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LIST	OF	FIGURES	
	

Fig.	2.1	ChIP_QC	GUI	This	tool	is	composed	of	15	different	modules	with	each	module	

designed	with	specific	analysis	of	 interest.	Different	modules	can	be	navigated	from	

top	menu	bar.		

Fig.	 2.1.1	 A.	 Enrichment	 (A)	 Barplot	 representing	 proportion	 of	 H3K27ac	 positive	

promoters	 (in	 red),	H3K27ac	positive	enhancers	 (in	green)	and	random	regions	 (in	

blue)	bound	by	different	factors.		

Fig.	 2.1.1	 B-C.	 Coexistence	 (B)	 Heatmap	 showing	 presence	 (dark	 blue)	 or	 absence	

(light	blue)	of	different	factors	in	Bcl11a	regions.	Closer	the	presence	of	any	factor	to	

Bcl11a	greater	the	co-presence.	Colorbar	at	the	bottom	represents	different	clusters	

generated	by	kmeans	clustering,	where	k=10.	 (C)	Heatmap	showing	presence	 (dark	

blue)	 or	 absence	 (light	 blue)	 of	 different	 factors	 in	 promoters	 of	 first	 3000	 highly	

expressed	 genes.	 Closer	 the	 presence	 of	 any	 factor	 to	 promoters	 greater	 the	 co-

presence.	Colorbar	at	the	bottom	represents	different	clusters	generated	by	kmeans	

clustering,	where	k=10.		

Fig.	 2.1.2	 A,B.	 Correlation	 (A)	 Genome	 wide	 correlation	 between	 different	 factors	

along	 all	 promoters	 of	 human	 genome.	 (B)	 Variable	 plot	with	 different	 factors	 and	

their	degree	of	correlation	with	others	along	all	promoters	of	human	genome	across	

first	two	principal	components.	

Fig.	 2.1.3.1	 Quantification	 within	 ROI	 (A)	 Heatmap	 with	 genome	 wide	 based	

normalized	intensities	for	different	histone	modifications	and	RNA	polII	in	H3K27ac	

and	H3K27me3	binding	regions	separated	by	red	line.	(B)	Expression	level	of	target	
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genes	 in	 each	 cluster	 as	 identified	 in	 A.	 Top	 panel	 represents	 expression	 levels	 for	

target	 gene	 clusters	 for	 H3K27ac	 regions	 where	 as	 lower	 panel	 represents	 for	

H3K27me3	 positive	 regions.	 (C)	 Same	 as	 A	 (D)	 Same	 as	 A,	 but	 quantification,	

normalization	and	scaling	are	restricted	only	to	ROI.	

Fig.	2.1.3.2	A,B.	Quantification	(A)	Intensities	of	H3K27ac	ChIP	around	±5kb	region	

surrounding	the	centre	of	enhancer	regions	across	five	different	cell	lines.	(B)	

Expression	levels	of	target	genes	in	Gm12878	in	clusters	as	identified	in	A.	

Fig.	 2.1.3.2	 C,D.	 Quantification	 (C)	 Intensities	 of	 H3K27ac	 ChIP	 around	 5kb	 region	

surrounding	 from	the	centre	of	enhancer	regions	across	 five	different	cell	 lines.	 (D)	

Same	as	A,	where	intensities	are	scaled	globally	over	all	samples.	

Fig.	2.1.3.3	A-D.	Profiling	(A)	Average	profile	of	H3K4me3	with	confidence	interval	in	

promoters	 regions	 of	 genes	 classified	 based	 on	 expression	 levels	 (high	 to	 low).	 (B)	

Average	 profile	 of	 H3K36me3	 with	 confidence	 interval	 in	 gene	 bodies	 of	 genes	

classified	based	on	expression	levels	(high	to	low).	(C)	Same	as	A,	but	without	using	

strand	information.	(D)	Same	as	B,	but	without	using	strand	information.		

Fig.	 2.1.3.4	 A-D.	 Spike-In	 Quantification	 (A)	 Normalized	 intensities	 of	 H3K79me2	

around	 10kb	 surrounding	 TSS	 (both	 up	 and	 downstream)	 in	 regions	 possessing	

H3K79me2	in	WT	samples	and	its	fate	in	other	samples	induced	with	different	levels	

of	 inhibitor	harbouring	no	reference	genome.	(B)	Same	as	A,	 in	these	intensities	are	

spike-in	normalized	intensities.	(C)	Average	normalized	profile	of	H3K79me2	around	

10kb	surrounding	TSS	(both	up	and	downstream)	in	regions	possessing	H3K79me2	

in	WT	samples	and	its	fate	in	other	samples	induced	with	different	levels	of	inhibitor	



	10	

harbouring	 no	 reference	 genome.	 (D)	 Same	 as	 C,	 in	 these	 intensities	 are	 spike-in	

normalized	intensities.	

Fig.	 2.1.4	 A-E.	 Differentially	 regulated	 regions.	 (A)	 Volcano	 plot	 representing	

significantly	 enriched	 promoters	 (marked	 in	 cyan)	 harbouring	 different	 levels	 of	

H3K4me3	 methylation	 in	 skeletal	 muscle	 when	 compared	 keratinocytes.	 (B)	

Distribution	of	expression	 levels	of	genes	where	 their	promoters	 show	significantly	

higher	levels	of	H3K4me3	in	skeletal	muscle	as	compared	to	that	of	keratinocytes.	(C)	

Distribution	of	expression	 levels	of	genes	where	 their	promoters	 show	significantly	

higher	levels	of	H3K4me3	in	keratinocytes	as	compared	to	that	of	skeletal	muscle.	(D)	

Tissue	 specificity	 of	 genes	 whose	 promoters	 were	 differentially	 regulated	 skeletal	

muscle	 as	 identified	 in	 A.	 (E)	 Tissue	 specificity	 of	 genes	 whose	 promoters	 were	

differentially	regulated	keratinocytes	as	identified	in	A.	

Fig.	2.1.4	F,G.	Differentially	regulated	regions.	(F)	Significantly	enriched	promoters	on	

the	basis	of	K4me3	across	9	different	cell	lines.	Represented	here	are	their	intensities	

in	standard	z-score	form.	(G)	Expression	level	of	target	genes	in	each	cluster	across	9	

different	cell	lines	identified	in	F.	

Fig.	2.1.5	A-C.	Probabilistic	relationships	(A)	Bayesian	network	showing	dependency	

between	 different	 factors	 in	 compact	 chromatin	 regions	 of	 genome	 presided	 by	

Suz12.	 (B)	 Bayesian	 network	 showing	 dependency	 between	 different	 factors	 in	

random	regions	of	genome.	 (C)	Normalized	 intensities	of	Suz12,	Ezh2	and	Ctbp2	 in	

Suz12	binding	regions.	
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Fig.	2.1.6	A,B.	Variable	selection	and	classification.	(A)	Plot	signifying	the	accuracy	of	

different	 set	 of	 variables	 for	 characterizing	 active	 enhancers	 and	 promoters.	 (B)	

Sensitivity	over	specificity	of	SVM	trained	model	for	classifying	active	enhancers	and	

promoters	using	variables	with	high	accuracy	level	identified	in	A.	

Fig.2.2.1	 A,B.	 PTMs	 on	 H3K27	 in	mESC	 and	 its	 regulation	 by	 PRC2.	 (A)	 Larger	 pie	

graph	show	relative	abundance	of	different	PTMs	on	lysine	27	of	Histone	H3.	Smaller	

pies	 show	 the	 same	 PTMs	 but	 in	 different	 Histone	 variants	 H3.2	 and	 H3.3.	 (B)	

Western	blot	 analysis	 showing	 loss	 of	 all	 forms	of	methylations	on	H3K27	using	 in	

and	 Eed,	 Ezh2	 and	 Suz12	 KO	 (-/-)	 as	 compared	 to	 that	 of	 indicated	 antibodies	 of	

protein	extracts	obtained	 from	WT	(+/+)	mESC	 line.	Similar	 trend	was	observed	on	

knock	 down	 of	 Eed	 and	 Suz12	 using	 shRNA	 in	 E14.	 Histone	 H3	 served	 as	 loading	

control.		

Fig.	 2.2.2	 A.	 Localization	 of	 different	 forms	 of	H3K27	methylation	 Genomic	 regions	

showing	enrichment	for	different	forms	of	methylations	on	H3K27.	H3K27me1		and	

H3K27me3	enriched	domains	in	genome	are	depicted	in	blue	and	red.	

Fig.	2.2.2	B,C.	Correlation	between	PTMs.	(B)	Scatter	plots	showing	the	correlation	of	

enrichments	normalized	to	the	histone	H3	density	of	between	K27	and	K36	PTMs	in	

gene	bodies	of	all	annotated	genes.	Pearson	correlation	values	are	indicated	on	top	of	

the	 plot.	 (C)	 Variable	 plot	 from	 Principal	 component	 analysis	 (PCA)	 representing	

degree	of	correlation	between	PTMs	in	gene	bodies	of	all	annotated	genes.	

Fig.	2.2.3	A-C.	Correlation	between	levels	of	K27	methylation	and	gene	transcription.	

