligo1 and oligo2, respectively) compared to wild type cells, consistent with results recently reported
by Yuan and colleagues [Yuan et al., 2014]. C-D. Cell cycle profile and apoptotic events analysis
by TUNEL assays, propidium iodide (PI) and FITC staining. DNA fragmentation, resulting from
apoptotic signaling cascades, increased by 57% and 25% with oligo2 and oligo3, respectively, compared
to control EV cells. E. Silencing efficiency of oligo3 was evaluated by RTqPCR analysis. F. RT-qPCR
analysis of pro-apoptotic genes (p53, PUMA, BAX, FAS, BCL-X) and the cyclin dependent kinase
inhibitor p21, involved in G1-S cell cycle transition. Increased expression of these genes correlated in
inverse proportion with the expression levels of HOXB7.
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Gene TCGA Michigan Tokyo Class

ABCG2 0.01 -0.18 -0.36 STEM
ALCAM/CD166 -0.15 -0.23 -0.37 STEM
ALDH1A1 1.55 0.36 -0.24 STEM
BMI1 0.07 0.06 -0.03 STEM
CD24 0.43 0.34 0.31 STEM
CD44 -0.09 -0.08 0.09 STEM
EPCAM 0.13 -0.04 0.07 STEM
ITGA6/CD49f 0.68 0.30 0.05 STEM
LIN28A -2.27 0.15 -0.14 STEM
LIN28B 1.10 NA 0.66 STEM
MYC -0.19 -0.41 0.08 STEM
NANOG 0.16 -0.14 -0.55 STEM
PODXL 0.32 0.02 -0.05 STEM
POU5F1/OCT4 -1.11 0.33 0.15 STEM
SOX2 1.43 0.42 0.62 STEM
THY1/CD90 0.88 0.21 1.11 STEM
CDH1 -0.01 0.17 0.14 EMT
CDH2 1.68 0.58 0.41 EMT
SNAI1 0.53 0.23 0.37 EMT
SNAI2 1.16 0.40 0.91 EMT
TWIST1 1.64 0.47 1.91 EMT
VIM 0.26 -0.19 0.05 EMT
ZEB1 0.37 0.17 -0.03 EMT
FGF2 0.30 0.09 -0.18 HOXB7 TARGET
EGFR 0.16 0.07 0.28 HOXB7 TARGET

Table 5.1: Log2 ratio of the mean expression of the markers in HOXB7-high
expressing tumors vs. HOXB7-low expressing tumors. The markers were collected
by literature searching and analyzed in three independent cohorts of lung tumors (adenocarcinoma),
profiled by RNA-seq (TCGA cohort) and Affymetrix microarray (Michigan and Tokyo cohorts).
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Gene p-value -LOG10 p-value Class

TCGA Michigan Tokyo TCGA Michigan Tokyo

ABCG2 0.9700 0.0010 0.1200 0.013 3.000 0.921 STEM
ALCAM/CD166 0.1000 0.3600 0.0050 1.000 0.444 2.301 STEM
ALDH1A1 0.0003 0.1500 0.2800 3.523 0.824 0.553 STEM
BMI-1 0.3700 0.2700 0.2500 0.432 0.569 0.602 STEM
CD24 0.0002 0.0270 0.0200 3.699 1.569 1.699 STEM
CD44 0.3500 0.4100 0.1500 0.456 0.387 0.824 STEM
EPCAM 0.1500 0.7500 0.1700 0.824 0.125 0.770 STEM
ITGA6/CD49 0.0003 0.0900 0.4400 3.523 1.046 0.357 STEM
LIN28 0.1800 0.4800 0.1300 0.745 0.319 0.886 STEM
LIN28B <0.0001 0.6800 4.000 0.167 STEM
MYC 0.0400 0.0020 0.9600 1.398 2.699 0.018 STEM
NANOG 0.8500 0.3000 0.0002 0.071 0.523 3.699 STEM
POU5F1/OCT4 0.2100 0.0370 0.7700 0.678 1.432 0.114 STEM
PODXL 0.2500 0.9100 0.9000 0.602 0.041 0.046 STEM
SOX2 <0.0001 0.0020 0.0090 4.000 2.699 2.046 STEM
THY1/CD90 <0.0001 0.0400 <0.0001 4.000 1.398 4.000 STEM
CDH1 0.57 0.11 0.03 0.244 0.959 1.523 EMT
CDH2 <0.0001 0.0003 0.04 4.000 3.523 1.398 EMT
SNAI1 0.0004 0.17 0.015 3.398 0.770 1.824 EMT
SNAI2 0.0007 0.0044 <0.0001 3.155 2.357 4.000 EMT
TWIST1 <0.0001 0.0008 <0.0001 4.000 3.097 4.000 EMT
VIM 0.82 0.052 0.31 0.086 1.284 0.509 EMT
ZEB1 0.23 0.13 0.84 0.638 0.886 0.076 EMT
FGF2 0.0072 0.37 0.13 2.143 0.432 0.886 HOXB7 TARGET
EGFR 0.0112 0.31 0.08 1.951 0.509 1.097 HOXB7 TARGET

Table 5.2: P-values of differential expression of the markers in HOXB7-high expressing
tumors vs. HOXB7-low expressing tumors.. -Log(10)p-value values were used to show signifi-
cance of the differential expression (p<0.05 corresponds to -LogP>1.3). P-values were calculated by
the non parametric Wilcoxon test.
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A B S T R A C T

Around 50% of all human microRNAs reside within introns of coding genes and are usually

co-transcribed. Gene expression datasets, therefore, should contain a wealth of miRNA-

relevant latent information, exploitable for many basic and translational research aims.

