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To you, the daring venturers and adventurers, 
and whoever hath embarked with cunning sails upon frightful seas;

To you the enigma-intoxicated, the twilight-enjoyers, 
whose souls are allured by flutes to every treacherous gulf.

NIETZSCHE, FRIEDRICH, Thus Spoke Zarathustra 

!2



TABLE OF CONTENTS: 

SINTESI 5

RÉSUMÉ 8

ABSTRACT 11

PRELIMINARY REMARKS 15

CHAPTER 1: PLATONISM 25

1.1 FROM PLATO TO CONTEMPORARY PLATONISM 25
1.2 INDEPENDENCE 30
1.3 EXISTENCE 35
1.4 EPISTEMOLOGY 40
1.4.1 THEORY OF KNOWLEDGE 41
1.4.2 TRUTH 45
1.4.3 REFERENCE 50
1.5 SOBER PLATONISM 54

CHAPTER 2: FULL-BLOODED PLATONISM 62

2.1 INTRODUCTION 62
2.1.1 THE PROBLEM OF FORMALIZATION 64
2.2 EPISTEMOLOGY 66
2.2.1 THE EPISTEMOLOGICAL ARGUMENT 66
2.2.2 THE FULL-BLOODED SOLUTION 70
2.3 CONSISTENCY 75
2.4 MATHEMATICAL CORRECTNESS AND MATHEMATICAL TRUTH 82
2.4.1 HOW TO DEAL WITH UNDECIDABLE SENTENCES IN MATHEMATICS 83
2.5 NON-UNIQUENESS 87
2.6 A DEFENSE OF FULL-BLOODED PLATONISM 93

CHAPTER 3: STRUCTURALISM 99

3.1 STRUCTURALISM 99
3.2 EXISTENCE 105
3.4 AXIOMS 114
3.5 EPISTEMOLOGY 118
3.6 REFERENCE 126

!3



3.7 STRUCTURALISM AND CAESAR’S PROBLEM 129
3.8 STRUCTURALISM AND FORMALISM 131

CHAPTER 4: OBJECTS THEORY 135

4.1 NAÏVE OBJECTS THEORY 135
4.2 ELEMENTARY OBJECTS THEORY 142
4.2.1 OBJECT CALCULUS 142
4.2.2 AXIOMS 149
4.3 MODAL THEORY OF ABSTRACT OBJECTS 153
4.3.1 MODAL OBJECT CALCULUS 153
4.3.2 AXIOMS 160
4.4 ONTOLOGY 162
4.5 EPISTEMOLOGY 171

CHAPTER 5: TRIVIALISM 176

5.1 METAPHYSICALISM AND COMPOSITIONALISM 176
5.2 CONSTRUCTING LOGICAL SPACE 183
5.3 ’JUST IS’-STATEMENTS 185
5.3.1 CONNECTIONS OF ‘JUST IS’-STATEMENTS 192
5.4 TRIVIALIST SEMANTICS 197
5.5 IS IT REALLY TRIVIAL? 202
5.6 TRIVIALISM, PLATONISM AND NOMINALISM 205
5.7 TRIVIALISM AND NEOFREGEANISM 209

CHAPTER 6: CONCLUDING REMARKS 213

6.1 SOBER PLATONISM 213
6.2 INDEPENDENCE 217
6.3 EXISTENCE 221
6.4 EPISTEMOLOGY 227
6.4.1 THEORY OF KNOWLEDGE 228
6.4.2 TRUTH 233
6.4.3 REFERENCE 236
6.5 CONCLUSION 240

BIBLIOGRAPHY 242

!4



Sintesi 

In questo lavoro ho voluto analizzare una tendenza che ha preso forma negli ultimi anni 

tra le teorie platoniste nell’ambito della filosofia della matematica. I modelli da cui sono 

partita sono quattro autorevoli proposte, che mi sono parse paradigmatiche: il 

platonismo purosangue di Mark Balaguer, lo strutturalismo ante rem di Stewart Shapiro, 

la teoria degli oggetti di Edward Zalta e il trivialismo di Agustìn Rayo. Queste quattro 

teorie hanno in comune tra loro un atteggiamento di tipo platonista nei confronti degli 

oggetti matematici, ovvero, assumono che gli oggetti di cui parlano gli enunciati 

matematici esistano effettivamente. Al contrario però del platonismo matematico 

classico, le loro assunzioni ontologiche, pur manifestando l’adesione alla teoria 

platonista, sono talmente misurate da dare l’impressione che non si tratti neanche di 

teorie platoniste. Propongo dunque di chiamare ‘platonismo sobrio’ questi approcci, che 

supportano il platonismo, pur rinunciando a forti assunzioni ontologiche.  

La caratteristica fondamentale di questa tendenza è che l’impegno nei confronti 

dell’esistenza degli oggetti matematici non costituisca più il punto di partenza di una 

teoria degli oggetti matematici, ma diventi condizione necessaria al verificarsi di un 

fatto: la mente umana attinge alla conoscenza matematica. Di conseguenza, gli oggetti 

matematici devono esistere e devono essere tali da rendere possibile un rapporto tra gli 

oggetti matematici e la mente umana. In realtà, ciò a cui queste teorie puntano è ottenere 

una descrizione della pratica matematica, che sia in grado di rispondere a domande 
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filosofiche, imponendo alla pratica matematica il minor numero possibile di assunzioni 

filosofiche.  

Il primo capitolo di questo lavoro è dedicato all’analisi del platonismo matematico 

classico. Propongo di considerare tale corrente di pensiero come la somma di tre assunti 

principali: Indipendenza (gli oggetti matematici sono indipendenti dal pensiero e dalle 

pratiche umane), Esistenza (gli oggetti matematici esistono) e Conoscenza (gli oggetti 

matematici sono conoscibili). Quest’ultima tesi è ulteriormente divisa in tre sotto-tesi: 

Teoria della Conoscenza, Riferimento e Verità.  

Nel secondo, terzo, quarto e quinto capitolo ho discusso le proposte dei quattro autori   

citati, accomunati, come si è visto, da un impegno ontologico solo implicito o sobrio nei 

confronti degli oggetti matematici. Le questioni filosofiche con oggetto l’esistenza degli 

oggetti matematici, la possibilità di accedere alla conoscenza matematica, il significato 

degli enunciati matematici e il riferimento dei termini in essi contenuti sono affrontate e 

considerate filosoficamente rilevanti da tali teorie. Ciononostante, il loro principale 

obiettivo è piuttosto l’elaborazione di una descrizione precisa della matematica nella sua 

autonomia.  

Nell’ultimo capitolo ho definito il platonismo sobrio attraverso la sua adesione alle 

stesse tesi cui aderisce il platonismo classico, Indipendenza, Esistenza e Conoscenza 

(anche qui analizzata nelle tre sotto-tesi già menzionate). Attraverso una valutazione 

comparativa, risulta evidente che il platonismo sobrio assume in buona parte ciò che 

assume il platonismo classico. Il vero elemento di distinzione risiede nel rapporto tra 

filosofia e matematica, in quanto nel platonismo sobrio l’autonomia e la dignità della 

matematica sono chiaramente affermate. La filosofia arriva solo dopo, a giochi fatti e, 
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piuttosto che una prescrizione normativa di come si deve fare matematica, si limita a 

fornire una descrizione metodologica di come si fa matematica. Di là dai risultati che 

può avere fino a oggi conseguito, il platonismo sobrio promette di essere in grado di 

ridurre molto rapidamente la portata se non altro di alcuni di quei problemi che sono 

rilevanti per la filosofia della matematica, ma non lo sono per la pratica matematica. 

In conclusione, il platonismo sobrio propone sia un innovativo approccio nella filosofia 

della matematica, sia un fecondo contributo alla riflessione della filosofia su discipline 

altre da sé: una proposta descrittiva, piuttosto che normativa, ma ricca di prospettive 

filosofiche. 
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Résumé 

Ce travail vise à identifier et définir une nouvelle tendance du platonisme 

mathématique. Je suis parti de l'analyse de quatre propositions fiable et paradigmatique: 

le platonisme pur-sang de Mark Balaguer, le structuralisme ante rem de Stewart 

Shapiro, la théorie de l’objet abstrait de Edward Zalta et le trivialisme de Agustìn Rayo. 

Ces quatre théories ont en commun une attitude platoniste, c’est à dire l’admission  de 

l'existence d'objets mathématiques. Contrairement au platonisme mathématique 

classique, son engagement ontologique est si léger, ou bien sobre, qui donne 

l’impression de n’être même pas dans le platonism. Pour cette raison, je propose 

d’appeler ‘platonisme sobre’ ces propositions qui supportant le platonisme, en renonçant 

à de fortes engagements ontologiques.  

La principale caractéristique de cette tendance est que l’engagement de l'existence 

d'objets mathématiques ne est plus considéré comme le point de départ d'une théorie des 

objets mathématiques, mais devient une condition nécessaire d'un fait: l'esprit humain 

peu obtenir connaissance des mathématiques. Par conséquence, les objets 

mathématiques existent et doivent être tels qu’une relation entre les objets 

mathématiques et l'esprit humain soit possible et fiable. En fait, ces théories visent à 

obtenir une description de la pratique mathématique, qui est aussi capable de répondre à 

des questions philosophiques, sans imposer aucun argument philosophique aux 

pratiques mathématique. 

Dans le premier chapitre, on analyse le platonisme mathématique classique. Je propose 

d'examiner cette ligne de pensée comme la somme de trois thèses principales: 

Indépendance (les objets mathématiques sont indépendant de la pensée et de les 

!8



pratiques), Existence (les objets mathématiques existent) et Epistémologie (les objets 

mathématiques sont connaissables). Cette dernier thèse est encore divisée en trois sub-

thèses: Théorie de la connaissance, Référence et Vérité. 

Le deuxième, troisième, quatrième et cinquième chapitre sont respectivement dévoués à 

l'examen des quatre théories cités, uni par un engagement ontologique seulement 

implicite ou sobre vers des objets mathématiques. Ces théories sont explicitement 

platonistes, mais seulement sobrement engagées dans l'existence d'objets 

mathématiques. Elles traitent l'existence d’objets mathématiques, la possibilité d'accéder 

à la connaissance mathématique, le sens des énoncés mathématiques et la référence de 

leur termes en tant que questions philosophiquement pertinentes. Cependant, leur 

objectif principal est l’élaboration d'une description précise des mathématiques en tant 

que telles. 

Dans le dernier chapitre, je définis le platonisme sobre à travers les façons dont il 

soutient la même thèse du platonisme classique, Indépendance, Existence et 

Epistémologie (encore analysée comme Théorie de la connaissance, Référence et 

Vérité).  Grâce à une évaluation comparative, il est en train de devenir clair que le 

platonisme sobre assume en grande partie le même principe du platonisme 

mathématique classique. Le véritable élément de distinction réside dans la relation entre 

la philosophie et les mathématiques, parce que dans le platonisme sobre l'autonomie et 

la dignité des mathématiques sont clairement établies. Le platonisme sobre est donc 

défini comme une description méthodologique de la façon dont les mathématiques sont 

réalisées, plutôt que comme une prescription normative de la façon dont les 

mathématiques doivent être réalisées. 
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Au-delà des résultats qui peuvent être obtenus jusqu'à aujourd'hui, le platonisme sobre 

permet de réduire très rapidement l’importance au moins d’une partie de celles 

questions qui sont pertinentes à la philosophie des mathématiques, mais ne sont pas 

pertinentes pour la pratique mathématique. 

En conclusion, le platonisme sobre réalise le but de fournir la philosophie et les 

mathématiques avec un propre domaine d’enquête. 
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Abstract 

This work aims at analyzing a trend which in recent years has been developed in 

mathematical Platonism. I have identified four theories which seem to me paradigmatic 

of this new trend: Full-Blooded Platonism by Mark Balaguer, ante rem Structuralism by 

Stewart Shapiro, Abstract Objects Theory by Edward Zalta and Trivialism by Agustìn 

Rayo. These four theories share a platonist attitude towards mathematical objects, 

assuming that mathematical objects, as the reference of the terms in mathematical 

statements, actually exist. But contrary to classical mathematical Platonism, their 

ontological assumptions are so moderate, or sober, as to give the impression that these 

theories aren’t even genuinely platonist. I therefore propose to call ‘Sober Platonism' 

those approaches that support Platonism, without endorsing strong ontological 

commitment. 

The key feature of this trend is that the assumption of the existence of mathematical 

objects is no longer considered the starting-point of a theory of mathematical objects, 

but becomes a necessary condition to the occurrence of a fact: the human mind accesses 

to mathematical knowledge. Consequently, mathematical objects must exist and be such 

as to make possible a connection between mathematical objects and the human mind. 

Hence, the ultimate aim of Sober Platonism is to obtain a description of mathematics as 

practiced, which does not impose any philosophical constrain, but is able to answer 

philosophical questions. 

The first chapter of this work is devoted to the analysis of classical mathematical 

Platonism. I propose to consider this line of thought as the sum of three major theses: 

Independence (mathematical objects are independent of human thought and practices), 
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Existence (mathematical objects exist) and Epistemology (mathematical objects are 

knowable). The latter thesis is further divided into three sub-theses: Theory of 

Knowledge, Reference and Truth. 

In the second, third, fourth and fifth chapter I discussed the proposals of the four 

aforementioned authors, matched together by their implicit, or sober, ontological 

commitment towards mathematical objects. These four theories take into account the 

existence of mathematical objects, the possibility to access to mathematical knowledge, 

the meaning of mathematical statements and the reference of their terms as 

philosophically relevant questions. Their main objective, however, is rather the 

development of an accurate description of mathematics in its autonomy. 

In the last chapter I have defined Sober Platonism through its adherence to the same 

theses to which classical Platonism adheres, Independence, Existence and Epistemology 

(again analyzed as Theory of Knowledge, Reference and Truth). After a comparative 

evaluation, it becomes clear that Sober Platonism assumes largely what is assumed by 

classical Platonism. The real element of distinction lies in the relationship between 

philosophy and mathematics, since in Sober Platonism the autonomy and dignity of 

mathematics are clearly established. The proper role of Philosophy is then to deliver a 

methodological description of how mathematics is performed, rather than a normative 

prescription of how mathematics should be performed.  

Beyond the results that may be achieved until today, Sober Platonism promises to have 

what it takes to reduce the importance of at least some of those issues that seems to be 

relevant to the philosophy of mathematics, but are not relevant for mathematics as 

practiced. 
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In conclusion, Sober Platonism offers both an innovative approach in the philosophy of 

mathematics, and a fruitful contribution in providing both philosophy and mathematics 

with a genuine domain of inquiry.  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The mathematician cannot create things at will,  
any more than the geographer can; he too can only discover  

what is there and give it a name. 

FREGE, GOTTLOB, (2002), Die Grundlagen der Arithmetik, section 98  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Preliminary Remarks  

The present work aims at understanding and analyzing a trend in contemporary 

mathematical Platonism I propose to call ‘Sober Platonism’. In chapter 1 I will offer an 

interpretation of classical mathematical Platonism as the conjunction of three theses. 

Thereafter, I will sketch a preliminary definition of Sober Platonism. The central 

chapters of this work, from the second to the fifth, chapters are devoted to the 

examination of Full-Blooded Platonism, ante rem Structuralism, Abstract Objects 

Theory and Trivialism. In the last chapter, I will disclose why these theories endorse 

Sober Platonism and I will propose an exhaustive definition of this trend.  

As a first step, I want to justify three choices I made during the draft of this work. 

The first choice is terminological. I decided to call the trend I analyzed Sober Platonism 

because it shows a general commitment with the existence of mathematical objects, and 

so it does Platonism, but their existence is open to different conceptualization and, first 

and foremost, is not assertive. The existence of mathematical objects is taken into 

account, but without strong assumptions. The reason is that Sober Platonism’s first goal 

is to provide a description of how mathematics is performed as philosophically 

satisfying as possible, but also respectful of the autonomy of mathematics as practiced. 

By now, it will be sufficient to say that the most distinctive features of Sober Platonism 

are at least four: the attention for mathematics as practiced, the adoption of 

plenitudinous ontologies, the embracement of non-uniqueness in reference, a serious 

attention to the role of mathematical language.  

I also want to stress here that Sober Platonism is able to give up philosophical rigidity in 

order to better pattern after mathematics. As a collateral result, Sober Platonism carves 
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up a new role for philosophy that is far from deflationary, that will be further 

investigated in chapter 6.  

The second choice I want to justify is the one that led me to consider the four theories to 

which I devoted chapters from second to fifth as Platonism. This choice is far from 

being foregone, for at least two reasons.  

The first is that Balaguer and Rayo endorsed Platonism explicitly, but they likewise 

explicitly states that their endorsement is only contingent. The approach they defend is 

specifically said to work both with Platonism and with Anti-platonism, even if their 

propensity for Platonism is clear. Someone could write another thesis on why these 

theories can serve the two, mutually exclusive, theories, and the advantages involved by 

the adoption of Balaguer’s Full Blooded Platonism or Full Blooded Anti-Platonism, and 

Rayo’s Trivialist Anti-platonism or Trivialist Platonism.  

The second reason is in a way suggested by the first reason: at the end of the day, there 

is plenty of good reasons for not being Platonist. No ultimate argument in favor of one 

position over the other has been found nowadays; none of the arguments has proven to 

be decisive and thus anti-Platonist theories have not been ruled out. Platonists haven’t 

come up yet with a satisfying response to the question of mathematical knowledge, 

whereas Anti-Platonists need to explain the success mathematics enjoys in its various 

physical applications.  

On the one hand, there are two main arguments in favor of Platonism. First, Platonist 

theories have no troubles in accounting for mathematical truth. Some mathematical 

statements are true and others are false and they bear their truth values in virtue of the 

Platonist mind-independent entities which figure as their truth-makers. The other 
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important argument in favor of Platonism is the well-known indispensability argument.  

On the other hand, Anti-platonism has many virtues too. The most significant consists in 

its ability to deal with the question of mathematical knowledge. If mathematics is a 

construction of the human mind, then it is straightforward that humans are able to 

acquire mathematical knowledge. The same goes for Anti-Platonist theories which take 

at least some mathematics to describe concrete entities and structures. Another 

advantage of Anti-Platonism is its ontological economy. There is no doubt that being 

able of providing a theory of mathematics without embracing a huge ontology of 

infinitely many mind-independent abstract objects is an advantage. 

In conclusion, the adoption of platonism is contingent. But is not contingent for who is 

interested in maintaining that descriptive approach to mathematics that is so 

characteristic to Sober Platonists. In other words, what I mean here is that, as trivial as it 

could sound, Full Blooded Anti-Platonism or Trivialist Anti-Platonism couldn’t be 

considered Sober Platonism, not only because of their ontological assumptions, but 

firstly because of the consequences their ontological assumptions have on the status of 

mathematics. And the reason is that those theories wouldn’t be Sober before of not 

being Platonism. 

The second choice I want to motivate is the exclusion of all the other forms of 

Platonism from my analysis.  

My first criterion was to exclude all those platonism who are strongly committed with 

the existence of mathematical objects. As a second criterion, I decided to not consider 

any philosophical theory who bear a normative attitude towards mathematics.  

Thanks to the combination of these two criteria, I excluded the theories by Plato, 
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Aristotle, Kant and all the others classical platonism in general, including Gödel’s 

theories. Because of its strong ontological commitment, I excluded Frege and the 

Neologicists. I also excluded Non-Eliminative Structuralism dispensation of the ante 

rem’s version by Stewart Shapiro and for a very simple reason: in Philosophy of 

Mathematics: Structure and Ontology he proposes an approach to philosophy of 

mathematics that can be seen as the forerunner of Sober Platonism. This approach takes 

the name of Working Realism and will be further analyzed in chapter 4. 

Finally, after a harsh decision, I also excluded Penelope Maddy’s naturalism and Kit 

Fine’s Procedural Postulationism. The reasons are more articulated than those for the 

exclusion of the other forms of Platonism and I will attempt to explain them here. 

Penelope Maddy’s work  consists in several works. Even if their theories were 1

submitted to more than one extensive revisions, the main aim of Maddy’s work is to 

deliver an epistemology who is able to solve the problem of access to knowledge of 

abstract objects. I refer here to the theory she called ‘Compromise Platonism’, who 

accounts for an intuitive and satisfactory epistemology for mathematical objects. 

Maddy’s solution to the problem of access led her to look for an explanation of how 

humans’ mind grasps the first, elementary parts of mathematics starting from the 

perception of collections of concrete objects. That is why she made an important appeal 

to experimental findings in Neurology, Psychology and Cognitive Sciences, with the 

goal of shading a light on the processes that undergo the development of mathematical 

knowledge.  

 See Maddy, P. (1980), “Perception and Mathematical Intuition”, Philosophical Review, 89, 163–96; 1

Maddy, P. (1989), “The Roots of Contemporary Platonism”, The Journal of Symbolic Logic, 54, 1121–44 
and Maddy P. (1990), Realism in Mathematics, Oxford University Press, Oxford, New York.
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Maddy’s idea is that, through the observation of collections, humans first experience 

and attain mathematical knowledge. Notice that in Maddy’s account, set theory has a 

prominent role, both because it is appropriate and commonly used for founding 

mathematics, and because it is about collections of objects. And by the very observation 

of collections of objects that first raise the notion of set theory. So according to Maddy, 

is through set theory, that the human mind attains access to mathematics. But insofar as 

collections of concrete objects are perceivable, the basic notion of set theory, even the 

fundamental notion of sets, are abstract objects, and not the concrete objects which are 

the members of the set.  

Mainly one concern leads me to the exclusion of Penelope Maddy’s work by my 

analysis: that it is not clear, at least to me, what these mathematical objects are and, 

more importantly, if their existence is independent on the human mind. Indeed, imagine 

a world in which no human mind had ever had any perception of collection of concrete 

objects, or a world in which no human mind had ever existed. Do mathematical objects 

exist in such a world? Apparently, they would not exist. But if so, Independence is 

explicitly denied: mathematical objects are dependent on humans’ mind. Moreover, her 

theory had been often criticized on the basis that it is not to be considered as genuinely 

Platonist, because of the concreteness of (at least some) abstract objects.  

For these reasons, I decided to exclude Maddy’s Compromise Platonism, not because it 

isn’t a good candidate for the Sober sides, but because I’m not sure it could count as 

Platonism at all.  
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Up until the last minute I was torn about whether to include Procedural Postulationism    2

or not, mainly because it seems to possess several characteristic of Sober Platonism as I 

preliminary  defined  it.  Indeed,  it  agrees very naturally with the way mathematicians 

work, thanks to the use of postulation, a very powerful device in stating the axioms of 

mathematical theories. The main role fo postulations is in epistemology, as the means 

by which mathematical knowledge is attained.  

Unfortunately, Kit Fine developed an ontology for Procedural Postulationism that left 

behind several problems. Just to mention a few, if mathematical objects exist and 

postulation simply allows human to get in contact with them, then it isn’t possible to 

refer to a domain of everything. Therefore, the change in meaning, from a domain to 

another, of the quantifiers in the language will merely reflect the epistemological facts 

that certain kinds of entities are known or not-known. But unfortunately, if what exist 

depends on the postulational perspective endorsed, number can’t be just out there in 

reality: from a postulational perspective, there are no entities (a domain is empty or has 

less elements before the execution of the procedure than after it) until a postulational 

procedure is executed. Such entities exist; the domain is extended to new objects just 

introduced by the postulates. And this is surrounded by an air of mystery.  

In the few works Fine dedicated to the formulation of his theory, he didn’t provide a 

clear and exhaustive justification. Several, fundamental aspects of Procedural 

Postulationism are left unspecified, in particular the process of executability or the  

 See FINE, KIT (2006), Our Knowledge of Mathematical Objects in Gendler, T.Z., Hawthorne, J., Oxford 2

Studies in Epistemology, Oxford, Clarendon Press, p.p. 89-109; FINE, KIT (2006), Relatively Unrestricted 
Quantifiers in Rayo, A., Uzquiano, G., Absolute Generality, Oxford, Clarendon Press, p.p. 89-109; FINE, 
KIT, (2008), The Limits of Abstraction, Oxford, Oxford University Press;
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aforementioned misterious come into being of numbers that occurs after postulations are 

executed. 

Nevertheless, Fine pictures the mathematical realm in a very interesting and intuitive 

way. He embraces the existence of multiple ontologies and multiple ways to talk about 

the mathematical world, none of them occupying any privileged position over the 

others. In this way, Procedural Postulationism is able to give mathematical objects a 

narrow ontological status, so narrow that it could serve also for a version of Procedural 

Postulationism that embraces Anti-Platonism.  

Notice that the possibility of developing both a realist and an antirealist version of 

Procedural Postulationism, as could be done with Full Blooded Platonism and 

Trivialism, is one of its advantages from the point of view of its inclusion in Sober 

Platonism. In any case, Fine explicitly picks the realist side, since he simply assumes 

that mathematical objects exist as abstract objects. But he doesn’t provide any argument 

in favor of Platonism.  

Procedural Postulationism, albeit its intuitive originality, comes with more than one 

ambiguous ontological assumption. These assumptions set it on the very boundary 

between platonism and anti-platonism: even if Procedural Postulationism would be able 

to deliver a satisfying account of Epistemology, Fine didn’t provide a complete account 

of Independence and Existence.  

Let me explain this point with further details. As defined in chapter 1, section 6, Sober 

Platonists have to accept both:  

1.True mathematical statements exist and are knowable;  

2.Such statements correctly describe some kind of mathematical reality;  

!21



3.Some kind of mathematical reality must exist.  

Procedural Postulationism agrees with the first two assumption, but seems to put the 

cart in front of the horse with the third assumption: unless Kit Fine would specify with 

more details the status of the objects brought into being by postulation’s executions, it is 

not clear if the objects exist independently from the postulation’s executions. Indeed, if 

mathematical objects are brought into being through the postulation’s execution, then 

their existence depends on postulation’s execution. And this is a clear negation of 

Independence.  

Even if these and others worries, mostly due to the limited extension of details on 

Procedural Postulationism, persuaded me to exclude it from the range of Sober 

Platonism, I’m sincerely persuaded that it could actually be a very good candidate, once 

further explanation would be presented.  

The third choice is complementary to the second. Indeed, I not only chose to exclude 

some Platonism, but I also selected some valiant candidates for Sober Platonism. After a 

separate analysis of each of these candidates, in chapter 6 I will motivate my choice 

with further details. By now, let me say that in general, all of the four theories I chose 

have a descriptive approach to mathematics and are not scared of underestimating the 

relevance of philosophical problems in order to fulfill mathematical needs.  

There are also singular reasons why I chose each theory: Full Blooded Platonism 

doesn’t hesitate in front of the adoption of the hugest (and heaviest) possible ontology, 

once it meshes adequately with mathematical practice. Trivialism proposes a different 

approach that, ultimately, allows to reformulate mathematical (and non-mathematical 

statements) in order to reanalyze their ontological commitment.  
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Structuralism admits an incredibly huge ontology, even with the caveat of isomorphism, 

so meeting the extreme freedom of mathematicians’ work. According  to  Zalta’s 

perspective, the work of Philosophy is exhausted by the formulation of a coherent and 

expressive description of such objects and the metaphysical realm they could live in. 

Asking  whether  these  objects  actually  populate  this  realm  or  not,  exceed  the  very 

possibility of philosophical inquiries.

In conclusion, Sober Platonism is firstly focused on providing an accurate account of 

mathematics by its own, through a methodological description of how mathematics is 

performed, rather than a normative prescription of how mathematics should be 

performed. In doing so, Sober Platonism establishes the guide-line of an attitude in 

philosophy that promises to be not only philosophically adequate, but also 

mathematically significant.  
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However, in this age of post-Moorean modesty, many of us are inclined to 
doubt that philosophy is in possession of arguments that might genuinely serve 
to undermine what we ordinarily believe. It may perhaps be conceded that the 

arguments of the skeptic appear to be utterly compelling; but the Mooreans 
among us will hold that the very plausibility of our ordinary beliefs is reason  

enough for supposing that there must be something wrong 
 in the skeptic's arguments, even if we are unable to say what it is.  

In so far, then, as the pretensions of philosophy to provide a worldview rest 
upon its claim to be in possession of the epistemological high ground, those 

pretensions had better be given up. 

FINE, KIT, (2002), Questions of Realism, page 5 
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Chapter 1: Platonism 

1.1 From Plato to contemporary Platonism

The present work aims at understanding and analyzing what is contemporary Platonism 

in philosophy of mathematics. The term ‘Platonism’ is usually taken to indicate all those 

metaphysical theories affirming the existence of the objects they predicate about and is 

not meant to indicate Plato’s philosophy. For what regards philosophy of mathematics, 

classical Platonism affirms the existence of the objects mathematical statements 

predicate about. Moreover, it states the existence of mathematical objects and properties 

independently from the existence of humans’ language, thought and practices. 

In the last decades, several philosophers had proposed new explicitly Platonist theories 

in philosophy of mathematics. Nevertheless, these theories endorsed positions in 

semantics, epistemology or ontology that seems quite far from the ones endorsed by 

classical Platonism in mathematics. The reason behind this shift rests both in the 

discovery of problems in classical Platonism and in the search for new argument to 

defend Platonism from the antirealists’ objections.  

Before offering an analysis of the new forms of Platonism contemporary philosophy 

developed in philosophy of mathematics, I will try to deliver a detailed definition of 

classical Platonism.  

Mainly, Plato dedicated two dialogues to the problem of accessing to knowledge of 

abstract objects: the Phaedrus and the Theaetetus. In the former, Plato states the 

existence of one single homogeneous world, in which the forms aren’t only knowable, 

but are the very condition for the possibility of knowledge. In the latter, Plato’s view is 
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overturned. He affirmed that there exist two different uneven worlds: the forms, that 

authentically exist as concrete objects; and the copy of these objects, that are abstract 

objects. The problem is that, according to the Theaetetus’s theory of knowledge, such a 

hierarchical distinction confines the proper objects of knowledge, the forms, in an 

inaccessible realm. But if there is no possibility to entering in contact with the proper 

object of knowledge, knowledge isn’t possible.  

The problem of knowledge in Plato’s philosophy is also known as the ‘Problem of the 

Third Man’: the idea is, roughly, that in order for a subject of knowledge to enter in 

contact with the object of knowledge, there must be something in between that allows 

knowledge, that passes the information form the object to the subject. But once such a 

medium is found, it seems that it is also required something in between the subject and 

the medium, and the object and the medium, that passes the information, and so on. 

Therefore, the regression to infinity of such an approach entails makes knowledge 

impossible. 

Contrary to Plato’s idea, Platonist theories don’t provide a hierarchy between a real 

world, inhabited by concrete objects, or forms, and a fading world, in which there exist 

abstract objects that are only shadows of the concrete objects. Platonist theories assumes 

the existence of two different kinds of objects: perceivable objects, who gain the status 

of concreteness, and not perceivable object, but for example referable-to objects, who 

have assigned the status of abstractness.  

Consequently, while concrete objects, like humans, computers and buildings, occupy a 

place in space-time, abstract objects don’t. Nevertheless, they are real, they actually 
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have some properties and relations and it is possible to successfully refer to such 

objects. That’s why another term often used for Platonism is ‘Realism’.  

Platonism classically endorses also Realism in truth-value, as a consequence of Realism 

in ontology: mathematical objects exist independently on mathematicians’ practice or 

linguistic or ontological dispositions; hence, mathematical statements have objective 

truth-values. Although this assumption isn’t always explicit, it means that, since 

mathematical objects exist independently from mathematicians, mathematical 

statements’ truth-values is independent on the minds. Therefore, contrary to Plato’s 

ontology, Platonists theories don’t aim at establishing different levels of existence, from 

the most to the less authentic. 

Notice that the existence of a Platonist realm is by its very definition unverifiable: since 

it is abstract and independent, it is not possible to have any perception of it. And here 

stands the main strength of the opponent of Platonism, Anti-Platonism: how is it 

possible to attain knowledge of such a realm? Even assuming its existence, why and 

how do mathematical statements refer to mathematical objects?  

In any case, even if Platonists have to find an answer to the previous questions, Anti-

Platonism is puzzled too, mainly by the undeniable, as unreasonable as it could seem if 

mathematical objects don’t exist, applicability of mathematics to science and everyday 

experience. In section 1.2 I will examine this topic with further details.  

What I want to stress is that mathematical Platonists have the duty to explain how is it 

possible to access and rely on mathematical knowledge based on unaccessible objects, 

while anti-Platonists must explain how and why mathematics is reliable and applicable, 
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without accounting for the existence of some kind of reality whom mathematical 

statements describe. 

Briefly, mathematical Anti-Platonism is the view according to which there are no 

abstract objects behind the name we use to indicate objects that aren’t concrete . 3

Realism is contrasted by ‘Anti-Realism’, term I will take to indicate, with 

approximation, almost the same that ‘Anti-Platonism’. With this term, I refer to 

philosophical theses that try to answers questions about mathematics without 

postulating the existence and independence of mathematical objects, and, most of all, 

the objectivity of mathematical truth. Anti-Platonists’ main aim is therefore to provide 

an account that explains how and why mathematics is significant, without appealing to 

the existence of a mathematical realm. 

Several definitions of mathematical Platonism have been proposed by contemporary 

philosophers. Michael Dummett in his 1978 , page 202, stated that:  4

Platonism, as a philosophy of mathematics, is founded on a simile: the 

comparison between the apprehension of mathematical truth to the 

perception of physical objects, and thus of mathematical reality to the 

physical universe. 

Again in 1991 , page 301, he declares: 5

Platonism is the doctrine that mathematical theories relate to systems of 

abstract objects, existing independently of us, and that the statements of 

 See section 1.3 for a complete analysis of the difference between abstract and concrete objects.3

 DUMMETT,  MICHAEL,  (1978)  Truth  and  Other  Enigmas,  Harvard  University  Press, 4

Cambridge.

 DUMMETT, MICHAEL, (1991) Frege: Philosophy of Mathematics, Harvard University 5

Press, Cambridge.
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those theories are determinately true or false independently of our 

knowledge.  

Stewart Shapiro (1997  page 37), states in the framework of structuralist Platonism that  6

[R]ealism in ontology or Platonism is the view that mathematical objects 

exist independently of mathematicians, and their minds, languages, and so 

on.  

One of the most famous anti-platonists, Hartry Field, also proposes an interesting 

definition of Platonism (1989 , page 1):  7

A mathematical realist, or Platonist, (as I will use these terms) is a person 

who (a) believes in the existence of mathematical entities (numbers, 

functions, sets and so forth), and (b) believes them to be mind-independent 

and language-independent. 

I propose to define mathematical Platonism as the philosophical thesis according to 

which mathematical objects exist as abstract object independently from humans’ 

thought, language and practice. Consequently, mathematical knowledge is objective: 

mathematical statements have objective truth-values, independently from humans’ 

thought, language and practice.  

In the following of this chapter, I will analyze Platonism in more details, as the 

conjunction of three main thesis:  

1. Independence: the independence of mathematical realm from anyone’s 

thought and practice; 

 SHAPIRO, STEWART, (1997) Philosophy of Mathematics: Structure and Ontology, Oxford 6

University Press, Oxford;

 FIELD, HARTRY, (1989) Realism, Mathematics and Modality, Basil Blackwell, Oxford;7
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2. Existence: the existence of mathematical objects as abstract objects; 

3. Epistemology: the successful reference and knowability of mathematical 

statements.  

Epistemology is also linked to the processes through which knowledge is attained, the 

questions concerning the status of truth and to the problem of reference. For these 

reasons, I divided Epistemology in three sub-these: Theory of Knowledge (section 

1.4.1), Truth (section 1.4.2) and Reference (section 1.4.3).  

I will dedicate the final section to an introduction to the proper object of my work, the 

attitude of philosophy towards mathematics I proposed to call ‘Sober Platonism’. 

1.2 Independence

Independence: the independence of mathematical realm from anyone’s thought 

and practice. 

The first thesis, Independence, can also be conceived as stating that mathematics is not 

created and therefore is independent on anyone’s thought and practice; so, what 

mathematicians do when they formulate mathematical theories is a genuine enterprise of 

discovery. It is important to keep in mind that other kinds of abstract objects are instead 

dependent on humans’ thought and practice. This is the case, for example, for nations, 

laws, values, feelings, fictional characters. These are all abstract objects: philosophers 

who adopt ontological committalism, i.e. the view according to which an ontological 

commitment with references of terms follows from the very use of the terms, will have 

to commit with their existence.  

Other philosophers, like physicalists, will say that they don’t exist, but are just useful 
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tools for expressing states of mind, or to organize and rule a community. Such abstract 

objects are of course dependent on humans’ thought and practice. Even more: they are 

the very product of humans’ thought and practice.  

Mathematical abstract objects are different from the aforementioned abstract objects, 

precisely because of their independence. Independence of mathematical objects allows 

to account for an objective state of the matter for what concerns mathematical truth. If 

mathematics is independent, then mathematicians’ enterprise of discovering and 

revising theories is authentic: they face an objective matter, a brute fact. Platonism aims 

at developing an account able to render the intuition mathematicians have that things 

stay in a determinate way in the mathematical realm and they are discovering this state 

of matter.  

Independence comes with several concerns: if mathematical objects are independent on 

thought and practice, how is it possible to enter in contact with them? They are 

completely disconnected from the concrete world. But if so, how do we manage to 

attain mathematical knowledge? How do we know that it is reliable? Although the 

successful application of mathematical theories to our best science is a great advantage 

of Platonism, some may object that Platonism doesn’t explain exhaustively enough how 

such a successful application is obtained: how happens that theories about an 

independent and disconnected world match so perfectly and usefully with theories about 

the concrete world?  

At least two classes of problems follow from Independence: the first is the possibility of 

mathematical knowledge, and is best known as part of Benacerraf’s Dilemma; the 

second and consequent regards the effective applicability and the constitutive role of 
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mathematical knowledge to science and scientific knowledge. As I already disclosed,  

the applicability of mathematics to science is also one of the main argument for 

Platonism. 

The first class of problems regards epistemology, in general, and the problem of access 

in particular. Indeed, if mathematical objects exist independently of us, then there is no 

possibility of connection between the truth conditions assigned to mathematical 

statements and the way things actually stay in the mathematical realm. Then, how is it 

possible to justify and verify the correctness of truth conditions’ assignment? 

The second class follows from the consideration that, if mathematics is independent on 

anyone’s thought and practice and not causally related, the effective applicability of 

mathematical theories to science seems unexplainable. On one hand, mathematics’s 

connection with science is a motivation for Platonism: if our best interpretation of 

science makes successful use of mathematics, then mathematics itself is, at least 

indirectly, verified.  

Moreover, it has been asserted that mathematics is not only useful in science, but also 

indispensable. This argument, known as the indispensability argument, was first 

explicitly formulated by Hilary Putnam in Philosophy of Logic , but was asserted also 8

by Quine in On What There Is  and several further works on naturalism and naturalized 9

epistemology. 

On the other hand, applicability, and a fortiori indispensability, of mathematics in 

science seems unjustified. Platonism can legitimately benefit from application and 

 PUTNAM, HILARY  (1971) Philosophy of Logic, Harper Torchbooks, New York.8

 QUINE, WILLARD VAN ORMAN, (1948), “On What There Is”, Review of Metaphysics, 2, 21–38;9
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indispensability only if it is also able to explain why and how application and 

indispensability occur. In other words, Platonists have to explain how descriptions of a 

realm of abstract objects apply so successfully to descriptions of another realm of 

objects, the natural world, albeit there are neither contacts nor relations between the 

two. If Platonism reveals to have no such an explanation, it would be fairer to not taking 

advantage from applicability and indispensability, because they would seem to occur 

fortuitously, as an unexpected stroke of luck. 

Independence is a desirable assumption for philosophy of mathematics, since it 

guarantees objectivity and reliability of mathematical knowledge. But, ironically, it 

denies the very possibility of mathematical knowledge. This puts mathematical 

Platonism in a quandary: if mathematical objects exist independently from human’s 

thought and practice, its objectivity is guaranteed. At the same time, there is no way to 

access to such an objective matter. Theoretically, if it would be possible to obtain 

mathematical knowledge, then it will be reliable. But it isn’t possible because of the 

very trait that makes it reliable. That is way deepest problems for Realism are in the 

epistemic front: how to know anything about an eternal, timeless, abstract, 

mathematical realm?  

The main objection for contemporary Platonism is known as Benacerraf’s dilemma and 

was raised by Paul Benacerraf in two famous papers: What numbers could not be 

(1965)  and Mathematical Truth (1973) . The dilemma challenges Platonism both in 10 11

 BENACERRAF, PAUL, (1965) What Numbers Could not Be, reprinted in Benacerraf, Paul, 10

Putnam, Hilary, (1983) Philosophy of Mathematics, Cambridge University Press, 
Cambridge;

 BENACERRAF, PAUL, (1973) Mathematical Truth, Journal of Philosophy vol.70 pp. 11

661-679; 
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ontology and in epistemology, but it is deeply linked with Independence too. Indeed, 

Benacerraf’s Dilemma as formulated in Mathematical Truth insists on this very point: in 

(1973, p. 666), he requires that:  

[A] ny theory of mathematical truth be in conformity with a general theory 

of truth [. . .] which certifies that the property of sentences that the account 

calls ‘truth’ is indeed truth. 

Benacerraf’s first requirement is that semantics for statements of ordinary language 

must be the same as semantics for mathematical statements. But he also asks for the 

possibility of verifying that the statements considered true are indeed true, through a 

process of revision and justification. He adds this requirement because, in accordance 

with the causal theory of knowledge he endorses, it is possible to attain knowledge only 

through processes that could be verified and justified. And obviously, justification and 

verification require the possibility of entering in contact with the objects of knowledge. 

Ultimately, this means that knowledge is the understanding of the conditions under 

which statements are true or false. Again in Mathematical Truth (p. 667), Benacerraf 

suggests that  

Since our knowledge is of truths, or can be so construed, an account of 

mathematical truth, to be acceptable, must be consistent with the possibility 

of having mathematical knowledge. 

Here the possibility of having mathematical knowledge is explicitly related with the 

very possibility of understanding the truth conditions of mathematical statements. What 

Benacerraf is suggesting here is that truths have to be knowable. Hence, if there is no 

possibility of accessing to mathematical knowledge, because they are not casually 
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related with the subject of knowledge, it is not possible to objectively determine the 

truth conditions of mathematical statements.  

Again, a criterion for knowledge of mathematical objects is needed, but at the same 

time impossible to obtain because of the very nature of mathematical objects. 

1.3 Existence

Existence: the existence of mathematical objects as abstract objects. 

Several reasons motivate the adoption of Existence. Some philosophers take the 

existence of mathematical objects as a philosophical datum: humans from every culture 

and country, and even other species, make extensive use of mathematical knowledge. 

The existence of mathematical objects is the condition for the successful reference of 

mathematical terms and for the meaning of mathematical statements. Indeed, if there are 

no mathematical objects, mathematical terms will not refer to anything at all, and there 

will be no reason for the reliability of mathematical knowledge. Moreover, there will be 

no way to justify and to apply mathematical knowledge.  

According to Platonism, mathematical objects are discovered, rather than invented (as 

for Anti-Platonism), by mathematicians: there exist an objective realm of abstract 

objects, the mathematical objects, that have precise features and relations. As physicians 

derive the existence of atoms and bosons from their effects on other perceptible entities, 

mathematicians derive the existence of mathematical objects from the successful 

application of mathematical knowledge on useful descriptions of other perceptible 

objects. Note that this means that mathematical objects exist independently, and is 

therefore an influence of Independence over Existence: if mathematics is discovered, as 
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the natural world, mathematics is independent, as the natural world, from anyone’s 

thought and practice. And trivially, if mathematical objects don’t exist, they can’t be 

neither independent nor dependent on anything. But the whole point on which I want ot 

focus here is that if mathematical objects exist they can be either independent or 

dependent. If they are dependent, objectivity of mathematics is denied, while if they are 

independent, is admissible.  

Since mathematical knowledge is traditionally believed to be a priori, and knowledge of 

concrete things a posteriori, if mathematical objects are believed to exist they are 

conceived as abstract objects. There is no general agreement on the criterion for 

discriminating between abstract and concrete objects and a couple of words are worth to 

be spent about this topic.  

The distinction between abstract and concrete objects rest on several different criteria: 

objects are concrete if and only if they are perceived by the senses, or can take part in a 

causal chain, or occupy a portion of space-time. Abstract objects, as opposed to concrete 

objects, are not perceivable, cannot be part of a causal chain and their existence is not 

related to any particular point in space and time. Abstract and concrete objects are 

therefore mutually exclusive and mutually definable categories. 