(A)	 Expression	 levels	 of	 all	 RefSeq	 genes	 grouped	 in	 three	 categories	 relative	 to	

H3K27me2	and	H3K27me1	enrichments	within	their	gene	bodies.	(B)	Proportion	of	
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K27me1	and	K27me2	enriched	genes	within	each	group	of	expression.	(C)	Composite	

profiles	 of	H3K27me1	 and	H3K27me2	 over	 gene	 bodies	 for	 all	 the	 three	 groups	 of	

gene	sets	classified	on	the	basis	of	their	expression	level.	

Fig.	2.2.4	A-D.	PRC2	dependent	H3K27	methylation.	(A)	qRT-PCR	of	K27me1/2	ChIP	

in	WT	 and	 Eed	 KO	 samples	 in	 the	 selected	 genomic	 regions.	 Black	 boxes	 indicate	

primers	position	within	genomic	loci.	ChIP	enrichments	are	normalized	to	histone	H3	

density.	IgG	ChIPs	from	rabbit	were	used	as	negative	control.	(B)	Genomic	snapshots	

of	 H3K27me1/2/3	 in	 WT	 (Eed	 +/+)	 and	 Eed	 KO	 (Eed	 -/-)	 in	 mESC	 along	 with	

H3K36me3	 from	 E14	 mESC.	 H3K27me1	 domains	 are	 highlighted	 in	 blue	 while	

H3K27me3	domains	are	highlighted	in	red.	(C)	Heat	map	of	H3K27me1	enrichment	in	

WT	 (Eed	 +/+)	 and	 Eed	 KO	 (Eed	 −/−)	 for	 genes	 enriched	 for	 H3K27me1	 in	 WT	

condition	 (−10log10	 p	 value	 ≥	 10	 scored	 from	 chi-square	 test	 between	H3K27me1	

and	 H3).	 (D)	 Box	 plot	 analysis	 of	 H3K27me1	 ChIP-seq	 enrichment	 intensities	

between	WT	 (+/+)	 and	Eed	KO	 (-/-)	mESC	 for	 all	 the	 annotated	RefSeq	 genes	 that	

were	divided	in	two	groups	based	on	their	H3K27me1	levels	in	WT	mESC	(-Log10p-

value	cut	off	=	10).	

Fig.	2.2.4	E-G.	Changes	of	genes	expression	upon	loss	of	PRC2	activity.	(E)	Box	plot	of	

fold	change	in	expression	levels	of	differentially	regulated	genes	between	WT	and	Eed	

KO	 mESC	 for	 H3K27me2	 and	 H3K27me1.	 For	 the	 analysis,	 the	 top	 15%	 enriched	

genes	 (N~1000)	 were	 considered.	 (F)	 Relative	 differences	 in	 expression	 levels	

between	WT	and	Eed	KO	mESC	of	the	selected	target	genes	determined	by	qRT-PCR	

analysis.	(G)	qRT-PCR	analysis	for	the	indicated	intragenic	regions	of	H3K27me1	and	

H3K27me2	 ChIP	 assays	 performed	 in	WT	 and	 Eed	KO	mESC	 using.	 ChIPs	with	 IgG	
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rabbit	 were	 performed	 as	 negative	 control.	 ChIP	 enrichments	 were	 normalized	 to	

histone	H3	density.		

Fig.	2.2.5	A.	mESC	deficient	 for	PRC2	fail	 to	differentiate.	 	Relative	expression	of	the	

indicated	differentiation	markers	determined	by	qRT-PCR	 in	WT	and	Eed	KO	mESC	

before	(ES)	and	after	9	days	of	differentiation	(EB).		

Fig.	2.2.5	B,C.	H3K27me1	is	gained	in	genes	which	are	up-regulated	in	the	process	of	

differentiation.	 (B)	 Expression	 levels	 of	 up-regulated	 genes	 during	 differentiation	

process	in	WT	and	Eed	KO	samples	(N=844).	(C)	Average	profiles	of	H3K27me1	and	

H3K36me3	through	the	intragenic	regions	of	genes	activated	upon	EB	differentiation.		

Fig.	2.2.6	A.	Global	levels	of	H3K27ac	increase	upon	loss	of	PRC2	activity.	WB	analysis	

of	different	modifications	upon	loss	of	different	components	of	PRC2	in	mESC.		

Fig.	 2.2.6	B,C.	Distribution	of	H3K27ac	 enriched	 regions	upon	 loss	of	PRC2	activity.	

(B)	Overlap	of	H3K27ac	peaks	between	WT	(Eed	+/+)	and	Eed	KO	 (Eed	 -/-)	mESC.	

The	pies	depict	the	percentage	distribution	of	the	different	groups	of	H3K27ac	peaks	

relative	to	promoter	region	of	all	genes.	Promoters	regions	are	defined	as	a	±.	2.5kb	

region	around	centered	the	TSS.	(C)	Snapshots	representing	different	PTMs	in	regions	

where	 H3K27ac	 is	 lost	 and	 gained	 in	 WT	 (Eed	 +/+)	 and	 Eed	 KO	 (Eed	 -/-)	 mESC	

highlighted	in	yellow.		

Fig.	 2.2.6	 D,E.	Mapping	 enhancer	 elements	 upon	 loss	 of	 H3K27me2.	 (D)	 Snapshots	

representing	different	PTMs	in	regions	where	H3K27ac	is	lost	and	gained	in	WT	(Eed	

+/+)	and	Eed	KO	(Eed	-/-)	mESC	highlighted	in	yellow.		(E)	Box	plot	showing	levels	of	

H3K4me1	signal	in	the	unique	H3K27ac	distal	peaks	of	Eed	WT	and	Eed	KO	samples.	

Number	of	Eed	WT	unique	peaks	=	12341;	Eed	KO	unique	peaks	=	9210	
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Fig.	2.2.6	F,	G.	Regulation	of	enhancers	upon	loss	of	H3K27me2	in	mESC.	(F)	Heatmap	

of	normalized	 intensities	of	H3K27ac,	H3K4me1,	H3K4me3,	H3K27me3,	H3K27me2	

in	WT	and	Eed	KO	mESC	 for	all	distal	H3K27ac	peaks	 found	 in	either	WT	(Eed	WT	

unique	 peaks)	 or	 Eed	 KO	 (Eed	 KO	 unique	 peaks).	 Classification	 of	 H3K27ac	 peaks	

found	only	in	Eed	KO	into	two	classes,	Class	I	(n	=	4,391)	and	Class	II	(n	=	4,819)	was	

applied	on	the	basis	of	pre-existence	of	H3K4me1	in	Eed	WT	sample.	Grouping	was	

based	 on	 k	 mean	 clustering	 (k	 =	 2)	 with	 respect	 to	 the	 H3K4me1	 normalized	

intensities	in	Eed	WT	ESCs.	(G)	Boxplot	analyses	quantifying	the	data	shown	in	figure	

2.2.6	F.	p	value	was	calculated	by	Wilcoxon	rank	test.	

Fig.	2.2.6	H.	Validation	of	lost	and	gained	enhancer	elements.	(H)	qRT-PCR	analyses	of	

DNA	purified	from	H3K27ac	ChIP	in	WT	and	Eed	KO	mESC	using	primers	amplifying	

the	indicated	genomic	loci.		

Fig.	2.2.6	I,J.	Unique	enhancers	are	not	enriched	for	H3K27me3	and	do	not	reside	on	

CpG	islands.	(I)	Box	plot	showing	the	quantification	of	H3K27me3	signal	in	the	unique	

H3K27ac	distal	peaks	of	Eed	WT	and	Eed	KO	samples.	(J)	Percentage	of	Ezh2	peaks	

occupancy	 (determined	 by	 ChIP-seq	 analysis	 in	 mouse	 E14	 ES	 cells)	 and	 of	 CpG	

islands	respect	to	genomic	regions	corresponding	to	H3K27ac	peaks	uniquely	found	

in	Eed	KO	mESC.	

Fig.	2.2.6	K,L.	Activation	of	enhancers	upon	loss	of	PRC2	correlates	with	closest	gene	

activation	(K)	Box	plot	representing	distance	between	enhancers	(for	WT	and	Eed	KO	

samples)	and	the	up-regulated	genes	in	Eed	KO	ES	cells.	All	identified	enhancers	are	

included	 in	 the	 analysis.	 (L)	 Same	 as	 K,	 but	 in	 this	 case	 enhancers	 associated	 to	 a	

H3K27me3	positive	gene	in	WT	ES	cells	were	excluded	from	the	analysis.	H3K27me3	
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enriched	genes	were	defined	by	the	presence	of	a	H3K27me3	peak	within	+/-	2.5kb	

from	the	TSS.	p-values	were	calculated	by	Mann-Whitney	Test.	