The present study was undertaken to investigate this possibility. We developed an in silico

approach to identify intronic-miRNAs relevant to breast cancer, using public gene expres-

siondatasets. This led to the identificationof amiRNAsignature for aggressive breast cancer,

and to the characterization of novel roles of selected miRNAs in cancer-related biological

phenotypes. Unexpectedly, in a number of cases, expression regulation of the intronic-

miRNA was more relevant than the expression of their host gene. These results provide a

proof of principle for the validity of our intronic miRNAmining strategy, which we envision

can be applied not only to cancer research, but also to other biological and biomedical fields.
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1. Introduction

MicroRNAs are small, non-coding RNA molecules (18e22 nu-

cleotides in length) that function as endogenous triggers of

the mRNA interference pathway and are involved in the regu-

lation of pleiotropic biological functions (Krol et al., 2010;

Yendamuri and Kratzke, 2011). Almost 50% of all human

miRNA genes are located within introns of host genes, with

which they usually share transcriptional regulation

(Baskerville and Bartel, 2005; Griffiths-Jones, 2007; He et al.,

2012; Monteys et al., 2010; Ozsolak et al., 2008; Rainer et al.,

2009; Rodriguez et al., 2004; Saini et al., 2007). In principle,

this property could be exploited to predict the expression of

intronic miRNAs (int-miRNAs) through the analysis of the

expression of their host genes (miRNA host genes, miR-HG).

Similar approaches have already been successfully employed

to identify miRNA target genes, to predict miRNA tissue

expression, and to characterize miRNA/miR-HG feedback

loops (Lutter et al., 2010; Radfar et al., 2011; Wang et al., 2009).

Themajor potential stemming from themode of regulation

of int-miRNAs is, however, untapped. In recent years, enor-

mous effort has been dedicated to the profiling of various

physiological and pathological conditions at the transcrip-

tomic (mRNA) level. While almost every field of biology and

biomedicine has been explored through this approach, cancer

biology is arguably the field in which the highest investment

has beenmade, with the dual objective of: i) obtaining a global

view of cancer processes by systems-based analysis (Basso

et al., 2005; Minn et al., 2005; Sweet-Cordero et al., 2005); ii)

identifying biomarkers for improved management of cancer

patients (Ivshina et al., 2006; Sorlie et al., 2001; Sotiriou et al.,

2003; van ’t Veer et al., 2002). As a result, thousands of human

tumors have been profiled and the datasets made publicly

available, frequently associated with high quality clinical in-

formation. In our view, these datasets are amenable tomining

“latent” information on int-miRNA expression.

There is growing interest inmiRNAs, both as potential can-

cer determinants and biomarkers (Calin and Croce, 2006).

From a general perspective, miRNA profiling might be advan-

tageous over mRNA profiling, since the complexity of miR-

Nome is at least 20-fold lower than that of a reference

transcriptome (if onemakes the somewhat rough comparison

of w1000 miRNAs vs. w 20,000 genes). This means that suffi-

cient statistical power can be reached with a much lower

number of analyzed samples. This is particular relevant to

studies, such as those involving human pathological samples,

Abbreviations
FFPE formalin-fixed paraffin-embedded

PCR polymerase chain reaction

FDR false discovery rate

qRT-PCR quantitative reverse transcriptase PCR

GEO gene expression omnibus

ER estrogen receptor

HER2 (ErbB2) human epidermal growth factor receptor 2

IHC immunohistochemistry

in which genetic variability represents a relevant confounding

factor.

Thus, the explicit goal of this study was to exploit cancer

datasets, in particular, breast cancer datasets, to provide a

proof of principle that meta-analysis of miR-HG expression

profiles can accurately identify int-miRNAs that are relevant

to cancer, both in terms of their potential utility as biomarkers

and their role in breast cancer cell biology.

2. Material and methods

2.1. Patient selection criteria

Written informed consent for research use of biological sam-

ples was obtained from all patients. Patients underwent sur-

gery at the European Institute of Oncology between 1998 and

2010. Only tumor samples with a cellularity >70% were

included in the study.

2.2. Affymetrix microarray analysis

Retroviral infection of the MCF10A cell line with the SV40-

large T antigen was performed using a pBABE-neo retroviral

vector. After 48 h of infection, cells were collected and total

RNA extracted using the RNeasy Mini Kit (QIAGEN). RNA qual-

ity was controlled using the 2100 Bioanalyzer (Agilent). Total

RNA (5 mg) was then retrotranscribed into double stranded

cDNA using SuperScript� Double-Stranded cDNA Synthesis

Kit (Invitrogen).

In vitro anti-sense RNA transcription was performed

through an Eberwine’s modified in vitro transcription reaction

(MEGAscript, Ambion) using labeled rNTP (Enzo� BioArray�
HighYield� RNA Transcript Labeling Kit, ENZO Biolabs).

Briefly, we added 14.5 ml of rNTPs mix, 2 ml of T7 polymerase

and 2 ml of reaction buffer to 1.5 ml of purified cDNA, and incu-

bated the reactionmix at 37 �C for 6 h. Labeled cRNAwas then

fragmented (30-200 base fragments), checked by agarose gel,

and hybridized on Human Genome U133A 2.0 Arrays in dupli-

cate for each condition (i.e., MCF10A SV40-large T, and

MCF10A pBABE-empty).

Data were normalized using the Robust Multi-array

Average (RMA) method. Information on human int-miRNAs,

associated host genes and mature miRNA sequences was

retrieved from miRBase v13.0. The Entrez IDs of the miRNA

host genes was extracted from the “org.Hs.eg.db” Bioconductor

annotation package. Probe sets mapping to miRNA host genes

were identified using the Bioconductor hgu133a2.db annota-

tion package. Differentially expressed probe sets were identi-

fied using the limma Bioconductor package. P-values were

adjusted using the BenjaminieHochberg correction.

2.3. Bioinformatics analysis of external Affymetrix
datasets

Breast cancer microarray datasets and associated clinical in-

formation were downloaded from the Gene Expression

Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/).

The accession numbers of the datasets used are GSE1456,

GSE2990, GSE7390, and GSE4922. All datasets were based on
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the GeneChip� Human Genome U133A to avoid batch bias ef-

fects during the analysis.

We applied a quality control procedure on CEL files to iden-

tify flawed arrays using Relative Log Expression (RLE) values

and Normalized Unscaled Standard Error (NUSE) values

(Bolstad et al., 2004; Gentleman et al., 2004). For each array,

we computed the median value and the interquartile range

(IQR) of both the NUSE and RLE statistics. We then calculated

the IQRs across the arrays for each dataset. Arrays were

rejected if IQR values were >q3 þ 1.5IQRs or < q1 � 1.5IQRs,

where q1 and q3 are the first and third quartile, respectively.