One important claim of Platonism is that, even if abstract objects are assigned with a 

weaker sense of existence in comparison with the one attributed to concrete objects, still 

mathematical objects possess some kind of objectivity. There actually is something to 

be right or wrong about in mathematics. For example, even if there isn’t general 

agreement on what numbers are, there is general agreement on the truth conditions of 

sentences involving numbers, like ‘2+3=5’ or ‘2+3=4’. And this occurs even if 
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mathematical objects are abstracts, not perceivable in any way, completely disconnected 

from the knower’s world. 

The main objection against Platonist’s ontology is due to another paper by Paul 

Benacerraf, What Numbers Could Not Be. Here he proposed an hypothetical situation in 

which two children, sons of two logicians, learned logic and set theory before being told 

about numbers. Then, they learned two different set-theoretical foundations of natural 

numbers: Von Neumann’s and Zermelo’s.  

Benacerraf noticed that the two young boys have been given correct accounts of the 

numbers. Nevertheless, they explicitly disagree on the concept of number, because they 

disagree on which particular set every number is. So, there are two possible scenarios in 

Benacerraf thought: either both the two guys are right and 3 is (((∅))) and also (∅, (∅), 

(∅, (∅))) and also other things; or only one of the guys is right, and so the other 

account somehow does not respect the conditions that describe a correct account of 

mathematics.  

The first scenario could seem inadmissible, but it isn’t. Indeed, is the one in which 

Structuralism is developed (see chapter 3). The second scenario is very articulated and 

lead Benacerraf, after a long discussion, to another question: if such a correct account 

exists, are there arguments that allow to demonstrate that it is definitely the correct one? 

The point of Benacerraf’s argument is then that, since there is no possibility to access to 

mathematical realm, there is no way to discriminate between different descriptions of 

the same mathematical object. Most contemporary Platonist believes there is no one 

correct answer, and give away uniqueness in reference for adopting Structuralism or 
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plenitudinous Platonism. These strategies are endorsed by all the platonists I propose to 

see as paradigmatic instances of Sober Platonism. 

Indeed, the endorsement of Existence can be sustained in very atypical fashions. One of 

the most interesting example is Kit Fine’s procedural postulationism. In Our Knowledge 

of Mathematical Objects, Kit Fine suggests to replace postulation of axioms by 

postulation of rules, instructions or procedures for the constitution of standard 

mathematical domains. These procedures are ontologically innocent, but suggest both a 

solution to the problem of nature of mathematical entities and a solution to the problem 

of mathematical knowledge. Fine formulated a new form of Platonism he called 

Procedural Postulationism, whose ontology is at least original.  

According to Fine, the existence of mathematical objects is relative to the way 

mathematicians talk about them, that is, their postulational perspective. And is through 

the obtaining of a postulational perspective that mathematical objects constituting the 

consequent postulationally perspectival facts are brought into being.  

Fine admits the existence of multiple ontologies and multiple ways to talk about the 

mathematical world, none of them occupying any privileged position over the others. 

Moreover, the simple act of having a (consistent) postulational perspective allows for 

the existence of the objects that constitute the relative postulationally perspectival facts.  

As a pleasant result, Fine managed to understand postulations first and foremost as the 

means by which mathematical knowledge is attained. But the existence of numbers is 

dependent on the postulational perspective adopted, and Fine explicitly states that, if 

numbers exist from a postulational perspective, they exist necessarily.  
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Unfortunately, his position in ontology raises several concerns. For, if mathematical 

objects are out there in reality and postulation simply allows human to get in contact 

with them, then it is possible to speak of a domain of everything, and the change in 

meaning of the quantifiers in the language will merely reflect the epistemological facts 

of certain kinds of entities being known or not-known. But unfortunately, if what exist 

depends on the postulational perspective endorsed, number can’t be just out there in 

reality. Fine has indeed to endorse multiple ontologies, according to which, from a 

particular postulational perspective, there are no entities ( in the sense that a domain is 

empty or has less elements before the execution of the procedure than after it) until a 

postulational procedure is executed. Thereafter, such entities exist; the domain is 

extended to new objects just introduced by the postulates. According to Fine, the objects 

of these domains are as mind-independent as the objects of an all-inclusive domain. The 

point is that a special mechanism is needed to get to them, through the extension of one 

domain in the other. 

The multiple ontologies are therefore the only choice: there is no such a thing as the 

ontology, the privileged sum-total of what there is. When a domain is expanded, a shift 

in the understanding of what there is happens. The ontology embraced depends 

therefore on the postulational perspective, and no ontology has a privileged position. 

The different ontologies correspond thereof to the maximal consistent sets of facts that 

obtain at a given postulational perspective. 

This form of Platonism brings with it several, urgent ontological concerns. Most of all 

in regards with the status of the new objects brought into being through the execution of 

procedural postulates. In the end, Procedural Postulationism appeals to a process of 
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creation of new objects that urgently needs to be justified. Moreover, Procedural 

Postulationism seems also to allow for  there  being  different  ways  of  expanding  a 

subdomain of individuals.  Indeed, the endorsement of the existence of mathematical 

objects, together with a notion of identity that goes beyond isomorphism, still presents 

the  problem  of  deciding  which  one  of  the  multiple,  non-identical  but  structurally 

undistinguishable number definitions identifies the numbers that exist. 

1.4 Epistemology

Epistemology: the successful reference and knowability of mathematical 

statements.  

The main challenge for Epistemology  is to achieve a connection between bearers of 

relevant  mathematical  beliefs  and  constituents  of  relevant  mathematical  facts. 

Epistemology takes with it some assumptions: first, mathematical knowledge is 

possible; second, if mathematical knowledge is possible, mathematical theories should 

be about some kind of truths. Thirdly and consequently, there must be some kind of 

connection between mathematical theories and the truths they describe. This connection 

is reference: mathematical theories describe truths because the terms in them have a 

meaning and a reference.  

For these reasons, I decided to draw a further distinction in Epistemology and analyze it 

as the sum of three sub-theses:  

3.1 Theory of Knowledge: mathematical knowledge is possible; 

3.2 Truth: mathematical knowledge is knowledge of truth; 

3.3 Reference: mathematical knowledge is about some kind of objects. 
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1.4.1 Theory of Knowledge

Theory of Knowledge: mathematical knowledge is possible. 

Mathematical knowledge possesses some very specific features that distinguish it from 

general knowledge. To mention just a few, the objects of mathematical knowledge are 

always abstract, while general knowledge occurs both with concrete and abstract 

objects; mathematical knowledge is widely considered as necessary, while general 

knowledge can be both consistent and necessary. Nevertheless, is to be kept in mind that 

the more an account of mathematical knowledge is conciliable with the account of 

general knowledge, the more it avoids objections and concerns (first of all, 

Benacerraf’s).  

Among the different theories of knowledge developed by philosophy throughout its 

entire history, one of the most commonly adopted by contemporary philosophers is the 

causal theory of knowledge, first formulated by Alvin Goodman in A Causal Theory of 

Knowing .  12

According to causal theory of knowledge, in order for a subject to have a justified belief 

regarding the truth of a statement, there must be some kind of phenomenon that had 

caused the effect of knowledge in the subject. Therefore, there must be some kind of 

relation between the truth of a statement and the belief of the truth of a statement by the 

subjects of knowledge. This relation generated many objections and doubts in the case 

of mathematical Platonism, mainly because the adoption of Independence brushed off 

 GOLDMAN, ALVIN (1967) A Causal Theory of Knowing, The Journal Of Philosophy, vol. 64, no 12

12, pages 357-372.
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the very possibility of having any relation with mathematical objects. 

Nevertheless, at least two ways of obtaining access to mathematical objects have been 

proposed: the first is through a faculty generally named acquaintance  or intuition; the 13

second is by mean of descriptions. 

These two kinds of knowledge are deeply diverse and are the object of a famous debate 

in epistemology. Briefly, the point is that, while acquaintance can provide foundational 

knowledge, description can’t. Foundational knowledge is the kind of knowledge that is 

independent on previous knowledge. As a result, if a proposition can’t be inferred from 

other, yet known, propositions, this proposition provides foundational knowledge. In 

this sense, knowledge by description seems to need some pieces of knowledge previous 

to the act of description: some property to attribute to the objects under description, and 

also some more fundamental concepts to be described or combined together.  

Another point of distinction between acquaintance and description is that the former 

provides direct knowledge: the subject grasps the information directly, without the 

mediation of previous pieces of knowledge or processes of inference.  

On the opposite, the latter provides non-direct or mediate knowledge, since the subject 

has to represent a piece of information making use of some abilities, like abstraction, 

language or other representational means. 

Moreover, while acquaintance requires the existence of an object to get acquainted with, 

description can occur even with non-existing objects: its impossible to get acquaintanted 

 On the debate between knowledge by acquaintance and by description, see: Bonjour, Lawrence, 13

2005, “In Defense of the a Priori”, in Matthias Steup and Ernest Sosa (eds.), Contemporary 
Debates in Epistemology, Malden, MA: Blackwell Publishing Ltd., 98–105; Russell, Bertrand, 
1910–11, “Knowledge by Acquaintance and Knowledge by Description” Proceedings of the 
Aristotelian Society, 11: 108–128; Sellars, Wilfrid, 1975, “The Structure of Knowledge,” in H. N. 
Castaneda (ed.), Action, Knowledge, and Reality, Indianapolis: Bobbs-Merrill.
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with the square circle, since its existence is impossible. Nevertheless, it is possible to 

describe the object that possesses both the properties, like a squared circle (or a circled 

square).  

Beware that such a description will not result as knowledge, since it is inconsistent and 

false. Indeed, knowledge is always knowledge of truths, as the aim of both acquaintance 

and description is to obtain true knowledge.  

Another distinction is that, while knowledge by description needs some knowledge of 

truths as its ground, knowledge by acquaintance requires the existence of the objects 

that is going to be acquainted with, but it isn’t necessarily knowledge of truths. 

As Bertrand Russell famously stated at page 72 of The Problems of Philosophy : 14

Knowledge  of  things,  when  it  is  of  the  kind  we  call  knowledge  by 

acquaintance,  is  essentially  simpler  than  any  knowledge  of  truths,  and 

logically independent of knowledge of truths, though it would be rash to 

assume  that  human  beings  ever,  in  fact,  have  acquaintance  with  things 

without at the same time knowing some truth about them.

Knowledge by description, on the contrary, always involves, as we shall  find in the 

course of the present chapter, some knowledge of truths as its source and ground.  

On the one hand,  acquaintance was and still  is  object  to  several  controversies.  The 

reason is that it simply seems unjustifiable that the objects of knowledge are just given 

to the subject of knowledge, whom is, for a stroke of luck, perfectly able to transform 

the presence of objects in knowledge of precisely those objects. An important trait of 

acquaintance is  that,  even if  it  is  plausibly  a  subjective  matter,  of  someone getting 

 RUSSELL, BERTRAND, (1912), The Problems of Philosophy, Oxford: Oxford University Press.14
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acquainted with something, it is also intersubjective, at least for mathematics. 

If mathematical knowledge comes from acquaintance, than it isn’t only a matter of a 

mathematician  getting  acquainted  with  a  piece  of  mathematical  knowledge.  Rather, 

every mathematicians,  and actually every subject,  will  be acquainted with the same 

object,  with  the  same  properties  and  relations.  That  is  why  acquaintance  with 

mathematical objects must be intersubjective, rather than subjective. Nevertheless, from 

intersubjectivity to objectivity there is a not too short step. 

The  biggest  problems  for  knowledge  by  acquaintance  raise  when  it  comes  to 

Independence. Indeed, it explicitly denies the very possibility of entering in contact with 

mathematical  objects.  And  without  contact,  acquaintance  seems  impossible.  Hence, 

some Platonist,  from Gödel  to  Zalta,  appealed  to  intuition  or  acquaintance.  Further 

details on the possibility of knowledge by acquaintance in platonism are to be found in 

section 6.4.1 of the present work.

On the other hand, knowing mathematical objects trough description is controversy too. 

Indeed, if mathematical objects exist as abstract objects, but we can’t access to them, or 

be acquainted with them, because of their independence, then someone may ask what is 

the object of the description and on which criteria the description should be formulated. 

One  possible  answer  is  that  knowledge  by  description  proceed  by  attempts:  every 

possible combination of properties is analyzed and, if it doesn’t lead to contradiction, it 

could be considered as a description of mathematical objects. This strategy is very close 

to the one endorsed by Mark Balaguer I have analyzed in chapter 3.

In conclusion, the impression is that both acquaintance and description try to avoid the 

problem of Independence, appealing mainly to the necessary and a priori character of 

mathematical truth. Bounding mathematical knowledge to logical knowledge helps a lot 
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to fill this gap. But first and foremost, is the understanding of what is mathematical truth 

that  allows  for  a  fundamental  step  forward  in  investigating  what  is  mathematical 

knowledge.

1.4.2 Truth

In 1973 Benacerraf published Mathematical Truth, as I have already mentioned. In this 

paper, he advocates that almost all accounts of the concept of mathematical truth serve 

the concern for having an homogeneous semantic theory, in which mathematical 

propositions have the same semantics than the rest of the language; and the concern that 

the account of mathematical truths meshes with a reasonable and shared epistemology. 

But almost all accounts serve one at the expense of the other. 

Balaguer, in A Platonist Epistemology, page 303, argued that:  

If all logically possible mathematical objects exist […] then all we have to 

do in order to attain mathematical knowledge is […] think about a 

mathematical object. Whatever we come up with, so long as it is consistent, 

we will have formed an accurate representation of some mathematical 

object. 

Consequently, though mathematical objects are mind-independent, any view we have 

had of them would have been correct. But this conclusion implies that we are somehow 

granted to invent whatever mathematical object we can think of, without minding if it 

exists or has a role in mathematical practice. 

Notice that ‘consistent’ does not mean the same as ‘true’, especially if we are committed 

with an exclusive concept of truth and to characteristic of logic such as non-
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contradiction, bivalence and excluded middle. Furthermore, many views are consistent, 

and so the problem of the correctness of just one account is not only unsolved, but it 

also arises from a new point of view.  That is why, classically,  philosophers choose to 

first identify some standard by which the truth-values of mathematical statements can be 

assessed, and only then argue that some mathematical theorem meets this standard. 

For example, Logicism founds mathematical truth on the logical truth, conceived as 

more fundamental. Another option is the Indispensability Argument provided by Quine 

and Putnam, that found mathematical truth on its indispensability in obtaining empirical 

truth. Another possibility is to appeal to the standards of mathematics itself, claiming 

that  mathematics  has  in  itself  its  justification,  just  as  others  theoretical  branches  of 

knowledge, like logic again, or experimental physics.

Hartry Field (1989) tempted a different approach. He tried to deliver a fictionalist and 

non-conservative answer to this very problem, claiming that, since it is not the function 

of mathematical theories to be true, the quandary doesn’t arise. In Field (2005) he 

argued also that:  

Mathematical theories, taken at face value, postulate mathematical objects 

that are mind-independent and bear no causal or spatiotemporal relation to 

us […] that would explain why our beliefs about them tend to be correct; it 

seems hard to give any account of our beliefs about these mathematical 

objects that doesn’t make the correctness of the beliefs a huge coincidence. 

Therefore, the worry that, had our mathematical beliefs been different, they would have 

been false, appears as just persuading to the extent that it seems a stroke of luck that 

humans came to have the mathematical beliefs that they came to have. 
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Now, since different but still true mathematical theories are admitted, it seems hard, if 

possible, to see which theory is the correct one, the one with which is desirable to be 

ontologically committed with. Accordingly, the highly contingency of mathematical 

beliefs is to be acknowledged. 

This acknowledgment is anything but harmless. Indeed, Hartry Field (2005) proposed 

that, had mathematical truths been different, mathematical beliefs would have been 

false:  

The Benacerraf’s problem […] seems to arise from the thought that we 

would have had exactly the same mathematical […] beliefs even if the 

mathematical […] truths were different; it can only be a coincidence if our 

mathematical […] beliefs are right, and this undermine those beliefs. 

The demand for a strong necessity for mathematical truths collides with the existence of 

different but equally consistent mathematical beliefs. One possible way out is to provide 

a broader sense of possibility to mathematics. But the risk is to compare the exact 

science par excellence with disciplines such as, for example, ethics: indeed, it is 

absolutely no problematic that, had our moral beliefs been different, our moral beliefs 

wouldn’t have been false.  

Obviously, this is not feasible for mathematics: if mathematical truths weren’t 

necessary, they wouldn’t have been very useful. But it is even more senseless to 

renounce to some mathematical truth only with the aim of justifying the truth of some 

others mathematical truths. 

Philosophers of mathematics are in a quandary: they can either accept the plurality of 

interpretations of the language arranged for mathematical theory, but deny that every 
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arithmetical expression is an interpretation to which corresponds a unique and only 

object. Or, they can claim that every arithmetical expression has a unique and only 

reference. Roughly, that every theory isolates a unique and only object.  

In the first case, 3, (((∅))) and (∅, (∅), (∅, (∅))), are simply different arithmetical 

expressions that share the same reference. Indeed, following this perspective, there 

exists a single object, let’s name it ‘three’. Then, ‘3’, ‘(((∅)))’ and ‘(∅, (∅), (∅, (∅)))’ 

are different senses for the same reference, the third natural number. We need to indicate 

different senses because the object, although shares some characteristics, has several 

properties that are context-sensitive. Depending on the discourse, the object is named in 

a different way. The truth of mathematical beliefs is so dependent on the context in 

which they are formed. 

This perspective may also be subjected to quinean indeterminacy of translation: how 

can philosophers of mathematics be sure that the reference of ‘(((∅)))’ in Zermelo’s 

language is exactly the same of the reference of ‘(∅, (∅), (∅, (∅)))’ in Von 

Neumann’s? How do we secure reference to mathematical objects? 

Unfortunately, this is not the entire story. There still remain some important 

epistemological quandaries: to mention one, accepting different but true mathematical 

beliefs involve the adoption of a coherence theory of truth. Indeed, if a philosopher of 

mathematics accepts the plurality of interpretations of mathematics, but denies that 

every interpretation corresponds to a specific and unique object (for example asserting 

that ‘(((∅)))’ and ‘(∅, (∅), (∅, (∅)))’ have exactly the same reference), how can he 

justify the acceptance of a correspondence theory of truth? Mathematical belief aren’t 
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true because they describe some specific object that is so and so and anything else. 

Rather, truth of mathematical beliefs lie in their coherence with a theory. And so their 

truth is again context-sensitive. 

 In conclusion, the philosopher has to adopt a coherence theory of truth to legitimate the 

truth of mathematical beliefs. But such a theory of truth entails, especially for 

mathematics, some gödelian questions that can weaken both the ontology and the 

epistemology developed by the philosopher of mathematics. 

Alternatively, philosophers of mathematics can claim that every theory isolates a unique 

and only object. It is doubtless that such a conception determines a considerable 

ontological commitment: there is no object ‘three’, to which correspond a several 

number of representation, because every representation constructs a single object. If so, 

it is not acceptable that the mathematical expressions ‘3’, ‘(((∅)))’ and ‘(∅, (∅), (∅, 

(∅)))’ represent the same object.  

One possible way out is to admit an infinite number of objects and categorize them in a 

kind of set-theoretic universals: the set isolated by conditions such as ‘to occupy the 

third place in the series of natural numbers’, or such as ‘to entertain a one-to-one 

correspondence with the third natural number’, contains, among its elements, ‘3’, 

‘(((∅)))’ and ‘(∅, (∅), (∅, (∅)))’. Such a set allows the philosopher of mathematics to 

claim that, although ‘3’, ‘(((∅)))’ and ‘(∅, (∅), (∅, (∅)))’ are different objects, he can 

consider them similarly, because they are part of the same set, thanks to some peculiar 

characteristics these objects share. 

There are problems with this perspective too. If philosophers of mathematics claim that 

every theory isolates a unique and only object, there is a unique and only mathematical 
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truth in each and every theory. But many views are consistent and so consistency cannot 

work as the criterion for discriminate false and true mathematical beliefs (even if Kit 

Fine (2005) made a very interesting attempt in this direction with his procedural 

postulationist approach).  

A possible solution is that, once mathematical Platonism is adopted, and therefore once 

a strong background ontology is supplied, philosophers can rely upon a correspondence 

theory of truth. Such a theory of truth can be very useful for a philosopher who argue 

that every theory isolates a unique object, and entails a strong sense of existence for 

mathematical objects.  

Moreover, imagine that a philosopher accepts this view and commit himself with a 

mathematical universe that guarantee the truth and falsehood of every mathematical 

statement. But if it is so, mathematical objects must have some precise properties. How 

are we able to acquire knowledge of mathematical objects? What happens when a 

mathematician discovers a new object in the mathematical universe? And when he 

discovers a new property of an object yet known by the community of mathematicians? 

How can the philosopher account for this new peculiarity of the object as a 

mathematical truth?  

1.4.3 Reference

Reference: mathematical statements are about some kind of objects.  

Reference is the relation between a term, for example a name or a sign, and an object. A 

well-formed statement therefore describes something in virtue of the reference between 

the terms it uses and the objects it describes.  
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Ontological commitment is the thesis according to which we are ontologically 

committed to the reference for the terms that appears in statements we believe to be true 

(see also section 1.3). Since Platonists generally endorse ontological commitment, the 

development of a coherent theory of reference is one of its main goals. Moreover, the 

aforementioned abandonment of uniqueness in reference asks for a revision of standard 

semantics and truth-value Realism.  

Standard semantics claims that the language used by mathematicians functions 

semantically like ordinary language. Therefore, it claims that the semantic functions of 

singular terms and quantifiers are to refer to objects and to range over objects. Standard 

semantics doesn’t explicitly take any position in ontology: rather, it rests content with 

the descriptive claim that the language of mathematics appears to have the same 

semantic structure as ordinary language.  

Sober Platonists extensively agree on standard semantics, but develop truth-value 

Realism as a further step in. Truth-value Realism holds that every well-formed 

statement has a unique and objective truth-value, independently from anyone’s thought 

and practice. Once applied to mathematics, truth-value Realism provides a clue for the 

existence of mathematical objects: if the semantic function of singular terms is to refer 

to objects, and every well-formed mathematical statement has a unique, objective and 

independent truth-value, then a condition for the meaningfulness, and even more so for 

truth, of a mathematical statement is the existence of references for mathematical terms, 

i.e. the existence of mathematical objects. Indeed, if a statement contains a term that 

doesn’t refer to anything, the statement results as being meaningless and as lacking in 

truth-value. 
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Neverthelees, truth-value Realism doesn’t by itself necessary imply the existence of 

mathematical objects. As a result, both Platonism and Anti-Platonism can adopt it, even 

if it fits certainly better with Platonism. Anti-Platonists who adopt truth-value Realism 

will have to explain how a mathematical statement turns out to be true, even if its terms 

have no reference, i.e., if the objects it is about don’t exist. Anti-Platonists can avoid 

this contradiction by rejecting standard semantics. Or, by stating that if there is no 

reference for ordinary statements, those statements will be false. But Anti-Platonists 

classically hold that, even if there is no reference for mathematical terms, it could be in 

anyway useful to consider some mathematical statements as true. 

The adoption of non-uniqueness is partly a consequence of Benacerraf’s objection in 

What Numbers Could Not Be. As I already stressed, in this paper Benacerraf argues that 

he isn’t aware of the existence of a criterion able to determine which of the different 

sequences of natural numbers is the right reference of the sequence of natural numbers. 

The reason is that no particular sequence of sets stands out as the right one. There is no 

metaphysical advantage of one over the others: neither Zermelo’s nor Von Neumann’s 

provide a better reduction than the others.  

As a result, Benacerraf claim that, from an arithmetical point of view, only the structural 

properties of a sequence matter to the question of whether it is the sequence of the 

natural numbers. In particular, any ω-sequence will be as good candidate as any other. 

Non-uniqueness in reference isn’t a pleasant result in Platonist philosophy of 

mathematics. Indeed, it seems to deny the very possibility of objectiveness in denying 

that mathematical theories describe unique collections of abstract objects. Moreover, it 

denies standard semantics. 
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The problem here stays in the very definition of Platonism: Platonists adopting 

uniqueness can claim over Platonists adopting non-uniqueness that is essential for 

Platonist theories that mathematical theories are taken as being about unique collections 

of mathematical objects. And clearly, this would happen only if there were unique 

references for these terms. Indeed, if a singular term doesn’t have a unique referent, we 

are inclined to say that it doesn’t refer at all, and also that it isn’t a singular term, since it 

has no unique referent. But what non-uniqueness Platonists want to deny is exactly that 

our mathematical singular terms have unique referents, because all mathematically 

important facts regard the relations between mathematical objects.  

In this sense, the adoption of non-uniqueness in reference, albeit became quite popular 

in the last decades (for example, it is explicitly and enthusiastically endorsed by Full-

Blooded Platonism, see chapter 2, and Trivialism, see chapter 5), stands out as an 

important difference between classical and Sober Platonism.  

Most of this happened because many consequences can be drawn from non-uniqueness 

in reference, both in epistemology and in theory of truth. Indeed, contemporary 

Platonism embracing non-uniqueness has to deliver an approach to mathematical 

knowledge that explains the relationships between the multiple references. In addiction, 

the adoption of one theory over the others, for example of Zermelo’s over Von 

Neumann’s, isn’t always explicit but can raise some problems. As I already suggested in 

section 1.3, to account for mathematical truth will not be so easy: the statement ‘3 

contained 2’ will be true in Zermelo’s definition and false in Von Neumann’s. In absence 

of further elucidations, like ‘in Zermelo’s definition, 3 contained 2’, which truth-value is 

to be assigned to the statement?  
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1.5 Sober Platonism

The subject of this work is the attitude in contemporary philosophy which I propose to 

call ‘Sober Platonism’. A Platonism is Sober if and only if it assumes that: 

1. Mathematics is a discipline with a proper domain of study; 

2. The role of philosophy of mathematics is to interpret mathematics and 

philosophically justifying it, without imposing any direction or 

hindrance to mathematicians’ enterprise; 

3. Mathematical objects exist, but there is no need to endorse any strong 

ontological commitment with them; 

4. Mathematical objects are such that it is possible to obtain true 

knowledge of them. 

I will analyze each assumption individually. Only thereafter, I will try to offer a general 

overview of what I called Sober Platonism. 

Assumption 1 can appear quite naïve and presumptuous at the same time. Indeed, it may 

be asked the reason why there is need to explicitly state that mathematics has a proper 

domain, as any authentic discipline with its own dignity. The reason is that several 

philosophical positions, mainly on the Anti-Platonism side, have explicitly deny the 

very existence of the proper domain of mathematics. Addressing mathematical enquiry 

as a research about objects that don’t exist, or that are unknowable by the very essence 

they are supposed to possess, fulfill the work of mathematicians with an air of mystery. 

And indeed, the best efforts of Anti-Platonism are spent in the direction of justifying the 
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undeniable application and reliability of mathematics, despite it has been made of 

literally false statements made by terms who lack in reference because predicate 

properties to non-existing objects.  

One of the main reason why Sober Platonism embraces Platonism is the advantages to 

which Platonism leads in exactly this direction. Indeed, Platonism in mathematics fits 

very comfortable with mathematical practice. Platonism allows to take mathematical 

statements at face-value and to supply mathematicians with a real domain: 

mathematicians do work and refer to numbers in exactly the same way architects do 

refer to bricks or windows. Sober Platonists dig further in this direction, aiming at 

describing the work of mathematicians without any attempt to impose philosophy-based 

restrictions on mathematicians’ liberty.  

Assumption 2, that philosophy has to limit itself to the interpretation of mathematics, is 

very linked to assumption 1, if it isn’t its direct consequence. Once the authenticity and 

dignity of mathematics is stated, it would be completely unconceivable to 

philosophically dictate to mathematicians what mathematical objects are. As a result, 

philosophers of mathematics is redrafted to the formulation of a good philosophical 

account of what mathematicians do.  

Indeed, once philosophy recognizes a proper domain to mathematics and endorses a 

descriptive approach towards the work of mathematicians, the goal of philosophers 

changed: a descriptive approach to mathematics can supply philosophers of 

mathematics with an authentic subject, a proper domain, if not even a brute fact.  

But most importantly, the role of philosophers of mathematics changes and assumes a 

more modern and appropriate perspective. The Sober Platonist ‘climbed down’ into the 
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mathematical world and, as an external beholder, observes and analyses it. Only from 

this point of view way Sober Platonists are able to provide a philosophical guide to 

mathematical practice that mirrors adequately the use of mathematical language and the 

way humans obtain and apply mathematical knowledge.  

Speaking about knowledge and application, there is another advantage of Platonism in 

general, and Sober Platonism in particular: it can come to terms both with mathematical 

practice and with common sense. Indeed, in the case of philosophy of mathematics, 

several arguments showed that endorsing Anti-Platonism can lead to doubting what is 

ordinarily believed to be true. This phenomenon is exemplified very emblematically in 

Question of Realism , page 4, by Kit Fine: 15

The antirealist about numbers maintains: 

There are no numbers. 

But most of us, in our non-philosophical moments, are inclined to think: 

There are prime numbers between 2 and 6. 

And yet the second of these claims implies that there are numbers, which is 

incompatible with the first of the claims. The antirealist  will  be taken to 

dispute  what  we  ordinarily  accept,  the  realist  to  endorse  it.  Thus  the 

antirealist about numbers will be taken to deny, or to doubt, that there are 

prime numbers between 2 and 6. 

Sober  Platonism  makes  extensive  use  of  such  kind  of  arguments,  in  order  to 

demonstrate that being Anti-Platonist isn’t only wrong or useless, but that it could even 

be unintelligible.  One of the arguments that  are more explicitly along these lines is 

 FINE, KIT, (2002), Questions of Realism, reprinted in Bottani, Andrea, Carrara, Massimiliano, 15

Giaretta, Pierdaniele (2002) Individuals, essence and identity. Themes of Analytic Metaphysics, 
Alphen aan den Rijn, Netherlands, Kluwer Academic Publishers;
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Rayo’s Zero Argument (see section 5.3).

Here I’m not stating that Platonism is the most perfect philosophy of mathematics. 

Indeed, as I already pointed out, there is a plenty of objection against it. What I’m rather 

stating is that, for what concerns mathematics, Platonism and in particular Sober 

Platonism, endorses a more constructive approach. Far from the misrepresentations of 

mathematics that can be delivered from antirealist positions, Sober Platonism takes the 

responsibility of philosophical issues and approaches mathematics as it is genuinely 

represented by mathematicians. And if Platonism would have philosophical problems, it 

will be a problem for philosophy, not for mathematics, who will maintain its autonomy. 

As it should be clear, assumptions 1 and 2 are general assumptions about the 

methodology and the role of philosophy in its approach to mathematics. Assumptions 3 

and 4 regard the ways in which Sober Platonism endorses the generally Platonist 

positions, namely metaphysical Realism for assumption 3 and epistemological Realism 

for assumption 4. 

Assumption 3, that mathematical objects exist even without the need to commit with a 

strong ontology, constitutes a new perspective on a very classical Platonist view. Indeed, 

as it is customary in discussing the foundations of mathematics, Platonism entails not 

just the acceptance of the existence of abstract entities or universals, but the stronger 

acceptance of metaphysical Realism with respect to them.  

In philosophy of mathematics, endorsing metaphysical Realism means that the 

mathematical realm consists of a fixed totality of mind-independent objects. That is why 

its endorsement requires a stronger assumption in ontology: the mathematical realm is 

inhabited by objects, the ultimate bricks of ontology, that have some specified and fixed 
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properties. Now, metaphysical Realism goes hand by hand with epistemological 

Realism: indeed, if the world is constituted by a fixed totality of mind-independent 

objects, there actually is one and only one true and complete description of the way the 

world is.  

As a result, a platonist interpretation of a theory of mathematical objects will take the 

truth or falsity of statements of the theory, in particular statements of existence, to be 

objectively determined independently on the possibilities of human knowing these 

truths or falsities.  

Sober Platonists aren’t friends of metaphysical Realism; rather, they assume multiple 

ontologies, an infinite number of ways for the world to be. Together with the 

embracement of non-uniqueness in reference, this comes to mean that the same term 

can correspond to more than one object, determined by different contexts. And 

consequently, Sober Platonists aren’t friend of epistemological Realism neither. 

Assumption 4, namely that mathematical objects are such that it is possible to obtain 

true knowledge of them, is kind of a weak version of epistemological Realism. Indeed, 

on the one hand, if there is no one, fixed totality of mind-independent objects that 

constitutes the mathematical realm, there couldn’t be an objectively determined 

assignment of truth conditions to mathematical statements. But on the other hand, 

assuming a less fixed and statical notion of mathematical knowledge (and mathematical 

truth), allow Sober Platonist to approach mathematics in a less assertive and more 

descriptive fashion.  

Ultimately, what Sober Platonism generally defends is a descriptive approach to 

mathematics: what mathematical objects are, is said by mathematicians; what is true in 
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mathematics, is said by mathematicians. If mathematicians assert some mathematical 

statements, those statement must have some mathematical reason for being asserted. 

Philosophy must rest content with the mere observation of mathematical practice and 

promotion of philosophical interpretations of it. In this perspective, it would be 

completely senseless for philosophers to dictate what are mathematical objects. Indeed, 

such a question is addressed to mathematicians, and not to philosophers.  

The attitude proposed by Sober Platonism is far from a defeat of philosophy. Rather, 

drawing the limits of philosophical inquiry allow to focus on what philosophy can 

actually investigate.

In conclusion, Sober Platonists, as classical Platonists, are committed with the existence 

of mathematical objects, but from a different perspective. Indeed, if classical Platonists 

could say something along the lines of: 

1.Mathematical objects exist as abstract, independent objects; 

2.Such objects are correctly described by true mathematical statements; 

3.True mathematical statements are knowable. 

Sober Platonists will rather say that: 

1.Mathematical statements are knowable; 

2.Such statements truly describe some kind of mathematical reality; 

3.Some kind of mathematical reality must exist. 

At the end of the day, and unless Sober Platonists strongly attempted to provide a 

description as detailed as possible of mathematical reality, this is not their main aim. 

Rather, it's a consequence of their main aim, that is to philosophically justify a brute 
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fact: humans (and other animals) do attain mathematical knowledge. And this 

knowledge is knowledge of necessary truths.  

The development of a satisfactory definition of Platonism turned out to be nothing but 

easy. Moreover, the adoption of Independence seems to be an entanglement for all the 

other aspect of Platonism. I’m perduaded that it constitutes the very point break 

between genuine and non-genuine Platonism.  

In what follows, I will introduce four paradigmatic Sober Platonists approaches to 

philosophy of mathematics. I will then attempt an analysis of this four approaches and 

try to disclose the new role Sober Platonism assigns to philosophy. In a sense, it would 

reveal to be in assonance with the words famously used by Hegel in the preface to 

Philosophy of Right: 

One more word about teaching what the world ought to be: Philosophy 

always arrives too late to do any such teaching. As the thought of the world, 

philosophy appears only in the period after actuality has been achieved and 

has completed its formative process. The lesson of the concept, which 

necessarily is also taught by history, is that only in the ripeness of actuality 

does the ideal appear over against the real, and that only then does this ideal 

comprehend this same real world in its substance and build it up for itself 

into the configuration of an intellectual realm. When philosophy paints its 

gray in gray, then a configuration of life has grown old, and cannot be 

rejuvenated by this gray in gray, but only understood; the Owl of Minerva 

takes flight only as the dusk begins to fall. 
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[I]f a mathematician comes up with a radically new (pure mathematical) theory, 
she can be criticized on the grounds that the theory is inconsistent or 

uninteresting or useless, but she cannot be criticized on the grounds that the 
objects of the theory do not exist 

BALAGUER, MARK, (1995) A Platonist Epistemology, page 311 
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Chapter 2: Full-blooded Platonism 

2.1 Introduction

The philosophical account that Mark Balaguer developed is built on some ontological 

basic notions he endorses in the very beginning of his major work, Platonism and Anti-

Platonism in Mathematics .  16

His philosophy of mathematics is substantively metaphysical, as he aims at reflecting 

on mathematical theories and mathematical practice in order to disclose whether they 

tell us anything about the mathematical world. But, although his project is mainly 

metaphysics, it takes the cue from some considerations about the epistemology of 

mathematics. Thus,  it  is  from  the  developing  of  Balaguer’s  epistemology  that  its 

ontological  theory  is  derived.  Roughly,  Balaguer  affirms that,  in  order  to  solve  the 

problem of access, the existence of the objects of knowledge must be assumed. As a 

result,  such objects  must  be characterized in a fashion that  allows human beings to 

attain knowledge of them. The underlying idea in Balaguer theory is that mathematical 

objects must exist  since mathematical knowledge occurs.  To be more explicit,  since 

humans do attain mathematical knowledge, the objects of knowledge must exist and be 

knowable, even if it is not available any access to them. 

Balaguer’s ontological dissertation takes the cue from a definition of what is a 

mathematical object. He adopts the classical definition of abstract objects, as opposed to 

concrete objects: abstract objects are non-spatiotemporal, non-physical, non-mental and 

 BALAGUER, MARK (1998) Platonism and Anti-Platonism in Mathematics, Oxford 16

University Press, New York.
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a-causal. A mathematical object is an abstract object that would ordinarily be thought of 

as failing in the domain of mathematics.  

Balaguer’s perspective seems to embrace Platonism very spontaneously. His account 

could also look like a defense of Platonism against Anti-Platonism. But this is not the 

whole story: he claims that Platonism and Anti-Platonism, particularly in his versions of 

Platonism and in Hartry Field’s Anti-Platonism, are both perfectly workable 

philosophies of mathematics. Moreover, he is convinced that humans could never 

discover a conclusive argument for or against mathematical Platonism. So, specifically, 

his position in the dispute between Platonists and anti-Platonists is neutral. In particular, 

he is convinced that the only valid options are both his Platonism and Fictionalism. 

Balaguer (1998) proposes an original kind of Platonism that he calls Full-Blooded 

Platonism (henceforth, FBP). FBP differs from classical versions of Platonism in 

various aspects, but, above all, regarding how many mathematical objects there are. 

FBP is a plenitudinous Platonism, as it maintains that there exist all logically possible 

mathematical objects, even those that haven’t yet been discovered. This claim makes 

FBP a non-standard version of Platonism, because classical versions of Platonism are 

non-plenitudinous, in the sense that they admit some kind of mathematical objects but 

not others.

Moreover,  Balaguer  argues  that  the  structuralist  philosophy  of  mathematics,  in 

particular Shapiro’s perspective, can be reduced to a (structuralist) version of FBP. He 

does so through the analysis of the two main positions in Platonism: Object-Platonism 

and  Structuralism.  The  former  is  traditionally  defended  by  Gödel,  Frege  and  those 

Platonists  who  claim  that  there  exists  a  mathematical  realm  populated  by  abstract 
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objects, which are described by mathematical theories. On the other hand, Structuralism 

claims that mathematical theories describes a structure,  something like an objectless 

template, a system of positions that can be filled by any system of objects that exhibit a 

structure.  Balaguer  demonstrates  that  FBP is  consistent  with  both,  by  showing that 

Object-Platonism and Structuralism are not distinct from a metaphysical point of view. 

The idea is that, since structuralists refer to positions in structures with singular terms, 

quantify over them in first-order languages, ascribe them properties, then positions in 

structure  are  to  be  taken  as  mathematical  objects.  Whatever  kind  of  entities  could 

inhabit  the  mathematical  realm,  mathematicians’s  use  of  mathematical  language 

suggests that they treat them as objects.  As a result,  the difference between Object-

Platonism and Structuralism collapses.

In Balaguer’s account, any mathematical object, which possibly could exist, actually 

does exist, and this is what makes FBP a plenitudinous Platonism. Several features of 

FBP ask for a further examination: for example, the possibility to attain mathematical 

knowledge and what Balaguer really means with ‘logically possible’ Moreover, as FBP 

deals with plenitudinous ontology, it entails the attitude to embrace non-unique 

references for mathematical terms. Due to the originality of this approach, both a 

justification and an explanation are needed. 

2.1.1 The Problem of Formalization

Balaguer’s attempts to provide a formalized definition of FBP encounter some 

difficulties. He firstly provides a formalized definition of FBP at page 6 of his 

Platonism and Anti-Platonism in Mathematics: 
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 (∀x)[(x is a mathematical object & x is logically possible) → x exists] 

This  definition  makes  use  of  a  de  re  sort  of  possibility  and  seems  to  suggest  that 

existence is a predicate and that there are possible objects that may or may not be actual 

objects. But Balaguer specifies he does not think there are any such thing as objects that 

don’t exist, that is a pretty common position in ontology. He also claims that there aren’t 

possible but not actual objects, at least in mathematics. Rather, all objects are ordinary, 

actually existing objects. The idea is that the ordinary actually existing mathematical 

objects exhaust all of the logical possibilities for such objects. In other words, there 

actually exist mathematical objects of all logically possible kinds.

Balaguer claims that FBP could be better captured in a second-order modal language 

(page 6, Balaguer (1998)):

Let ‘x’ be a first-order variable, ‘Y’ be a second-order variable, ‘Mx’ mean ‘x 

is a mathematical object’; then:

(Y)[♢(∃x)(Mx&Yx)→(∃x)(Mx&Yx)] 

Balaguer isn’t convinced about this formula either, because it doesn’t render properly 

the commitment engaged by FBP with the existence of all mathematical objects that 

possibly could exist. So, it does not entail that there exists any mathematical object, 

because it is silent on the question of whether it is possible that there exist mathematical 

objects  at  all.  In  the  previous  formalization,  nothing  is  said  to  guarantee  that  the 

antecedent of the conditional will ever be true. But it is entirely trivial that the existence 

of mathematical objects is logically possible.

Thus, Balaguer (1998) proposes another formula at page 7:

(∃x)(Mx)&(Y)[♢(∃x)(Mx&Yx)→(∃x)(Mx&Yx)] 
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This formula has an existential quantifier that varies over the domain of mathematical 

objects. Finally, this formalization involves the existential commitment to mathematical 

objects Balaguer was looking for.

2.2 Epistemology

2.2.1 The Epistemological Argument

In A Platonist Epistemology , Balaguer engages Benacerraf’s (1973)  challenge to 17 18

mathematical Platonism. In Benacerraf’s thought, the claim that mathematical theories 

are descriptions of a non-physical, a-spatial, a-temporal, mind-independent aspect of 

reality turns out to be incompatible with a naturalistic epistemology. His 

epistemological argument takes the form of a prima facie worry about human beings’ 

ability to acquire knowledge of abstract objects being a prima facie argument against 

mathematical Platonism:  Platonism  cannot  be  true  because  it  precludes  the  very 

possibility of mathematical knowledge. 

According  to  Benacerraf  (1973),  the  best  epistemology  is  the  causal  theory  of 

knowledge. Briefly, it dictates that in order for a person S to know that p it is necessary 

for S to be causally related to the fact that p in an appropriate way. See section 1.4 for a 

less sketchy description of theories of knowledge.

Balaguer (1998, page 22) reconstructs Benacerraf’s epistemological argument based on 

causal theory of knowledge and looks for a way to reject it.

Here how he reconstructs the argument:

 BALAGUER, MARK (1995) “A Platonist Epistemology”, Synthese  vol 103 pp. 303-325;17

 BENACERRAF, PAUL, (1973) Mathematical Truth, Journal of Philosophy vol.70 pp. 18

661-679;
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1. Human beings exist entirely within space-time

2. If there exist any abstract mathematical objects, then they exist outside 

of space-time

Therefore:

3. If there exist any abstract mathematical objects, then human beings 

could not attain knowledge of them.

Therefore:

4. If  mathematical  Platonism is  correct,  then human beings could not 

attain mathematical knowledge

5.Human beings have mathematical knowledge.

Therefore:

6. Mathematical Platonism is not correct.

The most popular response to Benacerraf’s argument has been to reject causal theory of 

knowledge. But rejecting it,  anti-Platonists can argue that 1 and 2 jointly imply that 

human beings could not  be causally related to any mathematical  objects,  which are 

totally inaccessible to us: information cannot pass from mathematical objects to human 

beings. So, 1 and 2 alone give rise to a prima facie argument to believe 3. But Balaguer 

believes 3 is false, although 1 and 2 are indeed prima facie reasons to be suspicious 

about the reliability of our mathematical beliefs.

According to Balaguer, there are three strategies to undercut the reasons to believe that 

3. The first strategy is to deny 1, asserting that human mind is capable of entering in 

contact with mathematical realm, and thereby acquiring information about that realm. 