Fig.2.2.8	 M-P.	 Anti-correlation	 between	 H3K27ac	 and	 H3K27me2	 at	 unique	

enhancers	sites	and	loss	of	H3K27ac	at	enhancer	sites	is	replaced	by	H3K27me2.	(M)	

Scatter	plot	showing	correlation	between	H3K27ac	and	H3K27me2	levels	in	WT	ESCs	

for	 all	 unique	 enhancers	 regions	 identified	 in	WT	 and	 Eed	 KO	 samples.	 Left	 panel	

shows	whole	 density	 distributions.	 Right	 panel	 distinguishes	 Eed	WT	 unique	 (red)	

and	Eed	KO	unique	(blue)	enhancers.	The	Spearman	correlation	value	is	indicated	(rs	

=	 0.5106).	 p	 value	 was	 calculated	 by	 asymptotic	 t	 approximation	 (N)	 Immunoblot	

analysis	 for	H3K27ac	antibody	of	histones	extracted	 from	mouse	E14	mESC	treated	

with	35	μM	C646	p300	inhibitor	for	48	h.	DMSO	was	used	as	vehicle	control.	Histone	

H3	 was	 used	 as	 loading	 control.	 (O)	 Average	 profiles	 of	 H3K27ac	 and	 H3K27me2	

deposition	around	2500	bp	up	and	downstream	from	centered	H3K27ac	peak	summit	

of	 regions	 that	 loose	 H3K27ac	 upon	 treatment	 with	 C646	 compound	 for	 48	 h	

(N=4838).	(P)	Box	plots	with	quantification	levels	of	H3K27ac	and	H3K27me2	at	the	

same	 enhancer	 sites	 of	 figure	 2.2.8	 O	 upon	 treatment	 with	 C646	 for	 the	 complete	

H3K27ac	peak	region	or	for	a	1kb	genomic	region	surrounding	the	summit	of	peak.	

Fig	3.1.5.1	Workflow	of	quantification	within	ROIs.		

Fig	3.1.5.2	Workflow	for	genome	wide	based	quantification	for	selected	ROI.		

Fig.	 4.2.	 Our	 proposed	 model	 on	 different	 functionalities	 of	 PRC2	 dependent	

methylation	forms.		
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ABSTRACT	

During	 my	 PhD	 tenure,	 I	 have	 been	 involved	 in	 developing	 a	 user-friendly	 cross-

platform	 system	 capable	 of	 analyzing	 epigenomic	 data	 and	 further	 use	 it	 in	

understanding	 the	 role	 of	 the	 Polycomb	 Repressive	 Complex	 2	 (PRC2)	 in	 genome	

regulation.	

From	current	trending	in	epigenetics	research,	we	can	sense	increasing	ease	of	high	

throughput	 sequencing	 and	 greater	 interest	 towards	 genome	 wide	 epigenomic	

studies.	 As	 a	 result	 of	 which	 we	 experience	 an	 exponential	 flooding	 of	 epigenetic	

related	data	such	as	Chromatin	immunoprecipitation	followed	by	sequencing	(ChIP-

seq),	and	RNA	sequencing	 (RNA-seq)	 in	public	domain.	This	creates	an	opportunity	

for	 crowd	 sourcing	 and	 exploring	 data	 outside	 the	 boundaries	 of	 specific	 query	

centered	studies.	Such	data	has	to	undergo	standard	primary	analysis,	which	with	the	

aid	 of	multiple	 programs	 has	 been	 stabilized	 courtesy	 to	 the	 scientific	 community.	

Further	 downstream,	 out	 of	 many,	 genome	 wide	 comparative,	 correlative	 and	

quantitative	 studies	 have	 proven	 to	 be	 critical	 and	 helpful	 in	 deciphering	 key	

biological	 features.	 For	 such	 studies	 we	 lack	 platforms,	 which	 can	 be	 capable	 of	

handling,	 analyzing	 and	 linking	 multiple	 interdisciplinary	 (ChIP-seq/RNA-seq)	

datasets	 with	 efficient	 analytical	 methods.	With	 this	 aim	we	 developed	 ChIP_QC,	 a	

user-friendly	standalone	computational	program	with	an	ability	to	support	numerous	

datasets	with	high/moderate	sequencing	depth	for	performing	genome	wide	analysis.	

First,	using	ENCODE	project	(Consortium,	2012)	data,	we	illustrated	few	applications	

of	the	program	by	posing	different	biological	scenarios	and	showed	the	comfort	with	

which	 some	 known	 observations	 can	 be	 verified	 and	 also	 how	 it	 can	 be	 helpful	 in	

deducing	some	other	novel	observations.	
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Second,	 we	 were	 interested	 in	 understanding	 the	 functionality	 of	 the	 products	

generated	through	catalytic	activity	of	PRC2.	It	is	known	that	Lysine	27	of	histone	H3	

(H3K27)	 undergoes	 posttranslational	 modification	 (PTM)	 and	 methylation	 is	 one	

such	dominant	 PTM.	Methylation	 on	H3K27	 can	be	 either	mono/di/tri-methylation	

form.	Out	of	all	three	forms,	it	is	very	well	demonstrated	that	trimethylation	of	H3K27	

(H3K27me3)	 is	PRC2	dependent	and	at	 the	same	time	 its	role	 in	gene	repression	 is	

well	characterized,	but	functional	roles	of	other	forms	of	methylation	on	H3K27	are	

still	 poorly	 characterized.	 For	 understanding	 this,	 we	 used	mouse	 embryonic	 stem	

cells	(mESC)	as	model	system	of	our	study	and	we	were	able	to	provide	an	extensive	

characterization	 of	 other	 forms	 of	 methylation,	 highlighting	 their	 differential	

deposition	 along	 the	 genome,	 their	 fundamental	 role	 in	 transcriptional	 regulation,	

and	 their	 indispensability	 during	 differentiation	 program.	 Using	 ChIP_QC	 and	 with	

other	 computational	 methods	 along	 with	 experimental	 evidences,	 our	 data	

demonstrated	 that	 the	 monomethylation	 of	 Lys27	 (H3K27me1)	 is	 required	 for	

correct	 transcription	 of	 genes	 and	 positively	 correlates	 with	 trimethylated	 Lys36	

(H3K36me3);	on	the	other	hand	dimethylated	Lys27	(H3K27me2),	that	we	identified	

to	be	the	principal	activity	of	PRC2,	prevents	firing	of	non	cell	type	specific	enhancers.		

	

	

	 	



	18	

Chapter	1	-	INTRODUCTION		

1.1.	Epigenetics	

Cell	 is	 the	basic	unit	of	 life	 and	 the	blue	print	of	 every	 cell	 is	 in	 its	DNA.	Every	 cell	

maintains	 its	 identity	 through	 robust	 genome	 organization.	 It	 differs	 from	 single	

celluar	 to	multicellular	 organism.	 As	 compared	 to	 prokaryotes,	 eukaryotic	 genome	

undergoes	much	complex	organization	and	is	regulated	at	many	different	layers.	One	

major	 contributing	 factor	 for	 this	 property	 is	 Epigenetics.	 It	 plays	 vital	 role	 by	 its	

influence	on	genome	at	different	levels	starting	from	changes	at	single	nucleotide	to	

higher	 order	 of	 its	 organization.	 Epigenetic	 behavior	 differs	 from	 one	 cell	 type	 to	

other.	It	maintains	unique	behavior	in	individual	cell	type	by	regulating	expression	of	

set	 of	 genes	 required	 for	 maintaining	 that	 specific	 system.	 Transcription	 can	 be	

affected	 by	 chromatin	 organization	 providing	 access	 to	 chromatin	

modifiers/transcription	 factors	 for	 driving	 or	 repressing	 transcription.	 With	 these	

consequences,	epigenetics	becomes	driving	factor	for	deciding	the	fate	of	a	cell.		

1.1.1.	Chromatin	and	its	structural	organization	

In	eukaryotes,	both	genomic	content	and	volume	of	nucleus	of	a	cell	vary	indefinitely.	

In	order	to	fit	complete	genome	into	the	small	volume	of	nucleus,	it	has	to	undergo	a	

high	degree	of	 compaction	 (Woodcock	and	Ghosh,	2010).	This	 is	achieved	by	set	of	

proteins,	which	are	associated	with	genomic	DNA	forming	bead	like	structures	called	

nucleosomes,	which	are	further	organized	forming	chromatin	fibers,	which	are	folded	

hierarchically	within	the	nucleus	ultimately	condensing	size	of	DNA.	Nucleosomes	are	

core	functional	units	of	chromatin	fibers,	consisting	of	147	bp	DNA	wrapped	around	

an	eight	histone	proteins	forming	octamer	complex	(Luger	et	al.,	1997).	Each	octamer	
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complex	 consists	 of	 four	 histones:	 H2A,	 H2B,	 H3,	 and	 H4	 and	 are	 organized	 in	 a	

manner	where	H3–H4	tetramer	binds	to	two	adjacent	H2A–H2B	dimers	(Luger	et	al.,	

1997).	Histone	octamer	complexes	are	connected	through	linker	DNA	thus	resulting	

in	string	of	nucleosomes.	Linker	histones	H1	bind	to	these	regions	and	are	situated	at	

the	sites	of	DNA	entry	and	exit	to	the	nucleosome	core	(Luger,	2003).		