This filtering resulted in the exclusion of 47 arrays in the

GSE4922 dataset, 9 arrays in the GSE1456 dataset, 9 arrays in

the GSE7390 dataset, and 5 arrays in the GSE2990 dataset. In

addition, in the GSE2990 dataset we considered only the

“Uppsala” cohort of patients because of the low signal inten-

sity distribution of several arrays of the “Oxford” cohort

compared to the “Uppsala” cohort, which determined a batch

bias effect (Figure S1). Data were normalized using the RMA

method.

Information relative to human int-miRNAs and associated

host genes was retrieved from miRBase (www.mirbase.org,

release 13.0). Probe sets were filtered for signal intensity using

the Bioconductor genefilter package. Only probe sets that had

a normalized signal greater than 150 (7.2 on the log2 scale) in

at least 10% of the samples were retained for further analysis.

Differentially expressed probe sets were identified using the

limma Bioconductor package. All P-values were adjusted us-

ing the BenjaminieHochberg correction.

Monte Carlo simulation was performed for each dataset in

the following manner: 1) all miRNA-associated probe sets

were excluded from the dataset; 2) we randomly selected n

probe sets, where n is the number of miRNA-associated probe

sets (n ¼ 422); 3) the number of probe sets significantly regu-

lated between G3 vs. G1 and/or ER þ vs. ER-tumors were anno-

tated; 4) we repeated steps ‘2’ and ‘3’ 999 times. An empirical

P-value was calculated as the fraction of simulations yielding

a larger list of significantly regulated probe sets than the list

obtained in the original analysis. Expression dataset Breast

subtype analysis was performed using the TCGA breast cancer

(October 2012 release, 599 patients) downloaded from the

TCGA web data portal (https://tcga-data.nci.nih.gov/tcga/

tcgaHome2.jsp). Data were gene centered on relative medians

and log2 transformed before clustering analysis.

Pathway analysiswas performed using the online available

webtool Ingenuity Pathway Analysis (IPA) (http://www.inge-

nuity.com/). Predicted and experimentally validated miRNA

target gene sets were obtained using miRWalk database

(Dweep et al., 2011). MicroRNA target prediction was per-

formed using four different methods: miRanda, miRDB, miR-

Walk and Targetscan. Genes predicted in 4 out of 4 methods

were retained for subsequent IPA analysis.

2.4. RNA isolation and RT-PCR

Total RNA was extracted from cell lines using the TRIZOL re-

agent (Invitrogen) or from FFPE archival breast tumor samples

(with a tumor cellularity >70%) using the RNAeasy FFPE kit

(QIAGEN). RNA was quantified by Nanodrop (Agilent

Technologies).

miRNA expression profiles of MCF10A cells were obtained

using the TaqMan� Low Density Array microRNA Signature

Panel (v1.0; Applied Biosystems) and reactions were carried

out on an Applied Biosystems 7900HT thermocycler using

the manufacturer’s recommended cycling conditions.

miRNA expression profiles of FFPE archival breast tumor

samples or of MDA-MB-231 and MDA-MB-361 cells were ob-

tained using miScript Primer Assays and the miScript SYBR

Green PCR Kit (Qiagen). Total RNA (400 ng) was reverse tran-

scribed using the miScript Reverse Transcriptase kit (Qiagen)

according to manufacturer’s instructions. Briefly, the two-

step protocol involves reverse transcription of miRNA to

cDNA using miRNA-specific primers followed by qRT-PCR. Re-

actions were run in duplicate using 5 ng of cDNA as template

in 20 ml final reaction volume. All probes were normalized to

U5A for FFPE archival breast tumor samples or to SNORD25

for breast cancer cell lines, as an internal control. Amplifica-

tion reactions were performed with LightCycler 480 (ROCHE)

using the manufacturer’s recommended cycling conditions.

Relative expression ratios of miRNAs were obtained using

the 2�ddCT method.

2.5. Cell lines and infection

The MDA-MB-231 and MDA-MB-361 breast cancer cell lines

were grown in Dulbecco’s Modified Eagle Medium supple-

mented with 10% fetal bovine serum, 2 mM L-glutamine,

100 U/ml penicillin, and 100 U/ml streptomycin at 37 �C in a

humidified incubator with 5% CO2. MaturemiRNAswere over-

expressed using GFP Lenti-miR� vectors obtained from Sys-

tems Biosciences (SBI, Mountain View, CA, USA). The pCDH-

CMV-MCS-EF1-copGFP was used as a control vector (SBI,

Mountain View, CA, USA). GFP positive cells were sorted

with a BD Influx� cell sorter (BD Bioscience, San Jose, CA,

USA). Host genes overexpression was achieved by Lip-

ofectamine� 2000 transfection (LifeTechnologies) of pCMV-

Sport6-MYO5C, pCMV-Sport6-EVL and pDEST26-IGF2 vectors

(derived from the original pENTR221-IGF2 vector) provided

by Life Science (Source BioScience, Nottingham, UK). Gene

expression was verified by qRT-PCR using QuantiTect Primer

Assay (Qiagen), or, for MYO5C, using custom primers: MYO5C

e Forward, GAATCTCTGCCTCCACTTCG; MYO5C e Reverse,

GATAGCTGAGAGCCGTGAGG. miR-HG expression was

normalized to GUSB expression as an internal control.

2.6. Cell proliferation and colony forming assays

For proliferation assays, MDA-MB-231 and MDA-MB-361 cells

were seeded in triplicate in 6-well plates (BD Falcon�
353046) at 4 � 104 and 25 � 104 cells/well, respectively. Bio-

Rad TC10 automated cell counterwas used to count cells every

24 h for 4 days. The first measurement was taken at 24 h for

MDA-MB-231 or at 72 h for MDA-MB-361 after seeding cells.

Colony forming assays were performed by seeding 5000

cells/type in 10-cm plates (BD Falcon� 353003) and then incu-

bating plates for 10 days. Colony formation was visualized by

staining for 5 min at RT with crystal violet (1% w/v in 35%

EtOH, Santa Cruz).
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2.7. Wound-healing assay

Time-lapse video microscopy was performed as described

previously (Palamidessi et al., 2008; White et al., 2007) with

slight modifications. Confluent monolayers of MDA-MB-231

or MDA-MB-361 cells in 12-well plates (BD Falcon� 353043)

were wounded with a plastic pipette tip to induce migration

into the wound. Cells were placed on the stage of an inverted

motorized microscope (Leica AF600) in a cage incubator (Oko-

lab) at 37 �C and 0% CO2 for time-lapse video microscopy.