Balaguer calls this path to abstract objects the ‘non-spatiotemporal contact view’. This 

!67



strategy  is  undertaken  by  Kurt  Gödel ,  who  thought  that  human  beings  acquire 19

knowledge  of  abstract  mathematical  objects  in  much  the  same  way  in  which  they 

acquire  knowledge  of  concrete  physical  objects.  This  happens  thanks  to  a  faculty 

analogue to sense perception, namely mathematical intuition. Gödel’s thought was that, 

while data about physical objects arise from sense perception, the presence in us of 

mathematical  data  may  be  due  to  another  kind  of  relationship  between  reality  and 

humans. But there are several problematic aspects: it seems impossible for humans to 

receive information from mathematical objects, since the latter are abstract and causally 

inert;  therefore they could not  generate information-carrying signals.  Indeed,  such a 

signal has somehow to involve a sort of cross-realm contact. This is the reason behind 

Gödel’s appeal to mathematical intuition. But even if minds are immaterial, it doesn’t 

follow that they are into informational contact with mathematical objects. 

Balaguer  interprets  Gödel’s  work  in  not  only  believing  that  human  minds  are 

immaterial, but that we are lead to this conclusion by reflecting on mathematics. That’s 

why  Balaguer  concludes  that  immaterialism  about  the  mind  follows  from  Gödel’s 

incompleteness theorem. 

It  is  a  digression  of  particular  interest  to  see  how  Balaguer  argues  this.  Gödel’s 

incompleteness  theorem  states  that,  for  any  consistent  axiomatic  system,  there  are 

propositions  that  are  undecidable  in  that  system.  He  claims  that  there  are  no 

mathematical  propositions  that  are  absolutely  undecidable,  not  just  within  some 

particular  axiomatic  system,  but  by  any  mathematical  proof  the  human  mind  can 

 GÖDEL, KURT, (1951) Some Basic Theorems on the Foundations of Mathematics and 19

Their Implications, in his Collected Works Vol. III, New York: Oxford University Press, 
1995, pp. 304-323.
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conceive.  That is,  the set  of humanly provable mathematical  propositions cannot be 

recursively axiomatized and the human mind cannot be reduced to a Turing machine. 

The second strategy Balaguer experiments is to assert that 2 (the claim that, if there 

exist any abstract mathematical objects, then they exist outside of space-time) is false: 

human  beings  can  acquire  information  about  mathematical  objects  via  physical 

perceptual means. This is the strategy undertaken by Penelope Maddy . According to 20

her, human beings are capable of knowledge of mathematical objects by coming into 

contact with them via sense perception. 

Maddy refers  mainly  to  sets,  some of  which  are,  according  to  her  account,  spatio-

temporally located and perceptible. She proposes to explain how humans proceed from 

perception of sets to knowledge of the axioms of set theory: our perceptions of sets lead 

to mathematical intuitions about sets. In this context, Benacerraf’s worry may not arise, 

thanks  to  the  bare  claim  that  mathematical  objects  are  perceptible.  Here  Balaguer 

answers  a  legitimate  question:  does  Maddy  genuinely  endorse  Platonism?  Since 

Maddy’s objects are concrete, her theory seems far from Platonism. Indeed, rejecting 2 

traditionally entails abandoning Platonism. If Maddy endorses Anti-Platonism, she has 

to claim that sets are ordinary concrete objects. And the whole point of Benacerrafian 

argument is to see how knowledge of thing in space-time could lead to knowledge of 

thing outside of space-time. But Maddy maintains that sets are neither abstract objects 

nor ordinary concrete objects, embracing a sort of hybrid Platonism: there are sets that 

are concrete and sets that are abstract (e.g. the pure sets, built from the null set).

 MADDY, PENELOPE, (1980), Perception and Mathematical Intuition, Philosophical 20

Review vol. 89 pp. 163-196.
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The last strategy is to accept that 1 and 2 are true, but rejecting that they lead to 3: 

humans are not capable of any sorts of contact with mathematical objects, nonetheless 

can acquire knowledge of such objects. Therefore, an epistemology of abstract objects, 

an explanation of how human beings could acquire knowledge of abstract mathematical 

objects, is demanded. The challenge is to account for the fact that if mathematicians 

accept p, then p. Indeed, Platonists need to account for the reliability of mathematical 

beliefs, that is to justify that, if mathematicians accept a purely mathematical sentence 

p, then p truly describes part of the mathematical realm. In the following section, I will 

focus on Balaguer’s solution.

2.2.2 The full-blooded solution

According to Balaguer, mathematicians can acquire knowledge without checking their 

discoveries against mathematical facts, since all the mathematical objects, which 

possibly could exist, actually do exist. If FBP is correct, all humans have to do in order 

to attain knowledge of mathematical objects is to conceptualize, think about or even 

dream such objects .  21

Such a theory is explicitly inspired by Hartry Field’s famous ‘Argument of the Nepalese 

Village’. The argument starts from the assumption that, if all possible Nepalese villages 

exist, then it would be possible to attain knowledge of one of these villages without any 

access to it. Since a village is a Nepalese village if it is, for example, a group of up to 

ten houses somewhere in Nepal, and once every possible combination of those elements 

 This conception applies only to mathematical abstract objects, and not to abstract objects 21

in general.
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is known, Field concludes that this is sufficient for attaining knowledge of a Nepalese 

village with which there is no possibility of entering into contact. It would be sufficient 

to dream up a possible Nepalese village and that dream will perfectly represent one 

actually existing Nepalese village, since all possible Nepalese villages actually exist. 

Balaguer and Field agree on the identification of the meaning of ‘possible’ with that of 

‘logically possible’. Logical possibility embraces everything that does not lead to 

contradiction. Moreover, given that, according to Balaguer,  all  objects  are  ordinary, 

actually existing objects, the ordinary actually existing mathematical objects exhaust all 

of the logical possibilities for such objects. Therefore, there actually exist mathematical 

objects of all logically possible kinds. This move allows to maintain 1 and 2, but deny 

3. Moreover, the opening to all logically possible mathematical objects guarantees that 

FBP is incompatible with those sorts of Platonism that deny certain kinds of 

mathematical objects but assert that they are metaphysically possible. 

Balaguer’s next move is to provide a version of Platonism that is capable to resist 

Benacerrafian argument. He first argues that FBP-ists can account for the fact that 

human beings can know of certain purely mathematical theories that they are consistent: 

humans do have some skills at recognizing consistent from inconsistent theories. 

According to Balaguer, this is a matter of fact. And since it is so, FBP-ists can account 

for the fact that, if mathematicians accept a purely mathematical sentence p, then p is 

consistent.  

It is important to keep in mind here that human abilities in recognizing consistent from 

inconsistent theories are not ultimately reliable. It is a matter of history that some 

theories, thought to be consistent, have revealed to be inconsistent after a new analysis. 

!71



Humans’ ability to recognize consistent from inconsistent theories evolves. Balaguer 

does not tackle this problem here, but provides an account of the evolution of theories 

that could be applied to it. This subject is further specified in sections 2.4 and 2.5 of this 

chapter.  

On the assumption that FBP is true, it is possible to deliver a coherent theory of 

knowledge and solve the problem of access. But the truth of FBP is still hypothesized. 

Then why and how FBP-ists are allowed to assume that FBP is true? That is, if T is a 

purely mathematical theory, which humans know to be consistent, then FBP-ists only 

have a FBP-ist account of their ability to know that if FBP is true, then T truly describes 

part of the mathematical realm. But FBP-ists don’t have an account of humans’ ability 

to know that T truly describes a part of mathematical realm, since they haven’t yet said 

a word in support of humans’ ability to know that FBP is true. 

This objection demands for an internalist account of the reliability of our mathematical 

beliefs, but in order to meet Benacerraf epistemological challenge, both classical 

Platonists and FBP-ists need only to provide an externalist account of the reliability of 

our mathematical beliefs. A theory of the reliability of S’s belief is internal when it 

explains how S knows or reliably believes that her methods of belief acquisition are 

reliable. What is needed is an explanation of the reliability of S’s beliefs that can also 

explain how S can reliably believe that the explanation is true. 

That is why Balaguer provides FBP with an external account, explaining the reliability 

of our mathematical beliefs by pointing out that humans use their knowledge of the 

consistency of purely mathematical theories in fixing our purely mathematical beliefs. 
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On the assumption that FBP is true, any method of fixing purely mathematical belief, 

which is so constrained by knowledge of consistency, is reliable. 

Balaguer does not rest content of having reduced the Benacerrafian argument to 

externalist perspective thanks to the adoption of consistency as criterion for reliability in 

mathematics. He moves forward in defending FBP and argues that, even in internalist 

terms, FBP-ists can account for humans’ ability to know that if there is an external 

physical world of the sort that gives rise to accurate sense perceptions, then a theory 

about the physical world R is true of that world.  

Clearly, an appeal to sense perception does not yield necessarily to an internalist 

account of humans’ ability to know that R is true of the physical world. Indeed, it does 

nothing to explain the reliability of humans’ ability to know that there is an external 

physical world of the sort that gives rise to accurate sense perception. But an appeal to 

sense perception is sufficient for an externalist account of humans’ ability to know that 

R is true of the physical world. 

Those who believe that there is an external world of the sort that gives rise to accurate 

sense perception, can provide an externalist account of our empirical knowledge of 

physical objects by merely pointing out that we use sense perception as a mean of fixing 

our beliefs about the physical world. On the assumption that there is an external world 

of that sort, any method of fixing empirical belief that is so constrained by sense 

perception is reliable. 

FBP, in respect to knowledge of mathematical objects, seems to be analogous to the 

belief in the existence of an external world of the specified sort. Balaguer here aims to 

identify sense perception with the ability to discriminate consistent from inconsistent 

!73



theories, and shows that both break down in attempt to account for knowledge that FBP 

or the belief in the existence of an external world of the sort that gives raise to accurate 

sense perception are true. 

Anti-Platonists cannot allow the two situations to be analogous, because the whole point 

of Benacerraf’s worry is to raise a special problem for abstract objects, i.e. that is not a 

problem for concrete, perceived objects. That is why Balaguer interprets the dilemma 

externalistically, because it raises only in externalist key: an internalist account is as 

problematic for physical objects as it is for mathematical, for concretes as for abstracts. 

To briefly  summarize,  Balaguer  proposal  is  that,  in  order  to  acquire  knowledge  of 

mathematical  objects,  all  it  is  needed  is  to  acquire  knowledge  that  some  purely 

mathematical theory is consistent.  

There remain a few clarifications to be made, in order to offer a complete picture of 

Balaguer’s  theory.  First,  he  challenges  the  following,  questionable  assumption  that 

seems to be held in his account; namely, that humans are capable of thinking about 

mathematical objects or dreaming up stories about such objects, or formulating theories 

about them. The problem here is that it is not clear how humans could do this, unless 

before having acquired knowledge of mathematical objects, but also how do they have 

beliefs about and refer to mathematical objects. 

Balaguer response make use of a distinction introduced by Hodes (1990) , between 22

thick and thin ontological commitments. According to Hodes, the concept of ‘having 

beliefs about some objects’ can be interpreted in two different ways: to have a belief 

that is thickly about an object, for which there must be an appropriate connection; to 

have a belief that is thinly about an object, for which there is no such need. This last 

 Hodes, Harold, (1990) Ontological Commitments: Thick and thin in Boolos, (1990) 347-407;22
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kind of belief is by itself sufficient to allow humans to formulate beliefs and theories 

that are (thinly) about mathematical objects.  

The second clarification is that, if FBP is true and all consistent purely mathematical 

theories truly describes some collection of mathematical objects, or some part of the 

mathematical realm, it seems that such theories do not characterize unique parts of the 

mathematical  realm.  This  point  is  very  thorny,  since  once  all  consistent  purely 

mathematical theories have multiple models, Platonists are committed to the thesis that 

such  theories  fail  to  pick  out  unique  collections  of  mathematical  objects.  That  is, 

reference is not uniquely fixed. But according to Balaguer, non-uniqueness is simply not 

a  problem.  Resting  on  the  consideration  that  some  beliefs  being  about  some  fact 

depends upon the interpretation, namely on the choice of the model for these beliefs, he 

denies that there are any unique collections of objects that correspond to what humans 

have in mind when they formulate mathematical beliefs and theories. The embracement 

of non-uniqueness is deeply analyzed in section 2.4 of the present chapter.

2.3 Consistency

Balaguer’s notion of consistency plays a fundamental role in his form of Platonism: 

since existence depends upon consistency, all consistent purely mathematical theories 

truly describe some existent part of the mathematical realm. In what follows, I will 

focus on the criteria for determining if a sentence is purely mathematical and on 

defining Balaguer’s notion of consistency. 

The first question has a quite simple answer: a sentence or theory is purely 

mathematical if it contains exclusively mathematical terms, speaking of nothing but the 
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mathematical realm, predicating mathematical properties and relations to mathematical 

objects. Thus, ‘there are three apples on the table’ isn’t mathematical, while ‘the first 

three natural numbers are primes’ is mathematical.  

The second question requires a longer discussion. To understand the idea of consistency 

Balaguer has in mind it will be useful to recall two quotations he himself reports in his 

(1998). The first is taken from Hilbert in a letter to Frege: 

[I]f the arbitrarily given axioms do not contradict one another with all their 

consequences, then they are true and the things defined by the axioms exist. 

This is for me the criterion of truth and existence . 23

The second is from Poincaré (1913): 

[I]n mathematics the word exist…means free from contradiction . 24

Both Hilbert and Poincaré stated clearly that in mathematics existence and consistency 

are strongly bounded: if something is free from contradictions, then it exists. 

Balaguer analyses also the work on consistency by Georg Kreisel and Hartry Field , 25 26

who both take consistency as a primitive term, governed by two rules: if a sentence is 

semantically consistent, i.e. it has a model, then it is consistent; and if a sentence is 

consistent, then it is syntactically consistent, i.e. cannot be refuted in a system of formal 

logic.  

FREGE, GOTTLOB (1980) Philosophical and Mathematical Correspondence, University of 23

Chicago Press, Chicago, pp. 39-40.

 POINCARÉ, HENRI, (1913), The Foundation of Science, The Science Press, Lancaster, p. 24

454.

 KREISEL, GEORG, (1967) Informal Rigor and Completeness Proof in LAKATOS, IMRE, 25

Problems in the Philosophy of Mathematics, North Holland, Amsterdam;

 FIELD, HARTRY, (1989) Realism, Mathematics and Modality, Basil Blackwell, Oxford;26
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Anti-Platonists may object that, insofar as models and derivations are abstract objects, 

they are both notions only Platonists can appeal to. Thus, knowledge of consistency is 

understood as knowledge of abstract objects, namely models and derivations. FBP-ists 

seems to have accomplished nothing by reducing the question of how humans could 

know that our mathematical theories are true to the question of how humans could know 

that they are consistent. Moreover, if the existence of abstract objects depends upon the 

consistency of the objects (or theories) and the consistency of abstract objects (or 

theories) depends upon the existence of other abstract objects (such has models and 

derivations), then the argument is circular. 

FBP-ists can claim that the notion of consistency at work in anti-Platonist theories, like 

the one proposed by Kreisel and Field, is that consistency is simply a primitive term. 

Therefore, it is not defined in any exhaustive way. Indeed, it is related to the two formal 

notions of semantic consistency and syntactic consistency; but the two formal notions  

alone don’t provide a definition of the primitive notion. Rather, they both provide 

information about the extension of the primitive notion. From the definitions of the two 

formal notions and from the intuitive understanding of the primitive notion, Balaguer 

argues that, if a theory T is semantically consistent, then it is intuitively consistent, and 

if T is syntactically inconsistent, then it is intuitively inconsistent. Therefore, Balaguer 

aims at showing that, among first-order theories, the intuitive notion of consistency is 

coextensive with both formal notion of consistency. Combining his analysis with 
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Henkin’s theorem, he obtains the attended result: among first-order theories, syntactic 

consistency implies semantic consistency .  27

In Balaguer account, there seems to be no reasons to believe the intuitive notion of 

consistency as being coextensive with the semantic notion. Even assuming that the two 

notions are coextensive, there are still good reasons for thinking that the semantic 

notion doesn’t provide by itself a definition of the intuitive notion. Field (1989) argues 

in defense of this point very convincingly, by showing that the semantic notion is not 

able to capture the essence of the intuitive notion. In particular, he points out that there 

are certain theories for which is obvious that they are intuitively consistent, but not 

obvious that they are semantically consistent . 28

Advocates of the Kreisel-Field view might claim that the primitive notion of 

consistency is equivalent to a primitive notion of possibility. Consider that, for each 

different kind of possibility, we can define formal notions of syntactic and semantic 

 Formally: 27

1)SemC(T)→IntC(T) 
2)Syn∼C(T)→Int∼ C(T) 
3)SynC(T)→SemC(T) 
If 4)Sem∼C(T)↔∼SemC(T), 5)Syn∼C(T)↔∼SynC(T) and 6)Int∼C(T)→∼IntC(T), from this 
and 2) follows: 
7)IntC(T)→SynC(T)  
Therefore:  
8)IntC(T)↔SynC(T) 
From this, adding: 
9)SemC(T)↔SynC(T) 
Therefore: 
10)IntC(T)↔SemC(T) 
8) and 10) express the coextensiveness of the intuitive consistency with both syntactic 
consistency and semantic consistency

 For instance, consider the set S of all the truths about sets that are statable in the 28

language of set theory. S is obviously consistent in the intuitive sense, but it is not at all 
obvious that S is semantically consistent, e.g. that it has a model. Indeed, a model of S 
would have the set of all sets as its universe, but is well known that there is no such a thing. 
Accordingly to Henkin’s theorem, if a sentence a follows semantically from a set of 
sentences S then there is a proof of a from S. Therefore, S does have a model, but an 
Henkin’s model, produced by this proof. The result doesn’t extend to cases where the 
language of S is higher-order. Moreover, the bare fact that the result has to be proven, 
shows that the semantic notion doesn’t capture the essence of the intuitive notion.
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consistency. Balaguer offers two examples at the end of page 70 of Platonism and Anti-

Platonism in Mathematics: 

1. A theory T is semantically conceptually consistent if and only if the 

union of T+C of T and the set C of all conceptual truths has a model; 

and T is syntactically conceptually consistent if and only if there is no 

derivation of a contradiction from T+C in any logically sound 

derivation system. 

2. A theory T is semantically physically consistent if and only if the 

union T+P of T and the set P of all physical laws has a model; and T 

is syntactically physically consistent if and only if there is no 

derivation of a contradiction from T+P in any logically sound 

derivation system. 

Assuming this, Balaguer is convinced that it is possible to say that there is an intuitive 

notion of possibility or consistency, corresponding to each such pair of formal notions. 

Thus, the Kreisel-Field intuitive notion is simply the broadest of these notions: is a 

notion of logical possibility, so broad that all of the other intuitive notions of possibility 

can be defined in terms of it. 

Balaguer argues that it is acceptable for him to use Kreisel-Field primitive notion of 

consistency, even though it is genuinely anti-Platonist. Indeed, what is really important 

is that some anti-Platonist account of consistency is available and allows him to 

understand the notion of consistency in an anti-Platonist way. If there were no 

legitimate anti-Platonist account of consistency, this will be a problem both for 

Platonists and anti-Platonists, since no one would ever be able to account for the simple 
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fact that some of our theories are consistent and others are not. Such a view is totally 

unacceptable. But Balaguer claims that this notion is available and is a primitive notion, 

therefore it isn’t defined in terms of abstract objects. According to him, this primitive 

notion is the notion of logical possibility: whatever is logically possible is consistent. 

This means that there is no need to enter in epistemic contact with objects predicated by 

a set of sentences in order to understand if the set of sentences is consistent. For 

example, no access to the first son of Julius Caesar is required in order to know that the 

sentence asserting him to be male and the sentence asserting it to be not female are 

consistent to each other. While no epistemic contact to him is required to know that the 

sentences asserting it to be blonde and not blonde aren’t consistent to each other. In the 

same way, Balaguer claims that there is no need for epistemically access to the number 

3 in order to know that the sentences asserting it to be prime and even are consistent to 

each order, while the sentences asserting it to be even and multiple of the number 4 are 

not. 

Thus, if there is a legitimate anti-Platonist notion of consistency, FBP-ists too can 

account for the fact that human beings can know that certain purely mathematical 

theories are (anti-Platonistically) consistent. 

Balaguer considers some possible objection in regards of consistency. First he considers 

that, while sentences and theories are abstract objects, FBP-ists restrict their attention to 

concrete tokens of sentences and theories. But, if T is a purely mathematical theory, 

although the claim that concrete tokens of T are consistent isn’t about abstract objects, 

then T itself is about abstract objects. Indeed, it may be that humans need contact with 
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abstract objects in order to know that T is consistent, because it may be that humans 

need contact with T’s own ontology in order to know that T is consistent.  

Balaguer replies that knowledge of consistency of a set of sentences does not require 

any sort of epistemic access to the objects the sentences are about. That is because 

knowledge of consistency is logical knowledge. If FBP is true, then mathematical 

knowledge can arise directly out of logical knowledge. Nevertheless, mathematical truth 

is not logical truth, because the existence claims of mathematics are not logically 

necessary. 

A second worry is that FBP-ists do not have to account for how humans know which of 

our consistent purely mathematical theories truly describe mathematical objects and 

which do not. Since, according to FBP, all of our consistent purely mathematical 

theories truly describe mathematical objects, the question doesn’t even raise. And again, 

if FBP is true, then knowledge of mathematical objects falls straight out of knowledge 

of the consistency of mathematical theories. 

In conclusion, FBP-ists state that they do not need any access to a set of objects in order 

to know whether a set of sentences about these objects is consistent. That is,  Balaguer 

reached his goal: epistemic contact is not required in order to obtain knowledge of 

consistency.  
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2.4 Mathematical Correctness and Mathematical Truth

Mark Balaguer, in A theory of Mathematical Correctness and Mathematical Truth  29

draws a distinction between mathematical correctness and mathematical truth. Prima 

facie, in mathematics correctness and truth may appear to describe the same notion: a 

correct theorem of mathematics is a true theorem in mathematics. If something is 

correct in mathematics, it is because it is proven, and if it is proven, then it is true.  

This is why the notion of truth that underlies FBP takes a particular position in the 

debate between correspondence and coherence theories of truth. According to the 

former perspective, truth entails a correspondence with reality: a true sentence describes 

accurately an existing reality. That is, there exists a reality to which the singular terms 

that compose the sentences correctly refer to and accurately describe. On the other side, 

coherence entails truth. A coherence theory of truth does not entail the existence of a 

reality to which correct sentences rely. Accordingly, true sentences are coherent 

sentences, which do not lead to contradiction. Sentences that are true thanks to 

coherence theory of truth can refer vacuously: the singular terms that occur in a 

coherently true sentence do not need to refer to something existing. What is relevant is 

only the absence of contradiction.  

To offer just two simple examples, a truth like ‘everything is identical with itself’ is 

coherently true, since it does not require to check that everything in the world is actually 

identical with itself, but only that the identity with itself in general does not lead to 

 BALAGUER, MARK (2001), “A Theory of Mathematical Correctness and Mathematical 29

Truth”, Pacific Philosophical Quarterly 82, pp. 87-114;
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contradiction. Thus, to falsify this sentence all it is needed is to find just a thing that is 

not self-identical.  

Instead, ‘Costanza is Italian’ is a true sentence due to the existence of an object to which 

the term ‘Costanza’ refers and to the correspondence of the term with an existing object, 

namely to the fact that there exist an object named ‘Costanza’ that truly owns the 

property of ‘being Italian’. So, what is needed in order to falsify this sentence is either 

that there exist no such object or property (thus no reference for the singular terms that 

occur in it) or that there actually exist such object, but it does not own this property.  

Finally, the interesting aspect is that in FBP the difference between coherence and 

correspondence theories of truth collapses. If a theory is coherent, i.e. it does not lead to 

contradiction, then the objects it talks about exist, so there is a correspondence, a 

reference for the terms that occur in it, although reference couldn’t be uniquely 

determined, as explained in section 2.5.  

As a result, the embracement of non-uniqueness in reference entails, for FBP, that 

consistency is sufficient for truth. If both a consistent mathematical sentence and its 

consistent negation are true, a genuine contradiction doesn’t raise, because since the 

consistent mathematical sentences describe parts of the mathematical realm, FBP-ists 

can claim that they simply describe different parts. 

2.4.1 How to deal with undecidable sentences in Mathematics

In his account of mathematical truth, Balaguer argues also in favor of an account of 

mathematical correctness that agrees with his conception of correspondence for 

coherent truth. In order to obtain an account of mathematical correctness, he faces 
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directly the problem raised by the existence of certain mathematical sentences that are 

undecidable in all of the currently accepted axiomatic mathematical theories. These 

sentences give rise to open mathematical questions that cannot be answered by our 

axiomatic theories, for example questions related to the continuum hypothesis.  

The debate can be stated in the following way: either these questions have objectively 

correct answer, or these questions have no objectively correct answer. The former 

position is endorsed by the objectivists, who do claim the existence of a correct and 

ultimate answer, while the latter is endorsed by the anti-objectivists, who don’t feel the 

need to claim that there actually is a correct and ultimate answer.   

This problem is also related to the question of whether mathematical Platonism or Anti-

Platonism is true. Indeed, if there are mathematical objects, these objects are so and so, 

and, in the mathematical realm, there is a correct answer to the question of whether the 

continuum hypothesis is true or false. It is just a matter of finding out the correct 

answer. On the contrary, if there are no such things as mathematical objects, then there 

is nothing for the continuum hypothesis or other open questions to be wrong or right 

about. So there is no correct answer, but different, hopefully coherent, theories that 

propose different possible answers.  

Mark Balaguer suggests to address the question in a different way: whether a given 

mathematical question has an objective answer does not depend on the existence of any 

mathematical objects. Indeed, his proposal fits both with Platonism and Anti-Platonism. 

In A Theory of Mathematical Correctness and Mathematical Truth, Balaguer suggests to 

make use of an Intention-Based Partial Objectivism, characterized by three principles 

(page 90, 91 and 92): 
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(COR) A mathematical sentence is objectively correct just in case it is ‘built 

into’, or follows from, the notions, conceptions, intuitions, and so on that we 

have in connection with the given branch of mathematics. 

Roughly, a mathematical sentence is correct if it is built into our full conception of the 

mathematical objects, that is, the sum of all our mathematical thoughts and what follows 

from these thoughts. Notice that, according to (COR), it is perfectly acceptable for a 

mathematical sentence to be undecidable in all of our axiomatic theories, but still 

remaining objectively correct, since it has been built into the notions, conceptions, 

intuitions and so on that we have in the given branch of mathematics. 

(INCOR) A mathematical sentence is objectively incorrect just in case it is 

inconsistent with the notions, conceptions, intuitions, and so on that we have 

in connection with the given branch of mathematics. 

Some open questions in mathematics are such that none of their possible answers are 

built into the notions, conceptions, intuitions, and so on that we have in the given 

branch of mathematics. This is the case rendered by (INCOR). 

The last principle is: 

(NEUT) Many mathematical sentences are objectively correct, and many are 

objectively incorrect, but it may be that there are some mathematical 

sentences that are neither objectively correct nor objectively incorrect, 

because (a) they do not follow from the notions, conceptions, intuitions, and 

son on that we have in the given branch of mathematics, and (b) they are not 

inconsistent with these notions, conceptions, intuitions and so on. 
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According to it, some sentences can be objectively true in some branches of 

mathematics, while being objectively false in some others.  

The theory of undecidable sentences provided by Mark Balaguer fits well with 

mathematical practice, since it explains our change of mind in mathematics and leaves 

space for our conceptions to evolve: it is possible to be neutral (NEUT) regarding a 

sentence, and then develop (COR) or (INCOR) for it, conveying it in a correct or 

incorrect sentence, a truth or falsehood of mathematics. 

Balaguer argues that FBP is in the same line with his theory of undecidable sentences. 

Indeed, according to FBP, every consistent purely mathematical theory truly describes 

some collection of mathematical objects. In doing mathematics, humans talk about 

some particular collection of mathematical objects and state that it is objectively correct 

only if it is true in the intended interpretation or standard model, determined by the 

intentions they have in the pertinent branch of mathematics.  Thus, to say that a model 

is standard is to say that it is the one intended, with an important caveat: the intended 

model is standard, but not every standard model is intended. Balaguer concludes that, 

since every consistent purely mathematical theory truly describes some collection of 

mathematical objects, every such theory is true in a language that interprets it in a way 

such that the given theory is about the objects that it is about. This could seem a little 

obscure, but Balaguer means here a very simple fact: correctness or incorrectness of 

mathematical theories depend at less partially upon facts about humans, about what they 

intend to say.  

Accordingly, FBP can adopt a notion of truth simpliciter, a kind of Realism in 

semantics, fixing the intended interpretation or model of a theory, which can come up 
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correctly or not. That is, mathematical statements truly refer partly because of how we 

interpret them and partly because there exist objects that are described by the 

statements, as long as the theories containing the referring statements are consistent.  

2.5 Non-uniqueness

FBP-ist epistemology seems to deliver a response to Benacerraf (1973) epistemological 

argument: roughly, knowledge of mathematical abstract objects is successfully attained 

even without any contact, since knowledge of mathematical objects is logical 

knowledge. But Benacerraf had presented also another difficulty for Platonism, namely 

the argument of multiple reductions, or non-uniqueness in reference. This argument 

appeals to the Platonist suggestion that our mathematical theories describe collections of 

abstract objects. Accordingly, mathematical theories would have to define unique 

mathematical objects and pick out them among the objects in the mathematical 

universe. That is to say that singular terms in mathematics have to refer uniquely. And 

Benacerraf’s (1965) is an argument based on the failure of the Platonist ability to 

uniquely refer. 

Balaguer (1998) analyses Benacerraf’s argument as follows (page 76, 77): 

1. If there are sequences of abstract objects that satisfy the axioms of Peano 

Arithmetic, then there are infinitely many such sequences; 

2. There is nothing ‘metaphysically special’ about any of these sequences 

that makes it stand out from the others as the sequence of natural 

numbers; 

Therefore: 
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3. There is no unique sequence of abstract objects that is the natural 

numbers; 

But: 

4. Platonism entails that there is a unique sequence of abstract objects that 

is the natural numbers; 

Therefore: 

5. Platonism is false; 

With the intent to defend FBP, Balaguer individuates two strategies, based on the 

rejection of the vulnerable parts of the argument, that according to Balaguer are 2 and 4. 

To reject 2 is to affirm that, even if there were infinitely many sequences of abstract 

objects that satisfy the axioms of Peano Arithmetic, one of these sequences is in a way 

‘metaphysically special’ and deserves to stand out from the others as the legitimate 

sequence of natural numbers. 

Benacerraf (1965) argues that no sequence of sets stands out as the sequence of natural 

numbers: neither Zermelo’s nor Von Neumann’s provide a better reduction than the 

others. Benacerraf extends the point by claiming that, from an arithmetical point of 

view, only the structural properties of a sequence matter to the question of whether it is 

the sequence of the natural numbers. In particular, any 𝜔-sequence  will  be  as  good 

candidate as any other. 

Accordingly, Balaguer also points out that Peano’s axioms don’t capture everything is 

known about the natural numbers. Balaguer proposes to take into consideration what he 

calls the full conception of natural numbers, that is the total sum of humans’ intuitions, 

!88



notions and conceptions regarding the natural numbers. The enterprise of defining what 

is  contained  in  the  full  conception  of  natural  numbers  and  what  is  not  seems 

controversial. Nevertheless, Balaguer believes that there is nothing problematic about 

Platonists  appealing to  full  conception of  natural  numbers,  motivating this  with  the 

claim that the idea goes hand in hand with the platonic conception of mathematics. 

The point of Benacerraf’s argument is that if all the 𝜔-sequences were laid out before 

us,  we could have no good reason for singling one of them out as the sequence of 

natural  numbers.  Any  𝜔-sequence  that  don’t  satisfy  the  full  conception  of  natural 

numbers can be ruled out, but Platonists can’t claim that all 𝜔-sequences but one can be 

ruled out. Moreover, since Platonists endorse that abstract objects exist independently of 

us, they must admit that there are very likely numerous kinds of abstract objects that we 

have  never  thought  about.  As  a  consequence,  there  are  very  likely  numerous  𝜔-

sequences  that  satisfy  the  full  conception  of  natural  numbers  and  differ  from  one 

another  only  in  ways  that  no  human  being  has  ever  imagined  since  now.  Hence, 

Balaguer has to conclude that 2 is true.

He then tries the other strategy, rejecting 4, the claim that Platonism entails that there is 

a unique sequence of abstract objects that is the natural numbers.  The claim that 

mathematical theories truly describe collections of abstract mathematical objects entails 

that mathematical theories truly describe unique collections of abstract mathematical 

objects. But according to Balaguer,  there is absolutely no reason to believe this strong 

claim. Platonists can simply accept that mathematical theories truly describe collections 

of abstract mathematical objects, while rejecting that mathematical theories truly 
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describe unique collections of abstract mathematical objects. That is, while 

mathematical theories describe collections of abstract objects, none of them (eventually 

only by blind lucky) describes a unique collection of such objects.  

Here Balaguer’s strategy: Platonists can avoid the non-uniqueness problem simply 

adopting non-uniqueness Platonism. This strategy fits very well with the plenitudinous 

character of full-blooded Platonism, which can face successfully both the problem of 

multiple reductions and the epistemological argument. Furthermore, if the mathematical 

realm is as populated as full-blooded Platonism would assumed it, then it seems 

extremely unlikely that any of our mathematical theories, or any possible mathematical 

theory, are uniquely satisfied.

Thereafter, Balaguer argues that there are no good reasons for favoring uniqueness over 

non-uniqueness Platonism. He first claims that uniqueness Platonists can claim over 

non-uniqueness’s that mathematical theories are to be taken as being about unique 

collections of mathematical objects. This would be acceptable only if there were unique 

references for these terms. Indeed, if a singular term doesn’t have a unique referent, if it 

refers ambiguously, we are inclined to say that it doesn’t refer at all, and above all that it 

isn’t a singular term. But what non-uniqueness Platonists want to deny is exactly that 

our mathematical singular terms have unique referents, because all mathematically 

important facts are structural facts, the one that are about the relations between 

mathematical objects. Since it is possible to capture the structural facts that 

mathematicians look for, without picking out unique collections of objects, it doesn’t 

matter if our mathematical theories fail to pick out unique collections of objects.
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Even if the non-uniqueness account of mathematics that Balaguer developed can be 

satisfyingly supported, there remains some concerns uniqueness Platonist can raise 

regarding the use of singular terms without unique referents in mathematics. 

Uniqueness Platonists can claim that, in abandoning unique references, non-uniqueness-

Platonists abandon the adoption of a standard semantics that matches the one for 

ordinary discourse. But the ability to adopt such a semantic has always been one of the 

main motivations for Platonism. In response, Balaguer denies that the non-uniqueness-

Platonism’s appeal to non-unique reference leads to the abandonment of standard 

semantics. What non-uniqueness Platonists merely claim is that, in using singular terms 

and providing them with a standard semantics, mathematicians make an assumption that 

is false, but nevertheless convenient. Mathematicians simply aren’t interested in the 

differences between the various ω-sequences that satisfy their full conception of natural 

numbers, since all of these sequences are indistinguishable with respect to the sort of 

facts and properties they are trying to characterize while doing arithmetic. 

Moreover, uniqueness Platonists can object that mathematicians seem to have unique 

objects in mind when they use singular terms. Indeed, considerations of this sort can be 

used to argue against non-uniqueness Platonists, for it seems that mathematicians have 

unique collections of objects in mind when they construct their theories. But FBP does 

not account for the existence of a unique sequence of objects that mathematicians have 

in mind when they are doing arithmetic. Given the Platonist thesis that the mathematical 

realm exists independently of mathematicians and their theorizing, FBP-ists reach the 

result that there may be more than one ω-sequence  that  satisfies  mathematicians’ full 

conception of natural numbers and differ from one another only in ways that no human 
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being has ever imagined. If there are numerous ω-sequences that satisfy our conception, 

then  arithmetical  beliefs  are  thinly  about  all  of  those  ω-sequences.  There  is  no 30

privileged ω-sequence that is such that mathematicians have in mind it and only it. 

Moreover, if full conception of natural numbers doesn’t pick out a unique object, it is 

simply not a problem, because mathematicians can still accomplish what they want to 

accomplish  in  arithmetic,  namely  characterize  the  structural  facts  that  they  aim  to 

characterize. 

Balaguer considers also the objection according to which, given the right background, 

any mathematical object could play the role of any position in any mathematical 

structure. Therefore, non-uniqueness Platonists have to allow that every mathematical 

singular term refers to every mathematical object. This is simply false, since the mere 

consideration that all mathematically important facts are structural facts does not entail 

that these are the only facts relevant to the determination of mathematical reference. 

The author of this objection would seem to think of mathematical objects as bare 

particulars: taken in themselves, without any interpretation given, mathematical objects 

are all indistinguishable from one another. But who adopts such a conception has to 

admit that ‘3’ really could refer to any mathematical object whatsoever, because all of 

these objects would be undistinguishable from one another. This claim does not fit with 

any sort of reasonable theory of mathematics. 

To briefly summarize, Balaguer provides an account for non-uniqueness in mathematics 

in response to the difficulties raised from the attempt of defining exhaustively a part of 

the  mathematical  realm.  But,  the  intentions  mathematicians  have  in  mathematical 

 Recall the difference between having beliefs that are thinly and thickly about objects at 30

the end of section 2.2 of the present chapter. 
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contexts are anything like the intentions that humans have in empirical contexts. There 

are no unique collections of objects that correspond to what mathematicians have in 

mind  when  they  formulate  mathematical  beliefs  and  theories.  Hence,  Platonists  are 

challenged to account for the fact that if mathematicians accept p, then p. But Platonists 

do  not  have  to  account  for  there  being  a  perfect  correlation  between  mathematical 

beliefs and mathematical facts, simply because there isn’t such a correlation to account 

for.

2.6 A Defense of Full-Blooded Platonism

Several objections have been raised against FBP. Balaguer analyses some of them in 

different  passages  of  his  work,  particularly  in  Platonism  and  Anti-Platonism  in 

Mathematics, beginning from page 58. In this last section, I will briefly consider the 

most significant questions and Balaguer’s answers.

The first objection is against the many cases in which consistent purely mathematical 

theories contradict one another. For example, assuming that ZF+C and ZF+∼C are both 

consistent, FBP entails that they both truly describes part of the mathematical realm. 

Thus, FBP seems to lead to the contradictory result that both ZF+C and ZF+∼C are true.

Balaguer  responds  that  both  ZF+C  and  ZF+∼C  actually  describes  parts  of  the 

mathematical realm, but the whole poin is that they describe different parts, different 

kinds of universes of sets. That is why FBP assigns different sorts of entities to the 

expressions of C in the two different cases.

Balaguer responds then to an objection that could follow from his answer, namely the 

objection according to which FBP seems to sacrifice the objectivity of mathematics, 
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entailing  that  undecidable  sentences  like  the  continuum  hypothesis  do  not  have 

determinate  truth-values.  But  in  FBP-ists  terms,  to  say  that  there  is  no  objectively 

correct answer to the continuum hypothesis is just to say that the notion of set on the 

table  isn’t  strong  enough  to  settle  the  question.  Indeed,  FBP can  account  for  the 

existence  of  open  questions,  while  classical  Platonists  cannot,  and  this  is  a  strong 

argument in favor of  FBP, because it  makes FBP more lined up with mathematical 

practice. The reason is that FBP can allow mathematicians to say whatever they want to 

say regarding each different open question. If multiple answers to an open question are 

consistent with the intentions, concepts and intuitions that mathematicians have, then 

different answers to the question will be true in different standard models, and so the 

question will not have a unique, objectively correct answer.

A third objection states that FBP’s entailment that among purely mathematical theories, 

consistency is sufficient for truth, seems to represent a shift in the meaning of the word 

‘true’. Balaguer promptly argues, in agreement with mathematical practice, that what 

mathematicians standardly mean when they say that a sentence is true is that it is true in 

the standard model for the given branch of mathematics. That is, models are just parts of 

the mathematical realm and to say that a sentence S is true in a model M is just to say 

that S is true of some particular part of the mathematical realm. But FBP-ists specify 

that there is nothing metaphysically special about standard models, since they are just 

the intended interpretation. 

As a result, FBP-ists can maintain that a mathematical sentence is true simpliciter, or 

correct, if and only if it is true in all of the standard models for the given branch of 

mathematics; and it is incorrect if and only if is false in all of these models; and if it is 
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true in some of these models and false in others, then it is neither correct nor incorrect: 

is neutral.

Another objection is how human beings can acquire knowledge of what the various 

standard  models  are.  According  to  FBP,  standard  models  haven’t  any  metaphysical 

priority, but only sociological or psychological ones. Mathematicians formulate axioms 

that are intuitively pleasing and try to settle open questions by constructing proofs that 

rely upon currently accepted propositions, that is propositions that they already have 

reasons to believe to hold in the standard model.

Balaguer tries to respond to whom who charge FBP of forbidding to speak of all sets, 

for it seems that every set theory is about a restricted universe of sets. But again, FBP is 

neutral with respect to the question of whether there is a unique amalgamated universe 

that contains all and only things that legitimately count as sets. Actually, FBP seems to 

prohibit from making claims about the entire mathematical realm, justifying itself by 

saying that there is nothing mathematically interesting about the entire mathematical 

realm, because mathematical realm is too vast and diverse. Still, mathematicians, but 

also common people, might want to say something about the entire mathematical realm. 

In this case, FBP-ists have to remember that they never commit themselves in stating 

that all consistent purely mathematical sentences and theories truly describe the entire 

mathematical  realm.  So,  it  seems  impossible  to  speak  simultaneously  of  the  entire 

mathematical  realm  in  any  mathematically  interesting  way.  Obviously,  there  are 

philosophically  and  metaphysically  interesting  way  of  speaking  of  the  entire 

mathematical realm. FBP is one of these.

Lastly, Balaguer considers a classical objection also made against fictionalism: what is 

the  difference  between true  and  false  mathematical  statements,  since  FBP does  not 
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characterize in different ways 2+2=4 and 2+2=5? They seem to be both true of part of 

the mathematical  realm, but in fact  a mathematician who wants to demonstrate that 

2+2=5 will not provide a good proof, since he will have to use at least one of the terms 

in this sentence in a non-standard way, assigning it  a meaning that will result to be 

different from the meaning standardly assigned to it. Accordingly, epistemic principles 

that  are  applicable  in  empirical  contexts  aren’t  applicable  in  mathematical  contexts. 

That is, in mathematics it is false that, in order for a person S to know that p, there has 

to be a counterfactual relationship between S’s belief that p and the fact that p, so that if 

things would have been different, then S would have believed differently. 

It is precisely this misunderstanding that Balaguer accuses of originating Benacerrafian 

worries regarding the possibility for human to acquire knowledge of objects without any 

access  to  them.  FBP  provides  a  path  to  knowledge  of  abstract  objects,  at  least 

mathematical ones, that does not require access to them or a counterfactual relationship 

between subject and object of knowledge.

In  conclusion,  FBP can  vaunt  many  virtues,  first  of  all  his  ability  to  reconcile  the 

objectivity of mathematics with the extreme freedom that mathematicians have. It does 

so thanks to the admission of infinitely many different universes of sets, while classical 

Platonists have to allow that one universe of sets could correspond to any of the FBP-ist 

universes. Consequently, FBP can also endorse the existence of open questions with or 

without correct answer. But FBP-ist can also account for the legitimacy of pragmatic 

modes of justification, since they preserve consistency. FBP privileges inclusiveness and 

broadness in comparing theories, reconciling the objectivity of mathematics with the 

legitimacy in mathematics of pragmatic modes of justification. 
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From an ontological point of view, FBP is committed with an infinite number of objects, 

leaving aside any reductionist and simplifying tendency. Therefore, it pays the cost of a 

gigantic ontology, in exchange for being able to describe mathematics in an exhaustive 

manner.  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Every theory, philosophical or otherwise, must take some notions for granted… 
[T]he notions of existence, object, and identity occur 

 in just about every philosophical work, usually without further ado…  
[S]hould we conclude that every one already has clear  

and distinct ideas of them? Is any attempt 
 to articulate such notions a waste of time and effort? 

SHAPIRO, STEWART (1997), Philosophy of Mathematics: Structure and Ontology,  
page 71. 

!98



Chapter 3: Structuralism 

3.1 Structuralism

Structuralism proposes to conceive mathematics as the science of structures: 

mathematical theories describe abstract structures and mathematical theorems are about 

places in structures, conceived as abstract objects. As a result, mathematical statements 

describe authentic objects. Nevertheless, Structuralism is opposed to the so called 

‘Object Platonism’, who considers mathematical objects in Structuralism as inauthentic 

objects, even though they can serve as reference for mathematical terms. According to 

Structuralism, mathematical objects are places in structures and therefore have no inner 

essence or properties they authentically possess. Therefore, Structuralism assigns to 

mathematical objects only those properties they possess because of the relations they 

have each with others. 