All	 histones,	 except	 H4,	 exist	 in	 different	 variants,	which	 differ	 in	 their	 amino	 acid	

sequence	 and	 are	 expressed	 at	 very	 low	 levels	 as	 compared	 to	 that	with	 canonical	

histones.	Histone	variants	change	chromatin	dynamics	and	are	incorporated	into	the	

nucleosome	 as	 a	 footprint	 that	 guides	 the	 cell	 to	 regulate	 transcription,	 repair,	

chromosome	assembly	and	segregation.	According	to	their	function,	histone	variants	

can	be	of	two	kinds:	replicative	and	replacement.	Replicative	histones	are	encoded	by	

multiple	 gene	 copies	 which	 are	 expressed	 in	 S	 phase	 and	 their	 incorporation	 into	

chromatin	is	coupled	to	DNA	synthesis;	in	humans	they	are	represented	by	H3.1	and	

H3.2	 (Szenker	 et	 al.,	 2011).	 On	 the	 other	 hand,	 replacement	 histone	 variants	 are	

encoded	 by	 single	 gene,	 often	 in	 a	 tissue	 specific	 manner,	 which	 are	 transcribed	

throughout	 the	 cell	 cycle.	 Histone	 H3.3	 is	 one	 of	 the	 known	 replacement	 histone	

variants	in	humans	and	is	very	well	characterized,	it	is	largely	considered	as	marker	

of	transcriptional	activity	(Szenker	et	al.,	2011).		

Nucleosomes,	the	core	functional	unit	of	chromatin	are	the	main	determinant	to	DNA	

accessibility.	 The	 characteristics	 of	 an	 individual	 nucleosome	 depend	 on	 the	 DNA	

sequence	 it	 is	 wrapped	 around	 (Wallrath	 et	 al.,	 1994)	 and	 also	 its	 stability	 and	

positioning	 is	governed	on	 the	basis	of	different	PTMs	 it	 resides	on	 its	histone	 tails	

(Luger	et	al.,	1997).	Nucleosomes	can	be	arranged	very	close	to	each	other	or	can	be	

arranged	 distantly	 resulting	 in	 compaction	 or	 loosening	 of	 chromatin,	 such	
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arrangement	 becomes	 deciding	 factor	 for	 gene	 transcription.	 Taking	 into	

consideration	 such	 arrangement	 of	 nucleosomes	 and	 corresponding	 transcriptional	

status,	 chromatin	 exits	 in	 two	 different	 forms	 namely	 euchromatin	 and	

heterochromatin.	 Euchromatin	 can	 be	 described	 as	 loosely	 packed	 chromatin,	

providing	 accessibility	 to	 transcription	 factors	 and	 other	 regulators	 thus	 favoring	

transcription.	 Due	 to	 this	 active	 transcription	 euchromatin	 can	 also	 be	 known	 as	

active	chromatin.	On	the	other	hand,	heterochromatin	is	known	as	inactive	chromatin	

where	 chromatin	 is	 tightly	 packed	 and	 compressed,	 not	 accessible	 to	 any	

transcription	factor	or	other	regulators	resulting	in	transcriptional	repression.		

1.1.2. Histone	Modifications	

From	early	studies	since	60’s,	it	was	evident	that	histone	proteins	are	subject	of	PTM	

at	 their	N-terminal	 tails	 (Allfrey	et	al.,	1964).	Since	 then,	over	100	different	histone	

modifications	have	been	discovered	and	studies	in	deep	detail.	From	X-ray	structure	

of	 the	 nucleosome	 (Luger	 et	 al.,	 1997)	 it	 was	 demonstrated	 that	 PTMs	 are	 able	 to	

influence	 the	 chromatin	 structure.	 Histone	 modifications	 play	 vital	 role	 in	

nucleosome	 stability.	 They	 are	 the	 principle	 factors	 for	 recruiting	 chromatin	

modelers	 and	 other	 regulatory	 proteins	 for	 positioning	 nucleosome	 and	 regulating	

transcription	accordingly.	Among	all,	 some	well	known	and	characterized	PTMs	are	

methylation,	 acetylation	 and	 ubiquitination	 on	 lysine,	 phoshorilation	 on	 threonine	

and	 serine;	 newly	 identified,	 but	 less	 abundant	 PTMs	 are	 serine/threonine	 O-

GlcNAcylation	(Arnaudo	and	Garcia,	2013)	and	crotonilation	(Tan	et	al.,	2011),	lysine	

butyrylation	and	proprionylation	(Chen	et	al.,	2007),	lysyl	5-hydroxylation	(Unoki	et	

al.,	2013).	Most	PTMs	occurs	at	the	N-	and	C-terminal	“tail”	domains	protruding	from	

the	 nucleosome	 core	 particle,	 but	 a	 significant	 fraction	 of	modification	 takes	 place	
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also	 in	 the	 globular	 domain	 of	 the	 histones,	 which	 regulates	 histone-histone	 and	

histone-DNA	 interactions	 (Cosgrove	 et	 al.,	 2004).	 From	 the	 findings	 of	 different	

experiments	 it	 was	 possible	 in	 relating	 different	 histone	 modifications	 with	 gene	

activation	 or	 repression	 and	 also	 in	 better	 defining	 various	 regulatory	 regions	 of	

genome	 such	 as	 active	 or	 repressed	 promoters	 of	 a	 gene,	 active/poised	 enhancers,	

and	 transcribed	 regions.	 In	 brief,	 repressed	 promoters	 of	 a	 gene	 is	 marked	 by	

H3K27me3	(Morey	and	Helin,	2010)	where	as	active	promoter	of	a	gene	is	marked	by	

H3K4me3	 (Bernstein	 et	 al.,	 2005).	 Similarly,	 active	 enhancers	 are	 marked	 by	

H3K27ac,	H3K4me1	and	with	very	minimal	H3K4me3	where	as	poised	enhancers	are	

marked	by	H3K4me1	with	very	minimal	H3K4me3	(Creyghton	et	al.,	2010a).	

1.1.3. Transcriptomics	

In	 eukaryotes,	 every	 cell	 contains	 the	 same	 genome	 and	 thus	 the	 same	 genes.	

However,	not	every	gene	is	transcriptionally	active	in	every	cell,	different	cells	show	

different	patterns	of	gene	expression.	These	differences	 in	expression	are	governed	

by	wide	range	of	physical	and	biochemical	factors	of	a	cell.	Within	a	cell,	not	complete	

genome	is	transcribed	only	small	proportion	of	genome	is	transcribed	which	is	then	

translated	 into	 functional	 protein.	 This	 small	 proportion	 of	 transcribed	 genome	 is	

estimated	to	nearly	5	percent	of	whole	genome	(Frith	et	al.,	2005).		In	recent	years,	it	

was	discovered	that	fraction	of	genome	to	be	transcribed	but	not	further	coded	into	

functional	protein.	Such	transcribed	RNA	is	termed	as	non-coding	RNA.	With	the	aid	

of	 transcriptomics	studies,	we	can	understand	which	genes	are	active	or	 inactive	 in	

various	 types	 of	 cells	 and	 tissues.	 This	 information	 can	 further	 be	 useful	 in	

understanding	 the	 dynamics	 behind	 different	 expression	 patterns	 both	 within	 and	

across	 similar	 or	 different	 cell	 types.	 With	 support	 of	 high	 throughput	 technology	
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today	we	can	measure	levels	of	expression	individual	gene.	Using	this	one	can	be	able	

to	quantify	transcripts	and	get	to	know	which	set	of	genes	are	highly	expressed	and	

contribute	 in	 defining	 unique	 properties	 of	 that	 cell.	 Furthermore,	 transcriptomics	

can	also	be	used	in	understanding	alterations	in	expression	patterns	in	cancer	cells	as	

compared	its	normal	counterpart.	

1.2. Next	Generation	Sequencing	

With	 advance	 in	 technology	 and	 the	 search	 for	 better	 scientific	 evidence,	 current	

epigenomic	 studies	 don’t	 restrict	 their	 observations	 to	 any	 local	 environment	 of	

genome	 but	 are	 interested	 in	 characterizing	 the	 phenomena	 at	 genome	wide	 level.	

This	 resulted	 in	 designing	 experiments	 coupled	 with	 Next	 Generation	 Sequencing	

(NGS),	also	known	as	high	throughput	sequencing	(HTS).	 	 It	allows	massive	parallel	

sequencing	 during	which	millions	 of	 fragments	 of	 DNA	 are	 sequenced	 in	 relatively	

very	 small	 amount	 of	 time	 at	 appreciable	 cost.	 In	 practice,	HTS	 is	 applied	 in	 broad	

spectrum	 of	 disciplines.	 For	 instance,	 it	 is	 used	 for	 genome	 assembly,	 mutational	

studies,	transcription	profiling	and	also	for	epigenetic	studies.	Apart	from	these	major	

types,	there	are	many	other	supplement	sequencing	methods	for	different	purposes.	

Here	as	part	of	epigenomic	study,	we	stress	on	chromatin	immunoprecipitation	and	

RNA	based	sequencing	methodologies.	

In	 recent	 years,	 the	 development	 of	 chromatin	 immunoprecipitation	 (ChIP)	 assay,	

coupled	to	HTS	technology	(ChIP-seq)	has	provided	a	powerful	tool	for	investigating	

the	nature	and	patterns	of	deposition	of	several	histone	PTMs/target	protein	binding	

events	in	the	genome	of	different	organisms	and	has	helped	to	unravel	their	functions	

through	unbiased	approaches.		This	allowed	a	greater	understanding	of	the	molecular	

mechanisms	behind	transcriptional	regulation.	
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Similarly,	RNA-Seq	is	another	deep-sequencing	technology	in	which	mRNA	molecules	

from	 population	 of	 cells	 of	 same	 kind	 are	 extracted	 and	 sequenced	 in	 any	 NGS	

platforms,	 allowing	 measuring	 the	 levels	 of	 expression	 of	 different	 genes.	 This	

information	 has	 been	 used	 extensively	 in	many	 research	 studies	 for	 characterizing	

respective	biological	phenomena.		