Phase-contrast images were collected every 20 min over a

12-h period. Videos were generated using the ImageJ software

for image analysis. Cell trajectorieswere determined using the

MTrackJ plugin of ImageJ (Meijering et al., 2012). The distance

covered by each cell and the migration speed were extracted

from the track plots. Fifteen cells from 3 independent experi-

ments were analyzed for each condition, and data are

expressed in micrometers as mean � s.

2.8. Statistical analysis

The significance of the overlap between gene lists was based

on the hypergeometric distribution (Fury et al., 2006). The

extension to the case of more than two overlapping lists was

based on marginalization of joint probability and chain rule

of probability.

RT-PCR gene expression analysis and relative statistical

analyses were performed using JMP 10.0 64-bit edition (SAS

Institute Inc.). Statistical analyses were performed on log2

data using parametric tests (t-test, ANOVA). Cluster 3.0 for

Mac OS X (http://bonsai.hgc.jp/wmdehoon/software/clus-

ter/) and Java Treeview (http://jtreeview.sourceforge.net)

were used for the hierarchical clustering analysis. Uncen-

tered correlation and centroid clustering methods were

used on log2 median centered data. The multivariate model

to predict risk of having an aggressive tumor subtype was

built using diagonal linear discriminant analysis (DLDA)

with BRB ArrayTools (http://linus.nci.nih.gov/BRB-Array-

Tools.html). Briefly, the model assigned a risk index to every

patient and classified them as high- or low-risk of having an

aggressive tumor subtype based on linear combination of

gene expression values weighted by coefficients calculated

during training of the classifier. The critical cutoff value to

predict high-/low-risk was identified by the receiver oper-

ating characteristics curve analysis (ROC) using JMP 10.0

software, and it was set at �1.23. In the training set,

twenty-eight out of the 29 LuA tumors (w97%) were pre-

dicted as ‘low risk’, which is consistent with the reported

low metastatic behavior of LuA breast tumors (Voduc et al.,

2010). In contrast, 43 out of the 66 patients with the more

aggressive LuB tumor subtype (w65%) were predicted as

‘high risk’ (P < 0.0001). Overall, the test displayed an accu-

racy, sensitivity and specificity of w75%, w65% and w97%,

respectively, in the training set, and it was independent

from other risk factors such as nodal status, tumor size

(pT), and HER2 positivity (Table S1).

Multivariate nominal logistic regression of miRNA risk

class was performed using JMP 10.0 software. The Odds ratio

of miRNA high-risk class was adjusted for ErbB2 (HER2), nodal

status and tumor size (pT).

Table 1 eOverlapping miR-HGs in the different analyses. Overlapping miR-HGs (highlighted in grey
scale) in G3 vs. G1 and ERD vs. ER-analyses ( P < 0.05, BenjaminieHochberg correction). Dataset,
Gene Expression Omnibus accession numbers of the Affymetrix datasets. N, total number of unique
miR-HGs found regulated in the relative dataset. %, percentage of miR-HGs regulated out of the total
miR-HGs mapped on the array (N [ 243). N overlapping, number of miR-HGs commonly found
regulated in highlighted datasets (light/dark grey areas). P, significance of the overlaps.

G3/G1

Dataset N
% 

(N/243)
N overlapping

GSE4922 110 45 53
P<0.0001 47

P<0.0001 25
P<0.0001

GSE1456 56 23
GSE2990 78 32
GSE7390 35 14

ER+/ER-

Dataset N
% 

(N/243)
N overlapping

GSE4922 97 40 27
P<0.0001 17

P<0.0001GSE2990 29 12
GSE7390 43 18
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3. Results

3.1. An in silico approach to extract information on the
regulation of int-miRNAs from microarray gene expression
(mRNA) datasets

Several studies have indicated that there is a good correlation

between the expression of miR-HGs and their respective int-

miRNAs (Baskerville and Bartel, 2005; Wang et al., 2009;

Wang and Li, 2009). Therefore, the first step in our strategy

was the development of an in silico approach to predict int-

miRNA expression by means of microarray-based analysis of

miR-HG expression profiles. To this end, we used a control-

lable and syngeneic model system, the non-transformed

breast cell line MCF10A infected with the Simian virus 40

(SV40) large T antigen, which causes cell transformation and

alters the expression of numerous genes (Carbone et al.,

1997; De Luca et al., 1997; Girardi et al., 1962). We compared

the mRNA and miRNA expression profiles of these MCF10A-

SV40 cells to those of mock-infected MCF10A cells (see

Methods). miR-HGs were identified by mapping the genomic

position of 706 knownhumanmiRNAprecursors (pri-miRNAs)

to the genomic coordinates of the entire human genome. This

resulted in the identification of 317 pri-miRNAs located within

the introns of 269 uniquemiR-HGs (Table S2). Affymetrix gene

expression analysis revealed 43 miR-HGs differentially

expressed in MCF10A-SV40 vs. control cells (FDR<10%, Table

S3), which contain 51 pri-miRNAs in their introns, correspond-

ing to 84 mature int-miRNAs. We validated the analysis, by

directly measuring the expression of 47 of these miRNAs, in

the same samples, by qRT-PCR (using available TaqMan as-

says). Of the 47 int-miRNAs, 38 were detectable by qRT-PCR,

and of these 31 were congruently regulated with their miR-

Figure 1 eGlobal gene expression profiles of miR-HGs in breast cancer. A. Results of the Monte Carlo simulation for the G3 vs. G1 breast cancer

Affymetrix meta-analysis. For this simulation, we used 1000 lists of randomly selected genes that were of the same size as the original list of miR-

HGs, and which contained genes that, to date, have not been associated with any int-miRNA (“non-host genes”). Histograms represent the

distribution of the random lists (1000 random lists of 422 probe sets) in the indicated GEO datasets. X-axes: number of significantly regulated

probe sets (D.E., differentially expressed probe sets) found in the random lists ( P < 0.05; BenjaminieHochberg correction). Y-axes: frequency of

random lists. Red dashed lines indicate the position, within the distributions, of the miR-HG list (422 probe sets) identified through our analysis.