This conception is, prima facie, very related to 19th-20th-century mathematical practice. 

In order to understand the historical reasons behind the formulation of such a view, it is 

important to keep in mind that, during the nineteenth century, mathematics underwent a 

significant transformation. The same goes for philosophy of mathematics, which 

mirrors this transformation in particular on new ideas of necessity and a prioricity. 

Several scholars argue in favor of an account for the necessary and a priori nature of 

mathematics, without invoking kantian intuition, but aiming at understanding necessity 

and a prioricity in formal terms : by now, it is enough to say that necessary truth is 31

truth by definition, while a priori knowledge is knowledge of how to use the language. 

 Alberto Coffa, in his From Geometry to Tolerance: Sources of Conventionalism in 31

Nineteenth Century Geometry, identifies the semantic tradition, represented by Bolzano, 
Frege, Hilbert and Wittgenstein.
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In Kant’s Critique of Pure Reason , both geometry and arithmetic are intended as 32

synthetic a priori. But mathematics at the end of the 19th century is no more the same 

subject Kant was thinking about. For example, geometry is not yet the study of a form 

of intuition of space, but has been transformed into the study of freestanding structures, 

with ideal elements that behave in different ways and inhabit different kind of spaces 

from the past ideas. For example, the discovery of the non-euclidean geometry is a 

typical example of a new way of thinking mathematics, but also allows to picture and to 

understand how geometry moved from its empirical and physical feature. 

As Stewart Shapiro points out in chapter 5 of Philosophy of Mathematics: Structure and 

Ontology (1997), mathematicians can no more rely either on perceptual intuition or on 

visualization when dealing with new elements like imaginary points, projection located 

at infinity, and so on. This is strictly bounded to one particular feature that plays a 

prominent role in Shapiro’s reconstruction of history of contemporary mathematics. 

From the reflection on contemporary mathematical objects, introduced by postulation, 

implicit definition or construction, he derived that, in contemporary mathematics, there 

is no more room for intuition.  

As an illustrative case, Shapiro (1997) reports a debate that took place in the beginning 

of 20th century: two mathematicians defended the role of perception and intuition and 

begun a debate against two logicists, who were strongly resisting such an account of 

mathematics, and geometry in particular. The protagonists of this debate are Henri 

Poincaré as opposed to Bertrand Russell, and David Hilbert against Gottlob Frege. 

 Kant, Immanuel, (1978) Critique of Pure Reason, Cambridge University Press, Cambridge;32
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Poincaré  noticed that it is impossible to figure out whether physical space is Euclidean 33

by an experiment, because measurement can only be done on physical objects by the 

mean of physical objects. The choice of a particular geometry has to be done only in the 

key of convenience: once geometry is the science of forms, matter does not matter.  

On the other side of Poincaré conventionalism, the young Bertrand Russell held that 

mathematical definitions have fixed meaning: they identify objects with properties in 

space that stand in certain relations to other items. In his Introduction to Mathematical 

Philosophy , pages 59 and 60, Russell highlighted that mathematicians are obliged to 34

adopt some kind of Structuralism, even if the philosopher would not:  

[T]he mathematician need not concern himself with the particular being or 

intrinsic nature of his point, lines and planes…[A] “point” …has to be 

something that as nearly as possible satisfies our axioms, but it does not 

have to be “very small” or “without parts”… If we can, out of empirical 

material, construct a logical structure, no matter how complicated, which 

will satisfy our geometrical axioms, that structure may legitimately be called 

a “point.” We must not say that there is nothing else that could legitimately 

be called a “point”; we must only say: “This object we have constructed is 

sufficient for the geometer; it may be one of many objects, any of which 

would be sufficient, but that is no concern of ours, since this object is 

enough to vindicate the empirical truth of geometry, in so far as geometry is 

 POINCARÉ, HENRI, (1899) “Des fondements de la géometrie”, Revue  de Métaphysique et 33

de Morale, 7, 251-279, POINCARÉ, HENRI, (1899) “Sur le principes de la géometrie”, Revue  
de Métaphysique et de Morale, 7: 251-279, Paris.

 RUSSELL, BERTRAND, (1919) Introduction to Mathematical Philosophy, Dover, New 34

York.

!101



not a matter of definition.” We may say of two similar relations, that they 

have the same “structure”. 

Russell’s position is, concisely, that what matters in mathematics is not the intrinsic 

nature of mathematical objects, but the logical nature of their interrelations. This 

perspective has to be seen as an important antecedent to Structuralism.  

It is interesting to note that Russell emphasized the aspects according to which 

mathematicians are forced to adopt some kind of Structuralism, even if the philosopher 

would not. For mathematical purpose, the only important thing about a relation is if it 

holds and how, whereas philosophy is more interested in the essence, or nature, of the 

relation. 

Shapiro (1997) spends some words also on the work of Richard Dedekind both on 

natural and real numbers, suggesting to consider it as an important antecedent of 

Structuralism. Shapiro is referring to Dedekind (1872) , where rational numbers are 35

introduced through the characterization of three fundamental properties they possess:  

1. Order: if a>b and b>c, then a>c; 

2. Density: if a≠b, then between a and b there exist infinite rationals; 

3. Section: if a is a given rational, all the others rationals are 

subdivided in two classes A1 and A2 , each of which containing 

infinite elements such that every number smaller than a belongs to 

the first class, and every number greater than a belongs to the 

second, whereas a belongs to the first or to the second class. 

 DEDEKIND, RICHARD (1872), Continuity and Irrational Numbers, in Beman, W. W., 35

(1963) Essays on the theory of Numbers New York, Dover.
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Dedekind noticed that, once a segment is fixed and used as a measurement unit, it is 

possible to associate a point in a line to every rational numbers and even the points in 

the line will possess analogous properties as order, density and section . Dedekind 36

identifies the essence of continuity in the inverse of the property of section: if there is a 

partition of the line in two classes in which every element of a class stands to the left of 

every element of the other class, then it will exist one and only one point that produces 

this partition.  

Dedekind defines real numbers as couples of non-empty and disjoint subsets A1 and A2, 

the union of whom is the set of rational numbers, such that, for every element a of A1 

and b of A2, a<b. Sections that are produced by no-rational numbers produce an 

irrational number. In this way, Dedekind can state that to each section corresponds one 

number, rational or irrational. Keep in mind that Dedekind didn’t identify real numbers 

with the cuts, but are a representation of them.  

According to Shapiro (1997), the cuts exemplify the real-number structure. And in 

Dedekind’s perspective, numbers are something that mind creates, objects produced by 

a free creation made trough an abstraction of sorts, based on relations that identify 

between objects. 

Several scholars endorsed Structuralism during the last decades. In particular, it is 

worthy to mention Marcus Giaquinto (2002), Geoffrey Hellman (1996, 2001), Colin 

McLarty (1993), Carl Parsons (1990) and Michael Resnik (1997). The version proposed 

by Stewart Shapiro acquires interest for the purpose of this work, because he explicitly 

 The inverse property of correspondence is not satisfied, because in the line exists an 36

infinity of points to which it is not possible to associate a rational number.
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defines his philosophy of mathematics as Platonist and defended one of the main thesis 

of Platonism, i.e. the thesis I called Existence, with new and powerful arguments, but 

without assuming the existence of mathematical objects.  

Shapiro has a particular approach to mathematical ontology. He express very explicitly 

his support to the line of thought he calls ‘philosophy last if at all’  (henceforth PL), as 37

opposed to the view he calls ‘philosophy first’  (henceforth PF).  38

Following PF, philosophy determines and precedes mathematical practice, in the sense 

that defining or constructing what mathematics is all about fixes the way mathematics is 

to be done.  

According to PL, philosophy has to participate in providing orientation and direction, to 

deliver an accurate account of mathematics and its place in our intellectual lives, to 

interpret mathematics and, if needed, to philosophically justify it. But mathematics can 

get by on its own in a world without philosophy. In fewer words, PF is normative, while 

PL is descriptive.  

Shapiro supports to PL and Platonism as a consequence: since the adoption of Existence 

provides a good guide to mathematical practice and mirrors adequately the use of 

mathematical language, and Platonism dictates the adoption of Existence, Platonism is 

the right ontology for mathematics. If it has philosophical problems, is a problem for 

philosophy, not for mathematics. 

Shapiro engages himself in defending both the autonomy of mathematics and the role of 

philosophy of mathematics, trying to draw the boundary line and assign to each 

 Shapiro indicates as supporters of PL Carnap (1950), Quine (1981), Lewis (1993) 37

 See for example Hemple and Oppenheim (1948) 38
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discipline the appropriate domain. In what follows, I will analyze his strategy and 

evaluate his results. 

3.2 Existence

Stewart Shapiro defines his form of Structuralism as ante rem. This aspect of his 

thought about mathematics is of particular relevance for the purpose of this work, 

because is fundamental in defining Shapiro’s Structuralism as a form of Platonism.  

Shapiro proposes to approach Platonism as Working Realism, an approach he defines as 

aiming at defending the autonomy of mathematics from philosophical concerns. 

Although ontology, epistemology, semantics, application’s problems are philosophically 

relevant, Working Realism is firstly focused on providing an accurate account of 

mathematics by its own. For, Working Realism is a methodological description of how 

mathematics is performed, rather than a normative prescription of how mathematics 

should be performed.  

Shapiro delivers a theory of the work of mathematicians along the lines of Working 

Realism. Such a theory is implicit in the operations of the mathematicians, which use at 

least classical mathematics without dealing with epistemological or methodological 

problems, but defending mathematics and its principles in the name of practical reasons: 

mathematics works, its principles are useful and deliver coherent results. So, such a 

mathematical spontaneous Realism predicates that mathematical objects exist and 

mathematical statements refer not vacuously.  

This a posteriori argument is very common, according to Shapiro, in mathematical 

practice. Working Realism is very lined up with mathematical practice and 
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methodologies like, to mention just a few, impredicative definitions, the axiom of 

choice and laws of classical logic, such as excluded middle. 

Shapiro recognized three level of Working Realism: third person, first person and 

normative. First and third person Working Realism are descriptive: the mathematicians 

conform their job to the methodology, using it uncritically, in the former, and critically 

in the latter, but they are not committing themselves with the use of those principles in 

further researches. Therefore, it is plausible that some methodologies are used in 

mathematics because they are helpful for some purpose without, as Shapiro (1997) 

observed, further investigations on their validity.  

Contrarily, normative Working Realism acknowledges and accepts explicitly the 

methodological principles, grounding Mathematics on them and working on conforming 

mathematical practice to them. As a consequence, normative Working Realism is to be 

considered as internal to the framework of mathematics, while philosophical questions 

are external. 

Thereafter, Shapiro indicates three senses of the dichotomy internal/external. The first is 

internal/external to the framework, following Rudolph Carnap (1950). In the internal 

sense, the existence of numbers is an analytic truth because it is a consequence of the 

framework. External questions play no role in Carnap view: they are simply non-sense, 

since he posed question on the pertinence of the use of certain framework. The second 

sense, due to Arthur Fine (1986), is internal to science. Fine’s theory, Natural 

Ontological Attitude or NOA, invokes an interpretation of Mathematics and science to 

clarify what Mathematics and science predicate. The third sense derives from Putnam’s 

(1980) internal Realism as opposed to metaphysical Realism. In this case, internal and 
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external notions depend on the conceptual scheme. Shapiro doesn’t pick up explicitly 

one of this senses, but he seems to implicitly adhere to Fine’s theory.  

Shapiro aims at accentuating the link between Working Realism, Structuralism and the 

idea of mathematical objects relatively to a system of axioms. For example, natural 

numbers may be objects within Arithmetic, but names for natural numbers may not 

designate objects in other theory or framework of Mathematics. As a consequence, only 

if the context is held fixed, there can be room for a determinate statement of identity 

between objects; otherwise, identity is based on convenience or resemblance. Identity 

between natural numbers is determinate, but there is no general criterion for identity. 

Indeed, identity is systematically ambiguous, and the reason for this ambiguity resides 

in the variation of the notion of object from theory to theory. In this sense, cross-

identifications aren’t ultimately definable. They are matter of decision or convenience, 

rather than matter of discovery.  

Within arithmetic, numbers may be conceived as objects and a truth-value may be 

assigned to any well-formed identity in the language of arithmetic. Such identity 

conditions lead to the conclusion that the idea of a single, fixed universe composed by 

objects a priori, that exist independently from our ability to talk or to have knowledge 

of them, is firmly rejected. 

Working Realism takes mathematical language at face value. Theorems of mathematics 

are about objects that have the same status of everyday objects. Several well known 

theories by Willard Van Orman Quine, like relativity of ontology, inscrutability of 

reference and ontology through variables have such an essential assumption, that it is 

possible to give different models in order to analyze the same content. Thus, the best 
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one can achieve is that all models of a theory are isomorphic, in which case the 

ontology is determined up to isomorphism.  

There is an isomorphism when there is a one-to-one correspondence from the objects 

and relations of one system to the objects and relations of the other that preserves the 

relations. Isomorphism is different from identity: if two objects are the same, in the 

sense that everything true about one object is true about the other, the objects are 

identical: indeed, two objects that share exactly the same properties, are the same 

object. As a result, two objects that are identical are one and the same object, while two 

objects that shares an isomorphism are not: they remain two different objects. 

Moreover, isomorphism regards structure, rather than individual objects: if two 

structures are isomorphic, than there is a one-to-one correspondence from the objects 

and relations of one to the objects and relations of the other that preserves the relations. 

For example, the natural numbers can be mapped into the even natural numbers by the 

one-to-one correspondence, assigning to each n of the set of natural numbers, the 

number 2n of the set of even natural numbers. Since the binary operation ‘+’ is defined 

on the natural numbers and is preserved by the mapping, the sets of natural numbers and 

even natural numbers are isomorphic under the binary operation ‘+’. 

The structuralists’ adhesion to Working Realism has notably consequences on how 

mathematical objects are conceived according to Shapiro’s ante rem Structuralism.  

As I already disclosed, mathematical objects are places in structure. They do not have 

properties beyond the ones assigned them by the brute fact that they occupy a particular 

position into a structure. In this sense, the context must be determined by the structure. 

Indeed, only once the context is fixed, identity between numbers can be determinate, 
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while identity between numbers and other sort of objects, including positions in other 

structures or way of representing numbers, is not determinate.  

Two different places in different structures can correspond up to the existence of an 

isomorphism between the two structures. The essence of any single number resides in 

its relations with the other numbers that belong to the same structure it belongs to. This 

means that it is senseless to ask what the number 5 is, without contextualizing it into a 

structure. 

Shapiro also indicates two views in which it is possible to identify places in structures 

with objects, basing his argument on two ways places can belong to structures. 

According to the view Shapiro called ‘places-are-offices’, a background ontology 

supplies objects that fill the places of the structures. The places of the very structure 

under discussion can be the objects of the background ontology.  

According to the view called ‘places-are-objects’ there are singular terms that occur in 

statements about the respective structure, independently of any exemplification. 

Singular terms have to be taken at face value: they refer directly to places, taken as 

objects. For example, in a finite structure instantiated by concrete objects, places of a 

structure can be taken as objects considering the portion of space and time they name as 

an objects of the web of space and time. It is also possible, and actually very common in 

mathematics, that places in a structure are occupied by other structures. 

Further clarifications of what an objects actually is for Structuralism can come from an 

example: {{{∅}}} and {∅, {∅}, {∅, {∅}}} can occupy the place of the number 3 in 

the natural number structure, but neither are the number three. Indeed, the number three 

is an empty place in the natural number structure, isolated by the relations that the 
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natural numbers’ structure assigns to the number three. 

Therefore, it is simply senseless in Structuralism to talk of an object on its own, without 

the contextualization given by its structure. It may seem easyier to explain first what is a 

structure and secondly what is an object. Shapiro (1997) delivers an intuitive account of 

what a structure is, then defines objects as places in the structure and only lastly 

clarifies the notion of structure. I decided to respect his order.   

But before introducing structures, it is useful to analyze two examples that help 

elucidating what objects are in Structuralism.  

Imagine that a nice old woman drives an even older car. After thousands of kilometers, 

the engine breaks up and she has to reline it with new pieces. Then, the window breaks 

up and she has to buy a new one. To make a long story short, in a couple of months she 

had to replace every single piece of the car with a new one. But, still, it is a car and it 

works, no matter if she had to change the pieces. The only thing that is important is that 

all the objects that constitute a car are at their places. She can change the objects, not the 

places. The fulfillment of the relations that hold between the objects that compose the 

car allows the respect of the working principles and guarantees the conformity of the 

car. Briefly, it makes a car what it is. One may ask if the new car is or not the same old 

car. I believe that, although the question can be of interest for general ontology, from a 

structuralist point of view the only important thing is that the car(s) instantiate(s) the 

same structure. 

Now imagine a football team. It is composed by eleven people: a doorkeeper, some 

players on the front line whose task is to score goals, some playmakers, some 

midfielders and some defenders. Is it relevant who is the doorkeeper or the midfielders? 
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Yes, if you want to win the Champions League. But it is not relevant if you are just 

aiming at forming a football team, that is a system of roles that follows certain rules. 

Offices are relevant and people endorsing the offices can change without changing the 

system. 

A structure is composed by places that share relations and that are not existing if the 

structure doesn’t exist. That is why Shapiro takes the notion of structure as primitive, at 

least at the beginning: a structure is the abstract form of a system. More openly, a 

structure is the net composed by the interrelationships among places, once any features 

of them that do not affect how they relate to each other in the system has been ruled out. 

Several definitions of structure are available, also in the non-mathematical fields. Thus 

Structuralism’s first effort is to offer a criterion that discriminates mathematical 

structures from other structures. According to Shapiro, mathematical structures posses a 

few of properties that makes them mathematical:  

1. Mathematical structures are known deductively, leaving aside whatever 

system a structure could be the structure of;  

2. Mathematical structures have only formal or structural relations and 

properties; 

3. Mathematical structures are freestanding, that is they are independent on 

the existence of objects that exemplify them.  

Moreover, according to Shapiro (1997, page 100) there is no difference between 

simulating and exemplifying a mathematical structure. Unfortunately, as far as I see, 

Shapiro hasn’t yet provided a clear (at least to me) explanation of what he means by 

‘simulating a structure’. I believe he means something like ‘creating a structure without 
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referring to any particular object or office, just listing down the axioms’. Therefore, this 

could mean that there is no difference between implicitly defining some objects and 

referring to objects already defined trough a model of a system of axioms. 

The ‘freestandingness’ of mathematical structures is one of the most crucial aspect of 

Shapiro’s Structuralism. For, if it is not relevant for his theory if a structure is 

exemplified or not, both as a system and in the physical world, then structures exist 

independently on the existence of some objects that exemplify them. It is 

freestandingness the point-break in which Shapiro’s Structuralism acquires the ante rem 

trait that qualifies it as Platonism. 

Structuralism, at this point, has to face another question: since the same structure can be 

exemplified by more than one system, a structure is one-over-many, like universals. 

And, as happens with all the partisans of universals, also the partisans of Structuralism 

have to challenge the problem of explaining the relations between universals and 

particulars, in terms of structures and systems that exemplify the structures. Shapiro 

(1997) held that there are two main positions, one due to Plato, the other due to 

Aristotle. According to the former, universals are a priori and independent on any 

instantiations. The latter predicates the opposite: the existence of universals is 

ontologically dependent on the existence of instantiations of them. As a result, Plato’s 

universals are ante rem, while Aristotle’s are in re. Easy to guess, Shapiro supports 

Plato’s view: structures are independent and their existence is apart from the existence 

of objects that instantiate them. 
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Some attempts were done also in the direction of obtaining in re structures. It is the case 

of Eliminative Structuralism. The strategy adopted is to consider statements about a 

kind of mathematical objects as general statements about structures of a certain type and 

to look for a way of eliminating reference to mathematical objects like numbers. This is 

the kind of Structuralism Hellman called ‘Structuralism without structures’. Such a 

name is due to the understanding of statements on structures as convenient shorthand to 

speak about systems without committing neither with objects, nor with structures. 

Eliminative Structuralism can be formulated also in a modal way: mathematics is taken 

to be about all possible systems of a certain type. In such a formulation, if mathematical 

objects exist, their existence is metaphysically necessary. Existence and possible 

existence of the items in the background ontology are equivalent, but this means that 

mathematical existence is rendered in terms of logical possibility, and logical possibility 

is usually given in terms of existence in the set theoretic hierarchy, that is Mathematics. 

Defining Mathematics in terms of Set Theory is broadly considered circular.  

Ante rem Structuralism has to do with much of the troubles entailed by Platonism, but 

can provide mathematics with a reliable subject, that exist independently of its 

instantiation, and with a reliable theory of meaning, as mathematical statements are 

taken to be literally true. 

Before introducing the axioms of Structuralism, let me briefly summarize what I said 

till here: Structuralism is the philosophy of mathematics according to which there exist 

systems that exemplify structures. Places in the structure are mistakenly believed to be 

objects from Object Platonism. But places can be also offices and in any case, they 

don’t have an inner, independent nature. A structure is therefore any collection of 
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places, functions and relations on those places. Two systems have the same structure if 

they share an isomorphism that preserves the structure . In conclusion, mathematics is 39

the science of freestanding structures. 

3.4 Axioms

Shapiro (1997) can, after the previous elucidations, provide the axioms for his theory of 

structures, at page 91. The first axiom is: 

Infinity: there is at least one structure that has an infinite number of places; 

This axiom guarantees that in Shapiro’s ontology there are structures, places, functions 

and relations, a structure having places and a finite number of functions and relations on 

those places. 

The axioms for substructures (page 94 Shapiro 1997) are: 

Subtraction: if S is a structure and R a relation on S, then there is a structure 

S’ isomorphic to the system that consists of the places, functions and 

relations of S except R. If S is a structure and f is a function on S, then there 

is a structure S’’ isomorphic to the system consisting of the places, functions 

and relations of S except f; 

Subclass: if S is a structure and c is a subclass of the places of S, then there 

is a structure isomorphic to the system that consist of c but with no relations 

 Here Shapiro’s Structuralism is particularly controversial, because it allows to derive 39

some counterintuitive conclusions. For example, let consider the case of Frege’s Arithmetic 
(henceforth FA), and Peano’s Axioms at second-order (henceforth PA2). This two have no 
isomorphic models, since PA2 is categorical, while FA isn’t. According to Shapiro, they 
don’t exemplify the same structure (natural numbers), a fortiori because FA’s non 
categoricity means that it cannot exemplify a structure.
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and functions; 

Addition: if S is a structure and R is any relation on the places of S, then 

there is a structure S’ isomorphic to the system that consists of the places, 

functions and relations of S together with R. If S is a structure and f is any 

function from the places of S to the places of S, then there is a structure S’’ 

isomorphic to the system that consists of the places, functions and relations 

of S together with f; 

These axioms assure that it is possible to eliminate or modify places, relations and 

functions and add relations and functions.  

Shapiro’s next move is to guarantee the existence of large structures. This is the role of 

the following axiom: 

Powerstructure: let S be a structure and s the collection of its places. Then 

there is a structure T and a binary relation R such that for each subset S’ ⊆ 

S, there is a place x of T such that ∀z(z ∈ S’≡ Rxz);  

This axiom means that each subset of the places of S is related to a place of T, and so 

there are at least as many places in T as there are subset of the places of S. Thus, the 

collection of places of T is at least as large as the powerset of the places of S.  

To ensure even larger structures, Shapiro formulates the Replacement Axiom, asserting 

that it exists a structure as large as the result of replacing each place x of S  with the 

collection of places of a structure Sx: 

Replacement: let S be a structure and f a function such that, for each place x 

of S, fx is a place of a structure, which we may call Sx. Then there is a 
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structure T that is at least the size of the union of the places in the structures 

Sx. That is, there is a function g such that for every place z in each Sx, there 

is a place y in T such that gy=z; 

To ensure that any coherent theory characterizes a structure, Shapiro has first to face the 

problem of defining what ‘coherent’ means in his theory. He adds the following axiom: 

Coherence: if φ is a coherent formula in a second-order language, then there 

is a structure that satisfies φ; 

But he had also to specify that, since he is using second-order logic, because of the 

failure of the completeness theorem, there are not satisfiable  consistent second-order 40

theories.  But coherence is very different from consistency, first of all because 41

consistency can only be expressed in modal terms or by considering derivations as 

abstract objects, and then denying the existence of some of them. And also because 

there is no guarantee for completeness at second-order. Nevertheless, Coherence is 

enough for ensuring categoricity. 

To avoid this puzzle, Shapiro proposes to add the Reflection axiom, that guarantees that, 

if φ is any first or second-order sentence in the language of structure theory, then:  

Reflection: if φ, then there is a structure S that satisfies the other axioms of 

structures theory and φ. 

A theory is satisfiable if there is a model for it.40

 For example, the conjunction P of the axioms of Peano arithmetic together with the 41

statement that P is not consistent.
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This axiom entails that, if φ  is the conjunction of the other axioms of structure-theory, 

there exists a structure the size of the second inaccessible cardinal  and it goes on from 42

there. 

Shapiro’s axioms can support Structuralism’s conception of mathematics and can offer a 

domain big enough. He succeeds in delimiting is ontological engagement only to 

structures, thanks to the Infinity Axiom. This axiom guarantees a minimal background 

ontology, which can be offered from set theory as well as from category theory, as 

Shapiro (1997) suggests at page 96. Moreover, again at page 96, he claims that:  

[W]e need not assume any more about the background ontology of 

mathematics than is required by Structuralism itself.  

Such a reductionist attitude simplifies the ontology, but requires an effort to specify how 

mathematics is built from structures. This is the role of the axioms, to allow and rule 

operations on structures.  

Shapiro’s ante rem Structuralism is thus a powerful form of Platonism: by asserting the 

existence of structures even beyond the existence of any exemplifications of them, it 

provides a genuine domain for mathematics. Structures are abstract objects that exist 

‘freestandingly’ and independently from the human possibility to have any access to 

them. The idea of structures as composed by places can make structures look as 

composed objects. Composed objects cannot serve as the fundamental of reality; at least 

their components could. But structures aren’t really conceived as composed. Indeed, a 

 There is no Russell’s paradox because, as a system is a collection of places in structure, 42

some systems are too big to exemplify structures. 
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structure is a net of relations that constitute a single object, each of its parts being 

essential for the identity and existence of the structure. 

The axioms of structure theory, together with Peano’s axioms for arithmetic, are shown 

by Shapiro to be coherent: according to him, the subject matter of arithmetic is a single 

abstract structure, common to any infinite collection of objects that has a successor 

relation with a unique initial object and satisfies the second-order induction principle. 

As a consequence, the essence of a natural number is just in its relations with the other 

natural numbers. 

3.5 Epistemology

Most platonists, including Stewart Shapiro, agree that mathematical objects are abstract 

objects. Abstract objects, contrary to concrete objects, are not located in space and time 

and can’t be part of a causal chain. As I explained in chapter 1, these features have the 

important role of guaranteeing objectivity and independence to mathematics. 

Unfortunately, they are also the cause of several worrying quandaries in epistemology, 

first of all the problem of access. Indeed, it seems hard to account for the possibility of 

attaining knowledge of a-spatial, a-temporal, a-causal objects, belonging to a realm 

which is independent on anyone’s thought and practice. 

The challenge for Structuralism is then to develop an account able to explain and justify 

the phenomenon of mathematical knowledge. Shapiro proposes to endorse the casual 

theory of knowledge, even if alternatives are available, as I already pointed out in 

section 1.4. 
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According to the causal theory of knowledge, any faculty the knower can invoke in 

pursuit of knowledge must involve only natural processes subject to ordinary scientific 

scrutiny. This means that the knower needs some kind of relation with his/her objects of 

knowledge. This demanded relation is pretty difficult to realize with abstract objects. 

Briefly, a path to knowledge of abstracts objects is needed, but it seems hard to obtain 

because of their very nature . 43

Several scholars tried to face this issue, formulating a wide range of possible ways to 

access to knowledge of abstract objects. Shapiro (1997) reported just a few of them: 

Kurt Gödel’s  special faculty named ‘mathematical intuition’, analogous to sense 44

perception, delivers a way to grasp mathematical objects; Penelope Maddy’s  theory on 45

the existence of some concrete and perceivable mathematical objects that, denying the 

general abstractness of mathematical objects, transforms a part of mathematical 

knowledge in knowledge of concrete objects, in order to avoid the difficulty related to 

the way abstract objects are thought to be. Shapiro presents also Hilary Putnam’s  and 46

Michael Resnik’s  perspective on mathematical objects as theoretical entities, 47

postulated, but not perceived, and therefore known by postulation. 

  For a less sketchy exposure of epistemological issues in Platonism, see Chapter 1.43

 GÖDEL, KURT, (1964) What is Cantor’s Continuum Problem? 1964, reprinted in 44

Benacerraf and Putnam (1983).       

 MADDY, PENELOPE, (1990) Realism in Mathematics Oxford University Press, Oxford.45

 PUTNAM, HILARY, (1971) Philosophy of Logic, Harper Torchbooks, New York.46

 RESNIK, MICHAEL, (1990) Beliefs about Mathematical Objects in Physicalism in 47

Mathematics, Kluwer Academic Publisher, Dordrecht.
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The differences between these solutions to the problem of access to knowledge of 

abstract objects delivered by the above scholars and Stewart Shapiro’s proposal are 

essential.  

The abstract objects with which Shapiro is ontologically committed with are 

mathematical structures. According to Structuralism, mathematical structures exist even 

if there is no exemplification of them. But some structures are in fact exemplified and 

so they seem to possess concreteness, that can easily be driven to avoid the problem of 

access to knowledge. But this is misleading. First because, for the rest of the structures, 

the ones that are not concretely instantiated, the problem remains. Accordingly, in an 

exemplified structure, mathematical objects as places in structures would exist and be 

concrete, while in the non-exemplified structures the places would be abstract objects. 

And secondly, the concrete exemplification of a structure is not to be considered as a 

concrete structure: a structure is abstract by definition, because is a form, the form of a 

system. The objects that constitute the system exemplified by the structure may (or may 

not) be concrete: a structure can be exemplified and its places can be represented by 

concrete objects, but this won’t ever make the structure concrete. 

As long as epistemology, and ontology, are normative and have to combine with 

mathematics as practiced, Shapiro states fiercely (1997, page 112):  

I take the existence of mathematical knowledge to be something close to a 

philosophical datum, just about incorrigible. If an epistemology entails that 

mathematical knowledge is impossible, I would be inclined to reject the 

epistemology. Of course, the confidence in mathematical knowledge does 
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not guarantee that a successful epistemology will be consistent with 

Structuralism, or with the particular epistemic tactics invoked below.  

The tactics Shapiro is referring to in the above quote are three paths to attaining 

knowledge of structures he proposed. But first he provides an account of the existence 

of structures, based on the ability to coherently discuss a structure. This ability will then 

be proposed as evidence for structure’s existence.  

In the following, I will analyze these three paths to knowledge of structures, as 

expounded in Shapiro (1997). 

The first tactic is pattern recognition. Shapiro defines it as a process in which, due to 

something like ordinary sensory perception, humans possess the faculty of recognising 

patterns and learn information about them. According to Shapiro, pattern recognition 

leads to the understanding that some patterns are freestanding and ante rem.  

For example, Shapiro considers small cardinal numbers and shows the pattern that 

belongs to them: for each natural number n there is a structure that is exemplified by all 

systems consisting of n objects. If the 3 pattern is the structure common to all 

collections of three objects: the corner of all triangles, or the three pyramids in Gyza’s 

Necropolis. 

Since everything can be counted, systems of all sorts exemplify the cardinal patterns, 

thank to the freestanding nature, the topic neutrality and the universal applicability of 

small cardinal numbers structures.  

Pattern recognition is the procedure that allow to disclose the structure behind a system 

by apprehending the system. This activity requires, first, to apprehend a system that 

exemplifies a structure, and second, to comprehend that the system exemplifies the 
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structures. But these steps don’t seem to be implied by pattern recognition alone. 

Rather, in order to obtain knowledge of the structures behind the number systems, the 

subject must encounter and analyze collections of objects. Shapiro points out that, even 

if pattern recognition by itself does not deliver anything resembling a priori knowledge, 

it is arguable that we can obtain a priori knowledge of finite structures: at page 116 

Shapiro (1997) claims  

[J]ust as we can know a priori that all green objects are colored, we can 

know a priori that any system exemplifying the 4 pattern is larger than any 

system exemplifying the 3 pattern. Still, I will look elsewhere for the 

sources of the idea that mathematical knowledge is a priori. 

Unluckily, the kind of knowledge he refers to in the previous quote is too weak for his 

purpose, that is why he searches elsewhere the reasons for the aprioricity of 

mathematics. 

Thus, Shapiro proposes to provide humans with a faculty that resembles pattern 

recognition but goes beyond simple abstraction. For example, the finite cardinal 

structures exhibit a pattern that can be projected. Shapiro ascribes to humans the faculty 

of displaying finite structures’ patterns. By several exposures to these finite patterns, the 

subject grasps the possibility of projection, understands that he or she has seen just a 

few of the instances of this pattern and realizes that there are much more instances than 

what it is possible to count. 

Sequences that go on indefinitely are, according to Shapiro, the path to the 

understanding of infinite structures. Shapiro considers the natural numbers structure as a 

paradigmatic pattern: for each sequence of natural numbers, there is a unique next-
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longer sequence, and so there is no longest sequence. Reasoning on ever-increasing 

sequences of strokes and formulating the notion of a sequence of strokes that does not 

end, Shapiro claims that humans have access to infinite structures.  

The second way to structures is linguistic abstraction. Shapiro (1997 page 121) relates 

to Robert Kraut’s book Indiscernibility and Ontology  and states that: 48

[W]hat is ‘discernible’ depends on the conceptual resources available. The 

result is a theory of relativity of objects, quite consonant with the present 

relativity of objects and the relativity of system and structure.  

Shapiro is convinced that Kraut’s work provides another path to knowledge of 

structures and offers some examples. Consider a mathematician who uses an 

impoverished version of English that does not discerns between equinumerous 

collections, an interpretation of Leibniz’s theory of identity of indiscernible, in which 

anything true of one collection is true of any other collection of the same cardinality. 

The collections are so the very same objects, since it is not possible to discern among 

them. What Shapiro aims to highlight here is that the relation of equinumerousity 

between collections of objects is an equivalence relation that divides the domain into 

mutually exclusive collections, or equivalence classes. Shapiro intends equivalence 

classes that exemplify a structure as abstract object, and treats its places as objects 

dependent on the structure.  

Then Shapiro proposes to formulate a sublanguage for which the equivalence is 

congruence, and suggests that, in the sublanguage, this equivalence relation is treated as 

the identity relation. At first blush, a structure characterized by such a sublanguage is 

 KRAUT, ROBERT, (1980) Indiscernability and Ontology, Synthese 44: 113-135.48
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not freestanding: only objects in the original ontology can be counted and only 

properties of those objects have numbers. But once a structure is so characterized, it is 

freestanding, as it exists independently of the existence of any objects beyond those of 

the original ontology that exemplify the structures. 

Shapiro’s linguistic abstraction is explicitly similar to abstraction in Frege’s and the 

Neologicists’ works. Indeed, Logicists and Neologicists predicate that it is possible to 

introduce abstract objects by abstraction over an equivalence relation on a base class of 

entities. This conception is the one from which Frege derives his principles of 

abstraction, from the one for directions to Hume’s Principle. More importantly, 

Shapiro’s projection is comparative and aims at finding out the properties that are 

possessed by both the systems, while Frege’s is based on the classification of objects in 

concepts through the idea of equinumerousity. 

The third way to structures is implicit definition, defined as the simultaneous 

characterization of a number of items through their relations to each other. This is a way 

to structures that reveal a strong ante rem appeal. Since objects themselves do not 

matter, only structures do, derivation of structures from definition is independent on 

their matter, because definition indicates a general form, thus characterizes the structure.  

If the axioms are part of a successful implicit definition, then they characterize a 

structure and are true of it. Implicit definition and deduction also supports the claim of 

most platonists that mathematical knowledge is a priori. The repeated references to 

language offer an explanation of why and how a definition can deliver knowledge, also 

assuring the existence of the objects of knowledge. Since the ability to coherently 

discuss a structure is evidence for the existence of the structure, it is the language that 
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marks down and determines a structure. That is why implicit definition and 

Structuralism goes hand by hand. 

According to Shapiro, an implicit definition must encounter two requirements to fit with 

Structuralism. The first, that Shapiro calls ‘existence’, states that at least one structure 

must satisfy the axioms, in order to infer the existence of the objects isolated by an 

implicit definition from the ability to coherently discuss it. Recalling the axioms of 

theory of structure, if φ is a coherent sentence in second-order language, then there is a 

structure that satisfies φ. A structure exists if there is a coherent characterization of it: if 

it is possible to coherently define a structure, then it exists. Briefly, coherence implies 

existence. But the problem is now shifted on the definition of consistency, and Shapiro 

provides two options. The first is deductive coherence: if one cannot derive 

contradictory consequences from a set of axioms, then those axioms describe at least 

one structure. The second option is satisfiability: to say that a sentence φ is satisfiable is 

to say that there exists a model of φ, interpreting ‘exists’ as ‘is a member of the set-

theoretic hierarchy’. The problem with satisfiability is that the set-theoretic hierarchy is 

also a structure, and so it is circular: through which mean is then possible to deliberate 

on the existence and coherence of set-theoretic hierarchy? One option is to take Set 

Theory’s coherence as presupposed, but Shapiro prefers to settle thing once and for all 

and taking coherence to be primitive. The point is therefore that, in Shapiro’s 

perspective, coherence can and do serve as the criterion for structure existence. 

The second requirement, as Shapiro calls it, ‘uniqueness’, is much less problematic: 

according to it, at most one structure, up to isomorphism, is described. Since all models 

of PA2 are categorical, because sharing isomorphism among systems is sufficient for 

!125



having the same structure, a categorical theory determines a single structure if anything 

at all. That is, uniqueness is maintained up to isomorphism. As goes for Shapiro (1991), 

second-order model theory provides a picture of the semantics of mathematical 

languages that is sufficient for the purpose of Structuralism. Shapiro founds what is 

needed for fulfilling the uniqueness requirement in mathematics itself. 

The essential idea that stands at the base of the epistemology of Shapiro’s ante rem 

Structuralism is that the existence of a way to knowledge of structures is guaranteed by 

the fact that humans are indeed able to know, characterize, describe and apply 

structures, establishing if places in a structure participate or not in certain properties or 

relations. As a result, is Mathematics itself, trough its soundness, usefulness and 

applicability that guarantee the possibility to have mathematical knowledge. Philosophy  

simply can’t deny it. At least, it can find a way to justify why and explain how this 

knowledge occurs. 

3.6 Reference

In Stewart Shapiro’s Platonism, appeals to language turn up pretty often, particularly in 

regard with the epistemic techniques that provide access to structures. The reason is that 

the ability to know a structure has been identified with the ability to refer to 

relationships among its places. And to understand the language of the theory and the 

definitions provided by it requires a correct and proper use of its language. Two quotes 

from Shapiro (1997) will help to clarify the point. Shapiro states at page 137 that: 

[A] structure is not determined by the places in it, considered in isolation 

from each other, but rather by the relations among the places. In essence, 
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these relations are embodied in the language. In fact, the correct use of the 

language determines what the relations are.  

Here it could seem obscure what Shapiro refers to with the word ‘correct’, also because, 

as he specifies at the end of page 139: 

Understanding how to use ordinary language involves understanding, at 

some level, of reference.  

The problem is getting more complicated, but Shapiro hurries to specify that it is 

sufficient to have a model-theoretic definition and a correct account of reference in 

order to obtain a satisfactory account of the truth conditions of sentences in natural 

languages, and getting closer to the truth conditions of sentences in formal languages.  

Shapiro is not claiming that the language ‘creates’ the ontology. In his account, 

mathematics is objective and exist a priori and independently from our ability to 

recognize it or talk about it, but it is language that ultimately opens the access to 

knowledge of mathematical objects. 

Briefly, it is because human knowledge has a linguistic feature that mathematics is 

known through language. But this doesn’t ascribe to mathematics itself any contingent 

and not independent property, in Shapiro account.  

This consideration implement both Realism in ontology and Realism in truth-value. The 

central notion of model theoretic semantic is that of satisfaction or truth in a model. 

Shapiro defines reference in a structuralist model-theoretic semantic as a function 

between the singular terms of the language and the background ontology. Several 
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classical problems  in semantics focus on how terms refer to objects. These problems 49

get urgent in Structuralism, because, as I already made explicit in this section, knowing 

a structure is the same as being able to use its language, and understanding how to use a 

language implies to be able to guarantee reference, and meaning, to singular terms in 

the language.  

The work of Shapiro is a strong defense of mathematics as practiced, and an act of 

liberation from any external ontological, semantical, epistemological concerns. One leit 

motiv of his theory is that mathematics exists, because mathematicians use it, discover 

it, apply it to reality. A good philosophy of mathematics is then the one who takes the 

step from this very point and from it provides mathematics with philosophical 

interpretation, theoretical frameworks, theory of knowledge and, most of all, language. 

Here stands his adhesion with the principles of PL. 

Shapiro’s Structuralism is mathematical Platonism, because he asserts that mathematics 

has an objective, freestanding, immutable, abstract domain. But he is not interested in 

undertaking the enterprise of justify it in the light of platonist ontology, epistemology or 

semantic. Mathematics explains itself and gets itself a naïve ontology. Sure enough, 

Shapiro’s epistemology and ontology are platonist: objects exist, mathematical 

statements are true and significant. 

Therefore, what is relevant is that a justification of these platonist beliefs does not come 

from any philosophical argument. Shapiro provides several convincing philosophical 

justifications and arguments in favor of Structuralism. But the strongest seems to come 

 For example, inscrutability of reference, relativity of ontology, indeterminacy of 49

translation. Ontological relativity and inscrutability reference arise because there is more 
than one way to regiment the same part of a given language. Shapiro’s notion of 
isomorphism between structures could be seen as avoiding this problem.
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from an explicit appeal to authority: since mathematicians take mathematics as having a 

proper domain and mathematical statements as being truth and significant, so it is. 

3.7 Structuralism and Caesar’s Problem

The Julius Caesar’s problem was first formulated by Gottlob Frege. In paragraph 55 of 

his Grundlagen der Arithmetik , he claims: 50

[W]e can never, to take a crude example, decide by means of our definitions 

whether any concept has the number Julius Caesar belonging to it, or 

whether that conqueror of Gaul is a number or is not. 

A few paragraphs later (Grundlagen 66), while he analyses the ‘direction-of-a-line 

abstraction principle’ , Frege returns to the problem:  51

[I]t will not, for instance, decide for us whether England is the same as the 

direction  of  the  Earth's  axis...  [N]aturally  no  one  is  going  to  confuse 

England with the direction of the Earth's axis; but that is no thanks to our 

definition of direction. 

The problem resides in the difficulty that raises once Frege tried to define numbers as 

objects and to find a criterion that clarifies the kind of objects the numbers are. The 

leader of the Roman army Julius Caesar is intuitively not a number, but Frege needs a 

clear principle that discriminates between the number of columns of the Pantheon, 

which is a number, and Socrates, which is not. Frege’s solution is based on the 

 FREGE, G. (1884), Die Grundlagen der Arithmetik: eine logisch-mathematische 50

Untersuchung über den Begriff der Zahl, Breslau1974. English translation in The 
Foundations of Arithmetic, AUSTIN, J. L., Oxford: Basil Blackwell.

 The principle is: ‘the direction of line x = the direction of line y if and only if x is parallel 51

to y.’
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definitions of numbers as extensions of second-order concepts. If numbers are so 

defined, and Julius Caesar or Socrates are not the extensions of second-order concepts, 

[Julius Caesar] and [Socrates] are not numbers. 

In Shapiro’s perspective, mathematical objects are places in structure and possess 

properties ascribed by the structure. Hence, it is simply not a legitimate question in 

Structuralism to ask whether Julius Caesar is the number 2, because the first is an 

object, but not a place in a structure, while the second is an object and a place in a 

structure. Shapiro identifies here a categorical mistake, due to the misunderstanding of 

the very notion of a mathematical object. Since Julius Caesar is not a place in the 

structure of natural numbers, he isn’t the number 2 or whatever mathematical object. 

And obviously this is true holding that it is possible to ascribe numerical properties to 

objects: there can be three apples in the basket, holding that the essence of ‘3’ is not 

equal to ‘apples in the basket’. 