Taking	advantage	of	above	two	sequencing	techniques	and	linking	their	results	help	

us	in	better	understanding	transcriptional	regulation.	

1.2.1.	 Primary	Data	Analysis	

Before	making	any	biological	inferences	from	the	data	generated	through	HTS,	it	has	

to	 undergo	 a	 series	 of	 computational	 analysis	 steps.	 Once	 sequencing	 data	 is	

generated	 through	 ChIP-seq/RNA-seq,	 it	 is	 initially	 checked	 for	 its	 quality.	 Once	

satisfied,	data	 is	aligned	 to	known	reference	genome.	This	 constitutes	primary	data	

analysis,	 which	 is	 common	 for	 both	 ChIP-seq/RNA-seq.	 These	 steps	 are	 explained	

below	in	much	more	detail.	

1.2.1.1. Quality	Control	

It	 is	 always	 recommended	 to	 check	 the	 quality	 of	 data	 generated	 through	 NGS	

platforms.	 At	 times	 quality	 can	 be	 poor	 due	 to	 bad	 library	 preparation	 or	 due	 to	

sequencing	 platform	 specific	 errors	 or	 both.	 Some	 possible	 issues	 during	 library	

preparation	can	be	amplification	biasness,	contamination	of	sample	with	some	other	

unkown	 samples,	 high	 level	 of	 duplication	 and	 many	 others.	 Similarly,	 sequencing	

platform	 specific	 issues	 can	 be	 variation	 in	 reading	 and	 scoring	 quality	 of	 bases	

(Schmieder	 and	Edwards,	 2011;	 Zhou	 et	 al.,	 2013).	 For	 such	 reasons,	 it	 is	 certainly	

important	to	test	 the	quality	of	data	generated	through	these	platforms.	 In	terms	of	



	24	

quality	control	(QC),	every	data	should	be	assessed	for	the	quality	of	raw	reads	using	

metrics	 generated	 by	 the	 sequencing	 platform.	 FastQC	

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),	 is	 one	 of	 the	 most	

popular	 tools	 used	 for	 initial	 QC	 of	 sequencing	 data.	 It	 generates	 report	 containing	

base	 quality	 information,	 duplication	 levels,	 GC	 content	 per	 sequence,	 duplication	

levels	and	other	necessary	information.	Similarly,	FaQC	(Lo	and	Chain,	2014),	NGS	QC	

Toolkit	(Patel	and	Jain,	2012)	and	QC-Chain	(Zhou	et	al.,	2013)	are	some	other	open	

source	tools	that	can	be	used	for	similar	purpose.		

1.2.1.2. Alignment	

Once	sequencing	data	passes	through	quality	control,	next	analytical	step	is	alignment	

of	 reads	 to	 reference	 genome.	 Scanning	 huge	 number	 of	 sequenced	 reads	 through	

reference	 genome	 for	 alignment	 is	 inefficient,	 time	 taking	 and	 computationally	

expensive.	 To	 avoid	 this,	 reference	 genome	 is	 indexed	 prior	 to	 alignment	 process.	

Once	 indexed,	multiple	sequenced	samples	can	be	aligned	easily.	Different	software	

index	 genome	 differently.	 But	 most	 software	 use	 either	 suffix/prefix	 tries	 or	 hash	

tables	 based	 index	 algorithms.	 Some	 popular	 software	 designed	 on	 the	 basis	 of	

suffix/prefix	tries	are	BWT(Li	and	Durbin,	2009),	Bowtie	(Langmead	et	al.,	2009)	and	

many	 others.	 Similarly,	 software	 designed	 on	 the	 basis	 of	 hash	 tables	 are	 BFAST	

(Homer	 et	 al.,	 2009),	MAQ	 (Li	 et	 al.,	 2008a)	 and	 others.	 Once	 reference	 genome	 is	

indexed,	actual	alignment	of	sequenced	reads	 to	genome	 is	 initiated.	 Irrespective	of	

indexing	method,	alignment	of	sequenced	reads	with	reference	genome	is	done	either	

by	 Smith–Waterman	 (Smith	 and	 Waterman,	 1981)	 or	 the	 Needle–Wunsch	

(Needleman	and	Wunsch,	1970)	algorithms.	Depending	on	the	alignment	tool	used,	a	
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resulting	 alignment	 is	 either	 gapped	 or	 ungapped.	 ChIP-seq	 data	 can	 be	 directly	

aligned	to	reference	genome	through	above-mentioned	approach.		

As	compared	to	ChIP-seq	data,	RNA-seq	data	are	not	genomic	DNA	but	are	processed	

complementary	 DNA	 (cDNA)	 generated	 from	mRNA.	 Usually,	 mRNA	 is	 transcribed	

from	 genomic	 DNA,	 which	 then	 undergoes	 splicing	 process	 removing	 introns	 and	

joining	exons.	For	this	reason	RNA-seq	reads	cannot	be	aligned	directly	to	reference	

genome.	 For	 aligning	 such	 data	 special	 considerations	 are	 to	 be	 considered.	 Two	

approaches	are	followed	for	aligning	RNA-seq	data.	One	is	guided	approach,	in	which	

gene	models	are	used	for	constructing	possible	splice	junctions;	these	junctions	and	

exon	genomic	 regions	 are	 then	used	directly	 for	 aligning	 sequenced	 reads.	And	 the	

other	 is	 unguided	 approach,	 where	 reads	 are	 aligned	 directly	 to	 the	 genome,	

identifying	 potential	 exons.	 Junctions	 are	 then	 constructed	 on	 the	 basis	 of	 exons	

derived	 from	 mapped	 reads.	 Other	 remaining	 reads	 are	 mapped	 to	 these	 newly	

constructed	junctions.	These	aligned	junctions	are	further	used	for	constructing	gene	

model.	TopHat	(Trapnell	et	al.,	2009),	PALMapper	(Jean	et	al.,	2010)	and	STAR	(Dobin	

et	al.,	2013)	are	some	software	that	follows	guided	approach	for	aligning	reads	where	

as	 MapSplice	 (Wang	 et	 al.,	 2010)	 and	 TopHat	 (Trapnell	 et	 al.,	 2009)	 are	 other	

software	 that	 uses	 non-guided	 approach	 for	 aligning	 reads.	Most	 RNA-seq	 aligners	

are	developed	on	top	of	short	read	alignment	tools	such	as	bowtie	and	SOAP	(Li	et	al.,	

2008b).	

1.2.2. Secondary	Data	Analysis	
	

In	 this	 stage,	 ChIP-seq	 aligned	 data	 is	 further	 processed	 with	 the	 aim	 at	 finding	

enriched	regions	signifying	potential	binding	of	 target	protein	or	presence	of	PTMs.	
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At	 the	 same	 time,	 RNA-seq	 aligned	 data	 is	 processed	 to	 measure	 the	 level	 of	

expression	of	different	genes.		

1.2.2.1. Peak	Calling	

Once	 ChIP-seq	 data	 is	 aligned	 to	 reference	 genome,	 next	 critical	 step	 is	 to	 identify	

enriched	 regions	 across	 whole	 genome.	 This	 processing	 is	 commonly	 known	 as	

Peaking	Calling.	Simplest	method	for	identifying	such	enriched	regions	will	be	sliding	

window	 approach;	 in	 which	 read	 density	 in	 fixed	 length	 of	 window	 is	 computed	

across	whole	genome	(Nix	et	al.,	2008;	Qin	et	al.,	2010;	Spyrou	et	al.,	2009;	Zhang	et	

al.,	 2008).	 This	 approach	 is	 further	 improved	 by	 considering	 Gaussian	 kernel	

estimator,	 which	 results	 in	 continuous	 signal	 density	 and	 avoids	 dependency	 of	

window	size	(Boyle	et	al.,	2008;	Lun	et	al.,	2009).	In	these	approaches,	certain	height	

of	read	density	is	considered	as	criteria	for	identifying	significantly	enriched	regions	

and	in	cases	enriched	regions	lie	with	in	some	minimal	distance	are	merged	together.	

To	further	know	the	statistical	confidence	of	enriched	regions	background	models	are	

taken	 into	 consideration.	 These	 background	models	 are	 statistical	 models	 that	 are	

constructed	on	the	basis	of	low	coverage	regions	in	genome.	Later,	looking	for	more	

precise	 results,	 many	 software	 take	 into	 consideration	 sequencing	 data	 generated	

from	control	data	this	can	be	ChIP	from	any	non	specific	antibody	like	IgG	or	input	of	

fixed	chromatin	generated	without	any	specificity	for	any	antibody.	With	the	support	

of	control	datasets	peak	calling	can	be	improved	in	many	ways	either	by	subtracting	

background	signal	of	control	data	from	target	ChIP	removing	noise	or	by	considering	

fold	 changes	 differences	 between	 target	 ChIP	 and	 control	 data	 (Chen	 et	 al.,	 2008;	

Johnson	et	al.,	2007).	This	way	many	false	positive	peaks	can	be	controlled.		
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Many	 software	 implement	 different	 statistical	 models	 for	 calling	 enriched	 regions.	