P-values indicate the fraction of random lists having an equal or larger number of significantly regulated probe sets compared to the miR-HG list.

B. Results of the Monte Carlo simulation for the ERD vs. ER-breast cancer Affymetrix analysis. Results are presented as in (A).
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HGs (Table S4). The positive correlation between the expres-

sion of miR-HGs and int-miRNAs was significant when

analyzed both qualitatively (congruent direction of regulation;

P ¼ 0.02, Figure S2A) and quantitatively (expression ratios;

P ¼ 0.0003, R ¼ 0.4, Figure S2B). In contrast, the 74 int-

miRNAs (for which TaqMan assays were available) within in-

trons of unregulatedmiR-HGs (FDR>10%), did not show signif-

icant co-regulation with their cognate miR-HGs (P ¼ 0.2 and

P ¼ 0.5; Figure S2C and D), possibly due to a different post-

transcriptional regulation of mRNA and miRNA cognate

transcripts.

In summary, these data indicate that our bioinformatics

approach can be used to infer int-miRNA regulation through

host gene expression profile analysis.

3.2. In silico prediction of miR-HGs differentially
regulated in breast cancer

We next analyzed the expression of miR-HGs in breast cancer

through a meta-analysis of expression datasets of 666 pa-

tients, from four independent studies with clinical and path-

ological information, and raw data available through the GEO

database (Table S5). We mapped 243 unique miR-HGs (con-

taining 264 int-miRNAs) whose expression data were present

in the datasets (Table S6). Through the comparison of tumors

with different clinical and pathological parameters, we iden-

tified a significant number of differentially expressed miR-

HGs ( P < 0.05, BenjaminieHochberg correction; Table S7A

and B), especially in the comparisons between poorly differ-

entiated (G3) and well-differentiated (G1) tumors, or between

estrogen receptor positive (ERþ) and estrogen receptor nega-

tive (ER�) tumors. In the first instance (G3 vs. G1), 14e45% of

all miR-HGs (depending on the considered dataset, Table 1)

were differentially regulated; in the second case (ER þ vs.

ER�) the differential expression of miR-HGs was 12e40%

(Table 1).

It has been reported that the differences in the transcrip-

tomic profiles of different types of breast cancer (i.e. G3 vs.

G1, or ER�vs. ERþ) are so vast that regulation of a set of genes

of interest might simply reflect large-scale transcriptional

changes (Ivshina et al., 2006; Sotiriou et al., 2003, 2006), and

even that a significant number of randomly chosen “signa-

tures” may have prognostic value (Venet et al., 2011). Thus,

to determine whether the large fraction of miR-HGs differen-

tially regulated in breast cancer was not the mere result of

large-scale transcriptional changes, we performed a Monte

Carlo simulation using 1000 random lists of non-host genes

(which represent more than 95% of the entire genome). In

G3 vs. G1 tumors, there was a significant enrichment of differ-

entially regulated miR-HGs, with respect to non-host genes

( P < 0.01 in all datasets; Figure 1A). A similar enrichment

was also observed, although to a lesser extent, when

ERþ tumors were compared with ER� (Figure 1B).

The above result argues that miR-HGs are preferentially

and selectively regulated among different types of breast can-

cers. While this concept will be further discussed later, it is of

note that there is a high degree of overlap between the G3/G1

and the ERþ/ER� lists of miR-HGs regulated with same trend,

in independent datasets (Table 1 and Tables S7C and D).
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3.3. From miR-HGs to int-miRNAs: in silico predictions
of relevance to cancer

We next attempted to translate the information on miR-HGs

into the corresponding information concerning their hosted

int-miRNAs. Since this step was preparatory to the actual

validation and analysis of biological relevance in “real” tu-

mors, we concentrated on the miR-HGs differentially

expressed between G3 and G1 tumors, which displayed the

most consistent and significant regulation among datasets

(Figure 1). To eliminate candidates whose fluctuations might

be due to technical or biological variability, we applied a

stringent threshold and selected only those miR-HGs that

displayed a fold-change of at least 1.5 (positive or negative)

in at least 3 out of the 4 datasets. This yielded a list of 8

candidate miR-HGs, of which 2 were upregulated and 6

downregulated (Table 2).

The two upregulated miR-HGs were SMC4 and MCM7 that

are involved in DNA synthesis, mitosis and DNA repair

(Hagstrom and Meyer, 2003; Lei and Tye, 2001), and contain

two miRNA clusters in their introns: the miR-15bw16-2 and

the miR-25w106b cluster, respectively. Both miRNA families

have been described as being relevant to cancer (Bonci et al.,

2008; Poliseno et al., 2010). Conversely, the six downregulated

miR-HGs contain nine miRNAs whose relevance to cancer has

not been investigated in detail: miR-548f-2, miR-1245, miR-218/

218*, miR-342-3p/-5p, miR-483-3p/-5p and miR-1266 (Grady

et al., 2008; Song et al., 2012; Soon et al., 2009; Tie et al.,

2010; Veronese et al., 2010).

To gain initial insights into the potential relevance of these

int-miRNAs to breast cancer, we performed pathway analyses

of their predicted and validated target genes (see Methods).

We observed a statistically significant enrichment in cancer-

relevant genes among the predicted targets, which was

confirmed also among the experimentally validated target

genes (Figure 2A and B).