The difference between Frege’s and Shapiro’s approach to Julius Caesar’s problem is 

ultimately found in the way Logicism (and Structuralism) defines the notion of 

mathematical objects and identity. Shapiro’s solution of Julius Caesar’s problem is non-

conservative, because he didn’t admit the subsistence of the problem. According to 

Shapiro, identity between natural numbers is determinate, while identity between 

numbers and other sorts of objects is not.  

In Frege’s analysis of Julius Caesar’s problem there is no need for determinate answers, 

because identity is systematically ambiguous, since the notion of object varies from 

theory to theory. The definition of mathematical objects delivered by Frege extends only 

!130



to arithmetic, while Structuralist definition is broader and applies to almost the whole 

contemporary mathematics.  

In conclusion, Structuralism is able to deliver a definition of what mathematical objects 

are that excludes the rise of problems like the Julius Caesar’s: as objects in structures, 

mathematical objects are exhaustively defined once so is the structure.  

3.8 Structuralism and Formalism

Structuralism is widely considered as agreeing with a trend in philosophy of 

mathematics known as ‘formalism’ and linked with the work of David Hilbert . 52

Formalism is traditionally characterized as a form of Anti-Realism, and in particular as 

the forefather of the contemporary metaphysical views collected under the name of 

Nominalism. But Shapiro’s ante rem Structuralism is settled in the framework of 

Platonism. And is precisely for this reason that the ontological consequences that 

formalist and structuralist derive from a fundamental and common idea give place to 

this relevant disagreement.  

Nevertheless, I believe the aspects in which Structuralism and Formalism agree are way 

more than the ones in which they disagree.  

Both Formalism and Structuralism states that in mathematics the relations between the 

objects are more important than the properties possessed by the objects. And both 

Formalism and Structuralism affirm that because objects don’t really possess properties 

beyond the relational ones.  

 HILBERT, DAVID, (1923), “Die logischen Grundlagen der Mathematik”, Mathematische Annalen 52

88: 151-165.
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What is different is the way in which Formalism and Structuralism vehicle the 

reliability of mathematics: according to the latter, ante rem structures are the 

‘authorities’ that guarantee mathematical knowledge, application, meaning to 

mathematical statements. According to formalism, mathematics comes out as the result 

of a combination of formulas that is proved to be consistent, but that comes from a 

stroke of luck. 

Indeed, Formalism and ante rem Structuralism are cogently different also in ontology: 

according to Hilbert,  there aren’t  mathematical  objects,  to which refer mathematical 

statements. Singular terms are empty names useful to express and apply mechanical 

rules. According to Shapiro, structures exist and are freestanding. 

The fundamental idea behind Formalism is that mathematics predicates rules of 

transformation of certain formulas in other formulas. Although this idea is pretty much 

assonant with ante rem Structuralism, Formalism developed it in a very different 

direction. The relevance of consistency lead Hilbert and the formalists to the idea that 

mathematics is not a body of propositions about a realm of abstract objects that exist, 

but rather, is just made by rules and formal procedures. In this perspective, there is no 

ontological commitment to any objects. 

Shapiro  (2000,  pages  41-48)  proposes  to  divide  formalism  into  two  trends:  term-

formalism and game-formalism. The former assigns reference to symbols, who don’t 

represent numbers or other hypothetically existing entities in mathematics, to singular 

terms contained in mathematical propositions. 

On the latter perspective, game-formalism, mathematics is a method of transforming 

formulas made of symbols without meaning, in accordance with fixed rules. 
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In term-formalism, mathematics is about abstract objects, mathematical symbols, and 

syntactic  rules.  In  game-formalism,  mathematics  is  all  about  rules.  Mathematical 

reasoning is considered to be so close to mechanical manipulation of abstracts signs, its 

results  being  independent  on  any  references.  What  matters  is  that  rules  have  been 

respected.

Hilbert,  in his Grundlagen der Geometrie (1903), claims that geometry is not about 

objects in possess of certain properties, which satisfy certain axioms. Rather, it is about 

a structure which places can be occupied only by objects that respect the conditions 

imposed  by  the  structure.  Hilbert  is  convinced  that  singular  terms  in  mathematical 

statements need no reference, because it is not relevant what the objects are, once they 

satisfy the axioms. 

In conclusion, I argue that formalism has lot in common with Structuralism in particular 

because of the general concept they share about mathematics. Indeed, mathematics is 

seen  by  both  as  a  whole  of  rules,  which  is  independent  on  the  objects  that  could 

eventually exemplify or happen to respect the rules.  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«I see metaphysics as an a priori science that is prior to mathematics: whereas 
mathematical theories are about particular abstract objects (e.g., the natural 

numbers, the ZF sets, etc.) and particular relations and operations 
 (e.g., successor, membership, group addition, etc.),  

metaphysics is about abstract objects in general and relations in general.  
So metaphysics should be free of mathematical primitives, though primitive 

mathematical terms and predicates might be imported into metaphysics when 
those primitives are accompanied by principles that identify the denotations of the 
terms and predicates as entities already found in the background metaphysics […]  

The metaphysical and epistemological problems about mathematics cannot be 
solved by an appeal to set theory or model theory, for that is just more 

mathematics and therefore part of the data to be explained.  
Such problems must be solved by an appeal to a more general  

theory of abstract objects and relations […] 
 The metaphysics and epistemology of mathematics should be consistent with 

whatever conclusion mathematicians (including set theorists, category theorists, 
etc.) draw with respect to the existence of such a theory. Some philosophers might 

wonder how this is possible, but the theory described below shows that it is.» 

ZALTA, EDWARD, (2007) Reflections on Mathematics, page 3 
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Chapter 4: Objects Theory 

4.1 Naïve Objects Theory

Edward Zalta first presented Objects Theory in his book Abstract Objects: an 

Introduction to Axiomatic Metaphysics . After that, it has been the subject of several 53

other books and papers  published in the last thirty years. Zalta formulated Objects 54

Theory with the aim of delivering a rigorous solution to an ancient problem. The ancient 

problem regards what are objects in general and if there exist abstract objects, properties 

and relations; the rigorous solution is achieved through the construction of a system of 

axioms. In other words, Zalta’s theory aims at the development of an axiomatic 

metaphysics capable of justifying and explaining reference to several kinds of objects, 

including abstract objects and, among these, mathematical theories.  

Zalta himself retraces the origin of the trend of thought he followed in order to theorize 

its axiomatic metaphysics in the very beginning of his book. Explicit mention is made 

along the entire book both to Plato’s Forms, Leibniz’s Monads, Meinong’s theory and 

Possible Worlds theory.  

Zalta based his account on the distinction between a priori datas, which are 

metaphysical hypothesis intuitively believed to be true, and a posteriori datas, 

consisting in sentences concerning fictional characters and triads of sentences assigning 

identity to concepts. A priori datas regards abstract objects, while a posteriori datas are 

 ZALTA, EDWARD, (1983), Abstract Objects: an Introduction to Axiomatic Metaphysics, 53

D. Reidel, Dordrecht;

See ZALTA, EDWARD (1999), “Natural Numbers and Natural Cardinals as Abstract 54

Objects: A Partial Reconstruction of Frege’s Grundgesetze in Objects Theory”, Journal of 
Philosophical Logic, 28, 619–60, and also ZALTA, EDWARD (2000), “Neo-logicism? An 
Ontological Reduction of Mathematics to Metaphysics”, Erkenntnis, 53, 219–65.
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about concrete objects.  

The development of a formal language allows Zalta to consider the references of terms 

denoting objects as abstract objects, and the references of terms denoting properties as 

properties, mainly in the line of Frege’s theory of reference.  

The starting point of Objects Theory is what Zalta called ‘Naïve Objects 

Theory’ (henceforth NOT), a name borrowed from the debated work by Meinong  and 55

Mally  on ontology.  56

NOT is based on the following comprehension principle:  

NOT Comprehension Principle: for every describable set of properties, there 

is an object which exemplifies just the members of the set.  

The very possibility of describing a set of properties implies the existence of an object 

that satisfies the conditions described. It also discriminates, among all the properties, the 

ones that belong to the set and the ones that don’t. NOT is presented in the following 

second-order predicate calculus. 

Three metaphysical primitive notions are endorsed: objects: x, y, z  

n-place relation: Fn, Gn, Hn 

x1... xn exemplify Fn: Fnx1... xn. 

Properties are defined as 1-place relations. The atomic statements of the formal 

language are provided by exemplification ‘Fnx1... xn’.  

 MEINONG, ALEXIUS, (1904) 'Uber Gegenstandtheorie', translated by Lev, Terrell and 55

Chisholm, Realism and the Background of Phenomenology, Glencoe: The Free Press, 
(1960), pp. 76-117.

 MALLY, ERNST, (1912), Gegenstandstheoretische Grundlagen der Logik und Logistik, 56

Leipzig: Barth.
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The language uses three primitive logical constants:  

it is not the case that φ: ∼ φ 

if φ then ψ: φ → ψ  

every x (every Fn) is such that φ: (∀x)φ, (∀Fn)φ. 

(∀x)φ and (∀Fn)φ are frequently abbreviated respectively as (x)φ and (Fn)φ. 

NOT can also be used without any reference to the notion of sets or membership, as 

Zalta highlights in the following example from pages 7 and 8 of Abstract Objects: an 

Introduction to Axiomatic Metaphysics: 

Consider the following open formula ‘Socrates exemplifies F1’. If we let ‘s’ 

denote Socrates, then we can represent this condition on properties in our 

language as ‘F1s’. Now we can form the following description of a set: the 

set of all properties F1 such that Socrates exemplifies F1, i.e., { F1 ∣ F1s}. 

This describes the set of properties that satisfy (in Tarski's sense) the open 

condition ‘F1s’. The set contains properties like being a philosopher, being 

Greek, being snub-nosed, etc.  Here's  another example,  where ‘p’ denotes 

Plato.  Take  the  open  condition  ‘both  Socrates  exemplifies  F1  and  Plato 

exemplifies  F1  (‘F1s  &  F1p’)  and  form  the  set  abstract:  the  set  of  all 

properties F1 such that both Socrates exemplifies F1 and Plato exemplifies 

F1, i.e., { F1 ∣ F1s & F1p}. The set described here contains such properties 

as being a philosopher and being Greek as well, but it would not contain the 

property of being snub-nosed, since Plato did not exemplify that property.

Since it is possible to describe a set of properties from every expressible conditions on 

properties,  thanks  to  NOT,  for  each  such  set  of  properties  there  is  an  object 

!137



exemplifying all and only the properties in the set. An axiom schema can capture this:

(NOT’): (∃x)(F1)(F1x ≡ φ), where φ has no free x’s

The  following  instances  of  the  axiom  schema  NOT’ guarantee  that  some  objects 

correspond to the sets of properties as in the example above from Zalta (1983):

a) (∃x)(F1)(F1x ≡ F1s)

(b) (∃x)(F1)(F1x ≡ F1s & F1p)

Leibniz’s Law of identity of indiscernible completes the theory:

(LL) x = y ≡ (F1)(F1x ≡ F1y)

It states the notorious thesis according to which two objects determined by exactly the 

same properties are the same object: every particular set of properties would determine 

one and unique object. 

Unfortunately, NOT presents several serious problems, in particular regarding n-place 

relations. The most compelling is its inconsistency with the abstraction schema: 

(∃Fn)(x) ... (x)(Fnx … x ≡ φ), where φ has no free Fn's

Two typical instances of this schema are:

1. (∃F)(x)(Fx ≡ ~ Gx)  

2. (∃F)(x)(Fx ≡ Gx & Hx).

1. states that any given property G will have a negation, while 2. that any two given 

properties G and H will have a conjunction. Zalta then analyses the following instance 

of the abstraction schema:

(∃F)(x)(Fx ≡ Rx & ~ Rx).

This axiom individuates the property objects exemplify if and only if they exemplify 

redness and don’t exemplify redness. It is then possible to form a set which members 
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are  the  two  properties  R  and  ~R.  So there is an object which exemplifies just the 

members of the set described by the two properties R and ~R. The property K is called 

the description of this set, that is, the property of describing the set described by the two 

properties R  and  ~R.  The  assumption  that  something  exemplifies  such  an  arbitrary 

property K produces an immediate contradiction. But (NOT') ensures just that:

(∃x)(F)(Fx ≡ F = K).

Nevertheless, NOT is intuitive and seems very promising. That is why Zalta starts from 

it, explicitly aiming at challenging with the many problems NOT encompasses and 

building up from its ruins a new theory of objects. 

Following a suggestion from Ernst Mally , Zalta introduces two different relations 57

between objects and properties. In Mally’s terms, properties determine objects, while 

objects satisfy properties. But, properties can determine an object without necessarily 

being satisfied by it. The point is that the properties that determine an object, determine 

its identity. On the other side, an object satisfies certain properties independently and 

subsequently from its identity condition. This is the case of inconsistent sets of 

properties, such has the well-known russellian example of the square circle: 

(∃x)(F1)(F1x ≡ F1= R1 ∨ F1 = S1)

Such an object would be determined by the property of roundness or squareness, or  of 

roundness and squareness, but will fail to satisfy both of them at the same time: it could 

satisfy roundness and not squareness, or squareness and not roundness, but will fail to 

satisfy both of them, while still being determined by both.  

 MALLY, ERNST, (1912), Gegenstandstheoretische Grundlagen der Logik und Logistik, 57

Leipzig: Barth.
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Zalta gives up Mally’s terminology, using instead of ‘determine’ and ‘satisfy’, ‘encode’ 

and ‘exemplify’ respectively. Therefore, in Zalta’s terms, an object exemplifies a 

property if it satisfies the property; and encodes a property if it is determined by that 

property. This distinction is explicitly represented in the language of the theory by a 

distinction Zalta settles in atomic formulas of the language. An improvement of NOT 

comes together with the distinction between encoding and exemplifying. Therefore, the 

primitive notions are:

Metaphysical:

object: x, y, z, ...

n-place relation: Fn, Gn, Hn, .. .

x1... xn exemplify Fn: Fnx1...xn

x encodes F1: xF1.

Logical:

it is not the case that φ: ~ φ 

if φ then ψ: φ → ψ 

every x (every Fn) is such that φ: (∀x)φ, (∀Fn)φ. 

Theoretical Relations

existence: E!.

With these primitive notions at hand, Zalta can proceed in the formulation of Objects 

Theory. First, he defines a property as a one-place relation. For example, the property of 

being  abstract  (A!x)  is  henceforth  the  property  x  encodes  if  it  fails  to  exemplify 

existence.

(x)(∼E!x  → xA!)
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An abstract object is then the object encoded by one among any possible condition on 

properties. Two objects x and y are identicalE (x =E y) if and only if they both exemplify 

existence and are encoded by the same properties. 

More explicitly:

(I)  Conditions  of  existence  for  abstract  objects:  for  every  expressible  condition  on 

properties,  there  is  an  abstract  object  that  encodes  just  the  properties  meeting  the 

condition:

(∃x)(A!x & (F1)(xF1 ≡ φ)), where φ has no free x’s. 

(II) Identity conditions for all objects: two objects are identical if and only if they are 

identicalE or they are both abstract and encode the same properties.

x = y ≡ x =E y ∨ (A!x & A!y & F1(xF1 ≡ yF1)).

(III) Identity conditions for properties: two properties are identical if and only if the 

same objects encode them.

F1 = G1 ≡  (x)(xF1 ≡ xG1).

Following  the  example  at  page  7  and  8  of  Abstract  Objects:  an  Introduction  to 

Axiomatic Metaphysics, these three principles allow Zalta to define an abstract object, 

which encodes just the properties Socrates exemplifies:

 ((∃x)(A!x & (F)(xF ≡ Fs)))

saving the intuition that this object is not identical with the concrete objects Socrates 

who lived and died in Athens. 

The same goes for the square circle: there is an abstract object which encodes just the 
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properties of being round and being square, without paining contradiction. This objects 

is individuated by the following formula: 

((∃x)(A!x & (F)(xF ≡ F = R v F = S)))

but it doesn’t exemplify neither the property of being round nor the property of being 

square. Although the theory presupposes that this object fails to exemplify existence, 

this is compatible with the contingent fact that no existing object exemplifies all the 

properties this abstract object encodes. 

The contradiction is overtaken even for the abstraction principle for complex relations. 

The property K is  generated in the same manner as  above but  the theory will  now 

guarantee that there is an object which encodes K but fails to exemplify K:

K((∃x)(A!x & (F)(xF ≡ F = K))). 

4.2 Elementary Objects Theory

4.2.1 Object Calculus

Zalta formulates Elementary Objects Theory using standard second-order language, to 

which  he  adds  only  one  syntactic  modification  to  express  the  difference  between 

encoding and exemplifying. 

The  language  contains  two  kinds  of  primitive  terms,  one  for  objects  and  one  for 

relations.  Primitive object-terms are a,  b,  c…  for  names and x,  y,  z…  for  variables. 

Primitive relation-terms are Pn, Qn, Rn… for names and Fn, Gn, Hn… for variables. Few 

others primitive assumptions are needed. First, ‘E!’ is the name for a particular one-

place  relation,  whose  meaning  is  ‘to  concretely  exist’ or  ‘to  be  a  concrete  object’. 

Second,  =E  is  the  name for  a  particular  two-place  relation,  the  relation  of  concrete 

!142



identity. And third, a formula φ is propositional if and only if φ has neither encoding 

sub-formulas nor sub-formulas with quantifiers binding relation variables. 

Zalta uses quotation marks inside parentheses (‘...’), to define readings or abbreviations 

of formulas. That is the reason why definitions of the object language appear with the 

label ‘ Dn’. 

Examples of formulas are:

‘P3axb’ (a, x, and b exemplify relation P3); 

‘aG’ (a encodes property G); 

‘∼(∃x)(xQ & Qx)’ (there is no object both encoding and exemplifying Q); 

‘(x)(E!x →∼(∃F)xF)’  (every object  which exemplifies  existence fails  to  encode any 

properties).

Zalta also defines φ(α1...αn) to designate a formula which major may not have α1,...,αn 

occurring free. The expression φα1

τ1:::αn
τn designates the formula which results in 

substituting, for each i, 1 ≥ i ≥ n, τ1 for each free occurrence of α1 in φ. Zalta defines 

inductively propositional formulas, object-term and n-place relation-term at page 17 of 

Abstract Objects: an Introduction to Axiomatic Metaphysics as follows: 

1. All primitive object-terms are object-terms and all primitive n-place relation-terms 

are n-place relation-terms; 

2. Atomic exemplification: If ρn 
is any n-place relation-term, and o1...on are any object-

terms, ρno1...on is a (propositional) formula (read: ‘o1...on exemplify relation ρn’); 

3. Atomic encoding: If ρ1 is any one-place relation-term and o is any object-term, oρ1 is 
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a formula (read: ‘o encodes property ρ1’); 

4. Molecular: If φ and ψ are any (propositional) formulas, then (∼φ)  

and (φ→ψ) are (propositional) formulas;  

5. Quantified: If φ  is any (propositional) formula, and α  is any (object) variable, then 

(∀α)φ is a (propositional) formula;  

6. Complex n-place relation-terms: If φ is any propositional formula  

with n-free object variables v1...vn then [λv1...vnφ ] is an n-place relation-term. 

λ-expressions are used to express in the object language that a and b exemplify being 

two objects x and y such that x emplifies P and y exemplifies Q: 

[λxy Px & Qy]ab 

or that an object x encodes failing-to-exemplify-R: 

x[λy ~ Ry]  

The role of λ-expressions is fundamental in Objects Theory. Roughly, they transform 

formulas in predicates of the object language, thanks to comprehension principle and 

exemplification, and allow speaking about formulas without moving to the 

metalanguage. The role of λ-expressions will be further investigated in the following of 

this chapter.  

The first definition of Objects Theory is then:  

D1 x is abstract (A!x) = df [λy ∼E!y]x. 

To be read as ‘x  exemplify to be an object that is not concrete’. The property of being 

abstract is therefore a property only objects that don’t exemplify any property can 

encode. Abstract objects cannot exemplify properties, but they can  encode properties. 
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This is the relevant difference between abstract and concrete objects: the former only 

encode properties, while the latter only exemplify properties. A more precise and 

perspicuous definition of what is for an object to be concrete or abstract is given by the 

semantics of Objects Theory. 

Zalta delineates the semantics for Objects Theory defining an interpretation as  the  6-

tuple D, R, extR, L, extA, F meeting the following conditions:  

- D  is  the non-empty class indicating the domain of objects.  The metalinguistic 

variables that range over members of the domain is o;

- R is the non-empty class indicating the domain of relations. It is the union of a 

sequence of non-empty classes R = ∪n≥1 Rn.  The metalinguistic variables that 

range over the elements of R is r n. Moreover, R must be closed under all the 

logical function prescribed by L ;

- extR is a function called ‘the exemplification extension of r n’ that maps each r ∈  

Rn into the power set of D n;

- L   is  a  class  of  logical  functions  operating on the  members  of  Rn  and D  to 

produce the complex relations that denote the λ-expressions. There are six logical 

functions: PLUGi  (i-plug), UNIVi  (i-universalization), CONVi,j(i,j-conversion), 

REFLi,j(i,j- reflection), COND (conditionalization) and NEG (negation). These 

logical functions guarantee a rich variety of complex relations in the domain of 

relations;

- extA, is a function which imposes a structure on the domains D  and R.  Since 
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every property R1 has an encoding extension (‘extA ‘), the encoding extension of 

a property is a set of members of D, which encode the property; extA  is then a 

function that maps R1 into the power set of D;

- F is a function that maps the simple names of the language into elements of the 

appropriate domain. For each object name k, F (k)∈D. For each relation name kn, 

F (kn)∈Rn. 

Zalta can now offer a more perspicuous notion of abstract and concrete objects: being 

‘E!’ a simple property name, F (E!)∈R1 and so extR F (E!)⊆D. The resulting subset of 

D  is the set of existing objects (‘E’). The complement of E on D is then the set of 

abstract  objects  (‘A’).  So the  Objects  Theory  is  built  on  a  domain  of  objects  that 

includes existing and non-existing objects. 

Since, for any object x:

E!x ∨ ¬E!x 

objects  are  classified into two complementary classes:  concrete  existing objects  and 

abstract not-existing objects. Note that the abstract not-existing objects are still part of 

D even if they don’t exist. The reason, as you can recall from the end of the previous 

section, is that abstract objects can encode the property of existing, while they will 

never exemplify it. Only concrete objects exemplify properties, including, a fortiori, the 

property of existing. But the simple fact that abstract objects can’t exemplify any 

property, neither the property of existing, does not mean they are not part of the domain 

of Objects Theory. They have precise being condition and identity condition that allow 

to speak about and refer to abstract objects unambiguously. 
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Zalta’s next step is to introduce Objects Theory’s logic. He first presents some schemata 

for logical axioms. Such schemata are very classical in second-order language and are:  

Propositional schemata:  

1. φ → (ψ → φ); 

2. (φ → (ψ → χ)) → ((φ→ ψ) → (φ→χ)); 

3. (∼φ → ∼ψ ) → ((∼φ → ψ) → φ); 

Quantificational schemata:  

4. (α)φ → φα
τ where τ is substitutable for α; 

5. (α)(φ → ψ) → (φ → (α)ψ), with α not free in φ. 

Lambda schemata:  

λ-equivalence: where φ is any propositional formula, the following is an axiom:

(x1)…(xn)([𝜆𝜈1…𝜈nφ] x1… xn ≡ φ𝜈1

x1:::𝜈n

xn

The second λ-schema, λ-identity, requires two more definitions: 

D2 F1 = G1 =df (x)(xF1 ≡ xG1)

states that properties are identical if the same objects encode them. Zalta needs to 

generalize the definition of property identity in order to analyze the relation identity. 

When n>1: 

D3 Fn = Gn =df (x1)…(xn-1)([𝜆yFnyx1…xn-1] =  [𝜆yGnyx1…xn-1] & [𝜆yFnx1yx2…xn-1] = 

[𝜆yGnx1yx2…xn-1] & … & [𝜆yFnx1yx2…xn-1y] = [𝜆yGnx1yx2…xn-1y]). 
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The second λ-schemata is:  

λ-identity:  where  ρn  is  any  relation-term  and  v1...vn  are  any  object  variables,  the 

following n-place relation term, subject to ∃-introduction, is an axiom:

[𝜆𝜈1…𝜈n 𝜌n 𝜈1…𝜈n] = 𝜌n 

The rules of inference required are Modus Ponens (from φ  and (φ→ψ),  infer  ψ)  and 

Universal Introduction (from φ, infer (α)φ). 

From  Modus  Ponens  and  Quantificational  Schemata  4  Zalta  derives  Universal 

Elimination. He also makes use of Existential Introduction and Existential Elimination, 

in addition to rules for Introduction and Elimination for ∼, &, v, and ≡. 

Taking a closer look to λ-expressions, two  rules  of  inference  are  derived  from  λ-

equivalence: if φ is any propositional formula with object-terms o1...on and v1…vn are 

object  variables substitutable for  o1...on respectively,  then the following are rules  of 

inference: 

(1)λ-Introduction: from φ, we may infer [𝜆𝜈1…𝜈n φo1
𝜈1:::on

𝜈n ] 𝜊1…𝜊n ;

(2)λ-Elimination: from [𝜆𝜈1…𝜈n φo1
𝜈1:::on

𝜈n ] 𝜊1…𝜊n we may infer φ. 

Applying existential introduction to λ-equivalence, Zalta formulates a useful logical 

theorem on relations:  

‘RELATIONS’: where φ is a propositional formula which has no free Fn's, but has 

x1...xn free, the following comprehension schema is a theorem: 

(∃Fn)(x1)...(xn )(Fn x1 … xn ≡φ).
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Looking at the instances of this theorem, Zalta can determine what complex properties 

and  relations  there  are.  At page 32 of Abstract Objects: an Introduction to Axiomatic 

Metaphysics, he states:  

RELATIONS, D2, and jointly constitute a full-fledged theory of relations. 

We no longer need to suppose that relations are ‘creatures of darkness’. 

They have precise ‘being’ conditions and precise identity conditions.  

Two definitions, D4 and D5, are added to D1, D2 and D3: D4 is a generalization of D1, 

defining the general conditions for identity between objects: 

D4 x = y =df x =E y ∨ (A!x ∧ A!y ∧ (F)(xF ≡ yF)

D5 defines the notions of ‘blueprint’ and ‘correlate’, which meaning will be specified by 

the axioms: 

D5 x is the blueprint of y and y is the correlate of x (‘Blue(x,y)’ and ‘Cor(y,x)’) =df 

(F)(xF≡Fy). 

4.2.2 Axioms

Objects Theory has an infinite number of axioms: two axioms and two schemata. Zalta 

suggests to consider the axioms as a priori truths.  

The first axiom prescribes that two objects bear the identityE relation to one another if 

and only if they both exist and exemplify the same properties:

AXIOM 1. (‘E-IDENTITY’): x=Ey ≡E!x & E!y&(F)(Fx ≡ Fy).

E-IDENTITY completes the work of D4 as it  allows to demonstrate the rule for the 

Identity Introduction between all kinds of variables:
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‘IDENTITY INTRODUCTION’: α = α, where α is any variable.

The second axiom guarantees that no existing objects encode properties:

AXIOM 2. (‘NO-CODER’): E!x → ~ (∃F)xF.

The third axiom, together with the rule of Elimination of Negation, demonstrates the 

rule for Identity Elimination:

AXIOM(S) 3. (‘IDENTITY’): α = α → (φ (α,α) ≡ φ (α,β)), where φ(α,β) is the result 

of replacing some, but not necessarily all, free occurrences of α  by β  in φ(α,α), 

provided β is substitutable for α in the occurrences of α it replaces. 

The fourth axiom is the most important for Objects Theory, since it guarantees that, for 

every expressible set of properties, there is an abstract object which encodes just the 

members of the set :58

AXIOM(S) 4. (‘A-OBJECTS’): for any formula φ where x is not free, the following is 

an axiom:

(∃x)(A!x & (F)(xF ≡ φ)).

Zalta  offers  an example of  the  functioning of  AXIOM(S) 4 at  page 34 of  Abstract 

Objects: an Introduction to Axiomatic Metaphysics:

If we let ‘F = R v F = S’ be our formula ⎞, and suppose that ‘R’ denotes 

roundness and ‘S’ denotes squareness, then our axiom guarantees that there 

is a ‘round square’ as follows:

(∃x)(A!x & (F)(xF ≡F=R ∨ F=S)).

 As Zalta explicitly emphasizes several times in Abstract Objects: an Introduction to 58

Axiomatic Metaphysics, the theory in general, and the schema in particular, do not need any 
commitment to sets. The appeals to sets are motivated by reasons of ease of formulation 
and in the metalanguage. In the object language, read AXIOM 4 with no appeal to set as: 
for every condition on properties, there is an abstract object which encodes just the 
properties which meet the conditions stated by the axiom.
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Suppose ao is such an object. It is easy to see that ao must be unique. For 

suppose  some  other  distinct  abstract  object,  say  a1,  encoded  exactly 

roundness and squareness. By D4, it would follow that either a1 encoded a 

property ao did not, or viceversa, contrary to hypothesis. 

A-OBJECTS leads to interesting consequences. Using the standard abbreviation ‘(∃x)ψ’ 

for (∃x)(ψ & (y)(ψy → y = x)) and given D4, Zalta can prove from A-OBJECTS the 

following theorem:  

UNIQUENESS: For any formula φ where x is not free, the following is a theorem: 

(∃!x)(A!x & (F)(xF ≡ φ)). 

Given any object a, A-OBJECTS yields to an object which encodes all the properties a 

fails to exemplify.  Given any two objects a and b,  A-OBJECTS yields to an object 

which  encodes  just  the  properties  a  and  b  have  in  common  and  the  properties 

exemplified by either a or b. It also yields to the relational properties that hold between 

a and b with the instance: 

(∃x)(A!x & (F)(xF ≡ (∃G)((Gab & F= [λxGxb]) ∨ (Gba & F = [λxGbx])))).  

Objects Theory can so provide a unique way to plug to abstract objects.  

From φ = [F ≠ F], we point at the object that fails to encode any properties, that is the 

empty object. From φ =[F = F] to the universal object, which encodes every property. 

To see  how,  Zalta  appeals  to  the  notion  of  blueprint  and  correlator  defined by  D5: 

suppose ‘ao’ is a name for an object o. Then A-OBJECTS guarantees the existence of an 

abstract object, which encodes exactly the properties o exemplifies: 

(∃x)(A!x & (F)(xF ≡ Fao)) 
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Zalta proposes to call  this object o's  blueprint,  and the object o the correlate of the 

blueprint.  A-OBJECTS then guarantees that  every object,  existing or abstract,  has a 

unique blueprint: 

(y)(∃!x)(A!x & (F)(xF ≡ Fy)). 

In order to make clear the expressive power of definite descriptions in Objects Theory, 

Zalta suggests to introduce the description operator ι: being φ any formula with one free 

x-variable,  (ιx)φ  (read  ‘the  object  x  such  that  φ’),  is  a  complex  object-term of  our 

language. 

Descriptions like (ιx)φ denotes therefore the unique object which satisfies φ, if there is 

one,  and  as  not  denoting  anything  if  there  is  none.  The  following  axiom  schema 

guarantees that atomic formulas or defined identity formulas ψ in which there occurs a 

description (ιx)φ are true if and only if there is a unique object satisfying φ and there is 

something which satisfies both φ and ψ:

DESCRIPTIONS: where ψ  is any atomic formula or defined object identity formula 

with one free object variable ν, the following is a proper axiom: 

𝜓𝜈𝜄(x)𝜙≡(∃!)𝜙 & (∃)(𝜙 & 𝜓𝜈)

E-IDENTITY, NO-CODER, IDENTITY and A-OBJECT complete the Elementary 

Objects Theory. Within this theory, abstract objects are given a precise kind of 

existence, that allows plugging to any of them and naming them in a unique way. The 

question is now how to establish which, among the abstract objects, are mathematical. 
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4.3 Modal Theory of Abstract Objects

4.3.1 Modal Object Calculus

Modal Object Calculus uses almost the same language of Elementary Object Calculus, 

with some extensions. First, it has the modal operator for necessity ☐  and ♢,  with ♢φ  

abbreviating  ∼☐ ∼φ.  Second,  names  and  variables  for  propositions  are  introduced, 

allowing the superscripts on the primitive relation-terms to reach zero: Po, Qo, Ro,… for 

names and Fo, Go, Ho,… for variables for propositions. 

Zalta  defines  inductively  propositional  formulas,  object-terms  and  n-place  relation-

terms  for  Modal  Object  Calculus  at  pages  59  and  60  of  Abstract  Objects:  an 

Introduction to Axiomatic Metaphysics:

1. All primitive object-terms are object-terms and all primitive n-place 

relation-terms are n-place relation-terms;  

2. If ρo is any zero-place relation-term, ρo  is a (propositional) formula; 

3. Atomic exemplification: If ρn
 
is any n-place relation-term, and oo...on are  

any object-terms, ρno1...on is a (propositional) formula;  

4. Atomic encoding: If ρ1  is any one-place relation-term and o is any object-

term, oρ1
 
is a formula;  

5. Molecular, Quantified and Modal: If φ and ψ are any (propositional)  

formulas and α is any (object) variable, then (∼φ), (φ→ψ), (∀α)φ, and  

(☐φ) are (propositional) formulas;  
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6. Objects Description: If φ is any formula with one free object-variable x,  

then ι(x)φ is an object-term;  

7. Complex n-place relation-terms: If φ  is any propositional formula and 

v1...vn  are any object variable which may or may not be free in φ,  then 

[λv1...vnφ  ] is an n-place relation-term (n  ≥  1) and φ  itself  is  zero-place 

relation-term.  

In comparison with the ones of Elementary Object Calculus, some clauses remained the 

same, while other changed in order to express the modal operators. Nevertheless,  the 

most  important  differences  are  in  the  clause  for  complex  n-place  relation-terms.  In 

Modal Object Calculus modal formulas appear after λ's if the formula is propositional, 

λ's bind variables are not free in the ensuing formula and propositional formulas can be 

treated  as  relation-terms.  But there is also one definition more, the second one, 

describing what propositional formulas are. 

Zalta delineates the semantics for Modal Objects Theory defining an interpretation as 

the 8-tuple W, w0, D, R, extw, L, extA, F meeting the following conditions:  

- W  is  the  non-empty  class  indicating  the  class  of  possible  worlds.  The 

metalinguistic variables that range over members of the domain is o;

- w0 is an element of W  representing the actual world;

- D is the non-empty class indicating the domain of objects;

- R is the non-empty class indicating the domain of relations. It is the union of a 

sequence of  non-empty classes R = ∪n≥1  Rn.  Each Rn is  the class  of  n-place 
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relations, with R 1 being the class of properties and R 0 the class of propositions. 

Moreover, R must be closed under all the logical function prescribed by L ;

- extw is a function that maps each Rn XW  into the power set of Dn, where n ≥1 

and R0 ⋅ W  into {T, F}. extw (rn) is called ‘the exemplification extension of r n at 

w’;

- L is a class of logical functions operating on the members of Rn and D to produce 

the  complex relations  that  denote  the  λ-expressions.  L  restricts  the  extw of  the 

complex relations resulting from all the logical functions at every possible world. 

- extA, is  a  function  which  maps  R1  into  the  power  set  of D.  It  is  called  the 

encoding extensionA of r1;

- F  is a function that maps the simple names of the language into elements of the 

appropriate domain. For each object name k, F (k)∈D. For each relation name kn, 

F (kn)∈Rn. 

Zalta offers now a new definition of abstract and concrete objects. In Modal Object 

Calculus, Zalta defines:

D1
 x is abstract (A!x) = df [λy☐∼Ε!y]x 

D2
 x is a possibly existing object = df ♢Ε!x  

Abstract objects in Modal Objects Theory are those objects that don’t exist and couldn’t 

have existed.  

Being extw (F (E!)) the set of existing objects at w (‘Ew’), extw0 (F (E!)) is the set of 

existing objects at the actual world. Then {o ∣(∃w)(o  ∈  extw (F  (E!)))} is the set of 

possibly  existing  objects  (PE).  The  complement  of  PE  on  D  is  finally  the  set  of 
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abstract objects (‘A’). Abstract objects are therefore the complement set of the set of 

objects that could possibly exist or have existed in some possible world. If an object 

couldn't exist or have existed in any possibile world, then it is abstract. Note that the 

sets of existing and possibly existing objects are obtained from the domain only through 

the  exemplification  expansion  extw,  leaving  obviously  apart  the  encoding  expansion 

extA. As in Elementary Objects Theory, abstract objects are those objects that encode 

but fail to exemplify.  

The most interesting part of Modal Objects Theory regards propositions, which are no 

more confined to the metalanguage, but find a place into the object language as 0-place 

properties. Propositions aren’t true or false: they are just propositions about the world, 

with no free-variable formulas to fill and check their satisfaction. By taking propositions 

as 0-place properties, Zalta can consider propositions about the world, that cannot be 

satisfied, because there is no place for something to satisfy in a propositional formula: 

propositions are rather  expressed by closed formulas.  If ‘p’ ranges over propositions, 

then an object x may encode the proposition p by encoding the propositional property 

⎡being such that p⎤. So for example, the propositional property ⎡being the actual world⎤, 

makes true all the properties encoded by the actual world.  

Modal Objects Theory is slightly different from Elementary Objects Theory also for its 

logic. The schemata for logical axioms are classical: 

Propositional schemata:  

1. φ → (ψ → φ); 

2.  (φ → (ψ → χ)) → ((φ→ ψ) → (φ→χ)); 

3.  (∼φ → ∼ψ ) → ((∼φ → ψ) → φ); 
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Quantificational schemata:  

4.1 (α)φ → φατ where τ contains no descriptions and is substitutable for α; 

4.2 (α)φ  →  (ψ  βτ  →  φ  ατ) where ψ  is any atomic formula and τ  both contains no  

descriptions and is substitutable for α, β;

That  is,  Logical  axioms 4.1  and  4.2  serve  for  non-denoting  descriptions  and  terms 

which may contain such descriptions. Note also that here ☐ is interpreted semantically 

as universal generalization over the domain of worlds. That is why commuting a box 

with a universal quantifier is just as valid as commuting two universal quantifiers.

Similarly, diamond commutes with existential quantifiers.  

5. (α)(φ → ψ) → (φ → (α)ψ), with α not free in φ. 

Modal schemata:  

6. ☐φ→φ 

7. ☐(φ→ψ) → (☐φ→☐ψ) 

8.♢φ→☐♢φ  

9. ☐(α)φ ≡ (α)☐φ  

10. (x)(F)(♢xF→☐xF)

Logical axiom 10 is typical to Modal Objects Theory, since it regards the modal logic of 

encoding. It guarantees that if an object encodes a property at some possible world, it 

will encode that property at all possible worlds.

Lambda schemata:  

λ-equivalence: where φ  is any propositional formula containing no descriptions, the 

following is an axiom: 
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(x1)…(xn-1)([𝜆𝜈1…𝜈n𝜙] x1…xn ≡ 𝜙𝜈1
x1:::𝜈n

xn

Also in Modal Objects Theory, D2  and D3  are required for the second λ-schema, 

regarding λ-identity: 

λ-identity: where ρn relation-term and v1...vn , v’1 ...v’n are distinct object variables not 

free in ρ0, 

[λv1...vn ρ
n v1...vn] = ρn & [λv1...vn ρ0] = [λv’1...v’n ρ0]. 

In this case, although the  first  conjunct  has  the  same meaning  as  in  the  Elementary 

Theory, the second conjunct has a new one. Indeed, [λx1F0] and [λx2F0] will denote 

semantically identical properties, so the encoding extensions of such properties must be 

the same. The second conjunct of λ-identity generalizes to the case where relations are 

denoted by λ-expressions with more than one vacuously bound variable. 

Description schemata: 

λ-descriptions1: where ψ is any atomic formula or conjunction of atomic formulas:

ψ𝜈
(𝜄x)𝜙→ (∃y)(φxy & ψxy). 

λ-descriptions2: where ψ atomic formula: 

ψν
(𝜄x)𝜙→ (y)(φxy → ψxy)

λ-descriptions3:where ψ is any atomic with ν1 free and χ is any formula with ν2 free, 

ψν
(𝜄x)𝜙→ ∼((∃y)(φxy & χxy)  & (∃y)(φxy & ∼ χxy)). 

Note that instances of these last three schemata regarding descriptions are not logically 
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true, because definite descriptions are defined as rigid designators. They can only be 

examples of logical truths, which are not necessary true.

The rules of inference required are, as for Elementary Objects Theory, Modus Ponens 

(from φ and (φ→ ψ), ψ) and Universal Introduction (from φ, (α)φ). The other rules are 

formulated as for Elementary Objects Theory, with some exception: for the derived 

rules of λ-introduction  and λ-elimination, definite descriptions can’t occur in φ; the 

theorem schema for relations is derivable without imposing the restriction that x1...xn be 

free in φ, but it has to be restricted to φ containing no descriptions: 

RELATIONS: where φ  is any propositional formula which has no free Fn's and no 

descriptions, the following is a logical theorem:  

(∃Fn)☐(x1)...(xn)(Fn x1...xn ≡ φ).  

This comprehension schema is particularly noteworthy because from it is derivable:  

PROPOSITIONS: where φ is any propositional formula which has no free F0's and no 

descriptions, the following is a logical theorem:  

(∃F0)☐( F0 ≡ φ). 

that allows to define the identity condition for propositions: 

D3 F0= G0 =df [λyF0] = [λyG0]  

Two propositions are therefore identical if and only if the property of being such that F0 

is encoded by all and only the objects encoded by the property of being such that G0. 
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4.3.2 Axioms

The Modal Objects Theory has an infinite number of axioms: two proper axioms 

and three schemata.  

The first axiom prescribes that two objects bear the identityE relation to one another 

if and only if they both exist and exemplify the same properties: 

AXIOM 1. (‘E-IDENTITY’): x=Ey  ≡ ♢E!x & ♢E!y&♢(F)(Fx ≡ Fy)

AXIOM 2. (‘NO-CODER’): ♢E!x → ☐~(∃F)xF 

Axioms 1 and 2 regard possible objects. Zalta suggests to consider each possible world 

as semantically equivalent to a model of Elementary Objects Theory. Hence, for every 

world there are objects, which exist in that world, and objects, which fail to exist in that 

world. But between those objects there also are the ones that necessarily exist (or the 

ones that necessarily fail to exist) and the ones that could have existed (or fail to have 

existed) in some other possible world. 

Before stating the third axiom, a definition is needed: 

D6 x = y =df x =Ey ∨ (A!x & A!y & ☐(F)(xF≡yF)) 

D6 is a general identity criterion for abstract and concrete objects, asserting that two 

objects are identical either if they are concretely identical or if they are abstract and 

necessarily encode the same properties.

AXIOM(S) 3. (‘IDENTITY’): α = β → (φ (α,α) ≡ φ (α,β)), where φ (α,β) is the result 

of replacing some, but not necessarily all, free occurrences of α  by β  in φ  (α,α), 

provided β is substitutable for α in the occurrences of α it replaces. 
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Axiom  3  has  much  more  expressive  power  in  Modal  than  in  Elementary  Objects 

Theory, since it deals with a language enriched with many new terms. Moreover, it has 

some powerful instances like the following:

F0 = G0 → (F0☐ ≡ ☐G0)

stating  that,  if  two  propositions  are  identical  at  a  world,  then  they  are  necessarily 

identical at that world.

AXIOM(S) 4. (‘A-OBJECTS’): for any formula φ where x is not free, the following is 

an axiom:

(∃x)(A!x & (F)(xF ≡ φ)).

Axiom 4 has greater significance in Modal than in Elementary Objects Theory, because 

the  modal  closures  of  Axiom 4  are  axioms  and  the  following  counts  as  an  axiom 

schema:

☐(∃x)(A!x & (F)(xF ≡ φ)), where φ has no free x's.

stating that, given a world w and a condition on properties φ, there is an abstract object 

at w which encodes just the properties satisfying φ at w. So for example, a formula like 

Fs (‘Socrates exemplifies F’) is satisfied by different properties at different worlds. This 

means that at each world there is a particular A-object which encodes just the properties 

Socrates exemplifies at that world. Otherwise, a formula like ‘(F)(RF∨SF)’ (F encodes 

roundness or encodes squareness) is satisfied by the same two properties, roundness and 

squareness, at each world, and the round square of one world will be identical with the 

round square of any other world. The conclusion is then that the set of abstract objects 

remains the same from world to world, while the set of concrete objects changes.