Models	 like	 Poisson	 (Valouev	 et	 al.,	 2008),	 local	 Poisson	 (Zhang	 et	 al.,	 2008),	 t-

distribution	(Blahnik	et	al.,	2010),	conditional	binomial	(Nix	et	al.,	2008;	Rozowsky	et	

al.,	2009)	and	hidden	Markov	(Qin	et	al.,	2010;	Spyrou	et	al.,	2009)	models	are	being	

used	by	different	software.	Using	these	models	each	enriched	region	is	assigned	with	

some	significant	value	and	with	the	support	of	control	dataset	false	discovery	rate	is	

computed.	All	 these	methods	ultimately	aim	at	 calling	enriched	regions	with	higher	

level	of	confidence	and	reduce	false	positive	rate.	

1.2.2.2. mRNA	quantification	
	

On	the	basis	of	annotated	gene	model	and	aligned	RNA-seq	reads,	reads	lying	within	

exons	of	a	gene	are	summed	and	can	be	used	as	a	measure	of	level	of	expression	for	

that	gene.	Comparison	of	these	expression	levels	between	genes	of	different	 lengths	

can	be	misleading,	as	shorter	genes	will	have	greater	count	than	lengthy	genes	with	

few	count	but	their	concentration	in	sample	is	same.	Such	biasness	can	be	avoided	by	

normalizing	 read	 count	 with	 the	 length	 of	 mRNA	 and	 sequencing	 depth	 to	 obtain	

expression	level	in	terms	of	Reads	Per	Kb	per	Million	(RPKM)	values	(Mortazavi	et	al.,	

2008).	 These	 RPKMs	 can	 now	 be	 used	 for	 comparing	 expressing	 levels	 between	

different	genes	within	a	sample.	Several	 tools	 like	ERANGE	(Mortazavi	et	al.,	2008),	

Tophat	 (Trapnell	 et	 al.,	 2009)	 and	 RSAT	 (Medina-Rivera	 et	 al.,	 2015)	 provide	

provision	for	computing	RPKMs.		For	computing	RPKM	for	a	locus,	ERANGE	takes	into	

consideration	read	counts	of	all	known	and	novel	exons	where	as	TopHat	(Trapnell	et	

al.,	2009)	and	RSAT	(Medina-Rivera	et	al.,	2015)	make	use	of	only	specified	exons.	
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1.2.3. Tertiary	Data	Analysis	

Using	 data	 from	 secondary	 analysis	 further	 downstream	 analysis	 is	 planned.	

Depending	 upon	 biological	 questions	 to	 be	 answered	 tertiary	 analysis	 differs	 from	

one	experiment	 to	 another.	 In	particular	ChIP-seq	data	 can	be	 further	processed	 in	

many	different	ways	 like	ChIP	enriched	regions	can	be	mapped	 to	closest	gene	and	

complete	 gene	 set	 can	 be	 annotated	 to	 know	 which	 biological	 process/molecular	

functions	or	biochemical	pathways	are	enriched.	GREAT	(McLean	et	al.,	2010)	is	one	

such	 application,	 which	 is	 specifically	 designed	 for	 annotating	 such	 regions	 of	

interest.	 Other	 common	 task	 is	 to	 identify	 highly	 represented	 motifs	 in	 enriched	

regions.	MEME-ChIP	(Machanick	and	Bailey,	2011),	Pscan	(Zambelli	et	al.,	2009)	are	

few	such	programs,	which	are	commonly	used	for	such	purposes.	Similarly	RNA-seq	

data	from	different	experiments	can	be	further	processed	specifically	for	identifying	

differential	 expressed	 genes.	 	 Cuffdiff2	 (Trapnell	 et	 al.,	 2013),	 DESeq2	 (Love	 et	 al.,	

2014)	 and	 edgeR	 (Zhou	 et	 al.,	 2014)	 are	most	 commonly	used	 tools	 for	 identifying	

differentially	regulated	genes.	

In	terms	of	usage,	different	programs	are	designed	with	the	perspective	to	make	all	

users	easy	to	carry	out	computational	analysis.	The	only	systems	that	render	specific	

programs	available	in	a	linked	pipeline	are	Galaxy	(Goecks	et	al.,	2010)	and	Cistrome	

(Liu	 et	 al.,	 2011).	 With	 the	 recent	 understanding	 about	 the	 level	 of	 complexity	 of	

epigenomic	dynamics	such	minimal	analysis	remain	insufficient.	Taking	together	the	

data	from	different	studies	creates	an	opportunity	for	exploring	their	relationship	at	a	

much	deeper	level	which	can	contributes	to	a	better	characterization	of	the	genome	

wide	dynamics	and	solve	hidden	layers	of	regulation.	For	doing	so	programs	with	in-

build	analytical	and	data	mining	methods,	power	for	supporting	bulk-processed	data	

from	different	 disciplines	 are	 needed.	While	 primary	 and	 its	 extended	 analysis	 (i.e.	
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ChIP-seq	 peak	 calling)	 are	 mature	 and	 broadly	 available,	 programs	 with	 such	

extended	capabilities	are	still	not	available;	restricting	the	analytical	power	to	highly	

experienced	computational	biologists.	With	such	approach	tools	like	SeqMINER	(Ye	et	

al.,	 2011),	 and	 some	modules	 of	 HOMER	 (Heinz	 et	 al.,	 2010),	 Cistrome	 (Liu	 et	 al.,	

2011)	 provide	 provisions	 for	 quantitative	 and	 correlative	 analysis,	 which	 remain	

restricted	 to	 a	 limited	 framework.	 However,	 the	 above	 mentioned	 tools	 do	 not	

provide	provision	 for	handling	multiple	samples,	 link	changes	within	a	sample	with	

transcription,	 predicting	 dependencies,	 filtering	 datasets	 on	 the	 basis	 of	 their	

relevance,	 identifying	 features	 to	 characterize	 samples	 and	 to	 perform	 differential	

analysis.	Moreover	programs	like	HOMER	(Heinz	et	al.,	2010)	and	Cistrome	(Liu	et	al.,	

2011)	 cannot	 deal	 with	 raw	 aligned	 data	 as	 they	 require	 processed	 aligned	 data,	

which	 add	 a	 further	 layer	 of	 complexity.	 Apart	 from	 these	 standalone	 applications	

and	 command	 line	 tools	 there	 several	 packages	 designed	 in	 R	 for	 similar	 purpose.	

RepiTools	 (Statham	et	 al.,	 2010)	 for	 analysis	 of	 enrichment	based	epigenomic	data,	

ChIPpeakAnno	 (Zhu	 et	 al.,	 2010)	 for	 annotating	 enriched	 regions,	 DiffBind	 (Ross-

Innes	 et	 al.,	 2012)	 for	 identifying	 differentially	 regulated	 regions	 between	

experiments	 and	many	 others	 are	 available	 in	 binconductor.	 Main	 disadvantage	 of	

using	R	packages	and	other	command	line	tools	is	that	it	requires	prior	knowledge	of	

programming.	From	a	biologist	point	of	view	this	would	be	very	tedious	job.	Even	for	

small	task	this	would	be	painful.	

Taking	 into	 consideration	 these	 concerns,	we	were	 interested	 in	 developing	 a	 light	

weighted	standalone	open	source	application	with	genome	wide	analytical	 features.	

The	application	is	designed	in	a	way	that	it	should	be	easy	to	use	with	minimal	input	

files	and	can	be	used	by	any	biologist	with	minimal	computational	background	thus	

reducing	 dependencies	 on	 others.	 	 Such	 application	 should	 be	made	 available	with	
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Graphical	User	Interface	(GUI)	and	command	line	facility.	Providing	GUI	option	makes	

biologist	 more	 easy	 to	 use.	 With	 these	 considerations	 we	 designed	 ChIP_QC,	 a	

computational	program	for	Quantitative	and	Correlative	analysis	of	ChIP-seq	data.	