3.4. Validation of predicted breast cancer-regulated int-
miRNAs by qRT-PCR

To validate the results of the in silico analysis, we analyzed

the eleven identified int-miRNAs by qRT-PCR in a cohort of

36 FFPE archival G1 and G3 breast cancers (Table S8A).

miR548f-2 and miR-1245 were undetectable in all samples

and were thus excluded from further analyses. The hierar-

chical clustering analysis of the tumor samples, based on

the expression of the remaining nine int-miRNAs, displayed

a clear separation at the first tree branching between G3 and

G1 tumors (70% and 75% of G3 and G1 tumors, respectively,

clustering at the first branch; P ¼ 0.006, likelihood-ratio

test; Figure 3A). This result confirmed a distinct pattern of

expression of the int-miRNA signature in high-vs. low-

grade breast tumors, as predicted by the miR-HG expression

analysis. Individually, miR-342-3p/5p, miR-483-3p/5p and miR-

Figure 2 e Ingenuity Pathway Analysis of predicted and experimentally validated int-miRNA target genes. A. Bio-functions analysis of predicted

target genes. B. Bio-functions analysis of experimentally validated target genes (see also Table S12). No validated targets were available for miR-

548f, miR-1245 and miR-1266. Y-axis, P-value (-log10; Fisher’s Exact test) of the enrichment of int-miRNA targets in the biomolecular functions

(displayed on the X-axis) annotated in the Ingenuity Bio-functions database. G3-DOWN, target genes of int-miRNAs located in host genes that

are downregulated in G3 breast tumors. G3-UP, target genes of int-miRNAs located in host genes that are upregulated in G3 breast tumors.

P-value (Fisher’s exact test) cutoff was set at 0.05 (Threshold).
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1266 were strongly downregulated in G3 breast tumors

( P < 0.05; Figure 3B). miR-218/218* were also downregulated,

but not significantly ( P > 0.05; Figure 3B). Similarly, the regu-

lation of miR-15b and miR-106b (used as representatives of

the miR-15bw16-2 and the miR-25w106b naturally

co-transcribed clusters) was not significant ( P > 0.05;

Figure 3B).

Since the expression of the miR-HGs was also differen-

tially regulated in different breast cancer molecular subtypes

(Table 2, Figure S3), we compared the expression levels of

the significantly regulated int-miRNAs in the breast tumor

subtypes in the 36-patient cohort. The different molecular

subtypes e luminal A (LuA), Luminal B (LuB), basal, and

HER2 e were identified using ER, progesterone receptor

(PgR), HER2 and Ki67 immunohistochemistry markers

(Blows et al., 2010; Cheang et al., 2009; Nielsen et al., 2004).

Overall, the int-miRNAs showed significant downregulation

in the most aggressive molecular subtypes (LuB, basal, and

HER2) with respect to the less aggressive LuA subtype

(Figure 3C). Similar results were obtained using an external

dataset (Enerly et al., 2011) with matched miR-HG and int-

miRNA expression profile (Figure S4). Importantly, we also

observed a general downregulation of these int-miRNAs,

and of their relative miR-HGs, in breast tumors when

compared to normal breast epithelium (Figure S5). This latter

finding suggests that the loss of expression of the analyzed

int-miRNAs/miR-HGs might be directly involved in the

transformation process.

Figure 3 e Validation of the int-miRNA signature in the 36-patient cohort of G1 and G3 breast tumors by qRT-PCR. A. Hierarchical clustering

of tumors based on the expression of selected int-miRNAs. miR-15b and miR-106b were used as representatives of their respective co-transcribed

miRNA clusters, while miR-548f-2 and miR-1245 were undetectable by qRT-PCR. Columns represent log2 ratios of expression of each miRNA

(median centered); rows represent tumor samples. Colored bars indicate the class of each patient. The color code, on the right, shows the

characteristics of each patient: red, grade 3 tumor (G3); grey, grade 1 tumors (G1); ER, estrogen receptor (black [ positive, white [ negative);

HER2, ErbB2 receptor (black [ positive, white [ negative). B. Differences in int-miRNA expression between G3 and G1 tumors. G3 vs. G1

(Fold): fold-change difference in expression; P-value calculated by Student’s t-test; Host: Affymetrix host gene expression change in G3 vs. G1

tumors (D: downregulated, U: upregulated). C. Expression ratios (Log2) of int-miRNAs in breast tumor subtypes defined by ER/PgR, HER2 and

Ki67 status. The tumor subtypes, shown on the x-axes, were identified as follows: basal [ ERL, PgR- and HER2-; HER2 [ ERL, PgR- and

HER2D; LuB [ ERD and/or PgRD, Ki67 ‡ 14%; LuA [ ERD and/or PgRD, Ki67 < 14%. P-values were calculated using the Student’s t-

test. Asterisks, statistically significant P-values.
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3.5. Detection of aggressive G2 breast cancers using the
int-miRNA signature

The sum of the previous results suggested an association be-

tween the downregulation of four int-miRNAs e miR-342-3p,

miR-483-3p,miR-483-5p andmiR-1266e and features of aggres-

siveness in breast cancer.We directly tested this possibility by

taking advantage of a category of breast tumors with amoder-

ate degree of differentiation (G2 tumors). The reason for doing

so was dual. On the one hand, G2 tumors were not considered

in our previous analyses, thus circumventing the risk of over-

fitting the data because of the selection of candidate int-

miRNAs. On the other, G2 tumors represent a heterogeneous

category, composed of tumors with varying degrees of aggres-

siveness (Gnant et al., 2011; Ivshina et al., 2006; Rakha et al.,

2010; Sotiriou et al., 2006).

An independent cohort of 95 G2 tumors was profiled for

miR-483-3p/5p, miR-342-3p and miR-1266 expression

(Table S8B). Hierarchical clustering analysis of int-miRNA

expression profiles of this cohort, alone or together with those

of the previously described 36-tumor G1/G3 cohort, revealed

two main clusters, characterized by opposite regulation of

the four int-miRNAs (Figure 4A). The cohort of G2 breast can-

cer patients was almost equally distributed between the two

clusters. Interestingly, luminal A (less aggressive) and luminal

B (more aggressive) G2 cancers co-segregated significantly

with G1 and G3 tumors, respectively (Figure 4A), as also

confirmed by contingency analysis ( P < 0.0001; Figure 4B).