AXIOM(S)  5.  (‘DESCRIPTIONS’):   where ψ  is any atomic or defined object or 

!161



identity formula with one free object variable ν, the following is an axiom:  

ψ𝜈
(𝜄x)𝜙 ≡(∃!y)φx

y &(∃y)(φx
y & ψx

y
)  

E-IDENTITY, NO-CODER, IDENTITY, A-OBJECT and DESCRIPTIONS complete 

the Modal Objects Theory. Zalta himself showed how it can be applied to several 

philosophical theories, like Plato’s Forms, Leibniz’s Monads and the contemporary 

fictionalist approach to metaphysics. In the following section I will evaluate its more 

immediate applications in philosophy of mathematics and try to figure out what 

mathematical objects turn out to be (section 4.4) and how to obtain mathematical 

knowledge (section 4.5) according to Objects Theory. 

4.4 Ontology

The axiomatic metaphysics Zalta presents in Abstract Objects aims at providing an 

account of objects in general, and mathematical objects in particular. But, while 

epistemological or semantical issues are almost introduced, Zalta is mainly focused on a 

solution for classical problems regarding existence. Here is what he writes in Abstract 

Objects page 50: 

The assertion  that  some particular  thing  fails  to  exemplify  existence  (or 

being) strangely carries with it a commitment to the existence (or being) of 

the very thing which serves as the subject of the assertion. This is partly a 

result of trying to keep the theory of language as simple as possible - we try 

to account for the truth of a simple sentence by supposing that the objects 

denoted by the object-terms are in an extension of the relation denoted by 
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the relation-term. But when we have a true non-existence claim, talk about 

‘the object denoted by the object name’ seems illegitimate.

Ultimately, this means that Zalta looks for a technique to translate existence (and non-

existence) claims from the natural language to the language of Objects Theory in an 

effective and intuitive way. The two modes of predication, corresponding to two 

different ways of translating the copula ‘is’ as encoding or exemplifying, response 

precisely to such a needing. Indeed, Zalta shows in several parts of his work that, when 

translating certain statements of natural language into the language of the theory, a few 

of them containing the copula ‘is’ expresses different truth-values when translated using 

an encoding formula or an exemplification formula. 

Both  encoding  and  exemplifying  formulas  are  related  to  the  primitive  notion  of 

existence, but with different meanings. Recall that exemplifying regards objects which 

concretely  exist  and  are  bounded to  at  least  one  particular  world,  possibly  existent 

objects that happen to exist in some possible world. Encoding formulas, whereas, regard 

objects whose non-existence is not related to any possible world, but happens in every 

possible worlds. Objects that encode properties fail to exemplify existence by definition, 

but this doesn’t mean that they don’t exist at all. Actually, Zalta’s intuition is that if an 

object encodes some properties, it must participate in some kind of existence. 

Zalta takes existence as a predicate, rather than a property. The distinction ultimately 

resides in the possibility to state that a predicate P  is such that,  for any object a,  a 

encodes P but doesn’t exemplify it. 
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Zalta enriches with some details his characterization of abstract objects in a subsequent 

work with Bernard Linsky,  ‘Naturalized Platonism vs Platonized Naturalism’ .  Here 59

Linsky and Zalta suggest a theory for abstract objects that is different from the one for 

concrete objects in three ways: first, abstract objects shouldn’t be subject to a distinction 

between appearance and reality, while concrete should. Indeed, the properties concrete 

objects have can’t be directly inferred from the way they appear, but they have to be 

discovered through empirical inquiry. Second,  concrete  objects  are sparse and only 

empirical observation can guarantee their existence. Abstract objects’ existence is 

instead guaranteed by the possibility to characterize them through the comprehension 

principle. Thirdly, concrete objects are ontologically complete, in the sense that they 

have all the properties they have, and the negation of all the properties they don’t have, 

even the ones anyone will ever know. Abstract objects instead are a plenum: if they are 

to  be  described  by  their  properties, and the comprehension principle guarantees that 

there is an abstract object for every group of properties, then there are as many abstract 

objects as there could possibly be. The following quote from ‘Naturalized Platonism vs 

Platonized Naturalism’, page 14, can help clarifying the point:

The comprehension principle asserts the existence of a wide variety of 

abstract objects, some of which are complete with respect to the properties 

they encode, while others are incomplete in this respect. For example, one 

instance of comprehension asserts that there exists an abstract object 

encoding just the properties Clinton exemplifies. This object is complete 

 LINSKY, BERNARD, ZALTA, EDWARD, (1995), “Naturalized Platonism vs Platonized 59

Naturalism”, Journal of Philosophy vol. 92, pp. 525-555;
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because Clinton either exemplifies F or exemplifies the negation of F, for 

every property F. Another instance of comprehension asserts that there is an 

abstract object that encodes just the two properties: being blue and being 

round. This object is incomplete because for every other property F, it 

encodes neither F nor the negation of F. But though abstract objects may be 

partial with respect to their encoded properties, they are all complete with 

respect to the properties they exemplify.  

In this sense, there is a plenitude of abstract objects. Zalta is far from considering 

plenitudinuousness of objects as not ontological parsimonious. Indeed, in order to 

satisfy the constraints of ontological parsimony, as few objects as possible must be 

added to the domain in a non-arbitrary way. This is the reason why, in his account of 

abstract objects, the only way to add as few objects as possible in a non-arbitrary way is 

to add all possible abstract objects. Notice here that the adoption of an extensional 

definition of objects leads to the unpleasant result that there are more and more objects, 

because every time an object is defined, there are also new properties that depends on 

that object and that can, on their turn, define new objects and so on. 

The crucial point resides in the distinction between the two ways of speaking about 

existence: using the predicate E!, Zalta speaks about concrete objects and the 

exemplifying technique. Using the existential quantifier, Zalta refers to abstract object 

and to the encoding technique and the comprehension principle for abstract objects, as 

guaranteed by the predicate A!. 

Among the abstract objects to which Objects Theory guarantees existence, there also are 

mathematical objects.  According  to  Zalta,  mathematical objects just are a particular 
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class of abstract objects. The existence of these objects, like that of any abstract object, 

is a purely logical, metaphysical and linguistic fact, guaranteed by the metaphysics and 

the logic of Objects Theory. So, for example, there  are  natural  numbers  at  every 

possible world, though they will be different abstract objects at each world. 

For instance, the natural number ‘one’ encodes all and only those properties exemplified 

by exactly one object.  In other possible worlds, different properties are exemplified by 

exactly one object. So the natural number ‘one’ at those other worlds will be a different 

abstract object. Here is Zalta’s strategy: to define world-relative natural numbers using 

the possible worlds that are also analyzed in Objects Theory: the natural number 1 at w1 

is the abstract object that encodes all and only those properties F that are exemplified by 

a unique object at w. 

The problem is now to define the class of mathematical objects. Zalta proposes to 

consider mathematical theories as kind of abstract objects that satisfy two conditions: 

first, a mathematical theory T is an abstract object for which there exists a concrete 

object that authored it; second, a theory is an object denoted by a term in the language 

that encodes all and only the propositional properties that are true in that theory.  

Some concerns can raise in regards of the fact that, though the extension of the set of 

abstract objects that are mathematical objects depends on which mathematical theories 

are  actually  authored  by  mathematicians,  there  is  a  class  of  possible  mathematical 

objects  that  can  be  abstracted  from  possible  mathematical  theorie.   A  possible 

mathematical theory T is an abstract object that encodes only propositional properties 

and such that there might be a mathematician who authored T.  In this sense, the domain 

of possible mathematical objects is considered as the real domain of mathematics. This 
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aspect is  interesting because goes hand by hand with the intuition that  mathematics 

arises not just from what mathematicians actually do, but rather from what they might 

do.

 Moreover,  this  means  that  no  matter  how  a  mathematician  might  formulate  a 

mathematical  theory,  Objects  Theory  identifies  the  mathematical  individuals  and 

mathematical relations described by such a theory as abstract individuals and abstract 

relations.  

Therefore, a mathematical theory T is the abstract object that encodes the propositional 

properties constructed out of certain mathematical propositions in the following way: let 

p(x) be an open formula in x and p be any proposition; Objects Theory presents both the 

monadic property ‘being an x such that p(x)’, where p(x) has a free occurrence of x, and 

the 0-place property [λyp(x)], to be read as ‘being an x such that p’. This last is the 

property every object possesses just in case the world in which it exists is such that p. A 

mathematical theory is then the abstract object that encodes propositional properties 

according to the mathematical propositions of the theory.  

Theories are descriptive propositions about some kind of reality; for mathematical 

propositional properties, this reality is the realm of mathematical entities. These entities 

are mathematical objects, that Zalta defines as the abstract objects that encode all and 

only the monadic properties P that are such that T encodes the property constructed out 

of the proposition p[P(kT)] for every mathematical theory T.  

p[P(kT)] indicates the proposition that encodes the monadic properties encoded by any 

object of theory T. The theorems of each mathematical theory T are introduced in 

Objects Theory by indexing the individual terms and predicates used in T to T and 
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preceding the theory operator ‘T [λyφ∗]’, to be read as ‘in theory T, …’, to each 

theorem. Then, ‘T [λyφ∗]’ is an encoding claim for which φ is the usual translation of 

‘. . .’ into the encoding-free formulas of classical logic and φ∗ is just φ with all the 

terms and predicates of T indexed to T. For any primitive or defined individual term κ 

used in theory T, the object κT is identified with the abstract object that encodes all and 

only the properties F and satisfying the formula ‘In theory T, FκT’.  

This thesis appears to be a version of mathematical Platonism, for it attempts to justify 

the belief that mathematics actually describes a realm of abstract objects. Zalta offers a 

way  of  formally  constructing  such  a  realm  of  platonic  objects  resulting  from  the 

reification,  through  λ-propositions,  of  some  propositional  properties  about  a 

metaphysical realm inhabited by abstract objects.

According to Objects Theory, natural language attributes properties even to objects that 

fail to exist. Objects are abstract or concrete depending on the modes of predication for 

properties, encoding and exemplifying. They attribute different kinds of being to objects 

and locate  them in  different  places:  concrete  objects  exist  in  the  actual  or  in  other 

possible  worlds,  while  abstract  objects  exist  in  every  possible  world.  Even  if  the 

existence of objects is dependent on the existence of theories, in their turn dependent on 

the existence of their author, this does not mean that an abstract object exist in some but 

not in other possible world, independently from the existence of its author. 

Indeed, since mathematicians made those choices that leaded them to formulate those 

theories, their theories are not only actual mathematical theories but, a fortiori, possible 

mathematical theories.  It is not a contingent fact that it is possible that they made those 
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choices,  it  is  only contingent  as  to  which choices  they made.  The class  of  abstract 

objects remains the same in every possible world. 

Zalta’s idea is that, in a world in which no one have ever formulated a theory T, the 

objects of T exist as abstract objects, but they are not also mathematical objects. In this 

way, the class of abstract objects remains the same from world to world, while the class 

of mathematical objects may be contingent as to which abstract objects they are, but at a 

deeper level, it is not contingent that they are abstract objects. 

Some objections can be moved against the ontology proposed by Objects Theory. 

First, the encoding relation and the consequent kind of existence can seem suspicious. 

Indeed, abstract objects exist in a way that is both weaker and stronger than concrete 

objects: it is weaker because it tolerates the existence of impossible objects, such as the 

square circle, kind of objects philosopher usually try to exclude from ontology. But is 

also stronger, since it predicates that abstract objects exist in every possible world, in an 

eternal, incorruptible place. Things are different for mathematical objects: if someone 

authors  a  theory  T  stating  that  some  abstract  objects  encode  some  mathematical 

properties, then those abstract objects are also mathematical. If no one formulates the 

theory T, the abstract objects encoding the properties exist, but are not mathematical. 

Recall that mathematical objects encode all and only the properties the relevant theories 

attribute them. But the properties the theories attribute them depend upon the authors of 

the theories.  This seems to mean that  mathematical  objects aren’t  mind-independent 

entities, because they exist thanks to the very act of mathematicians’ minds postulating 

mathematical properties and objects that encode those properties. 

Actually,  Zalta denies such a conclusion and guarantees the mind-independence and 

objectivity  of  mathematical  objects  through  a  priori  comprehension  principle. 
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Mathematicians author mathematical theories through an a priori device that guarantees 

objectivity  and  aprioricity  to  the  abstract  objects  with  which  mathematicians  get 

acquaintance.

Moreover,  the  impossibility  to  modify  mathematical  theories  could  go  against 

mathematical history. Imagine that a group of mathematicians formulates a theory T1. 

Some  mathematical  abstract  objects  will  encode  the  properties  the  theory  assigned 

them.  Now,  if  T1  turns  out  to  be  inconsistent,  mathematicians  will  correct  it  and 

formulate a new theory, say T2, with new mathematical abstract objects encoding the 

new properties T2 assigned to them. In this case, Objects Theory will not ask for the 

revision of the objects of T1 in the object of T2, but it will simply point to new objects, 

making thus possible to speak again of T1, even if it turned out to be inconsistent. Recall 

that in Zalta’s theory, consistency is a necessary condition for theories. This is because, 

if a theory is inconsistent, every formula is a theorem of it. Therefore, any object a of 

the theory will encode any possible propositional property. But there is at most one such 

object a. If every inconsistent theory has the same theorems, any inconsistent theory 

will  have  the  object  a,  because  it  encodes  every  possible  propositional  property. 

Therefore, if a theory turns out to be inconsistent, mathematicians were wrong at the 

very beginning, when they define it as a theory.

Linsky  and  Zalta  insisted  on  this  line  of  thought  in  the  following  quotation  from 

‘Naturalized Platonism vs Platonized Naturalism’, page 21 and 22: 

Consider […] the situation in which two mathematicians ‘disagree’ about 

whether the Axiom of Foundation is ‘true’. It seems clear […] that 

mathematicians are simply talking about different sets. The appearance of 

disagreement is explained by the common vocabulary. What each has in 
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mind is perfectly real, but each party to the disagreement mistakes their 

limited portion of reality for the whole of reality. […] So a mistake about 

the objects of a theory is not a successful discovery of a truth about some 

different objects.  

According  to  Zalta’s  perspective,  the  work  of  Philosophy  is  exhausted  by  the 

formulation  of  a  coherent  and  expressive  description  of  such  objects  and  the 

metaphysical realm they could live in. Asking whether these objects actually populate 

this realm or not, exceed the very possibility of philosophical inquiries. What is still 

within such possibilities is the delivery of a consistent and trustworthy epistemology for 

mathematical objects. 

In the next section, I will evaluate how Objects Theory attempts to provide access and 

reliability to mathematical knowledge. 

4.5 Epistemology

Zalta faces the problem of mathematical knowledge only at the very end of his major 

work, Abstract Objects: An Introduction to Axiomatic Metaphysics. Even there, he only 

suggests further line of research in epistemology for Objects Theory, without explicitly 

providing an epistemological account for abstract objects. Epistemology for Objects 

Theory is more deeply analyzed in ‘Naturalized Platonism vs Platonized Naturalism’. 

But, again, even there Zalta seems to suggest that he would rest content with a simple 

postulation of an appropriate relation of acquaintance with abstract objects to guarantee 

reliable knowledge of them. Indeed, at page 156 of Abstract Objects: An Introduction to 

Axiomatic Metaphysics, he declares: 
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The idea is that we analyze worshipping Zeus, searching for the fountain of 

youth,  thinking  about  Hamlet,  etc.,  in  terms  of  acquaintance  with  these 

objects plus different intellectual (possibly propositional) attitudes we adopt 

toward them.

In ‘Naturalized Platonism vs Platonized Naturalism’, page 547, Zalta precises: 

Knowledge  of  particular  abstract  objects  does  not  require  any  causal 

connection to them, but we know them on a one-to-one basis because de re 

knowledge of abstracta is by description. All one has to do to become so 

acquainted de re  with an abstract  object  is  to  understand its  descriptive, 

defining condition,  for  the  properties  that  an  abstract  object  encodes  are 

precisely  those  expressed  by  their  defining  condition.  So  our  cognitive 

faculty for acquiring knowledge of abstracta is simply the one we use to 

understand  the  comprehension  principle.  […]  The comprehension and 

identity axioms of Principled Platonism are the link between our cognitive 

faculty of understanding and abstract objects. 

The  comprehension  principle  is  synthetic,  since  it’s not part of the meaning of 

‘abstract’, ‘encodes’, and ‘property’ that for every condition on properties there is an 

abstract object that encodes just the properties satisfying the condition. And it is also a 

priori, since it can’t be confirmed or refuted by some empirical evidence. 

If knowledge of abstract objects comes from the description of them provided by their 

authors, then understanding the definition of an abstract object is enough for reaching 

acquaintance  de  re  with  it.  Moreover,  Linsky  and  Zalta  also  suggest  that  such 

knowledge is to be considered as de re knowledge, with interesting consequences for 
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theory of truth. Indeed, mathematical knowledge through Objects Theory will be de re 

knowledge obtained via synthetic a priori principles.

Zalta defines then the notion of truth in a theory in the following way: a proposition p is 

true in a theory T (‘T |=p’) if and only if T encodes the property ‘being such that p’. 

Formally: 

T |=p =df T [λy p] 

‘In theory T, a is F’ is read as ‘the proposition that a exemplifies F is true in theory T’, 

or that ‘T |= Fa’.  Now, since the comprehension principle is synthetic a priori, so are 

also the true propositional properties of mathematical theorems, just because they are 

treated as encoding claims. Indeed, mathematical theorems turn out to be true because 

there actually are mathematical objects with the properties theorems ascribe them. Then, 

Linsky and Zalta have an argument for the aprioricity of mathematical knowledge, and 

knowledge  of  abstracta  in  general,  while  knowledge  of  concrete  objects  will  be  a 

posteriori. 

The  kind  of  acquaintance  relationship  Zalta  proposes  for  abstract  objects  has  some 

interesting  qualities:  first,  it  has  to  be  a-causal,  since  abstract  objects  have  no 

relationship  with  the  possible  worlds.  But,  there  could  be  some  kind  of  causal 

relationship  with  the  authors  of  mathematical  theories,  providing  the  definition  that 

allows for the acquaintance relation. 

Second, acquaintance relationship with abstract objects is different from acquaintance 

relationship with properties. Indeed, Zalta idea is that no matter what world is the actual 

one, it is always possible to recognize whether or not an object in that world possesses a 

property or not. 
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Even if no one has ever thought about the object that encodes both the property of being 

square and the property of being round, everyone is acquainted with the two properties 

alone. Getting acquainted with an object, through the description of its properties, is 

then a further step in abstraction. 

The third interesting quality of acquaintance relationships is that, since the only proper 

knowledge  of  abstract  objects  is  a  priori  knowledge,  getting  acquainted  with  the 

properties  objects  are  defined  to  encode  is  sufficient  for  gathering  necessary  true 

knowledge about them.

In conclusion, it becomes clear why Zalta reserves so little interest for epistemological 

questions:  according  to  Objects  Theory,  there  is  nothing  extraordinary  in  gathering 

knowledge  of  abstract  objects.  No special faculty is needed to attain knowledge of 

mathematical objects and relations or to recognize the truth of mathematical statement. 

The only faculties required are the ones for understanding language and drawing 

inferences.

!174



[F]or all I have said, it may well be possible to characterize  
an ‘objective’ notion of correctness, one which is relative neither to a conception 

of logical space nor to the aims of a particular community.  
I don’t know how to do so myself, 

 but would be delight if it could be done 

RAYO, AGUSTÌN, (2013) The Construction of Logical Space, page 63 
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Chapter 5: Trivialism 

5.1 Metaphysicalism and Compositionalism

Agustìn Rayo developed a new theory in philosophy of mathematics. He takes the step 

for formulating its new approach, called ‘Trivialism, by debating two philosophical 

positions, metaphysicalism and compositionalism. I will follow its path and introduce 

first metaphysicalism and compositionalism, and only thereafter Trivialism and it 

relates with metaphysicalism and compositionalism. 

Metaphysicalism is the view according to which there actually is a privileged way in 

which carving up the world. This idea of carving up the world is quite classical in 

Platonism, from Plato’s Phaedrus (265 d-e) to Gottlob Frege’s Grundgesetze der 

Arithmetik. Rayo doesn’t point to some particular philosopher or tendency: rather, he 

explicitly admits that there could be no metaphysicalist ever. But, if there is someone 

who believe that the truth of an atomic statement depends upon the existence of a 

certain kind of correspondence between the logical form of the statement and the 

metaphysical structure of reality, he will be a metaphysicalist. Rayo suggests to 

understand different ways of carving up the world as different interpretation given to the 

way things stay in reality. 

According to metaphysicalism, even if it is admitted that a given fact can be carved up 

into constituents in more than one way, there is one and only one of them that 

corresponds to how facts really stand in the actual world.  

This definition reveals the double-headed nature of metaphysicalism: it is both a 

linguistic and a metaphysical thesis, in which the assumption of the existence of one and 
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privileged metaphysical structure imposes a constraint on the way reference can 

successfully work. But, Rayo points out, metaphysicalism seems to suggest that the 

endorsement of one rather than another formulation of the same content is based on 

considerations that have no consequences on Metaphysics. Rather, this occurs for 

rhetorical reasons, such as style or effectiveness of communication or also conventions. 

But obviously such considerations have no consequences on views about metaphysical 

structure, once statements aren’t considered to be true only if their logical form is in 

correspondence with the metaphysical structure of the world.  

There also is a brasher argument: metaphysicalism endorses that there actually is one 

and only one objectively correct way in which the world can (objectively) be. 

Therefore, it must exist something over and above the syntactic properties of the 

different ways to interpreting the world. But if so, according to metaphysicalism, two 

statements with different logical form can’t pick out the same part of logical space, 

contrary at least to classical philosophy of language and intuition: same truth conditions 

pick out same ways the world to be, regardless to rules of the languages in which the 

two logical forms are expressed, or even to the very languages. This argument will have 

a fundamental role in Rayo’s philosophy, especially in his idea of ‘just is’-statements. 

Rayo suggests to reject metaphysicalism, since it rules out the possibility of existence of 

a plurality of way for the world to be carved in because of merely syntactic 

considerations. Instead, Rayo proposes to embrace non-objectiveness, the thesis that the 

way the world is represented depends only upon the way the world is described. And it 

is particularly so in the case of philosophy of mathematics, because of the very nature of 

mathematical entities. Ultimately, what Rayo is stating here is that there can’t be an 
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objective language-independent fact of the matter about whether there are numbers or 

not. 

The second position is compositionalism. Compositionalism provides a way to analyse 

object-talk, defined as a system of singular terms and the corresponding variables and 

quantifiers. Rayo explains compositionalism as the conjunction of two constraints at 

page 14 and 15 of The Construction of Logical Space . The first constraint is: 60

Singulartermhood: the following three conditions are jointly sufficient for 

an expression t to count as a genuine singular term: 

1. Syntax: t behaves syntactically like a singular term: it generates 

grammatical strings when placed in the right sorts of syntactic contexts. 

2. Truth conditions: truth conditions have been assigned to every statement 

involving t that one wishes to make available for use. 

3. Logical Form: this assignment of truth conditions is such as to respect 

any inferential connections that are guaranteed by the logical forms of the 

relevant statements. In particular: 

If φ and ψ have been assigned truth conditions, and if ψ is a logical 

consequence of φ (that is, if logical form guarantees that ψ is true if φ is), 

then satisfaction of the truth conditions assigned to φ is at least as a strong 

requirement on the world as the satisfaction of the truth conditions assigned 

to ψ. 

Second constraint is: 

 RAYO, AGUSTÌN, (2013), The Construction of Logical Space, Oxford University Press, 60

Oxford;
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Reference: Assume t satisfies Conditions 1–3 above. Then the following 

additional condition is sufficient for t to have a referent: 

4. True Existential: the world is such as to satisfy the truth conditions that 

have been associated with the statement ‘∃x(x = t)’ (or an inferential 

analogue thereof). 

Roughly, for a term to be non-empty it is sufficient that the truth conditions assigned to 

it are satisfied. Accordingly, a singular term t, specified thanks to the three constraints, 

is non empty if the truth conditions assigned to ∃x(x=t) are satisfied. 

Rayo’s point here is that the ability of languages to use singular terms makes possible to 

describe the world in terms of objects. That is, an atomic statement can be true even if 

there is no correspondence between its logical form and the metaphysical structure. As a 

consequence, languages with singular terms explicit the existence of objects, but this 

doesn’t mean that there wouldn’t be object if languages weren’t able to express singular 

terms. The existence of objects regards exclusively non-linguistic parts of reality. 

Therefore, a language  includes  singular  terms  and  quantifiers  ranging  over  singular-

term-positions just because they are useful in specifying truth conditions. 

Rayo explains his account by mean of the reformulation of a famous example from 

Frege Grundgesetze der Arithmetik at page 15 and 16 of Rayo (2013): 

[I]magine the introduction of a new family of singular terms ‘the direction⋆ 

of a’, where a names a line. The only atomic statements involving 

direction⋆-terms one treats as well-formed are those of the form ‘the 

direction⋆ of a = the direction⋆ of b’, but well-formed formulas are closed 

under negation, conjunction and existential quantification. A statement φ is 
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said to have the same truth conditions as its nominalization [φ]N, where 

nominalizations are defined as follows: 

• [‘the direction⋆ of a = the direction⋆ of b’]N = ‘a is parallel to b’. 

• [‘xi = the direction⋆ of a’]N = ‘zi is parallel to a’. 

• [‘xi = xj’]N = ‘zi is parallel to zj’. 

• [‘∃xi(φ)’]N = ‘∃zi([φ]N)’. 

• [‘φ ∧ ψ’ ]N = the conjunction of [φ]N and [ψ]N. 

• [‘¬φ’]N = the negation of [φ]N. 

It is easy to verify that every condition on the compositionalist’s list is 

satisfied. Notice, in particular, that since [‘∃x(x = the direction⋆ of a)’]N is 

‘∃z(z is parallel to a)’, and since every line is parallel to itself, all that is 

required for the truth conditions of ‘∃x(x = the direction⋆ of a)’ to be 

satisfied is that a exist. 

The compositionalist is therefore in a position to claim that the sole existence of a is 

enough to guarantee both that the singular term ‘the direction⋆ of a’ refers and that it 

refers to the direction⋆ of a. The reason resides in the linguistic stipulation endorsed by 

the compositionalist. Indeed, what the compositionalist claims is that the same fact can 

be fully described both by saying ‘a is parallel to b’ or ‘the direction⋆ of a = the 

direction⋆ of b’. 

Following Rayo’s thought, the existence of lines is reason enough to guarantee the 

existence of directions⋆, because for the direction⋆ of a to be self-identical is equivalent 
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to for the direction⋆ of a to exist. And for a to be self-parallel is also equivalent to for a 

to exist. So, for the direction⋆ of a to be self-identical just is for a to be self-parallel. 

Nevertheless, Rayo specifies a few lines later that, in order to get this, all it takes for the 

direction of a (as opposed to the direction⋆ of a) to exist is for a to exist. For in doing 

so, the assumption that the statement ‘the direction of a exists’ has the same truth 

conditions as the statement ‘a exists’ is all is needed.  

From the conjunction of his analysis of metaphysicalism and compositionalism, Rayo 

develops  a  trivialist  theory  of  reference  that  basically  comes  from the  rejection  of 

metaphysicalism and the embracement of compositionalism. 

Metaphysicalism is to be rejected for at least two reasons: first, it makes a difference 

where there is none, by believing that differences in form lead to differences in content. 

Secondly, and consequently, there can’t be a privileged metaphysical structure or an 

objective way the world is, since the notion of singularterm-hood provided by languages 

and their uses is unconstrained and doesn’t allow speaking of objects in a way that 

guarantees 100% successful reference. 

In Rayo (2013) the approach he had already proposed in several papers is systematically 

exposed. This approach is Trivialist Platonism, an original position in Metaphysics and 

in Philosophy of Mathematics. Rayo’s theory is very expressive and, although its main 

focus is on philosophy of Mathematics, his approach can be applied to many other 

fields.  

Because of its broadness and explanatory power, Trivialism can be seen from several 

different angles. In an interesting way, Trivialism echoes logical empiricists’ anti-

metaphysical theses. Participating to their spirit of simplification and reductionism, 
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Rayo proposes to reject the Quinean definition of analyticity for mathematical 

statements: mathematical truths do not demand anything from the world to satisfy their 

truth conditions; therefore, they are analytically true (see section 5.3 for more details on 

Rayo’s critique to analyticity).  

Accordingly, there is no way the world is that can affect the truth conditions of 

analytical statements, among which there are mathematical statements.  But if so, there 

is no reason for questioning about the truth conditions of analytical and mathematical 

statements: they have trivial truth conditions. In the case of Mathematics, mathematical 

truths (or falsities) turn out to be true (or false) no matter how the world is.  

Rayo’s Trivialism has much broader applications that those in the Philosophy of 

Mathematics. Indeed, Rayo’s approach suggests a pragmatic or common sense attitude 

toward ontological commitment, an intuitive epistemology and a compositional 

homophonic semantics that allows ‘outscoping' the commitment beyond the domain of 

the actual world.  

According  to  Rayo,  for  mathematical  statements  to  have  trivial  truth  conditions 

mathematical objects must necessarily exist. Worlds with no number are considered as 

inconsistent. At the same time, nothing is required of the world to satisfy mathematical 

truth. 

Rayo’s idea is,  in short,  that  what is  needed is  just  to understand whether the truth 

conditions of a mathematical statement are trivial and, in the case of positive answer, 

the statement will result true. Evidently, determining whether the statement is trivial is 

not an easy task, above all considering the natural evolution of Mathematics. But in a 

Trivialist  context,  if  a  mathematical  statement  has  trivial  truth  conditions  (e.g.  is  a 
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necessary truth), than it is difficult to understand how it can turn out to be wrong, or 

false. In order to doing so, Rayo needs to provide an account of logical space and of the 

‘just is’-statements that are supposed to construct it.

5.2 Constructing Logical Space

Rayo’s theory starts from the consideration that there are ways for the world to be and 

ways for the world to be represented. Such a distinction is fundamental in its 

consequences and is the proper subject of Rayo’s investigation. According to him, a 

statement is a way in which the world can be represented. Setting forth a statement 

makes a distinction amongst ways for the world to be, and singles out one side of this 

distinction as the true side. Therefore, a statement is true if it singles out the region that 

corresponds to the way the world actually is. This conception of truth carries with it the 

notion of logical space, being the set of all distinctions that describe the way the world 

actually is. 

These distinctions are dichotomies, since they cut the ways the world could be in two 

different parts. For example, one such a distinction could be the distinction between 

Venus to be Hesperus and Venus not to be Hesperus. Making this distinction entails to 

divide every possible way the world could be in two parts: on one side all the ways in 

which Venus is Hesperus, on the other all the ways in which Venus isn’t Hesperus. And 

once the distinction is made, it is possible to ask which part in which the world could be 

there actually is.  

According to Rayo, both commitment to and truth of everyday, scientific and 

philosophical discourse depend on the part that happens to be actualized. Indeed, the 

!183



statement that asserts Venus to be Hesperus turns out to be true or false depending on 

the way the world actually is. A set of sides of distinctions characterizes a world. So, to 

be true is to be committed with the side of the distinction that represents the world the 

way it actually is. 

Logical space is built up by means of the acceptance of such distinctions. But also by 

understanding if and when two or more statements coincide. For example, ‘Venus is 

Hesperus’ and ‘Venus is Phosphorus’ are two different ways in which the world is 

actually represented. But the distinction between Venus to be Hesperus and Venus not to 

be Hesperus, and Venus to be Phosphorus and Venus not to be Phosphorus, cuts only 

apparently the ways the world could be in different parts. Indeed, ‘Venus to be 

Hesperus’ and ‘Venus to be Phosphorus’ are two different ways of representing the same 

side of the distinctions. For Venus to be Hesperus just is for Venus to be Phosphorus.  

This technique of distinguishing between ways for the world to be and ways for the 

world to be represented appeals to the notion of ‘just is’-statement, who associates 

different ways for the world to be represented that have the same truth conditions.  

An  example  from  the  first  page  of  Neofregeanism  Reconsidered  can  help 61

understanding Rayo’s point: 

Consider the creation of the world. In the first six days God created light, 

oceans,  animals,  planets  and  everything.  On  the  seventh  day,  instead  of 

resting,  she  created mathematical  objects.  So it  is  possible  to  imagine  a 

world with no mathematical objects: a world in which God rested at day 

seven and everything remain the same from day six. 

 RAYO, AGUSTÌN, (2011), “Neofregeanism Reconsidered”, in EBERT, PHILIP, ROSSBERG, 61

MARCUS, (2014) Abstractionism in Mathematics, Oxford University Press, Oxford.
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The point is that according to such a creation myth, God had had to do something more 

to create mathematical objects, something that wasn’t already there when she finished to 

create light, oceans, animals, planets and everything. This position is wrong according 

to Rayo.  He proposes an alternative creation myth,  in which for  the number of  the 

planets to be eight just is for there to be eight planets. There is nothing God have to add 

to the planets to let them be eight planets. When God created eight planets she already 

made it the case that the number of the planets was eight. 

‘Just is’-statements are the cornerstones of logical space. But the process through which 

we accept ‘just is’-statements depends upon the best available hypotheses concerning 

the way the world actually is. Indeed, to obtain knowledge of the world, according to 

Rayo, is to define the set of ‘just is’-statements accepted. This process is both empirical, 

based upon observations of the way the world actually is, and logical, based on the set 

of statements that constitutes the truths of pure logic. 

5.3 ’Just is’-statements

Two statements and one occurrence of the ‘just-is’ operator compose a ‘just is’-

statement. This operation asserts that the statement on the right and the statement on the 

left of the operator are truth conditionally equivalent: that is, they have the same truth 

conditions. ‘Just is’-statements are therefore symmetric just like identity statements, 

since they are true if their left-hand and right-hand parts actually refer to the same thing. 

But, they are not to be seen as anything like real definitions or having any metaphysical 

significance. Moreover, Rayo spends a big effort in stating that they are not analytic or 

knowable a priori.  
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In order to explicit the non-analyticity of ‘just is’-statements, Rayo (2013), page 35 and 

36, proposes a new perspective on the debate between Carnap  and Quine  in regards 62 63

of meaning postulates.  

Carnap argued that true statements can be divided into two groups, the ones that are true 

in virtue of the meaning of their constituent vocabulary, and the ones that are true in 

virtue of the way the world turns out to be. The former are analytical a priori, while the 

latter are synthetic a posteriori. But, famously, Quine objected that the notion of 

meaning postulates is not robust enough to guarantee the dichotomicity of Carnap 

distinction.  

According to Rayo, if Quine was correct in stating that we have no robust enough 

notion of meaning postulates, Carnap was correct too in individuating such a 

distinction. But above all, Rayo is convinced that the correct criterion isn’t determined 

by the distinction between analytic and synthetic: as Quine famously showed in Two 

Dogmas of Empiricism, things are way more complicated that in Carnap’s proposal. The 

problem doesn’t rest in the notion of meaning postulates, but in the criteria by means of 

which the distinction was drawn. According to Rayo, the right way is rather the one that 

appeals to ‘just is’-statements in place of analyticity. 

Here how Rayo shows why: since a set of statements is analytically consistent if it is 

logically consistent with the set of analytic truths, logical space is then the maximal 

analytically consistent sets. Instead, a statement is synthetic if some maximal 

 CARNAP, RUDOLF (1950-1956), ‘Empiricism, Semantics and Ontology’, Revue Internationale 62

de Philosophie, 4: 20–40. Reprinted in Meaning and Necessity, Chicago: University of Chicago 
Press, 2nd edition, 1956, pp. 205–221;

 QUINE, WILLARD VAN ORMAN, (1951) “Two Dogmas of Empiricism”, Philosophical Review, 63

60, 20-43;
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analytically consistent sets, but not others, logically entail it. This is the purpose of 

scientific inquiries: to shed a light on the truth conditions of synthetic statements. 

Moreover, Rayo suggests to consider a set of statements as metaphysically consistent if 

it is logically consistent with the set of true ‘just is’-statements. Then, logical space 

turns out to consist of the sum of the maximal metaphysically consistent sets.  

A meaningful statement is counted as non-trivial if some maximal metaphysically 

consistent sets, but not others, logically entail it. So, the purpose of scientific inquiries is 

further detailed: to shed a light on the truth conditions of non-trivial statements. 

That is why the truth of a ‘just is’-statement cannot be known a priori. Rather, scientific 

inquiry suggests which ‘just is’-statements to accept, according to costs and benefits 

considerations. Indeed, is precisely the acceptance of a ‘just-is’-statement that reduces 

the size of logical space. At the same time, it increases the number of ways the world is 

represented with which the ways the world actually is match. 

‘Just is’ statements can do the work of both analytics and synthetics statements, since 

they can be derived both from logical and empirical observations, as Rayo (2013) 

explicitly states at page 43: 

Even if none of the decisions one makes in adopting a family of ‘just is’-

statements is wholly independent on empirical considerations, some 

decisions are more closely tied to empirical considerations than others. And 

when it comes to ‘just is’-statements corresponding to logical truths, one 

would expect the focus to be less on particular empirical matters and more 

on the question of how to best organize one’s methods of inquiry. So there is 

room for a picture whereby an epistemically responsible subject can accept 
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‘just is’-statements on the basis of considerations that aren’t grounded very 

directly in any sort of empirical investigation. 

To briefly summarize, it turns out that, in Rayo’s account, is the process of rejection and 

acceptance of ‘just is’-statements that shapes the conception of logical space in which 

theories are developed and, more importantly, in which they reveal to be true or false.  

Therefore, the notion of truth presupposes the notion of logical space. But the ‘just is’-

statements accepted build the logical space, delivering a representation of the world. 

This representation has the role of drawing the borderline of consistent scenarios, 

leaving outside inconsistency.  

Examples of ‘just is’-statements are: 

SIBLINGS: for two people to be siblings just is for them to share a parent. 

WATER: For something to be water just is for it to be H2O. 

DINOSAURS: For there to be no dinosaurs just is for the number of 

dinosaurs to be zero. 

Rayo shows that, for example, the acceptance of ‘just is’-statements like DINOSAURS 

allows considering question like ‘I can see that there are no dinosaurs. But is it also true 

that the number of the dinosaurs is Zero?’ as resting on false presuppositions. Indeed, 

DINOSAURS states that there is no difference between the non-existence of dinosaurs 

and dinosaurs being counted by the number Zero. 

But the most important ‘just is’-statement for the purpose of Trivialism for philosophy 

of mathematics is:  

NUMBERS: There being exactly n Fs just is for the numbers of Fs to be n. 
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NUMBERS is schematic. One of its instances is DINOSAURS, since it states that there 

is no difference between there being exactly zero Fs (say dinosaurs) and the number of 

Fs (say dinosaurs) being zero.  

Evidently, NUMBERS works only if the meaning of ‘there are exactly 0 Fs’ counts as 

the same of the meaning of ‘there is no Fs’. But if it is so, ‘there are n Fs’ has to be read 

as a statement quantified through numeric quantifier, whom are defined by recurrence 

involving numbers. The validity of NUMBERS is fundamental also because the Zero 

Argument follows directly from it: 

THE ZERO ARGUMENT: assume, for reductio, that there are no numbers. 

By NUMBERS, for the number of numbers to be zero just is for there to be 

no numbers. So, from the assumption follows that the number of numbers is 

zero. So zero exists. So at least a number exists. Contradiction. 

This argument is very important, since it leads to the first trivialist mathematical 

Platonism, on the number zero, and proves that zero trivially exists. Obviously, 

NUMBERS can be used to show that each number must trivially exist since the world 

has to be consistent. A world with no numbers is considered absurd by Rayo’s theory.  

To be more precise, thanks to the equivalence, expressed by NUMBERS, between using 

noun numerals and adjective numerals, Rayo demonstrates that numbers exist, because 

their existence is trivial. Once numbers belong to a realm that isn’t casually related with 

the concrete world, nothing is required from the world for numbers to exist. And it is in 

this very point that the adoption of Independence is made explicit in Rayo’s work.  

As a consequence, from NUMBERS follows that mathematical Platonism is true 

because the existence of numbers is trivially true. That is to say that numbers trivially 
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exist if its trivial to assume a ‘just is’-statement from which follows that numbers 

trivially exist.  

As it is quite evident, the notion of ‘just is’-statements is crucial to demonstrate such a 

thesis. Indeed, in adopting a family of ‘just is’-statements one is, according to Rayo, 

making decision that are closely dependent on empirical observations and on the logical 

structure and organization of the world as perceived or relatively to a particular set of 

tasks or analysis. 

Therefore, the use of Logic and Mathematics in the very act of discriminating the 

accepted ‘just is’-statements from the non-accepted ones is fundamental. For example, 

endorsing classical logic, p↔∼∼ p is a logical truth. Therefore, it determines the 

acceptance of the ‘just is’-statement: 

BIMPLICATION: For p to be the case just is for ∼∼ p  to be the case. 

For example: 

RAIN: For raining to be the case just is for the negation of the negation of 

raining to be the case. 

But the point is that the acceptance of p↔∼∼ p will not find the agreement of friends of 

intuitionistic logic, therefore they will not accept BIMPLICATION and all its instances. 

As it should be clear by now, Rayo’s idea is that the acceptance of ‘just is’-statements is 

never independent on empirical matters, but some ‘just is’-statements are more tied to 

logical and mathematical aspects than others. It is particularly so with regard to the ‘just 

is’-statements that concern Logic and Mathematics. These ‘just is’-statements are the 

ones that allow an epistemically responsible subject to believe that numbers exist and 

mathematical statements are true, even without empirical supports.
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The crucial role of ‘just is’-statements for Trivialism resides in their use in outscoping 

techniques. ‘Just is’-statements offer a new mean for interpreting truth conditions, such 

as that p is true at world w if and only if w is such that the truth conditions for p obtain. 

Rayo suggests to interpret this criterion as supplying the conditions a world have to 

satisfy for p to be true as far as the non-mathematical facts are concerned, thanks to the 

use of a particular compositional semantics (section 5.4).  

According to Rayo, mathematical vocabulary works as a metatheoretical test that 

ensures the satisfaction of the previous criterion. In trivialist semantics, the test is to be 

performed outside the scope of the actual world, henceforth represented by 

‘[. . .]w’(read ‘it is true at w that ...’). This is the outscoping technique, that shows that 

there is no need to the resources used to perform the test to be present in w, in particular 

in the case of pure mathematical ‘just is’-statements.  

In doing so, Rayo offers a new reading of the ‘just is’-statements:  

For φ to be true at w just is [φ]w 

Thanks to the outscoping technique, a trivial semantic clauseis assigned to every truth 

of pure Mathematics, so that nothing remains in the scope of ‘[…]w’. If there is no non-

mathematical  vocabulary  to  remain  within  the  scope  of  ‘[...]w’,  application  of  the 

semantic clauses yields the result that the statement is true at a world w just in case w 

satisfies a metalinguistic formula in which all the vocabulary has been outscoped. For 

example, in 

2+2=4 

‘[. . .]w’ does not occur, and therefore it has no free variables. But a formula with no free 

variables is satisfied by all objects if it is true, and by no objects if it is false. 
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Since the metalinguistic formula ‘2+2=4’ is,  in fact,  true,  it  will  be satisfied by all 

objects, including w independently of what is w. But if it is satisfied by any arbitrarily w, 

nothing is required of w in order for the statement 2+2=4 to be true at w. 

As a result, the semantics clause for ‘2+2=4’ is: 

‘2+2=4 is true at w if and only if 2+2=4’ 

5.3.1 Connections of ‘just is’-statements

In order to complete the definition of ‘just is’-statements and provide a reliable account 

of the truth condition of them, Rayo (2013) analyses the connections ‘just is’-statements 

have with the notions of possibility, inconsistency, why-closure and sameness of truth 

conditions.  

1. Possibility: 

Rayo appeals to distinctions in the line of the ones made by Kripke in Naming and 

Necessity  between types of possibilities. Possibility can be de mundo or de 64

repraesentatione. The former is a property of the ways for the world to be, while the 

latter is a property of the ways for the world to be represented. In this sense, logical 

possibility is de repraesentatione, while metaphysical possibility is de mundo. Rayo’s 

point is then that, since metaphysical possibility is the most inclusive form of possibility 

de mundo there is, going beyond it means falling into absurdity.  

This notion of metaphysical possibility is strictly connected with Rayo’s account of ‘just 

is’-statements because a statement describes a metaphysically possible scenario if and 

 KRIPKE, SAUL, (1980) Naming and Neccesity Harvard University Press, Cambridge MA;64
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only if it is logically consistent with the set of true ‘just is’-statements. Therefore, the 

truth conditions of a ‘just is’-statement like ‘for it to be the case that φ just is for it to be 

the case that ψ’ are determined by the acceptance or rejection of its corresponding 

modal statement ‘☐(φ ↔ ψ)’. 