1.3. Polycomb	Group	Proteins	

1.3.1. Overview	

Polycomb	 group	 proteins	 (PcGs)	 are	 family	 of	 proteins,	 which	 were	 initially	

discovered	in	D.	Melanogaster	(Lewis,	1978).	They	are	regarded	as	key	players	in	the	

process	 of	 development	 and	 tissue	morphogenesis.	 As	 research	 continued	on	 these	

proteins,	their	homologs	were	identified	in	mammalians	too	(Brunk	et	al.,	1991;	van	

Lohuizen	 et	 al.,	 1991a).	 Bmi	was	 the	 very	 initial	 homolog	 identified	 in	mammalian	

system	whose	activity	was	 linked	with	Myc	 in	 inducing	 lymphomagenesis	(Haupt	et	

al.,	 1991;	 van	 Lohuizen	 et	 al.,	 1991b).	 And	 slowly	 other	 homologs	 in	 mammalian	

system	were	identified	(Schumacher	and	Magnuson,	1997).	These	developments	led	

to	 in-depth	characterization	of	 these	proteins	 in	mammalian	system	and	 it	 resulted	

that	they	exist	as	multi-protein	complex	in	cell	nuclei	(Piunti	and	Pasini,	2011).	PcGs	

exist	mainly	 in	 two	complexes	namely	Polycomb	Repressive	Complex	1	 (PRC1)	and	

Polycomb	Repressive	Complex	2	 (PRC2).	 Each	 complex	 is	made	 of	 several	 proteins	

and	their	functional	role	is	not	fully	understood	(Schwartz	and	Pirrotta,	2013).	PRC1	

is	 the	 bigger	 complex	 and	 very	 large	 in	 size	 as	 compared	 to	 the	 other.	 It	 catalyses	

mono-ubiquitination	of	 the	 lysine	119	on	 the	histone	H2A	(H2aK119Ubq)	(Wang	et	

al.,	 2004)	 and	 this	 enzymatic	 activity	 is	 carried	 out	 by	 two	 main	 proteins	 of	 the	

complex	Ring1a	and	Ring1b.	Ring1a/b	ubiquitin-ligase	activity	is	highly	dependent	on	

the	 presence	 of	 Pcgf2	 and	 Pcgf4	 (Cao	 et	 al.,	 2005;	 Elderkin	 et	 al.,	 2007).	 In	 recent	

years,	 it	 has	 been	 found	 that	 PRC1	 complex	 exists	 in	 different	 forms	 in	 different	
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tissues	with	different	 functional	 roles	 (Gao	et	al.,	2012).	On	 the	other	hand	PRC2	 is	

smaller	complex	and	it	catalyses	methylation	on	Lysine	27	of	Histone	H3.	This	activity	

of	 methylation	 of	 PRC2	 is	 carried	 out	 by	 Ezh2	 and	 Ezh1	 proteins	 of	 the	 complex	

(Margueron	 and	 Reinberg,	 2011).	 Ezh2/1	 methyltransferase	 activity	 is	 fully	

dependent	on	other	proteins	of	the	complex	namely	Suz12	and	Eed	(Cao	et	al.,	2002;	

Cao	and	Zhang,	2004;	Pasini	et	al.,	2004a).	Both	PRC1/2	localize	at	genes	promoter,	

which	 are	 involved	 in	 the	 process	 of	 differentiation	 and	proliferation	 (Orlando	 and	

Paro,	1993;	Simon	and	Kingston,	2013).	 In	terms	of	their	functional	role,	both	these	

complexes	are	associated	with	 transcriptional	 repression	of	 target	genes	 (Laugesen	

and	 Helin,	 2014).	 Mechanism	 by	 which	 both	 complex	 regulate	 transcriptional	

repression	can	be	explained	by	initial	methylation	on	lysine	27	of	histone	H3	by	PRC2	

at	 target	 gene	 promoters	 which	 acts	 as	 a	 recruiting	 factor	 for	 PRC1	 which	 then	

ubiquitinilates	 lysine	 119	on	 the	 histone	H2A	 this	 results	 in	 chromatin	 compaction	

and	transcriptional	repression	(Cao	et	al.,	2002).	Recent	studies	have	shown	that	the	

vice	 versa	mechanism	 also	 exists,	where	 PRC1	 initially	 ubiquitinilates	which	 act	 as	

recruiting	factor	PRC2	complex	(Blackledge	et	al.,	2014).	Functional	characterization	

of	PRC1/2	has	been	studied	in	depth,	but	the	mechanism	by	which	they	are	recruited	

to	chromatin	is	not	fully	understood	in	higher	order	organisms.	In	Dorsophila,	it	has	

been	 clearly	 shown	 that	 cis-regulatory	 PRE	 elements	 are	 responsible	 for	 recruiting	

polycomb	(Kassis	and	Brown,	2013)	to	their	target	promoter	but	this	does	not	hold	

true	in	mammalian	system.	Many	mechanisms	has	been	proposed	like	Rybp,	Kdm2b	

and	 Jarid2	 proteins	 are	 shown	 as	 recruiting	 factors	 for	 polycomb	 (He	 et	 al.,	 2013;	

Pasini	et	al.,	2010;	Tavares	et	al.,	2012;	Wu	et	al.,	2013)	and	some	other	studies	show	

long	non	coding	RNA	as	 the	mediators	 for	 recruiting	polycomb	 to	 their	 target	 gene	

promoters.	 Besides	 these	 evidences,	 clear	 understanding	 on	 PRC1/2	 recruiting	
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mechanism	 to	 chromatin	 is	 still	being	debated.	PcGs	proteins	are	always	 studied	 in	

terms	 of	 differentiation,	 development,	 proliferation	 and	 their	 tumorigenesis	 (Piunti	

and	 Pasini,	 2011;	 Sparmann	 and	 van	 Lohuizen,	 2006).	 Their	 importance	 in	 cell	

viability	is	shown	through	knock	out	studies	of	different	components	of	the	complex	

in	mouse	embryonic	stem	cells,	this	resulted	in	embryonic	lethality	or	developmental	

defects.	In	many	tumours,	it	has	been	reported	that	PcGs	overexpression	is	a	negative	

prognostic	 factor.	 In	 such	 cases	 its	 inhibition	 is	 regarded	 as	 potential	 strategy	 for	

tumour	treatment	(Piunti	and	Pasini,	2011).	

1.3.2. Polycomb	Repressive	Complex	2	

PRC2	 is	one	of	 the	 two	complexes	of	PcGs	and	 is	 regarded	as	key	regulator	of	gene	

expression.	It	is	associated	with	transcriptional	repression	of	target	genes,	which	are	

mainly	 required	 for	 differentiation	 and	 developmental	 process.	 Primary	 activity	 of	

PRC2	is	to	trimethylate	Lys27	on	histone	H3	(H3K27me3)	(Cao	et	al.,	2002;	Czermin	

et	 al.,	 2002;	 Kuzmichev	 et	 al.,	 2002)	 contributing	 to	 chromatin	 compaction,	 which	

ultimately	 results	 in	 transcriptional	 repression.	H3K27me3	 is	deposited	 in	genomic	

regions	with	high	density	of	CpG	nucleotides	mainly	comprising	promoters.	PRC2	is	

composed	 of	 four	 key	 proteins	 namely	 Enhancer	 of	 Zeste	 homolog	 (Ezh1/2),	

Suppressor	 of	 zeste	 (Suz12),	 Retinoblastoma	 protein	 associated	 protein	 46/48	

(RbAp46/48),	and	Embryonic	ectoderm	development	 (Eed).	 Individual	core	protein	

of	PRC2	is	fundamental	for	proper	functioning	of	complex	on	histone	substrate	(Cao	

and	Zhang,	2004;	Ketel	et	al.,	2005).	This	has	been	very	well	demonstrated	by	early	

embryonic	 lethality	 of	 mice	 deficient	 for	 Eed,	 Suz12	 or	 Ezh2	 (Faust	 et	 al.,	 1995;	

O'Carroll	 et	 al.,	 2001;	 Pasini	 et	 al.,	 2004b).	 This	 observation	 is	 consistent	with	 the	

functional	 activity	 of	 PRC2	 in	 repressing	 genes	 that	 are	 involved	 in	 lineage	
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specification	 (Boyer	 et	 al.,	 2006;	Bracken	 et	 al.,	 2006;	 Lee	 et	 al.,	 2006;	Mohn	 et	 al.,	

2008).	 Out	 of	 four	 core	 proteins,	 Ezh1/2	 is	 the	 one,	 which	 carries	 out	 enzymatic	

activity	of	methylation.	These	proteins	contain	SET	domain	responsible	 for	methyil-

transferase	activity.	Eed	protein	other	component	of	the	complex	has	been	shown	to	

have	the	ability	to	recognize	and	bind	to	H3K27me3	modification	and	enhance	lysine	

methyl	 transferase	 (KTM)	 activity	 by	 the	 complex	 there	 by	 establishing	 a	 positive	

feedback	loop	(Margueron	et	al.,	2009).	It	was	shown	that	in	presence	of	H3K27me3	

peptide,	 KTM	 activity	 is	 boosted	 up	 by	 several	 folds.	 There	 by	 it	 can	 be	 concluded	

that,	 PRC2	 is	 more	 efficient	 in	 trimethylating	 K27	 in	 presence	 of	 pre-existing	

H3K27me3.	This	suggests	a	way	to	maintain	some	minimal	levels	of	K27me3	through	

cell	cycle	progression	(Hansen	et	al.,	2008;	Margueron	et	al.,	2009).	EZH1/2	has	also	

the	ability	to	methylate	K27	residue	on	histone	H3	in	a	stepwise	manner	from	mono	

to	tri	form	(H3K27me1/2/3),	with	different	functionalities.	It	would	be	interesting	to	

know	 how	 these	 three	 different	modifications	 localize	 throughout	 the	 genome	 and	

understand	functional	role	of	each	individual	form	of	methylation.	My	work	is	focused	

in	 this	area	and	we	recently	published	our	 findings	(Ferrari	et	al.,	2014),	where	we	

showed	that	H3K27me1	localize	in	the	actively	expressing	gene	bodies	and	correlate	

well	with	H3K36me3,	where	as	H3K27me2	 is	diffused	 through	 the	genome	with	an	

preventive	aim	to	not	open	non	cell	type	specific	enhancers.	