Three of the four int-miRNAs, miR-483-3p, miR-483-5p and

miR-1266, were significantly downregulated in G2-LuB vs. G2-

LuA tumors ( P< 0.0001; Figure 4C), suggesting that theymight

identify more aggressive subtypes (i.e. Luminal B) even in G2

tumors. To investigate this possibility, we built a multivariate

model based on these three miRNAs using the 95-patient

cohort as the training set (see Materials and Methods). The

modelwas then validated in an additional independent cohort

Figure 4 e Molecularly “aggressive” G2 breast cancers are identified by an int-miRNA signature. A. The cohort of 95 G2 tumors was analyzed by

qRT-PCR for the expression of miR-342-3p, miR-483 and miR-1266. Results, alone or together with those obtained in G3:G1 cohort (36

patients), were subjected to hierarchical clustering analysis. Columns represent log2 ratios of expression of int-miRNAs (median centered); rows

represent tumor samples. The color code, on the right, indicates tumor grade/subtype: G3, red; G1, grey; G2-LuB, light blue; G2-LuA, white; ER,

(black [ positive); HER2, (black [ positive). B. Contingency analysis of tumor distribution in Clusters 1 and 2. Color codes as in (A). P-value,

likelihood-ratio test. C. Expression analysis of int-miRNAs in G2-luminal A (G2-LuA) and G2-luminal B (G2-LuB) tumors. P-values, Student’s

t-test. D. Performance of the int-miRNA signature composed of miR-483-3p, miR-483-5p and miR-1266 in the additional independent cohort

(Testing Set) of 90 G2 breast tumors. Y-axes: risk scores of the model. X-axes: breast tumor subtypes. Dashed line: decision cutoff used to classify

patients in the high-vs. low-risk category, determined by nominal logistic regression and ROC analysis. P-values were calculated by the Student’s

t-test. Asterisks, statistically significant P-values.
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Figure 5 e Effects of overexpression of miR-1266, miR-342-3p/5p and miR-483-3p/5p and of relative host genes in breast cancer cell lines. Cells

were infected with lentiviral vectors expressing precursors of miR-342, miR-483 and miR-1266, or transfected with vectors expressing full-length

EVL, IGF2 and MYO5C miR-HGs. A. qRT-PCR analysis of int-miRNA expression in MDA-MB-231 cells. miRNA levels are reported as the

Log2 normalized ratio of expression (-ddCT) relative to wild-type (non-infected) cells. pCDH, the empty vector pCDH-CMV-MCS-EF1-GFP

was used as control. B. Cell proliferation assay with MDA-MB-231 cells. Data represent the mean ± s from three independent experiments

(n [ 3). P-value, two-way ANOVA test relative to control cells (i.e., WT or pCDH). The asterisk indicates statistical significance. C. Colony

forming assay with MDA-MB-231 cells. Images (top) represent colonies formed ten days after seeding. The bar graph (bottom) displays the

mean ± s from two independent experiments (n [ 2). *, statistically significant P-value (P < 0.05) relative to control cells (WT or pCDH). D.

Cell proliferation assay with MDA-MB-361 cells. Data represent the mean ± s from three independent experiments. No significant differences
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of 90 patients with G2 node-negative breast cancer, in which

all subtypes were represented (Table S9). In this cohort, the

model correctly identified all 5 basal/HER2 tumors and 60 of

75 LuB tumors (80%) as ‘high risk’, and 7 of 10 LuA tumors

(70%) as ‘low-risk’ (Figure 4D). Thus, the risk model detected

aggressive tumor subtypes with an accuracy, sensitivity and

specificity of 80%, 81% and 70%, respectively.

In conclusion, we have provided a proof of principle that

the detection of int-miRNAs, through data mining of miR-

HGs in published cancer expression datasets, represents a

viable strategy for the identification in silico of miRNAs of po-

tential cancer relevance.

3.6. Increased expression of miR-342 and miR-1266, but
not of their host genes, impairs breast cancer cell
proliferation and migration

We investigated whether the regulated expression of the loci

corresponding to miR-342-3p/5p, miR-483-3p/5p and miR-1266

has an impact on the biology of breast cancer cells. Hierarchi-

cal clustering of the miR-342, miR-483 and miR-1266 miR-HG

expression profiles (i.e. EVL, IGF2 and MYO5C, respectively)

in a panel of 51 breast cancer cell lines, for which expression

data are publicly available [Table S10 (Neve et al., 2006)],

revealed two main clusters, enriched in cell lines of the basal

(Cluster 1, 20 out of 22, P < 0.0001) or luminal (Cluster 2, 23 out

of 29, P < 0.0001) subtypes (Figures S6A and B). We selected as

a model system, the MDA-MB-231 cell line that displayed the

lowest median expression levels of the IGF2, EVL2 and

MYO5C miR-HGs (Figure S6C). As a control, we selected the

MDA-MB-361 cell line, which displayed an opposite, and

quantitatively comparable, regulation of the same miR-HGs

(Figure S6C). By qRT-PCR analysis, we confirmed that the

expression of miR-342-3p/5p, miR-483-3p/5p and miR-1266

was indeed congruent with the expression of their host genes

in both of the selected cell lines (Figure S6D).

We selected two relevant cancer phenotypes, proliferation

and migration, to test the impact of restoration of high levels

of expression of miR-342, miR-483 and miR-1266 in MDA-MB-

231 cells, using MDA-MB-361 as a specificity control. We also

tested the effects of overexpression of the corresponding

miR-HGs (IGF2, EVL2 and MYO5C). The lentiviral-mediated

expression of miR-342 and miR-1266 (Figure 5A), caused a sig-

nificant reduction in the proliferation rate and colony forming

ability of MDA-MB-231, but not MDA-MB-361, cells

(Figure 5BeE). Similarly, miR-1266 expression significantly

impaired cell migration of MDA-MB-231, but not MDA-MB-

361, cells (Figure 6AeC). Conversely, overexpression of the

miR-HGs did not affect proliferation or migration of MDA-

MB-231 cells (Figure 5FeG, and Figure 6D). Finally, since nega-

tive self-regulation of miR-HGs has been reported in the liter-

ature (Bosia et al., 2012), we analyzed the expression of miR-

HGs upon overexpression of their cognate int-miRNAs: no sig-

nificant changes were observed (Figure S7).

4. Discussion

Here, we describe an approach to exploit an intrinsic charac-

teristic of miRNAs, i.e. that w50% of their genes reside within

introns of protein-coding genes and share their regulation (He

et al., 2012; Monteys et al., 2010; Ozsolak et al., 2008; Rodriguez

et al., 2004). We reasoned that the wealth of publicly available

microarray (mRNA) expression datasets might contain

“encrypted” miRNA-related information that could be

exploited for the discovery of biologically relevant miRNAs

simply through meta-analysis.