2. Inconsistency: 

Rayo suggests to define the kind of consistency that regards the sets of statements that 

are consistent with the true ‘just is’-statements as metaphysical consistency. Here again 

Rayo is appealing to de mundo and de repraesentatione distinctions. Consistency de 

mundo requires that a statement isn’t representing the world as satisfying an absurdity. 

Consistency de repraesentatione requires only that a statement isn’t representing the 

world as satisfying an a priori absurdity. 

This way of putting things regarding absurdity is strictly connected with Rayo’s account 

of ‘just is’-statements, because a statement is taken to represent the world as satisfying 

an absurdity if and only if it is logically inconsistent with the set of true ‘just is’-

statements. But this, together with the previous considerations about possibility, means 

that to go beyond metaphysical possibility isn’t only to fall into absurdity but also to fall 

into inconsistency de mundo. The decision of accepting or rejecting a ‘just is’-statement 

is, then, a decision about where to place the limits of absurdity in the way the world 

could be, and not only in the way the world could be represented. 

3. Why-closure 
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Imagine that someone can actually see what it takes to satisfy the truth conditions of a 

statement φ, but aims to attain a richer understanding of why the world is such as to 

satisfy its truth conditions. Rayo suggests to treat such a statement as why-closed, so 

that there is no available way of making sense of the question ‘Why is it the case that 

φ?’.  

There is a connection between why-closure and ‘just is’-statements, because a statement 

is why-closed if and only if it is a logical consequence of the set of true ‘just is’-

statements. Indeed, once the ‘just is’-statement ‘for φ to be the case just is for ψ to be 

the case’ is accepted, the corresponding biconditional ‘φ ↔ ψ’ turns out to be why-

closed. Rayo means that, if one accepts a ‘just is’-statement, he is thereby relieved from 

the need to explain certain facts. At page 54 of Rayo (2013), he explains this by mean of 

an example: 

Suppose it is agreed on all sides that Hesperus (and Phosphorus) exist. 

Someone says: ‘I can see as clearly as can be that Hesperus is Phosphorus; 

what I want to understand is why.’ It is not just that one wouldn’t know how 

to comply with such a request—one finds oneself unable to make sense of 

it. The natural reaction is to either find a charitable reinterpretation of the 

question (‘Why does one planet play both the morning-star and the evening-

star roles?’) or reject it altogether (‘What do you mean why? Hesperus just 

is Phosphorus’.) 

4. Sameness of truth conditions 
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Rayo defined a statement’s truth conditions as a requirement on the world. If such a 

requirement is satisfied by the world being as the statement represents it to be, the 

statement is true. If it is not satisfied, the statement is false. But if the statements φ and 

ψ have the same truth conditions, the ‘just is’-statement ‘for it to be the case that φ just 

is for it to be the case that ψ’ is accepted. If the assumption that a statement’s truth 

conditions fail to be satisfied leads to absurdity, the statement is said to have trivial truth 

conditions. And when it is so, there is no requirement on the world that can satisfy the 

statement’s truth conditions. 

The notions of logical space, ‘just is’-statements and truth conditions are very correlated 

and fundamental for the theoretical architecture of Trivialism. This three notions 

constitute the treble core of Rayo’s theory: truth presupposing logical space, logical 

space being built by ‘just is’-statements, ‘just is’-statements being true if composed by 

two sides with the same truth conditions.  

Moreover, according to Rayo, to state something is to make a distinction between 

regions of logical space, to single out one region and to affirm the statement to be true if 

the region of logical space it singles out actually represents the world the way it is. 

Consequently, the distinction between truth and falsity turns out to be just the 

distinction between regions of logical space that include or not the world the way it is. 

Now, the truth conditions of a contingent statement are satisfied by the way the world 

actually is. But for ‘just is’-statements, truth conditions are entirely determined by the 

conception of logical space endorsed. 
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This is the case for mathematical statement. Rayo proposes to assign to true pure 

mathematical statements a trivial semantic clause, and to false pure mathematical 

statements an impossible semantic clause. He does so in order to achieve the result that 

true pure mathematical statements are true no matter how the world actually is, while 

false pure mathematical statements wouldn’t be satisfied in whatever possible world. To 

be more explicit, truth of a pure mathematical statement in a world doesn’t depend on 

any other non-mathematical statements’ truth conditions in that world. 

Some concerns can rise in regard with the definition of the notion of objective truth, 

since truth or falsity of ‘just is’-statements will be determined by both empirical and 

logical considerations. According to Rayo, the idea of objectively truth or correctness is 

hard to define. Indeed, if the truth or falsity of ‘just is’-statements is defined by the 

construction of logical space, and if there are many possible constructions, which one 

delivers the objectively correct one?  

Rejecting metaphysicalism, Rayo’s response is that there is no objectively correct 

construction of logical space. Rather, the question of which set of ‘just is’-statement is 

correct makes sense only in the context of a particular purpose. In a few words, 

accepting a set of ‘just is’-statements is a practical matter that depends only on the 

possibility to achieve a fruitful and applicable theory.  

The point is that, according to Rayo, there is no ways to succeed in satisfactorily define 

the notion of objectively correct or true. In addition, according to Rayo, the very fact 

that nothing is required of the world in order for the truth conditions of mathematical 

statements to be met implies that knowledge of true pure mathematical statements is 

always relative to a particular conception of logical space. In this sense, the distinction 
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between true and false is just the distinction between regions of logical space that 

include or not the way in which the actual world is. 

The ontological assumptions of Trivialism entails that, in extending the language, 

trivialists aren’t extending or changing the world. The effect of extending the language 

is, rather, that trivialists acquire additional resources to describe the world.  

In the case of pure Mathematics, trivialists acquire additional resources for express 

statements with trivially satisfiable truth conditions and terms that refer to objects to 

which trivialists were previously unable to refer. 

5.4 Trivialist semantics

In  chapter  3  of  Rayo  (2013),  a  trivialist  compositional  semantics  for  applied 

Mathematics is constructed.

The language is two-sorted first-order language with identity, L. It contains: 

-the identity-symbol ‘=’;  

-arithmetical variables (‘n1’, ‘n2’, . . .); 

-individual-constants (‘0’);  

-function-letters (‘S’, ‘+’ and ‘×’);  

-non-arithmetical variables (‘x1’, ‘x2’, . . .); 

-constants (‘Caesar’, ‘Earth’);  

-predicate-letters (‘Human(. . . )’, ‘Planet(...)’);  

-the function letter ‘#v(. . .)’.  

‘#v(. . .)’ is to be read ‘the number of v(. . .) It takes in its single argument-place a 

first-order predicate to form a first-order arithmetical term. 
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Let σ be a variable assignment and w be a world. δσ,w(t) is the denotation function 

assigning a referent to a term t relative to σ and w. Then Sat(φ ,σ , w) is the satisfaction 

predicate that expresses the satisfaction of φ relative to σ in w. While ⎡φw⎤ express that 

φ is true at world w. 

Denotation of arithmetical terms is defined thanks to: 

1. δσ,w (⎡ni⎤) = σ (⎡ni⎤) 

2. δσ,w (‘0’) = the number zero  

3. δσ,w (⎡S(t)⎤) = δσ,w (t) + 1 

4. δσ,w (⎡(t1 + t2)⎤) = δσ,w (t1) + δσ,w (t2) 

5. δσ,w (⎡(t1 × t2)⎤) = δσ,w (t1) × δσ,w (t2)  

6. δσ,w (⎡#x i(φ(xi))⎤) = the number of zs such that Sat(⎡φ(xi)⎤, σz / [xi], w) 

7. δσ,w (⎡#n i(φ(ni))⎤) = the number of ms such that Sat(⎡φ(ni)⎤, σm / [ni], w) 

Denotation of non-arithmetical terms: 

1. δσ,w (⎡xi⎤) = σ (⎡xi⎤) 

2. δσ,w (‘Caesar’) = Gaius Julius Caesar 

3. δσ,w (‘Earth’) = the planet Earth 

Satisfaction in the system is guaranteed by the formulas below: 

1. Sat(⎡∃ni φ⎤, σ, w) ↔ there is a number m such that Sat (φ, σm / [ni], w) 

2. Sat(⎡∃xi φ⎤, σ, w) ↔ there is a z such that ([∃y(y = z)]w ∧Sat(φ, σz / [xi], w) 
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3. Sat(⎡t1 = t2⎤, σ, w) ↔ δσ,w (t1) = δσ,w (t2) (for t1, t2 arithmetical terms) 

4. Sat(⎡Planet(t)⎤, σ, w) ↔ [δσ,w (t) is a planet]w (for t a non-arithmetical term) 

5. Sat(⎡φ∧ψ⎤,σ,w)↔Sat(φ, σ, w)∧Sat(ψ, σ, w) 

6. Sat(⎡¬φ⎤, σ, w) ↔ ¬Sat(φ, σ, w) 

Trivialist semantics is built for the outscoping technique, an interpretation for 

mathematical discourse that does not lead to commitment to numbers. According to the 

system Rayo proposes, the truth condition of any given statement is a function of the 

truth conditions of non-mathematical statements of the language. This semantics has the 

advantage of mirroring perfectly trivialist thesis.  

The first thing to note is that, in Rayo’s semantics, arithmetic is assumed in the meta-

theory. That is why he makes full and extensive use of mathematical vocabulary in the 

metalanguage and also why trivialist semantics is to be adopted only by someone who 

already accepts mathematical vocabulary. 

The second aspect is that, according to Rayo’s Trivialism, a statement's truth conditions 

depend on the set of consistent scenarios accepted. The actual world takes part of a 

consistent region of logical space, and the determination of truth in the actual world 

entails a specification of truth conditions for every statement in the language.  

Thirdly, it is because mathematical vocabulary never occurs within the scope of […]w 

that Rayo’s semantics leads to trivial consequences: even though mathematical 

vocabulary is used to specify the satisfaction clauses, the terms in the range of w can be 

characterized entirely in non-mathematical terms.  
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The reason is that nothing is required of the world in order to satisfy the truth conditions 

of mathematical statements. All it is needed is to establish a connection between 

mathematical and non-mathematical descriptions of the world. In doing so, the 

consistent scenarios at which the number of the planets is zero turn out to be precisely 

the consistent scenarios at which there are no planets. 

The outscoping technique allows mathematical vocabulary to always occur outside the 

scope of ‘[. . .]w’. Outscoping limits the epistemic resources needed to know if a given 

arithmetical statement would be true at a world w, to knowledge of which non-

mathematical predicates apply to which objects. 

Consider the object-language statement ‘#x(Planet(x)) = 0’. In trivialist semantic, the 

statement will be true at a world w just in case w satisfies the following metalinguistic 

formula: 

the number of zs such that [z is a planet]w = 0 

Since arithmetic is assumed in the meta-theory, all that is required of w in order for the 

metalinguistic formula to be satisfied is that it contains no planets.  

In homophonic semantics, ‘#x(Planet(x)) = 0’ will be true at w just in case w satisfies the 

following metalinguistic formula: 

[the number of zs such that z is a planet = 0]w 

Since arithmetical vocabulary occurs within the scope of ‘[. . .]w’, what is required of w 

in order for the metalinguistic formula to be satisfied is that it contains the number zero, 

and that, at w, zero numbers the planets. 

But, if it is true that for the number of the planets to be zero just is for there to be no 

planets, then the two requirements on w will coincide. So it will be true that all that is 
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required of w to verify ‘#x(Planet(x)) = 0’ is that it contain no planets.  

Recall that in trivialist semantics arithmetical reasoning is used in the metatheory, 

hence, in proving the result, truth of arithmetic is assumed.  

For the case of statements of pure arithmetic, Rayo (2013, page 87) proposes as an 

example the object-language statement ‘1 + 1 = 2’. He then notices that there is no non-

mathematical vocabulary to remain within the scope of ‘[. . .]w’. But if so, the resulting 

formula will have no free variables and will be satisfied by all objects if it is true, and 

no objects if it is false. Since the metalinguistic formula ‘1 + 1 = 2’ is true, it will be 

satisfied by every possible world. And this is exactly the result Rayo aims at reaching: 

an arbitrary truth of pure arithmetic turns out to be true at w independently of what w is 

like, and an arbitrary falsehood of pure arithmetic turn out to be false at w 

independently of what w is like.  

This result seems very satisfactorily, since it maintains the a-causality, absolute 

generality and independence of mathematical objects and knowledge. 

Concerns may be raised regarding the incompatibility of standard semantics and 

trivialist semantics. But there is no contradiction in stating that the truth conditions of a 

mathematical statement are accurately defined both by standard semantics and trivialist 

semantics, because the truth conditions assigned are the same.  

In standard semantics, for the truth conditions of 1+1 = 2 to be satisfied there must be 

numbers. In trivialist semantics, the truth conditions are satisfied no matter how the 

world happens to be. But if, as for Trivialism, the existence of numbers is a trivial affair, 

the commitment to numbers entailed by ‘1+1 = 2’ is trivial too and will be satisfied no 

matter how the world turns out to be. 
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5.5 Is it really trivial?

Rayo  theorizes  Trivialism  as  a  strong  and  expressive  philosophy  of  Mathematics, 

equipping it with powerful argument and astonishing simplicity. 

The central thesis is that, if mathematical statements are true, then they are necessarily 

true.  But  the power and the originality of  Rayo’s argumentation rest  in the way he 

manage  to  understand  the  notion  of  mathematical  truth,  as  necessity  free  from 

commitments with the way the world could be.

For example, if a mathematical statement has trivial truth conditions, and therefore is a 

necessary truth, of course it cannot turn out to be false. But trivialist Platonism starts 

from the assumption that mathematical statements are true and reaches the conclusion 

that they are trivially true. Mathematical statements have trivial truth conditions because 

they carry commitment about mathematical objects, but commitment to mathematical 

objects isn’t commitment at all, because they maintain their truth condition no matter 

how the world turns out to be. 

One of the main challenges for Trivialism is certainly to explain what the point of 

mathematical knowledge is, as it deals with trivialities. Rayo (2013, chapter 7) proposes 

a detailed account of what is to have knowledge in general, and mathematical 

knowledge in particular.  

In a trivialist perspective, nothing is required of the world in order for the truth 

conditions of a truth of pure mathematics to be satisfied. Since truths of pure 

mathematics are necessarily and trivially true, in every possible world, there is no way 

for a world to confirm or disconfirm any pure mathematical statement. Pure 
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mathematical statements are therefore something outside and above any possible world. 

But how such trivialities are known? Rayo suggests to bound the notion of ‘just is’-

statements with the process of cognitive accomplishment. Indeed, accepting: 

DINOSAURS: for the number of dinosaurs to be zero just is for there to be no 

dinosaurs  

is a non-trivial cognitive accomplishment.  

A cognitive accomplishment is the acquisition of information transfer abilities from one 

way for the world to be represented to another way for the world to be represented. And 

this is exactly what cognitive accomplishment in logic and mathematics consists in: the 

information-transfer abilities between different modes of presentation of a given region 

in logical space. 

Indeed, learning mathematics isn’t trivial at all, but truths of pure mathematics are true 

throughout logical space. So cognitive accomplishments in mathematics cannot only 

consist of ruling out ways for the world to be, but is also the acquisition of information-

transfer abilities. 

As a consequence, Rayo suggests that knowledge is fragmented, in the sense that a 

subject can have access to a piece of information for some purposes but not others. In 

Rayo (2013, page 105), a formal model for cognitive accomplishments in logic and 

mathematics is presented through a model for fragmented cognitive state represented by 

the ordered-triple T, b, α with T consisting in the tasks that the subject might be 

involved in. Each task in T will correspond to a different fragment in the subject’s 

cognitive state: b corresponds to the belief-function mapping each element in T to a 

‘belief-state’; and α is the relation that expresses accessibility amongst members of T, 
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while α(t1, t2) captures the fact that the belief-state corresponding to task t1 is accessible 

for the purposes of carrying out task t2. 

Rayo states that the cognitive accomplishments of a subject 〈T, b, α〉 can be modeled as 

updates of the belief-function b, or of the accessibility relation α. Changes in b represent 

changes in the information that is available to the subject of knowledge for the purposes 

of a given task; changes in α represent changes in the subject’s information-transfer 

abilities. 

For example, Rayo shows that deductions are modeled as the acquisition of 

information-transfer abilities since they increase the range of the accessibility relation, 

α. And here he introduces an interesting distinction between pure and applied 

mathematics: in pure mathematics, deductions are acquisitions of information-transfer 

abilities that increase the accessibility between tasks aimed at answering language-

related question concerning the truth of a particular statement; while in applied 

mathematics, deductions increase the accessibility between tasks not solely language-

related. 

Rayo (2013, page 109) explains this by mean of an example: 

[S]uppose φ is a truth of pure mathematics. According to the mathematical 

trivialist, the truths of pure mathematics have truth conditions which are no 

less trivial than the truth conditions of logical truths. So […] the difficulty in 

answering the question is not that it is hard to figure out how things stand 

regarding the question’s subject matter. It has all to do with linguistic 

processing: it is a matter of determining whether the particular arrangement 

of vocabulary in φ results in trivial truth conditions. 
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The case for deductions is particularly interesting since it is constrained by the notion of 

consistency. Indeed, the problem of evaluating the consistency of an axiom system is 

largely a problem of deduction. Rayo is persuaded that the ability to evaluate the 

consistency of a mathematical system will turn on the sorts of deductions available 

within the system. So, the ability to evaluate the consistency of a system coincides with 

the ability to consolidate fragmented information regarding the system. In Rayo’s (2013, 

page 114) words, if the truth of a statement φ is entailed by the truth of the axioms, then: 

any cognitive system that represents the world as being such that the 

relevant vocabulary is used in a way that renders the axioms true and the 

logic classical will thereby represent the world as being such that the 

relevant vocabulary is used in a way that renders φ true.  

5.6 Trivialism, Platonism and Nominalism

Agustìn Rayo (2013) sets up the debate in philosophy of Mathematics along two 

fundamental axes: the existence of mathematical objects on one side, and the 

ontological commitment to mathematical statements on the other. Following the former 

axe, Platonism is the view that mathematical objects exist, while Nominalism is the 

view that there aren’t mathematical objects.  

Following the latter axe, Committalism is the view that mathematical statements carry 

commitments to mathematical objects. According to Non-Committalism, on the 

contrary, the assertion of mathematical statements doesn’t carry any commitment to 

mathematical objects.  
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Thanks to a crosscheck analysis of these two aspects, Rayo presents four possible 

positions: Platonism & Committalism, Nominalism & Non-Committalism, Platonism & 

Non-Committalism and Nominalism & Committalism. The last two positions aren’t 

very common, that is why Rayo focuses on the first two, Platonism & Committalism 

and Nominalism & Non-Committalism. These two are very popular also because they 

have a big advantage over the others: if Nominalism & Non-Committalism delivers a 

good epistemology, denying the existence of abstract and inaccessible objects, 

Platonism & Committalism is more perspicuous in accounting for the reliability 

mathematical discourse. 

Rayo introduces Trivialism in this very framework, attempting to re-establish the debate 

in the framework of a Trivialism/non Trivialism dichotomy. In accounting for 

mathematical knowledge for example, Trivialism has an advantage both if associated 

with Platonism & Committalism and with Nominalism & Non-Committalism, because 

mathematical knowledge is obtained thanks to the same devices used to attain logical 

knowledge.  

Rayo is also convinced that Nominalist & Non-Committalist can’t be trivialist, because 

they don’t endorse a doctrine that assigns to the logical structure of a mathematical 

statement a portion of the structure of reality. Contrariwise, Platonist & Committalist 

can endorse Trivialism, since they offer a matching ontology. But they can be trivialist 

only endorsing a particular type of Platonism, the one that Rayo calls ‘Subtle 

Platonism’.  

The difference between subtle and classical Platonists is that, while the former believe 

that a world with no mathematical objects is possible, and therefore consistent, subtle 
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Platonists believe that such a world would be neither possible nor consistent, because of 

the Zero Argument. As a consequence, while classical Platonists believe that 

mathematical objects exist contingently, subtle Platonists believe that they exist 

necessarily. But if numbers exist necessarily, then the existence of numbers is no longer 

a factual question: in trivialist words, nothing is required of the world in order for the 

truth conditions of a truth of pure mathematics to be satisfied.  

According to Rayo, subtle Platonists have reason to embrace compositionalism, 

expecially because, once they would, there is no pressure for thinking that a mixed 

identity-statement such as ‘the number of the planets = Julius Caesar’ should have well-

defined truth conditions. So Frege’s §66 of the Grundlagen der Geometrie is denied: 

even if the truth value of mixed entities isn’t established, mathematical concept can still 

being defined and characterized.  

Trivialism adheres to subtle Platonism: its main aim is to account for the existence of 

objects and for the triviality of truth conditions for mathematical statements. Even if, 

from a mathematical point of view, no particular reason favors subtle Platonism over its 

rivals, Rayo prefers it for many reasons, the most interesting being that he believes 

subtle Platonism isn’t subject to Benacerraf’s Dilemma.  

In spite of his main thesis and of his defense of subtle Platonism from benacerrafians 

jaws of death, there are several parts in Rayo’s argumentation that lead Trivialism far 

away from what Platonism is traditionally thought to be. Sometimes Trivialism winks 

directly even to nominalism. For example, there is more than one point in common 

between ‘just is’-statements and some classical nominalist tool, like paraphrases. Much 

of nominalist work was done in order to deliver a reliable way of rephrasing 
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mathematical statements so that it doesn’t require a way the world to be for the 

statements to result true. And funny enough, is precisely a philosopher admittedly 

Platonist to find one of the most effective solution to a nominalist problem. 

Rayo proposes to imagine a Platonist interested in understanding which is the 

nominalist content Nominalism wishes to associate with mathematical statements. The 

Platonist accepts mathematical vocabulary and can adopt trivialist semantics. This 

semantics is able to outscope the content of mathematical statements, reading just their 

trivialist content, from both the actual and the possible worlds.  

As a result, trivialist semantics transforms our ability to engage in mathematical practice 

into an ability to identify uncontroversially determinate truth conditions for 

mathematical statements. 

But the Platonist may also be interested in seeing if the operation of carving off trivial 

contents from mathematical statements delivers interesting result. The Platonist 

understands the outscoped semantic clause corresponding to each mathematical 

statement as a result of carving the mathematical part from the relevant claim. 

Rayo also points out that two main results are obtained from the application of trivialist 

semantics with its outscoping techinques to Nominalism. First, Nominalism can use 

paraphrases obtained through ‘just is’-statements for extract nominalist contents. And 

consequently, the notion of nominalist content achieves a rigorous definition that can be 

used to address serious philosophical concerns. For example, which mathematical 

claims are relevant for one’s knowledge of the world. Indeed, a trivial mathematical 

claim like DINOSAURS imposes non-trivial demands on the actual world. But can also 

be used to deliver a rigorous theory of mathematical Nominalism. 
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To settle the argument in a trivialist way, I wonder if Rayo would accept the following 

‘just is’-statement:  

TRIVIALISM AND NOMINALISM: For the world to satisfy the nominalist 

content of a given mathematical statement just is for the world to satisfy the 

truth conditions that would be assigned to a statement by a trivialist 

semantic theory.  

5.7 Trivialism and Neofregeanism

Trivialism winks to Logicism and Neofregeanism, so explicitly that it can be seen as a 

vindication of Logicism. Sure enough, Trivialism delivers a convincingly way to reach 

the result that pure mathematical truths have the same conditions of satisfiability of pure 

logical truths. They are trivially satisfiable. In the same way, pure mathematical 

falsehood have the same truth conditions of pure logical falsehoods, that is to say that 

there is no way to satisfy them. 

The most interesting consequence of this new shed of trivialist’s light on Logicism is 

that, as Rayo points out at page 26 of Nominalism, Trivialism, Logicism :  65

Admittedly, one also gets the result that a truth of pure arithmetic can carry 

commitment to numbers. But because the existence of numbers is a trivial 

affair, there is room for thinking of numbers as ‘logical objects’, as in 

Frege’s Grundgesetze. 

Rayo dedicated another recent work to Trivialism and Neofregeanism, Neofregeanism 

Reconsidered, published in 2011.  

 Rayo, Agustìn, (2014), “Nominalism, Trivialism, Logicism” in Philosophia Mathematica;65
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In this work, Rayo rephrases Neofregeanism’s main thesis, Hume’s Principle, and gives 

it a trivialist interpretation. 

Once Hume’s Principle delivers an implicit, satisfactory definition of #x(F(x)), its truth 

is knowable a priori and referents of number terms exist and are such as Platonism 

describes them.  

As Rayo distinguishes between subtle and classical Platonism, he proposes to 

distinguish also between subtle and classical Neofregeanism. Subtle Neofregeanist 

wouldn’t rest content with the acceptance of Hume’s Principle, but they would also 

accept it as a ‘just is’-statement:  

#x(F(x)) = #x(G(x)) ≡F,G F(x) ≈x G(x) 

HUME’S PRINCIPLE: For the number of the Fs to equal the number of the 

Gs just is for the Fs to be in one-to-one correspondence with the Gs. 

As for the subtle Platonist who accepts NUMBERS, the first consequence of accepting 

HUME’S PRINCIPLE is that a world in which there are no numbers is inconsistent. 

This is proven thanks to a light modification of the Zero Argument: trivially, objects, 

say planets, are in one-to-one correspondence with themselves. But for the planets to be 

in one-to-one correspondence with themselves just is for the number of the planets to be 

self-identical. So numbers exist after all.  

On the other side, classical neofregeanists accept Hume’s Principle but don’t accept 

HUME’S PRINCIPLE, resisting the idea of the impossibility of a world with no 

numbers, if Hume’s Principle isn’t expressed in a free logic. Otherwise, the existential 

import of Hume’s Principle will sacrifice its analyticity. 
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Rayo suggests that Neofregeanists, first of all Frege, are in the very end subtle 

Neofregeanists. Arguing in favor of this thesis, he proposes to read abstraction 

principles in terms of ‘just is’-statements. So, the famous principle of direction in 

Frege’s Grundlagen §64 becomes: 

PARALLEL: For the direction of line a to equal the direction of line b just is 

for a and b to be parallel. 

Recall that ‘just is’-statements are the result of the act of carving, of delimiting the 

logical space in ways that represent the way the actual world is. And Frege have often 

refer to the very operation of content-recarving discussing abstraction principle, as 

pointed out also in Rayo (2011, page 13). 

In last analysis, Trivialism reveals to have in store several approaches that can be 

helpful and ease Neofregeanist’s pursuit of a consistent way of deducing mathematical 

truths from logical truths.  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“Philosophy, like all other studies, aims primarily at knowledge. The knowledge it aims 
at is the kind of knowledge which gives unity and system to the body of the sciences, and 

the kind which results from a critical examination of the grounds of our convictions, 
prejudices, and beliefs. But it cannot be maintained that philosophy has had any very 
great measure of success in its attempts to provide definite answers to its questions. If 

you ask a mathematician, a mineralogist, a historian, or any other man of learning, 
what definite body of truths has been ascertained by his science, his answer will last as 

long as you are willing to listen. 
But if you put the same question to a philosopher, he will, if he  

is candid, have to confess that his study has not achieved positive results such as have 
been achieved by other sciences. It is true that this is partly accounted for by the fact 

that, as soon as definite knowledge concerning any subject becomes possible, 
this subject ceases to be called philosophy, and becomes a separate science.” 

  
RUSSELL, BERTRAND, (1912), The Problems of Philosophy, page 185 
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Chapter 6: Concluding Remarks 

6.1 Sober Platonism

In section 1.5 I proposed a preliminary definition of Sober Platonism as the trend in 

mathematical platonism characterized by a descriptive attitude towards the content of 

philosophical reasoning. In the case of mathematical platonism, towards mathematical 

objects.  

Moreover, I suggested that the ontological commitment endorsed by Sober Platonism is 

softer than the one endorsed by classical Platonism, thanks to the appeal to several 

arguments demonstrating that a world without mathematical objects wouldn’t be 

consistent. But Sober Platonists don’t rest content of having demonstrated that a world 

without mathematical objects would be inconsistent. They also hypothesized that, even 

if such a world would be consistent, rejecting mathematics for philosophical reasons 

wouldn’t be acceptable in any case. That is one of reason why I characterized Sober 

Platonism as the attitude in philosophy of mathematics that aims at understanding and 

interpreting mathematics as practiced, without imposing any philosophical argument. It 

will be absurd to make such an imposition, as the following words by Lewis (1993, 

page 15) caustically affirms: 

I laugh to think how presumptuous it would be to reject mathematics for 

philosophical reasons. 

Philosophy is a way of thinking that can be applied to itself, but is mostly applied to 

something else, as in the case of philosophy of science, inflected in philosophy of 

biology, of medicine and so on, but also of philosophy of history, philosophy of 
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psychology and much more.  

I am persuaded that the attitude of philosophy towards the other discipline has a 

prominent influence on the quality of the results philosophy can obtain. If philosophical 

reflection takes on a too normative behavior, it runs the risk of nullifying the 

significance of any hypothetical result such reflection can reach. The reason is that this 

hypothetical result could be legitimately charged because its subject had become very 

far from the original. To be more clear, a too normative philosophical approach runs the 

risk of drifting apart from the real subject of philosophical reflection. This point seems 

to echoe the worlds used by Russell in Logical Atomism , page 339: 66

We shall be wise to build our philosophy upon science, because the risk of 

error in philosophy is pretty sure to be greater than in science. If we could 

hope for certainty in philosophy the matter would be otherwise, but so far as 

I can see such a hope would be chimerical. 

There is no need to specify that philosophical reflection about something different from 

philosophy, mathematics for example, is not mathematics and it will never be. But, if 

philosophers of mathematics are too impositive and normative towards mathematics, 

their reflections will distance too much for having any possibility of grasping the 

philosophically interesting aspects of mathematics. 

The four theories I have analyzed and characterized as Sober Platonism all are very well 

attentive of not crossing the risk-threshold. That is way they behave so soberly and 

embrace the general descriptive attitude towards mathematics.  

I have recognized some common characteristic all the four theories manifested that, in 

 RUSSELL, BERTRAND, (1924) Logical Atomism, in Logic and Knowledge, ed. R.C. Marsh. London: 66

Allen & Unwin, 1956.;
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my analysis, play an important role in their sobriety. All this characteristics are evoked 

and extensively analyzed in the rest of this chapter, but let me briefly say a word on 

each of them here. 

First, they all have a special consideration for mathematical language. In particular, 

Sober Platonism understands mathematical language as the most important way in 

which mathematics is known, rather than as a mean through which mathematics is 

expressed. If mathematical knowledge is knowledge by description (see section 6.4), 

then the tool needed for description, i.e. language, is the tool needed for knowledge. For 

instance, in Shapiro’s theory, mathematics is known through language because human’s 

knowledge has a linguistic feature. Also Zalta’s distinction between encoding and 

exemplifying is just a difference in meaning, but with great consequences, since it 

accounts for the development of a precise definition of two different ways in which 

objects can exist. 

Secondly, none of them felt the need to extensively justifying their ontological 

assumptions. The reason is that, according to Sober Platonism, the existence of 

mathematical objects is no more under discussion, and for two very simple reasons. The 

first is that Sober Platonists take the existence of mathematical objects as a consequence 

of a brute fact: mathematical knowledge occurs. That is why Sober Platonists are way 

more interested in finding a way to fashion mathematical objects so to explain how 

mathematical knowledge obtain, than in justifying their ontological assumptions. And 

this means also that Sober Platonists are inclined to undertake some path that could be 

seen as philosophically unorthodox, like the explicit violation of the principle of 

ontological parsimony entailed by the adoption of plenitudinous ontologies, for which I 
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refer to section 6.3. 

The second reason is that Sober platonists are persuaded that the existence of 

mathematical objects would not bring any additional information on them. Indeed, both 

ordinary speakers and mathematicians don’t care much about the ontology of 

mathematical objects, and perceive the questions on their existence as irrelevant for the 

content of their mathematical statements, at least during non-philosophical 

conversations.  

If the existence of mathematical objects would not bring any additional information on 

them, spending too many efforts in committing with their existence will not take 

philosophy of mathematics anywhere. On the contrary, taking the existence of 

mathematical objects as a datum derivable from the observation of linguistic behaviors 

of ordinary speakers and mathematicians, and developing a philosophical justification 

of it, could lead to fruitful fields for philosophy of mathematics, as Sober platonists 

theories revealed. 

At third place, Sober Platonists share a positive attitude in regards of the embracement 

of non-uniqueness in reference. Beware that what is characterizing of Sober Platonism 

is not the embracement itself, but the approach to the embracement. Indeed, as a 

consequence of Benacerraf’s Dilemma, non-uniqueness in reference for mathematical 

statements is widely accepted among philosophers of mathematics. But Sober Platonist 

embraced it not as an unlucky concession to the Dilemma, but as a philosophically 

welcomed and fruitful approach (section 6.4.3).  

Fourthly, the source of mathematical knowledge is individuated by all Sober Platonists 

in logical knowledge. Even if this idea isn’t that new (just think about Logicism), Sober 
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Platonism understands the way in which mathematical knowledge arises from logical 

knowledge in new and persuading way. Mostly, logic and language are the source of 

mathematical knowledge. But Sober Platonists proposed several theories of knowledge 

that take into account the epistemological and neurological processes through which the 

human mind achieves mathematical knowledge. The resulting picture of mathematical 

knowledge is very connected and influenced by the way humans’ attain it. As a 

consequence, mathematical knowledge depends at least partially by humans’ 

mathematical reasoning. This could weaken the independency of mathematical objects, 

but Sober Platonists, through the development of new accounts of mathematical 

independency and mathematical knowledge, can save the objectivity of mathematics 

and keep endorsing Independence (section 6.4.2). 

In the rest of this chapter, I will analyze Sober Platonism, following the analysis of 

classical Platonism I did in chapter 1. Theoretically, it is possible to compare classical 

Platonism and Sober Platonism by comparing the way in which the two theories 

endorse the three general theses of Platonism, i.e. Independence, Existence and 

Epistemology.  

6.2 Independence

Independence: the independence of mathematical realm from anyone’s thought 

and practice.  

Sober Platonism endorses a slightly modified version of Independence. The differences 

introduced are meant to overstep the problems involved by the classical version of the 

thesis. In particular, the challenge is to preserve the authenticity of mathematicians’ 
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enterprise but maintaining the knowability of mathematical objects. Hence, Sober 

Platonism aims at accounting for the objectivity of mathematical statements and 

explaining how mathematical knowledge is attained.  

In order to reach its goals, Sober Platonists developed mainly two strategies. The first 

strategy is to assume Independence, but providing a sort of cross-realm portal through 

which obtaining access to mathematical knowledge. The cross-realm portal is supplied 

by logical knowledge, as in the case of Full-Blooded Platonism (henceforth FBP). 

According to Balaguer’s account, mathematical objects exist independently, and in 

theory there is no way to access to mathematical knowledge. Notice that the assumption 

of the independent existence of mathematical objects serves the only concern of 

guaranteeing reference and theoretically objective truth conditions to mathematical 

statements. Therefore, if there exist all logically possible mathematical objects, no 

matter how and where, its sufficient to think about such objects in order to attain 

knowledge of them. Moreover, the mathematical terms will refer to logically possible 

mathematical objects, whose existence is guaranteed by the ontological assumption. 

If it sounds difficult to get this through your mind, imagine a world whose inhabitants 

can only access to empirical knowledge, or also a world in which nobody knows of any 

mathematical theory if it is logically consistent. In such worlds, there is no way for 

anybody to ever get a piece of mathematical knowledge, but mathematical objects will 

keep existing. Therefore, Independence is maintained. 

The second strategy developed by Sober Platonists is to enrich the formulation of 

Independence. This is the strategy followed by ante rem Structuralism, Objects Theory 

and Trivialism.  
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In ante rem Strucutralism, the independence of mathematics resides in its 

freestandingness. As I already explained in section 3.3, mathematical structures are 

freestanding because their existence is independent on the existence of the objects that 

occupy the places in structures. In other words, it is not relevant if a structure is 

exemplified or not, because structures exist independently from the existence of any 

objects exemplifying them. As a result, the existence of structures is not only 

independent on anyone’s thought, practice or language, but even from the existence of 

everything else. If the world wouldn’t have existed, structures would have existed in 

any case. 

The formulation of Independence delivered by Zalta is different: according to him, the 

existence of objects is dependent on the existence of theories, in their turn dependent on 

the existence of their author. Prima facie, this seems to suggest that Independence is 

denied. But the impression is false. Indeed, Zalta endorses Independence in regard of 

abstract objects. In his account, abstract objects, before than mathematical objects, exist 

independently from anyone’s thought and practice. His assumption is both stronger and 

weaker than the assumption of classical platonism: it is stronger because it assumes that 

abstract objects exist necessarily in every possible world; and it is weaker because it 

assumes that mathematical objects are not the same in every possible world, even if they 

would exist as abstract objects.  As a result, in Zalta’s account, abstract objects are prior 

to mathematical objects. 

The choices mathematicians make in the actual world drive them to the formulation of 

(actual) mathematical theories, among all the possible mathematical theories, namely 

those theories that can be formulated starting from each abstract object. Therefore, in 
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Zalta’s perspective, mathematics is contingent: what constitutes mathematics depends 

on  each  and  every  world;  but  it  is  not  contingent  what  kind  of  abstract  objects 

mathematical objects are. Indeed, not every kind of object can be a mathematical object, 

only abstracts can. And abstract objects remain the same from world to world. Thereon, 

the  collection of  every possible  mathematical  objects  remains  the  same and remain 

independent on worlds, mathematicians or applications. 

Rayo’s  formulation  of  Independence  is  logical  first  than  metaphysical.  Indeed, the 

independence of mathematical realm from anyone’s thought and practice is expressed as 

the impossibility for anything in the world to influence the truth-values of mathematical 

statements. The reason is that nothing is required from the world for the truth-value of 

mathematical statements to be satisfied. Hence, the existence of mathematical objects 

and  their  independence  is  nothing  but  a  consequence  of  the  independence  of 

mathematical statements’ truth-value from any non-trivial affair. 

Rayo is committed also with metaphysical independence, since he claims that worlds 

with no number would be inconsistent by mean of the Zero Argument. Notice that the 

kind of inconsistency Rayo refers to here is inconsistency de mundo . 67

As it may be evident, also the second strategy makes extensive appeal to logic 

The strategies developed by Sober Platonism are not confuting Independence, but they 

are rather enriching it with notions that makes it more lined up with mathematics. 

Mathematics is a brute fact, not only independent, but almost stolid: there is no way the 

world can be that could ever have any influence on mathematics, because of the very 

nature of mathematics.  

 See section 5.3.1 for the difference between inconsistency de mundo and inconsistency 67

de repraesentatione in Trivialism.

!220



In doing so, Sober Platonism is able to guarantee to mathematics its distinctive a priori 

character and a proper domain mathematicians can discover by mean of the very 

intellectual mean used for every kind of scientific enterprise, namely logical reasoning. 

In conclusion, Sober Platonism appeals to logic both for justifying the independence of 

mathematics as a form of logical reasoning, and for providing a way to access 

mathematical knowledge. 

6.3 Existence

Existence: the existence of mathematical objects as abstract objects.

Existence is the platonist thesis Sober Platonists are less likely to support as it is 

supported by classical Platonism. The reason is mainly that in Sober accounts the 

existence of mathematical objects is not any more under discussion, since, according to 

them, there is no fact of the matter as to whether numbers exist. The existential claims 

are shifted to logic and coherence becomes the criterion for existence. What Sober 

platonists are rather investigating is what mathematical objects could possibly be.  

For this reason, Sober Platonist is actually endorsing Existence, but only after having 

interpreted and modified it, both in the linguistic and in the logical side, so to weaken 

the intensity of the resulting ontological commitment. Recall that such appeal to 

language interpretation is one of the distinctive features of Sober Platonism. Moreover, 

that the philosophical interpretation of mathematics is one of the main purpose of Sober 

Platonism, as it makes extensive appeal to mathematical language and the way in which 

it is used by mathematicians. 
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Language and ontological commitment are deeply interlocked in philosophy, especially 

in the platonist side. From a strictly philosophical point of view, ontological 

commitment serves the concern of guaranteeing the meaningfulness of mathematical 

statements. Theoretically, every term that composes a true statement has to refer not 

vacuously for the entire statement to be true and meaningful. If mathematical statements 

are true and meaningful, there must be some kind of relations between the mathematical 

terms and the objects they refer to. But if there must be a relation between terms and the 

objects the terms refer to, such objects must exist in some sense.  

The ontological commitment carried by language is interpreted by Sober Platonists so to 

result less strict and straightforward. The reasons behind this need of softening 

ontological commitment is primarily motivated by sober platonist’s efforts for 

resembling as close as possible mathematics as practiced. Accordingly, Sober 

Platonism’s aims isn’t only to interpret mathematics and its language, but also to 

provide a philosophically rigorous language that is also capable of delivering the most 

accurate description of mathematics as practiced. 

For this reason, Sober Platonism makes use of a theory of ontological commitment that 

accounts for different kinds of relations between the way the world is represented and 

the way the world is. Here I’m referring to Balaguer’s adoption of Hodes’ theory on thin 

and thick ontological commitments. The thick one is a proper commitment, because it 

requires an actual connection between terms and the objects they refer to, so to have 

knowledge of the true conditions of the statements containing the term. On the opposite, 

thin commitment isn’t requiring any kind of relation between terms and objects: 

statements thinly committed with objects must be consistent in order to be true, or 
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contradictory so to be false. But in no way the thin commitment requires the existence 

of the objects to commit with. For further details, see Balaguer’s use of thick and thin 

commitment in section 2.2.2.  

Balaguer’s adoption of thick and thin commitment is very similar to Zalta’s distinction 

between exemplification and encodement. Being more a linguistic than an ontological 

matter, what the distinction ultimately does is supplying a language for predicating two 

types of existence to objects, and so defining two different ways in which objects may 

exist. But it doesn’t mean to involve any ontological commitment to any kind of 

existence. Zalta is not stating that there exist abstract objects. He is rather stating what 

abstract objects are and how it is possible to speak of them in rigorous terms. 

Indeed, the distinction between encoding and exemplifying has been introduced with 

the sole goal of providing the linguistic skills needed to translate existence claims from 

natural  language  in  rigorous  way.  In  addition,  these  two  ways  of  translating  the 

predicate of existence are useful in the description of abstracts objects, that are precisely 

defined as the complement-set of the set of possibly existing objects on the domain of 

objects (see section 4.4). 

Sober Platonism so provides a less ontologically committing interpretation of the  

platonist commitment to mathematical objects. Even  more  explicitly,  Agustìn  Rayo 

reaches the conclusion that no ontological commitment at all is needed. All one have to 

do is just to enlarge mathematical language, so that it would be possible to fully express 

mathematics. Notice that, in Rayo’s account, extending the language supplies additional 

linguistic resources that allow trivialists to describe the mathematical world with much 

more details and rigor. Nevertheless, it wouldn’t extend or change what philosophers 

!223



have to be ontologically committed with, for a reason that will be specified in the 

following lines. 

Sober Platonism also assumes the coherence of mathematical theories as the criterion 

for the existence of the objects they describe. The result is that its ontology will count a 

huge amounts of objects, so it has to adopt plenitudinous ontologies. But such 

ontologies are often charged because of their lack of ontological parsimony. Taking a 

closer look to the objection, it is easy to see that Sober Ontology will rest content with a 

small number of type of objects, once it has at disposal a big number of tokens. Sober 

Platonists’s idea is that, since the domain of possible mathematical objects is considered 

as the real domain of mathematics, every possible type of mathematical objects is to be 

included in mathematical ontology. Accordingly, ontological parsimony is maintained, 

since Sober Platonists argue that ontological parsimony demands to limits the kind of 

entities  one  posits,  not  their  number.  That  is  why,  in  Rayo’s  theory,  extending  the 

language isn’t extending the world: because the world has already reached its maximum 

size. Extending the language would at least be a matter of tokens, not of types.

Balaguer and Zalta are both far from considering plenitudinuousness of objects as not 

ontological parsimonious. Indeed, in order to satisfy the constraints of ontological 

parsimony, as few objects as possible must be added to the domain in a non-arbitrary 

way. But if it is so, in their account of abstract objects the only way to add as few 

objects as possible in a non-arbitrary way is to add all possible abstract objects.  

As a consequence of the openness to plenitudinous ontologies, Sober Platonists also 

accepted to give up the existence of one and privileged metaphysical structure and the 

uniqueness in reference for mathematical terms (see section 6.4.2). Once the 
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fundamental role of language in mathematics is taken into serious consideration, it 

becomes evident that there  can’t  be  an  objective  language-independent  fact  of  the 

matter about whether there are numbers. Moreover, from a strictly mathematical point 

of view, the question about the existence of numbers would not bring any additional 

information  on  them.  It  is  philosophy  who  need  to  account  for  their  existence. 

According to mathematics, the existence of mathematical objects is just an undeniable 

fact.  

It is also worth analyzing how Zalta and Linsky described abstract objects in 

‘Naturalized Platonism vs Platonized Naturalism’ : as a first condition, they posit that 68

abstract  objects  can’t  be distinguished by the distinction between apparent  and real. 

Abstract objects participate with a very thorny type of existence: at least intuitively, if 

something belongs to the category of appearance, it is not really existing, it is not part of 

reality. And indeed abstract objects exist as not being part of what (concretely) exist. 

The second condition is that the characterization of abstract objects takes place thanks 

to the comprehension principle; therefore, nothing empirical can affect the existence of 

abstract object. The third condition is that abstract objects are fully defined: for every 

property,  they  either  possess  it  or  its  negation. This means that abstract objects are a 

plenum: if they are to be described by their properties, and the comprehension principle 

guarantees that there is an abstract object for every group of properties, then there are as 

many abstract objects as there could possibly be. Notice that in this regards, the 

ontology provided by Objects Theory is very consonant with FBP’s commitment with 

the existence of all logically possible mathematical objects. 

 LINSKY, BERNARD, ZALTA, EDWARD, (1995), “Naturalized Platonism vs Platonized 68

Naturalism”, Journal of Philosophy vol. 92, pp. 525-555;
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A few words are worth to be spent also in the topic of objecthood. In mathematical 

Platonism  there are two trends for what concern the kind of entities numbers are: either 

they are objects, or they are something else. Sober Platonism doesnt’ involve the 

endorsement of a specific position on the dispute: some sober platonists adopt object-

platonism, some don’t. But Sober Platonism delivers ineresting analysis of the dispute. 

For instance, in Rayo’s account, what seems to be a metaphysical question reveals to 

have much to do with language. Indeed, Rayo points his finger to the ability of 

languages to use singular terms, charging it of being the solely reason behind the fact 

that mathematicians are used to describe mathematical theories in terms of objects. 

Shapiro’s ante rem Structuralism can be considered object-Platonism only if 

mathematical structures are given the status of objects. Indeed, since mathematical 

objects occupy places in structures in the places-are-offices way, it could seem that 

Structuralism endorses a very bizarre conception of objects, if it doesn’t deny it at all, 

since it is ontologically committed only with the existence of structures. Therefore, it 

only aims at guaranteeing the existence of the structure of natural numbers, not the 

natural numbers as individual objects. It is exactly this the very sense of ante rem 

Structuralism: natural numbers aren’t individual objects you can commit to.  

Rather, they are a structure that can be exemplified but several systems, none of them 

being in any way the natural numbers. At least, such systems will represent the structure 

of natural numbers. But structuralism is definitely not committed with the existence of 

mathematical objects, in a classical theory of objects. Nevertheless, some attempts to 

reduce Structuralism to object-platonism have been made, for example by Mark 

Balaguer (see section 2.1). 
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In conclusion, sober ontology is very oriented towards mathematics, whether it deals 

with structures or with objects or, in theory, with other kinds of entities. That is why it 

works very satisfyingly in mathematics, but I would not say that it could work as well 

as it does for mathematics in other branches of ontology. As far as I can see, Sober 

ontology is tailor-made on mathematical platonism, and it fits very comfortably on it. 

Nevertheless, sober approaches could work extremely well also with other kind of 

abstract objects, if they would be readjusted to fit with new subjects.

6.4 Epistemology

Epistemology:  the  successful  reference  and  knowability  of  mathematical 

statements.

According to Sober Platonism, Epistemology comes as a brute fact, rather than as an 

assumption. The success, and even more so the possibility, of mathematical knowledge 

is right there in front of everyone. Therefore, the role of philosophers is here more than 

descriptive, its apologetic. If the aim of Sober ontology is to fashion abstract objects so 

to make possible the explanation of how cognitive subjects have epistemic access to 

them, the role of Sober epistemology is to explain how cognitive subjects succeeded to 

have epistemic access to them.  

Ultimately, the challenge is to achieve a connection between bearers of relevant 

mathematical beliefs and constituents of relevant mathematical facts. This challenge is 

accomplished by Sober Platonism thanks to the formulation of a theory of knowledge, 

disclosing how humans attain reliable mathematical knowledge, a theory of truth, that 

guarantees the truth of mathematical beliefs, and a theory of reference, so to make clear 
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how mathematical statements are bounded to mathematical facts. Hence, the  outline  I 

followed for Epistemology in classical platonism in chapter 1 is maintained here, and 

the  main  thesis  is divided in three sub-theses:  Theory  of  Knowledge,  Truth  and 

Reference.

6.4.1 Theory of Knowledge

Theory of Knowledge: mathematical knowledge is possible. 

Sober Platonism is open to a great variety of theories of knowledge, on condition that 

the source of at least part of mathematical knowledge is logical knowledge.  

As I have already stressed several times, logic has an essential role in Sober Platonism, 

both as the source of mathematical knowledge and as the mean through which humans 

overstep the distance between the empirical and the mathematical realities, so to access 

to mathematical knowledge. Having said that, Sober Platonists developed a rich range 

of theories of knowledge, but mainly in the trend of knowledge by description. 

Nevertheless, Zalta’s appeals to knowledge by acquaintance might be misleading and 

prompt that mathematical knowledge can also come from acquaintance in Sober 

Platonism. In the following, I will explain why Zalta’s theory of knowledge, and Sober 

Platonists’ in general, are to be seen as both suggesting a theory of knowledge by 

description. 

First of all, let me state that Zalta is not particularly concerned about developing an 

articulated theory of knowledge. He mainly claims that humans attain knowledge of 

mathematical objects simply by becoming acquainted with them through the 

comprehension principle. Such comprehension principle is synthetic and a priori and, 
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thanks to it, for every condition on properties there is an abstract object that encodes 

just the properties satisfying the condition.  

Even if it seems straightforward that Zalta’s theory of knowledge appeals to 

acquaintance, it must be kept in mind that the acquaintance comes from the 

comprehension principle. And the comprehension principle works with nothing but 

definitions. Intuitively, definitions and descriptions are different just because it is 

possible to define objects that don’t exist, while description seems to require the 

existence of the objects of description. But once the definition of an object is the 

sufficient condition for its existence, at least as abstract object, this distinction looses 

significance, if it doesn’t collapse. In particular, becoming acquainted with an object 

consists in understanding its descriptive condition. Therefore, Zalta’s theory of 

knowledge reveals at most a mixed identity between acquaintance and description. If I 

were asked which of the two processes is subordinate to the other, I would answer that, 

as far as I see, description is definitely antecedent to acquaintance. Indeed, the first 

piece of mathematical knowledge is the comprehension principle, that is a definition of 

objects. Only thereafter and through the descriptions provided by the axioms, human 

mind starts grasping complete, necessary and a priori knowledge of mathematical 

objects.  

Contrary to Zalta, Mark Balaguer purports explicitly a theory of knowledge by 

description. But in order to see how it works, the existence of the objects of knowledge, 

i.e. mathematical objects, must be firstly assumed. From this assumption, Balaguer 

derived that, since all the mathematical objects, which possibly could exist, actually do 
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exist, is sufficient to coherently define a mathematical object to attain reliable 

knowledge of  it. 

The identification of the meaning of ‘possible’ with ‘logically possible’ allows to 

assume the existence of all logically possible objects and supplies a reference for each 

and every consistent definition of mathematical objects. As a result, mathematical 

knowledge turns out to be exactly this: the ability to discriminate between mathematical 

consistency and inconsistency. And since humans have this ability, they can access to 

knowledge of mathematical objects simply by providing them with a consistent 

definition. Therefore, mathematical knowledge seems to consist more of competence 

than informations. Mathematical theories are the result of the application of this 

competence, namely the ability to discriminate between consistency and inconsistency. 

Its proper field is therefore all logically possible objects, obtained as the outcomes of 

performing the ability to discriminate consistency and inconsistency. 

As satisfying at this could seem, it is still under the assumption that the objects of 

mathematical knowledge exist. But how this assumption can be justified? I already 

explained in section 2.2.2 of this work that Balaguer succeeds in identify his assumption 

with the assumption that exist a physical world that give raise to accurate sense 

perception. Thereon, he identifies sense perception with the ability to discriminate 

consistent from inconsistent theories. Ultimately, he shows that both aren’t able to 

justify the assumption that the objects of mathematical knowledge exist and the objects 

of empirical knowledge exist.  

What I want to state here is that, even if Balaguer’s assumption is reduced to an 

externalist perspective, and thereon also Anti-platonists are puzzled, two clues aren’t a 
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test. Proving that there is no evidence of the reliability of sense perception in human’s 

forming of beliefs about the physical world doesn’t prove anything about the 

effectiveness of assuming the existence of all logically possibile mathematical objects 

on the reliability of beliefs about these objects. Rather, it places two problems instead of 

solving one.  

In my perspective, this is the biggest limit of Full-blooded Platonism, especially 

because it shows that the only result obtained by a huge and compromising ontological 

assumption is showing that humans’ beliefs about the external world are as reliable as 

the ones about mathematical objects. But the point I want to stress here is that the 

external world is made by concrete objects we collectively perceive, while the 

mathematical realm is made by abstract objects, we can at least collectively hypothesize 

and try to describe. 

In accordance with FBP theory of knowledge, Shapiro’s Structuralism assumes that 

mathematical knowledge comes from implicit definition, understood as the ability to 

simultaneously and coherently characterize a number of items through their relations to 

each other. Even in this case, the connection with mathematical language and 

mathematicians’ linguistic habits is very explicit.  

Recall also that the possibility to coherently define a structure isn’t only a necessary and 

sufficient condition for attaining knowledge from it, but it is also the condition under 

which it exists. Since the ability to coherently discuss a structure is evidence for the 

existence of the structure, it is the language that characterizes and determines a 

structure. And it is again through the use of language that structures are known. 
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The satisfaction of the two requirements Shapiro imposes on implicit definition is the 

condition of possibility of mathematical knowledge. The first requirement guarantees 

that at least one structure satisfies the axioms. In doing so, Shapiro pledges that 

mathematical knowledge is always knowledge of something, again by the inference 

from the ability to coherently discuss a structure to the existence of the structure. The 

second requirement guarantees that implicit definitions can describe at most one 

structure each, up to isomorphism. In this way, knowledge of structures is determinate, 

and so it is also reference to it. 

Mathematical knowledge is by definition also in Rayo’s account. Indeed, knowledge 

occurs through the definition of the set of ‘just is’-statements accepted in a determinate 

world. The acceptance of ‘just is’-statements is never completely independent from 

empirical matters, but some ‘just is’-statements are more tied to logical aspects than 

others. Those ‘just is’-statements are the ones that concern Logic and Mathematics. As a 

result, mathematical knowledge doesn’t turn out to be completely a priori in Trivialism, 

since the process of determining the set of ‘just is’-statements accepted is logical and, at 

least partially, empirical. For further details on the acceptance of set of ‘just is’-

statements, see section 6.4.1. 

Rayo bounds the notion of ‘just is’-statements with the process of non-trivial cognitive 

accomplishment, i.e. the acquisition of information transfer abilities from one way for 

the world to be represented to another way for the world to be represented. Therefore, 

the acquisition of mathematical knowledge occurs as the acquisition of information 

transfer abilities between different modes of presentation of a given region in logical 

space. And the regions of logical space are determined by the definition of the set of 
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‘just is’-statements that holds in accordance with mathematical theories. Hence, 

mathematical knowledge resides in the process decision mathematicians take while 

accepting the ‘just is’-statements that concern mathematics. 

In conclusion, the analysis of the different theories of knowledge proposed by Sober 

Platonists makes evident the importance of the role of mathematical language in 

attaining mathematical knowledge. Mathematical knowledge consists in the ability to 

discuss mathematical theories and their coherence, both internally and in relation with 

others mathematical theories. This ability also guarantees the existence of the objects of 

knowledge in accordance with the endorsement of Existence. 

6.4.2 Truth

Truth: mathematical knowledge is knowledge of truth. 

Sober  Platonism  endorses  Truth  without  any  extensive  transformation.  That 

mathematical knowledge results in knowledge of truth is widely accepted by any Sober 

Platonist. Nevertheless, they provide Truth with a notion of truth that is highly original 

and of great interest from a philosophical point of view. 

First  of  all,  truth  is  always  understood  as  context-sensitive,  maily  because  of  the 

adoption of non-uniqueness in reference and plenitudinous ontologies. 

Secondly, from the adoption of coherence as the criterion for existence, the difference 

between  coherentism and  correspondentism in  truth-theory  crumbles:  if  a  theory  is 

coherent,  i.e.  it  does not  lead to contradiction,  then the objects  it  talks  about  exist; 

hence, the terms contained in its theorem refer to existing objects. But if it is so, there 

also  is  a  correspondence,  even  if  not  uniquely  determined,  between  mathematical 
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theorems and mathematical objects. Notice that correspondence holds as nothing but a 

lucky  outcome  of  the  choices  Sober  Platonist  did  in  settling  truth-theory  and  the 

criterion for existence. What I mean is that correspondence isn’t replacing in anyway 

coherence as the criterion for truth of mathematical statements. Rather, it is reinforcing 

the  power  or  coherence  as  the  criterion  for  truth  (and  existence).  Indeed, 

correspondence doesn’t only explain truth, but it also justifies and guarantees objective 

truth. 

As a paradigmatic case, consider ante rem Structuralism. According to it, the criterion 

for  existence  is  coherence.  Moreover,  mathematical  knowledge  is  the  ability  of 

coherently  discuss  a  mathematical  structure.  Therefore,  a  mathematical  truth  is  a 

coherent use of mathematical language whose content is a mathematical structure.

In Shapiro’s account, structures are determined by human ability to talk or to have 

knowledge of them. Therefore, the kind of knowledge mathematics can aim too is 

context-sensitive truth, but the context is determined by the language chosen by 

mathematicians when they theorize about mathematical structures. 

Even if the relevance of mathematical language isn’t so explicit, also for Trivialism the 

truth of a statement has much to do with mathematical language or, more precisely, with 

mathematical interpretation. In general, a statement is true if it singles out the region 

that corresponds to the way the world actually turns out to be. True mathematical 

statements single out coherent statements that correspond to coherent way for the world 

to be. 

The outscoping technique assigns to every truth of pure Mathematics a trivial semantic 

clause. As I have already stressed in chapter 5.3, the outscoping technique allows to 
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exclude from the scope of a world w all the non-mathematical vocabulary contained in 

the ‘just is’-statements under analysis. As a result, the statement is true at a world w just 

in  case  w  satisfies  a  metalinguistic  formula  in  which  the  vocabulary  has  all  been 

outscoped. Such formula will have no free variables and would then be satisfied by any 

object if it is true, and by no object if it is false. And since trivialist Platonism interpret 

mathematical  statements  as  being true,  the formula will  be true and satisfied by all 

objects, including w independently of which it is. Therefore, nothing in the way the 

world  could  turn  out  to  be  will  in  any  way  affects  the  truth  conditions  of  a  pure 

mathematical  statement.  In  this  sense,  mathematical  statements  carry  ontological 

commitment to objects. But they are interpreted in a such way that nothing that could or 

could not happen in a world will ever imply the satisfaction or dissatisfaction of the 

truth conditions of mathematical statements.

Balaguer accounts for a theory of truth that is very lined-up with the general Sober 

platonist attitude I described. He argues that every consistent purely mathematical 

theory truly describes some collection of mathematical objects. Therefore, in 

mathematics correspondence and coherence collapses and end to identify the same set 

of true statements. Even Balaguer reserves an important role to mathematical language 

in accounting for mathematical truth. He claims that every consistent purely 

mathematical theory is true in a language that interprets it so that it is about the objects 

it is intended to be about. In doing so, the truth conditions of mathematical statements 

depend not only on their internal coherence, but also on the choices mathematicians 

made while they express what they intend to express. Accordingly, mathematical 
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theories are true partly because they are coherent, and partly because mathematicians 

interpreted them so that they are coherent.  

Zalta delivers an account of mathematical truth that comes straightforwardly from the 

way he has interpreted the comprehension principle. According to Objects Theory, 

mathematical  theorems  are  true  because  they  are  encoding  claims  that  ascribe  to 

mathematical objects the properties described by the theorems. But since mathematical 

knowledge is attained through the comprehension principle, and the comprehension 

principle is synthetic a priori,  also mathematical knowledge will consist in synthetic a 

priori truths. See section 4.5 for further details. 

6.4.3 Reference

Reference: mathematical statements are about some kind of objects. 

Even if Sober Platonism can be intended as a very homogeneous trend, in some aspects 

it varies considerably. In this section, I will analyze Shapiro’s and Balaguer’s 

endorsement of Reference. My aim is here to show how the two endorsement realized 

two very different theories of reference. Recall from section 1.4.3 that reference is the 

relation between a term and an object. A well-formed statement describes something in 

virtue of the reference between the terms used and the objects described. Moreover, 

according to standard semantics, the language of mathematics must work in the same 

way as every day language. Therefore, as for every day language, singular terms and 

quantifiers must semantically function as reference to objects and range over objects. 

One of the biggest problems for platonism in reference is due to Benacerraf’s famous 

paper What Numbers Could Not Be. Benacerraf point is, very roughly, that reference 
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appears to be not uniquely determined in mathematics, since it is hard to identify a 

criterion that discriminates between the different ω-sequences. The relevance of 

Benacerraf’s problem is so wide that threatens to invalidate the entire platonist 

enterprise, denying the objectivity and meaningfulness of mathematics itself, by 

denying the possibility of referring unambiguously to mathematics. For a less sketchy 

exposure, see  again section 1.4.3. 

Sober Platonists endorse that the ambiguity of mathematical reference isn’t only to be 

accepted, but it is also to be endorsed. The embracement of non-uniqueness in reference 

comes as a consequence of the acceptance of plenitudinous ontologies. For, if the 

mathematical realm counts as many objects as Sober ontologies prescribe, it seems 

extremely unlikely that any mathematical theory is uniquely satisfied. 

One exception is Shapiro’s ante rem Structuralism, who accepts uniqueness in reference 

but with some caveat that seems to settle it more on the side of the non-uniqueness 

Platonism than of that of uniqueness Platonism. Recall that in Structuralism knowing a 

structure is the same as being able to use its language. But the first requirement of  a 

reliable use of language is an effective theory of reference. Shapiro claims that more 

than one system can exemplify a structure. Therefore, it  seems that reference is not 

uniquely  determined.  But,  Shapiro  rushes  to  specify  that  reference  to  structures  is 

determined  up  to  isomorphism.  Therefore,  reference  isn’t  uniquely  fixed  up  to  the 

singular systems, but is only fixed up to the forms in which systems exhibit structures. 

At first sight, Shapiro’s theory of reference seems to guarantee reference only to the 

forms in which objects can be arranged, instead of referring to the very objects. But 

remind that, according to Shapiro, the forms in which objects can be arranged are the 
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very objects of mathematics, i.e. mathematical structure. These mathematical objects 

are endorsed by different systems, but still exhibit the same structure. Accordingly, if 

two systems exhibit two isomorphic structures, they are actually exhibiting the same 

structure, the very same object, because, again, they share isomorphism. 

As a result, since only structural facts are mathematically significant, it doesn’t matter if 

it is not possible to pick out unique collections of objects, because these collections are 

indeed  a  unique  objects  from  the  point  of  view  of  their  structural  properties  and 

relations.  Hence,  reference  is  uniquely  fixed  up  to  the  level  of  structures,  the  real 

mathematical objects, but is not uniquely fixed on the level of the systems exhibiting the 

structures. Notice that is the kind of ontology provided by Shapiro that allows him to 

avoid  the  embracement  of  non-uniqueness  in  reference,  as  it  avoid  also  the 

embracement of plenitudinous ontologies.

FBP’s adoption of plenitudinous ontology goes hand by hand with its adoption of non-

uniqueness in reference. According to Balaguer, non-uniqueness in reference is a 

desirable trait in philosophy of mathematics, since it allows for a better description of 

mathematics as practiced. Here Balaguer’s point is very similar to Shapiro’s: 

mathematicians aren’t interested in the differences between ω-sequences, since they all 

are indistinguishable with respect to the sort of facts and properties they are trying to 

characterize  while  doing  arithmetic.  Therefore,  the  terms  used  to  describe  an  ω-

sequence fail to refer to a unique object when they refer to objects that are similar from 

the point  of  view of  mathematics  as  practiced.  Here again,  there  is  a  philosophical 

problem: ‘Why can mathematical statements still  have a meaning while using terms 

whose  reference  isn’t  uniquely  fixed?’,  with  a  mathematical  answer:  ‘Because 

mathematicians while doing mathematics aren’t interested in finding a unique referent 
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for their terms, but to refer to as many objects with the demanded characteristic there 

are’.  As  a  consequence,  FBP can  be  legitimately  charged  of  the  abandonment of 

standard semantics. But Balaguer specifies that, indeed, in using singular terms and 

providing them with a standard semantics, mathematicians make an assumption that is 

false. Nevertheless, it is convenient because thanks to it, mathematical language appears 

to behave like everyday language. 

On the same line are also Zalta’s and Rayo’s theories of reference. Zalta developed an 

axiomatic language that justifies and explains reference to abstract objects in general, by 

considering the references of terms denoting objects as abstract objects, and the 

references of terms denoting properties as properties. In this way, the connection 

between terms and objects is straightforward, and so it is the connection between 

reference, language and knowledge.  

Rayo’s approach is very utilitarian: a language includes singular terms and quantifiers 

ranging over singular-term-positions only because they are useful in specifying truth 

conditions. There is no metaphysical view that can be derived or founded on reflections 

about the use of language. Moreover, reference between terms and objects is determined 

by ‘just is’-statements. In a sense, the very meaning of ‘just is’-statements isn’t only 

identifying sameness of truth conditions, but also sameness of reference. For example, 

‘Venus is Phosphorus’ and ‘Venus is Hesperus’ form the ‘just-is’statement:

MORNING STAR: For Venus to be Phosphorus just is for Venus to be Hesperus

This ‘just is’-statement tells something about the reference of the objects in it. And it 

says that there is no unique reference for the object called ‘the morning star’. Indeed, it 

is also the evening star and actually it isn’t a star at all, but a planet, the second planet in 
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our Solar System. Through the use of ‘just is’-statement, reference between objects and 

terms is so further specified. 

In  the  same way,  ‘just  is’-statements  in  mathematics  tell  something  about  the  way 

reference  to  mathematical  terms  is  fixed.  And  since  the  acceptance  of  ‘just  is’-

statements  is  something  that  come  at  least  partially  from  empirical  matter,  what 

mathematical terms must refer to is something that depends at least partially on the 

work of  mathematicians.  Hence,  it  is  not  uniquely  fixed because  it  depends  on the 

conception of logical space endorsed. 

6.5 Conclusion

In conclusion, there is a consideration I didn’t already made. Quite emblematically, all 

the four Sober Platonists acknowledges that the philosophy of mathematics they 

propose differentiates themselves from classical Platonism. Shapiro and Rayo made this 

differentiation explicit because they admittedly baptize their new theories with the 

names of ‘Working Realism’, for Shapiro’s, and ‘Subtle Platonism’, for Rayo’s.  

Shapiro’s definition of Working Realism is introduced by the formulation of two 

approaches philosophy can have towards its non philosophical content: ‘philosophy last 

if at all’ and ‘philosophy first’. In ‘philosophy first’, the role of philosophy is to define 

and draw the limits of mathematical possibility from a metaphysical and an 

epistemological point of view. In this account, philosophy precedes mathematics and 

fixes the way mathematics is to be done. Therefore, ‘philosophy first’ is a normative 

approach to mathematics.  

On the contrary, ‘philosophy last if at all’ states the contingency of philosophical 
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reasoning for mathematics. Philosophy can come only thereafter, and, with a descriptive 

approach, try to formulate a philosophical account of how mathematics is knew and 

interpreted.  

Shapiro locates Working Realism in the line of ‘philosophy last if at all’. Working 

Realism is interested in the work of mathematicians, in their methodology and 

professional habits, but avoid the imposition of philosophical concerns on the analysis 

of mathematics. See section 3.2 for a less sketchy discussion of Working Realism.   

Also Rayo’s approach is explicitly distancing itself from classical Platonism, by 

defining its philosophy as ‘Subtle Platonism’ (section 5.6). According to classical 

Platonists, the existence of mathematical objects is contingent, therefore a world with 

no mathematical objects is possible. But according to Subtle Platonists, who endorse the 

Zero Argument, mathematical objects exist necessarily, and a world without 

mathematical objects wouldn’t be even intelligible.  

In conclusion, and far from having provided any complete description of how Sober 

Platonism is and where its development could bring in different areas of philosophy, I 

am persuaded that this new approach will not be given up any time soon. Its value 

resides in its open-mindedness and in its willingness of facing mathematics’ autonomy 

from a philosophical point of view.  As Balaguer (1998) fiercely states at page 63:

[T]he  point  of  philosophy  of  mathematics  is  to  interpret  mathematical 

practice, not to place metaphysically based restrictions on it.  

!241



BIBLIOGRAPHY 

Armstrong, David Malet, (1978) A theory of Universals: Universals and Scientific 

Realism, Cambridge University Press, Cambridge; 

Armstrong, David Malet, (1978) Nominalism and Realism: Universals and Scientific 

Realism, Cambridge University Press, Cambridge; 

Armstrong, David Malet, (1989) Universals. An Opinionated Introduction, Westview 

Press, Boulder; 

Armstrong, David Malet, (1992) Properties in Language, Truth and Ontology, a cura di 

Kevin Mulligan, Dordrecht, Reidel; 

Aune, Bruce, (2000) Universals and Predication, «The Blackwell guide to 

Metaphysics», 111, Oxford; 

Bacon, John, (1998) Universals and Property Instances. The Alphabet of Being, 

Aristotelian Society Series, 15, London; 

Balaguer, Mark (1995) A Platonist Epistemology, Synthese  vol 103 pp. 303-325; 

Balaguer, Mark (1998) Platonism and Anti-Platonism in Mathematics, Oxford 

University Press, New York; 

Balaguer, Mark (2001), “A Theory of Mathematical Correctness and Mathematical 

Truth”, Pacific Philosophical Quarterly 82, pp. 87-114; 

Balaguer, Mark (2009) Realism and Anti-Realism in Mathematics, in Handbook of the 

Philosophy of Science. Philosophy of Mathematics, pp 36-101; 

Benacerraf, Paul (1965) What Numbers Could not Be, reprinted in Benacerraf, Paul, 

Putnam, Hilary, (1983) Philosophy of Mathematics, Cambridge University Press, 

Cambridge; 

Benacerraf, Paul, (1973) Mathematical Truth, Journal of Philosophy vol.70 pp. 

661-679; 

Benacerraf, Paul, Putnam, Hilary, (1983) Philosophy of Mathematics, Cambridge 

University Press, Cambridge; 

Bonjour, Lawrence, 2005, “In Defense of the a Priori”, in Matthias Steup and Ernest 

!242



Sosa (eds.), Contemporary Debates in Epistemology, Malden, MA: Blackwell 

Publishing Ltd., 98–105;  

Boolos, George (1990) Meaning and Method: Essays in Honor of Hilary Putnam 

Cambridge University Press, Cambridge; 

Bottani, Andrea, Carrara, Massimiliano, Giaretta, Pierdaniele (2002) Individuals, 

essence and identity. Themes of Analytic Metaphysics, Alphen aan den Rijn, 

Netherlands, Kluwer Academic Publishers; 

Bueno, Otàvio, Linnebo, Øystein, (2009) New Waves in Philosophy of Mathematics, 

Palgrave Macmillan, Houndmills; 

Carnap, Rudolf (1950-1956), ‘Empiricism, Semantics and Ontology’, Revue 

Internationale de Philosophie, 4: 20–40. Reprinted in Meaning and Necessity, Chicago: 

University of Chicago Press, 2nd edition, 1956, pp. 205–221; 

Chihara, Charles, (1990) Constructibility and Mathematical Existence, Oxford 

University Press, Oxford; 

Coffa, Alberto, (1991) “From Geometry to Tolerance: Sources of Conventionalism in 

nineteenth century geometry”, in From quarks to quasar: Philosophical problems of 

Modern Physics, University of Pittsburgh series, vol. 7, Pittsburgh University Press, 

Pittsburgh 1986;  

Curry, Haskell, (1951), Outlines of Formalist Philosophy of Mathematics, Amsterdam, 

North Holland; 

Davidson, Donald, 1983, “A Coherence Theory of Truth and Knowledge,” in D. 

Henrich (ed.), Kant Order Hegel, Stuttgart: Klett-Cotta. 

Dedekind, Richard (1872), Continuity and Irrational Numbers, in Beman, W. W., 

(1963) Essays on the theory of Numbers New York, Dover; 

Dummett, Michael, (1978) Truth and Other Enigmas, Harvard University Press, 

Cambridge. 

Dummett, Michael, (1991) Frege: Philosophy of Mathematics, Harvard University 

Press, Cambridge. 

Dummett, Michael, (1991) The Logical Basis of Metaphysics, Harvard University Press, 

Cambridge. 

!243



Dummett, Michael, (1991), Wittgenstein’s Philosophy of Mathematics, Philosophical 

Review vol.68, pp. 324-348; 

Ebert, Philip, Rossberg, Marcus, (2014) Abstractionism in Mathematics, Oxford 

University Press, Oxford; 

Field, Hartry, (1980) Science Without Numbers, Princeton University Press, Princeton; 

Field, Hartry, (1989) Realism, Mathematics and Modality, Basil Blackwell, Oxford; 

Field, Hartry, (2001) Truth and The Absence of Fact, Oxford: Clarendon 

Fine, Arthur (1984) "The Natural Ontological Attitude", in J. Leplin (ed.), 

Fine, Arthur, (1986) The shaky games: Einstein, Realism and the quantum theory, 

University of Chicago Press, Chicago. 

Fine, Kit (1975), "Vagueness, Truth and Logic", Synthese 30, 265-300. 

Fine, Kit (2006), Our Knowledge of Mathematical Objects in Gendler, T.Z., Hawthorne, 

J., Oxford Studies in Epistemology, Oxford, Clarendon Press, pp 89-109; 

Fine, Kit (2006), Relatively Unrestricted Quantification in Rayo, A., Uzquiano, G., 

Absolute Generality, Oxford, Clarendon Press, pp 89-109; 

Fine, Kit, (1994), "Essence and Modality", in J. E. Tomberlin (ed.) Philosophical 

Perspectives Volume 8, Atascadero (CA); 

Fine, Kit, (2002), Questions of Realism, reprinted in Bottani, Andrea, Carrara, 

Massimiliano, Giaretta, Pierdaniele (2002) Individuals, essence and identity. Themes of 

Analytic Metaphysics, Alphen aan den Rijn, Netherlands, Kluwer Academic Publishers; 

Fine, Kit, (2008), The Limits of Abstraction, Oxford, Oxford University Press; 

Frege, Gottlob (1884), Die Grundlagen der Arithmetik: eine logisch-mathematische 

Untersuchung über den Begriff der Zahl, Breslau1974. English translation in Austin, J. 

L., The Foundations of Arithmetic, Oxford: Basil Blackwell. 

Frege, Gottlob (1892-1903). Grundgesetze der Arithmetik, H. Pohle, Jena, 1893-1903 (2 

Vols.); partial English translation in Frege, G., (1967) The Basic Laws of Arithmetic, 

edited by Furth, M., University of California Press, Berkeley. 

Frege, Gottlob (1980) Philosophical and Mathematical Correspondence, University of 

Chicago Press, Chicago. 

Giaquinto, Marcus (2002), The Search for Certainty: a Philosophical account of 

!244



Foundations of Mathematics, Clarendon Press, Oxford. 

Gödel, Kurt, (1940) The Consistency of the Axiom of Choice and of the Generalized 

Continuum Hypothesis with the Axioms of Set Theory, Princeton University Press, 

Princeton; 

Gödel, Kurt, (1951) Some Basic Theorems on the Foundations of Mathematics and 

Their Implications, in his Collected Works Vol. III, New York: Oxford University Press, 

1995, pp. 304-323. 

Gödel, Kurt, (1953) ‘Is Mathematics Syntax of Language’, in his Collected Works Vol. 

III, New York: Oxford University Press, 1995, pp. 334–362. 

Gödel, Kurt, (1983) What is Cantor’s Continuum Problem? 1964, reprinted in 

Benacerraf, Paul, Putnam, Hilary, (1983) Philosophy of Mathematics, Cambridge 

University Press, Cambridge; 

Goldfarb, Warren, (1995), “Introduction to Gödel's ‘Is Mathematics Syntax of 

Language’” in Feferman, Solomon et al. (eds.), Kurt Gödel Collected Works Vol. III, 

New York: Oxford University Press, 1995, pp. 324–34. 

Hale, Bob, (1987) Abstract Objects, Basil Blackwell, Oxford. 

Hale, Bob, Wright, Crispin, (2001) The Reason’s Proper Study. Essays Toward a 

Neofregean Philosophy of Mathematics, Clarendon Press, Oxford. 

Hale, Bob, Wright, Crispin, (2002) “Benacerraf’s Dilemma Revisited”, European 

Journal of Philosophy, 10, 101–129. 

Haler, David, Kozen, Dexter, Tiuryn, Jerzy, (2000) Dynamic Logic, The MIT Press, 

Cambridge. 

Hellman, Geoffrey, (1989) Mathematics without Numbers , Oxford University Press, 

Oxford, New York. 

Hellman, Geoffrey, (1996) “Structuralism without Structures, Philosophia Mathematica 

(III), 4, 100-123. 

Hellman, Geoffrey, (2001) “Three Varieties of Mathematical Structuralism”, 

Philosophia Mathematica (III), 9, 184-211; 

Hempel, Carl, (1945) On the Nature of Mathematical Truth reprinted in Benacerraf, 

Paul, Putnam, Hilary, (1983) Philosophy of Mathematics, Cambridge University Press, 

!245

http://it.wikipedia.org/wiki/1940
http://it.wikipedia.org/wiki/Princeton


Cambridge, pp.377-393; 

Hempel, Carl, Oppenheim, Paul (1948) Studies in the Logic of Explanation, Philosophy 

of Sciences Studies 15 135-175; 

Hilbert, David, (1923), “Die logischen Grundlagen der Mathematik”, Mathematische 

Annalen 88: 151-165. 

Hodes, Harold, (1990) Ontological Commitments: Thick and thin in Boolos, (1990) 

347-407; 

Hofweber, Thomas, (2007), “Innocent Statements and Their Metaphysically Loaded 

Counterparts”, Philosophers' Imprint, 7, 1:33; 

Kant, Immanuel, (1978) Critique of Pure Reason, Cambridge University Press, 

Cambridge; 

Kraut, Robert, (1980) “Indiscernability and Ontology”, Synthese 44: 113-135; 

Kreisel, Georg, (1967) Informal Rigor and Completeness Proof in Lakatos, Imre, 

Problems in the Philosophy of Mathematics, North Holland, Amsterdam; 

Kripke, Saul, (1980) Naming and Neccesity Harvard University Press, Cambridge MA; 

Lewis, David, (1986) On the Plurality of Worlds, Blackwell, Oxford; 

Lewis, David, (1993) “Mathematics is Methodology”, Philosophia Mathematica, (3) 1: 

3-23; 

Lewis, David, Counterfactuals, (1973) Blackwell, Oxford; 

Linnebo, Øystein, (2012) “Reference by Abstraction”, Proceedings of the Aristotelian 

Society, 112, 45:71; 

Linsky, Bernard, Zalta, Edward, (1995), “Naturalized Platonism vs Platonized 

Naturalism”, Journal of Philosophy vol. 92, pp. 525-555; 

Maddy, Penelope, (1980), Perception and Mathematical Intuition, Philosophical Review 

vol. 89 pp. 163-196. 

Maddy, Penelope, (1989), “The Roots of Contemporary Platonism”, The Journal of 

Symbolic Logic, 54, 1121–44 

Maddy, Penelope, (1990), Realism in Mathematics Oxford University Press, Oxford; 

Maddy, Penelope, (1997), Naturalism in Mathematics Oxford University Press, Oxford; 

McLarty, Colin, (1993), “Numbers can be just what they have to”, Nous, 27: 487-498; 

!246



Moltmann, Friederike (2013) “Reference to Numbers in Natural Language”, 

Philosophical Studies, 162, 499;536; 

Moltmann, Friederike, (2004) Properties and Kinds of Tropes: New Linguistic Facts 

and Old Philosophical Insights, in «Mind», 113, Oxford; 

Moreland, James Porter, (1985) Universal, Qualities and Quality-Istances; a Defense of 

Realism, Lanham: University Press of America, Lanham; 

Parsons, Carl, (1990), The Structuralist view of Mathematical Objects, Synthese 84:3 pp 

303-346; 

Poincaré, Henri, (1899) “Sur le principes de la géometrie”, Revue  de Métaphysique et 

de Morale, 7: 251-279, Paris; 

Poincaré, Henri, (1899), “Des fondements de la géometrie”, Revue  de Métaphysique et 

de Morale, 7: 251-279, Paris; 

Poincaré, Henri, (1913), The Foundation of Science, The Science Press, Lancaster; 

Potter, Michael, (2004) Set theory and its philosophy, Oxford University Press, Oxford; 

Press;  

Putnam, Hilary, (1967) Mathematics Without Foundations, reprinted in Putnam, Hilary, 

(1979) Mathematics, Matter and Method: Philosophical Papers, Cambridge University 

Press, Cambridge; 

Putnam, Hilary, (1967) What is Mathematical Truth?, reprinted in Putnam, Hilary, 

(1979) Mathematics, Matter and Method: Philosophical Papers, Cambridge University 

Press, Cambridge; 

Putnam, Hilary, (1971) Philosophy of Logic, Harper Torchbooks, New York. 

Putnam, Hilary, (1979) Mathematics, Matter and Method: Philosophical Papers, 

Cambridge University Press, Cambridge; 

Putnam, Hilary, (1983), Models and Reality, Journal of Symbolic Logic 45: 464-482, 

1980, reprinted in Benacerraf and Putnam; 

Quine, Willard Van Orman, (1936) Truth by Convention, reprinted in Benacerraf, Paul, 

Putnam, Hilary, (1983) Philosophy of Mathematics, Cambridge University Press, 

Cambridge, pp 329-354; 

Quine, Willard Van Orman, (1937) New Foundations for Mathematical Logic, 

!247



«American Mathematics Monthly», 44; 

Quine, Willard Van Orman, (1948), “On What There Is”, Review of Metaphysics, 2, 21–

38; 

Quine, Willard Van Orman, (1951) “Two Dogmas of Empiricism”, Philosophical 

Review, 60, 20-43; 

Quine, Willard Van Orman, (1953) From a Logical Point of View, Harvard University 

Press, Cambridge; 

Quine, Willard Van Orman, (1969) Speaking of Objects, in Ontological Relativity and 

Other Essays, Columbia University Press, New York; 

Quine, Willard Van Orman, (1981) Theories and Things, Harvard University Press, 

Cambridge; 

Rayo, Agustìn, (2008), “On Specifying Truth Conditions”,  The Philosophical Review, 

117; 

Rayo, Agustìn, (2009), Towards a Trivialist Account for Mathematics in Linnebo, 

Øystein, Bueno, Otàvio, (2009) New Waves in Philosophy of Mathematics, Palgrave 

Macmillan, Houndmills; 

Rayo, Agustìn, (2011), “Neofregeanism Reconsidered”, in Ebert, Philip, Rossberg, 

Marcus, (2014) Abstractionism in Mathematics, Oxford University Press, Oxford; 

Rayo, Agustìn, (2013), Logicism Reconsidered, in Shapiro, Stewart, (2005), The Oxford 

Handbook for Logic and the Philosophy of Mathematics, Clarendon Press, Oxford, pp. 

203-235; 

Rayo, Agustìn, (2013), The Construction of Logical Space, Oxford University Press, 

Oxford; 

Rayo, Agustìn, (2014), “Nominalism, Trivialism, Logicism” in Philosophia 

Mathematica; 

Resnik, Michael, (1980), Frege and the Philosophy of Mathematics, Ithaca, Cornell 

University Press; 

Resnik, Michael, (1990), Beliefs about Mathematical Objects in Irvine, Andrew 

Physicalism in Mathematics, Kluwer Academic Publisher, Dordrecht; 

Resnik, Michael, (1997), Mathematics as a Science of Patterns, Oxford University 

!248



Press, Oxford; 

Russell, Bertrand, (1908), Mathematical Logic as based on the Theory of Types, 

American Journal of Mathematics, n. 30; 

Russell, Bertrand, (1910–11), “Knowledge by Acquaintance and Knowledge by 

Description”, Proceedings of the Aristotelian Society, 11: 108–128; 

Russell, Bertrand, (1912), The Problems of Philosophy, Oxford: Oxford University 

Press.; 

Russell, Bertrand, (1910–11), “Knowledge by Acquaintance and Knowledge by 

Description” Proceedings of the Aristotelian Society, 11: 108–128;  

Russell, Bertrand, Whitehead, Alfred North, (1913) Principia mathematica, Cambridge 

University Press, Cambridge;  

Russell, Bertrand, (1924) Logical Atomism, in Logic and Knowledge, ed. R.C. Marsh. 

London: Allen & Unwin, 1956; 

Sellars, Wilfrid, 1963, “Empiricism and the Philosophy of Mind,” Science, Perception 

and Reality, London: Routledge and Kegan Paul; 

Sellars, Wilfrid, 1975, “The Structure of Knowledge,” in H. N. Castaneda (ed.), Action, 

Knowledge, and Reality, Indianapolis: Bobbs-Merrill; 

Shapiro, Stewart, (1997) Philosophy of Mathematics: Structure and Ontology, Oxford 

University Press, Oxford; 

Shapiro, Stewart, (2000), Thinking about Mathematics, Oxford, Oxford University 

Press; 

Shapiro, Stewart, (2005), The Oxford Handbook for Logic and the Philosophy of 

Mathematics, Clarendon Press, Oxford; 

Sider, Theodore, (2012) Writing the Book of the World, Oxford University Press, Oxford 

and New York; 

Simons, Peter, (2009), ‘Formalism’ in Irvine, Andrew, Philosophy of Mathematics, 

Amsterdam, North Holland, 2009, pp. 291–310; 

Steiner, Mark, (1975), Mathematical Knowledge, Cornell University Press, Ithaca NY; 

Stout, George Frederik, (1921) The Nature of Universals and Propositions Oxford 

University Press, Oxford; 

!249



Stout, George Frederik, (1923) Are the Characteristics of Particular Things Universal 

or Particular? in «Proceedings of the Aristotelian Society». vol III, London; 

Stout, George Frederik, (1936) Universals Again, in «Proceedings of the Aristotelian 

Society», vol. 15, London; 

Van Heijenoort, Jean, (1967) From Frege to Gödel: A Source Book in Mathematical 

Logic, 1879-1931, Harvard University Press, Cambridge; 

Weyl, Hermann, (1964) The continuum: a critical examination of the foundation of 

analysis, Dover books on Advanced Mathematics, New York; 

Williams, Donald Cary, (1953) The Elements of Being, «Review of Metaphysics», 

Philosophy Education Society Inc; 

Williams, Donald Cary, (1986) Universals and Existents, «Australasian Journal of 

Philosophy» Vol. 64, Sidney; 

Wright, Crispin, (1983), Frege’s Conception of Numbers as Objects, Aberdeen 

University Press, Aberdeen; 

Zalta, Edward, (1983), Abstract Objects: an Introduction to Axiomatic Metaphysics, D. 

Reidel, Dordrecht; 

Zalta, Edward, (1988), Intensional Logic and the Metaphysics of Intentionality, 

Bradford MIT Press, Cambridge;  

Zalta, Edward, (1999), “Natural Numbers and Natural Cardinals as Abstract Objects: A 

Partial Reconstruction of Frege’s Grundgesetze in Objects Theory”, Journal of 

Philosophical Logic, 28:6, pp. 619-660; 

Zalta, Edward, (2000), “Neologicism? An Ontological Reduction of Mathematics to 

Metaphysics”, Erkenntnis, 53:1-2, pp. 219-265; 

Zalta, Edward, (2007), “Reflections on Mathematics” in Hendricks, V.F., Leitgeb, H., 

Philosophy of Mathematics: 5 Questions, Automatic Press/VIP, New York.

!250

http://www.reviewofmetaphysics.org/index.php?option=com_content&view=article&id=15&Itemid=16