In designing a proof-of-principle validation, we concen-

trated on breast cancer for which several high-quality, inde-

pendent, transcriptome datasets are publicly available. We

did so with multiple intents: i) to verify whether we could

identify differentially expressed int-miRNAs simply by

extracting the latent information in published gene expres-

sion (mRNA) datasets, ii) to verify whether int-miRNA signa-

tures can be identified that would allow patient

stratification, iii) to identify int-miRNAs whose involvement

in biological processes, most notably cancer, was not previ-

ously known, iv) to investigate whether, at least in some

cases, the dysregulations emerging from gene expression

profiling might be more informative if viewed from the point

of view of the hosted int-miRNA, rather than of the hosting

gene.

Our efforts were successful on all accounts. Firstly, we

were able to identify several miR-HGs, and their correspond-

ing int-miRNAs, that are differentially expressed in various

breast cancer subtypes. Importantly, several of the int-

miRNAs that we identified have recently been found to be

regulated in high-throughput miRNA expression profilings of

independent cohorts of breast cancer patients [Table S11;

(Aure et al., 2013; Blenkiron et al., 2007; Dvinge et al., 2013;

Volinia et al., 2012)]. These data further support the effective-

ness of our in silico approach to predict cancer-regulated int-

miRNAs.

Secondly, we were able to identify an int-miRNA cancer

signature e composed of miR-342, miR-483 and miR-1266 e

that successfully stratified G2 cancers according to their mo-

lecular subtype, and therefore, according to their aggressive-

ness. We are not claiming a direct, even prospective, clinical

utility of the identified signature or of the related risk model.

Clearly, further studies are needed in this direction, aimed

at, for example, comparing our int-miRNA cancer signature

with existing stratification tools, such asmolecular subtyping.

However, our data demonstrate that the int-miRNA-related

information “hidden” in transcriptomic profiles can be

were found by two-way ANOVA test relative to control cells ( P> 0.5; WT or pCDH). E. qRT-PCR analysis of int-miRNA expression in MDA-

MB-361 cells. miRNA levels are reported as the Log2 normalized ratio of expression (-ddCT) relative to wild-type (non-infected) cells. pCDH, the

empty vector pCDH-CMV-MCS-EF1-GFP was used as control. F. Cell proliferation assay in MDA-MB-231 cells overexpressing the indicated

miR-HGs. Data represent the mean ± s from three independent experiments (n [ 3). No significant differences were found by two-way ANOVA

test ( P > 0.5) relative to control cells (transfected with a pDEST26 empty vector). G. qRT-PCR analysis of miR-HG expression in MDA-MB-

231 cells. EVL, IGF2 or MYO5C host gene expression is reported as the Log2 normalized ratio of expression (-ddCT) relative to control (empty

vector transfected) cells. Empty, the empty vector pDEST26 was used as a control.
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successfully extracted in silico and used to identify miRNAs of

potential clinical utility.

From a biological viewpoint, our approach led to the iden-

tification of two miRNAs, miR-342 and miR-1266, that are

involved in cancer-related phenotypes. The fact that overex-

pression of these miRNAs inhibited cancer-relevant pheno-

types specifically in cells that display low expression of

these miRNAs, but not in cells that express normal levels, ar-

gues that the downmodulation ofmiR-342 andmiR-1266might

have a causal role in determining the aggressiveness of some

breast cancers. This latter notion is supported by our findings

that miR-342 and miR-1266 are differentially expressed be-

tween different breast cancer subtypes, and also underex-

pressed in some tumor tissues with respect to the normal

breast epithelium. Of note, while there is some evidence in

the literature indicating an involvement of miR-342 in cancer

(Dvinge et al., 2013; Veronese et al., 2010), there have been

no reports, prior to this study, of a role of miR-1266 in cancer

(Ichihara et al., 2012).

Lastly, in the case of the loci encoding miR-342/EVL and

miR1266/MYO5C, we report the intriguing observation that

restoration of the expression of the int-miRNA, but not that

of the host gene, inhibits cancer-relevant phenotypes. Thus,

adding the “int-miRNA perspective” to the analysis and vali-

dation of gene expression studies is likely to increase the like-

lihood of identifying significant biological mechanisms

involved in cancer.

5. Conclusions

In summary, we have developed an approach for the identifi-

cation of biologically relevant int-miRNAs that has the poten-

tial to accelerate miRNA research by bypassing the lengthy

and costly phase of initial screenings, and substituting them

with meta-analysis of miR-HGs in publicly available expres-

sion datasets. The approach apparently performs well both

in the holistic-oriented field of signature identification, which

Figure 6 e Effects of overexpression of miR-1266, miR-342-3p/5p and miR-483-3p/5p on the migration of breast cancer cell lines. A. Monolayers

of infected or wild-type (WT) MDA-MB-231 cells were scratch-wounded, as shown in the images on the left, and monitored by time-lapse video

microscopy. Representative images were taken from movies at 0, 6 and 12 h. Colored lines show tracks of 5 representative cells. White Bar, 30 mm.

B. Quantitation of the experiment shown in (A). Mean distance covered (left) and velocity (right) are shown. Data represent the mean ± s from 15

individually tracked cells from 3 independent experiments. P-values were calculated using Welch’s t-test analysis. ***, P < 0.0001 relative to

control cells (Wt or pCDH). C. Quantitation of migration of MDA-MB-361 cells overexpressing miR-1266, miR-342-3p/5p and miR-483-3p/5p,

relative to control cells (Wt or pCDH). Mean distance covered (left) and velocity (right) are shown. Data represent the mean ± s from 15

individually tracked cells from 3 independent experiments. P-values were calculated using Welch’s t-test analysis and were not significant

(P > 0.5). D. Quantitation of migration of MDA-MB-231 cells overexpressing EVL, IGF and MYO5C, relative to control cells (pDEST). Mean

distance covered (left) and velocity (right) are shown. Data represent the mean ± s from 15 individually tracked cells from 3 independent

experiments. P-values were calculated using Welch’s t-test analysis and were not significant (P > 0.5).
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finds primary application in projects of clinical interest, and in

the more traditional field of “gene hunting” to guide high-

resolution studies. While we have applied the methodology

to the breast cancer setting to obtain a proof of principle of

its utility, we envision applications in several fields of biology

andmedicine for which high quality gene expression datasets

are available.
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