1.3.3. Polycomb	Repressive	Complex	1	

PRC1	 is	 other	 complex	 of	 PcGs	 whose	 main	 enzymatic	 activity	 is	 to	 ubiquitinilate	

lysine	119	on	the	histone	H2A.	In	mammalian	cells,	PRC1	exists	in	many	forms	each	

with	 its	 own	 functional	 importance	 (Gao	 et	 al.,	 2012;	 Vandamme	 et	 al.,	 2011).	 One	

common	 thing	among	all	 variants	of	PRC1	 is	 that	 they	all	 contain	Ring1b/a	as	 core	
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protein,	with	 the	enzymatic	activity	 to	ubiquitinilate	 lysine	119	on	 the	histone	H2A	

(Wang	 et	 al.,	 2004).	 All	 variants	 of	 PRC1	 sub-complexes	 can	 be	 defined	 by	 the	

presence	of	one	of	the	six	Pcgf	proteins	mutually	exclusive	manner	along	with	other	

proteins	like	Phc	and	Cbx	(Gao	et	al.,	2012).	Canonical	PRC1	can	be	nomenclature	as	

PRC1.2	 or	 PRC1.4	 depending	 on	 the	 presence	 of	 either	 Pcgf2	 or	 Pcgf4	 (Gao	 et	 al.,	

2012,	24217316),	along	with	Phc1	and	Cbx	proteins,	which	were	initially	discovered	

in	human	(Levine	et	al.,	2002).	Other	non-canonical	forms	of	PRC1	are	namely	PRC1.1	

also	known	as	Ring2-KDM2B	complex	comprising	of	Pcgf1	along	with	KDM2B,	BCOR	

and	USP7;	PRC1.6	also	known	as	Ring2-L3MBTL2	complex	comprising	of	Pcgf6	along	

with	 L3MBTL2,	 MGA	 and	 Cbx3;	 PRC1.3	 and	 PRC1.5	 variant	 comprising	 of	 either	

Pcgf3/5	along	with	FBRS	and	CSNK2A1	(Schwartz	and	Pirrotta,	2013).	 In	functional	

terms	 Cbx	 protein	 in	 canonical	 PRC1	 has	 the	 ability	 to	 recognize	 H3K27me3	

modification	 deposited	 by	 PRC2	 and	 acts	 as	 recruiting	 factor	 for	 PRC1	 on	 to	 the	

chromatin.	This	dependency	can	be	proved	by	the	loss	of	Ring1b	binding	on	common	

targets	genes	of	both	PRC1	and	PRC2	upon	depletion	of	PRC2	(Tavares	et	al.,	2012).	

But	 this	 didn’t	 affect	 global	 levels	 of	 H2AK119ubq	 suggesting	 a	 PRC2	 independent	

PRC1	activity	on	chromatin	(Tavares	et	al.,	2012).	All	variants	of	PRC1	contain	RYBP	

explaining	its	crucial	role	in	PRC1	functions	(Gao	et	al.,	2012).	Presence	of	RYBP	and	

CBX	 in	 PRC1	 is	 mutually	 exclusive	 (Gao	 et	 al.,	 2012;	 Tavares	 et	 al.,	 2012).	 PRC1	

containing	CBX	and	RYBP	share	common	target	genes	(Gao	et	al.,	2012;	Morey	et	al.,	

2013)	but	they	bind	adjacent	in	regions	(Gao	et	al.,	2012).	PRC1	variants	PRC1.2	and	

PRC1.4	were	unable	 to	ubiquintilate	H2AK119	when	 forced	 to	 recruit	 to	 chromatin	

(Blackledge	 et	 al.,	 2014),	 suggesting	 pre-deposition	 of	 H3K27me3	 might	 be	 a	

requirement	 for	 their	 activity.	 	 In	 recent	 findings	 it	 was	 observed	 that	 Kdm2b	

component	 of	 PRC1.1	 variant	 is	 important	 for	 recruiting	 PRC1	 onto	 chromatin	



	 35	

(Barrero	and	 Izpisua	Belmonte,	2013).	Variant	PRC1.6	might	have	some	role	 in	cell	

identity	 (Gao	 et	 al.,	 2012;	 Trojer	 et	 al.,	 2011).	 Depletion	 of	 L3mbtl2	 and	 Wdr5	

proteins	 from	 the	 complex	 has	 lead	 to	mESC	 premature	 differentiation	 (Ang	 et	 al.,	

2011;	Qin	et	al.,	2012).	Other	variants,	PRC1.3	and	PRC1.5	are	not	fully	characterized	

and	functional	role	of	their	protein	components	are	undetermined.	But	it	is	known	on	

forced	recruitment	of	Pcgf3	and	Pcgf5	onto	chromatin	leads	to	monoubiquitination	of	

H2AK119	and	recruitment	of	PRC2	(Blackledge	et	al.,	2014).		

1.3.4. Role	of	Polycomb	in	stem	cells	and	cellular	differentiation.	

Stem	 cells	 are	 of	 unique	 kind,	 which	 have	 capabilities	 of	 self-renewal	 and	

differentiation.	Balance	between	these	two	states	is	regulated	by	means	of	integrated	

signaling	 and	 strong	 transcriptional	 regulation.	 A	 single	 genome	 can	 give	 multiple	

cellular	identities	through	its	robust	mechanism	of	reorganization	and	modification	at	

different	levels;	out	of	many	underlying	mechanisms	that	govern	in	stem	cell	identity	

and	 cell	 fate	 determination,	 epigenetic	 modifications	 driven	 by	 Tritorax	 and	

Polycomb	 proteins	 having	 greater	 importance.	 They	 establish	 patterns	 of	 gene	

silencing	which	are	heritable	and	are	preserved	in	a	cell	type	specific	manner.		

Evidences	have	shown	that	Polycomb	proteins	can	mediate	gene	repression	through	

different	mechanisms.	Two	main	mechanisms	by	which	PcG-mediate	gene	repression	

is:	 through	 chromatin	 compaction	 and	 impairment	 of	 transcription	 machinery.	

Chromatin	compaction	ability	by	PRC1	was	described	in	Drosophila,	which	resulted	in	

repression	of	Posterior	Sex	Combs	region.	Polycomb	induced	chromatin	compaction	

makes	itself	inaccessible	to	modellers	like	SWI/SNI	complex	and	other	transcription	

factors,	 which	 would	 otherwise	 have	 triggered	 transcription	 (Francis	 et	 al.,	 2001).	
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Moreover,	densely	packed	nucleosomes	have	been	shown	to	stimulate	PRC2	activity	

on	H3K27,	thus	generating	a	positive	feedback	loop	(Yuan	et	al.,	2012).		

Another	 mechanism	 by	 polycomb	 induce	 repression	 is	 through	 inhibition	 of	

transcription	machinery.	In	Drosophila	it	was	shown	that	polycomb	binding	does	not	

block	binding	of	RNA	Pol	II	to	their	target	promoters	(Breiling	et	al.,	2001).	Another	

study	 through	 genome	 wide	 approach	 showed	 that	 bivalent	 promoters	 posses	

reduced	levels	of	Pol	II	occupancy	(Min	et	al.,	2011).	Promoters	harbouring	polycomb	

have	 RNA	 Pol	 II	 in	 paused	 form.	 On	 removal	 of	 polyomb	 from	 target	 promoters	

results	in	switch	from	paused	to	elongating	form	of	Pol	II,	this	was	demonstrated	by	

deletion	of	ligases	in	Ring1a	and	Ring1b	causes	the	switch	(Brookes	et	al.,	2012;	Stock	

et	al.,	2007).	This	suggests	that	PcG	occupancy	at	bivalent	promoters	is	able	to	block	

Pol	II	at	their	transcription	start	sites.	

PcG	 proteins	 play	 very	 important	 role	 in	 reprogramming	 terminally	 differentiated	

cells	 into	 induced	 pluripotent	 stem	 cells	 (iPSCs).	 This	 process	 involves	 re-

organization	 of	 chromatin	 state	 exerted	 by	 different	 factors.	 Through	 different	

approaches,	 it	 was	 shown	 that	 both	 PRC1	 and	 PRC2	 complexes	 are	 essential	 for	

reprogramming	of	 human	 fibroblast	 (Onder	 et	 al.,	 2012)	 and	B	 cells	 (Pereira	 et	 al.,	

2010).	 It	 has	 been	 found	 that	 on	 induction	 of	 pluripotency	 in	 mouse	 embryonic	

fibroblast	 (MEF)	 does	 not	 require	 Ezh2	 activity,	 this	 might	 be	 due	 to	 Ezh1	

compensation,	and	levels	of	H3K27me3	are	decreased	at	developmental	genes	on	co-

deletion	of	Eed	with	impaired	reprogramming	(Fragola	et	al.,	2013).	
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Chapter	2	-	RESULTS		

2.1.	ChIP_QC	

ChIP_QC,	is	a	standalone	application	which	can	be	used	either	through	Graphical	User	

Interface	(GUI)	or	through	command	line.	Figure	2.1	represents	GUI	of	ChIP_QC.	It	has	

15	 different	 modules	 each	 with	 specific	 analysis	 of	 interest.	 Navigation	 from	 one	

module	to	another	can	be	done	by	clicking	on	the	tabs	provided	on	the	top	menu.	To	

highlight	 different	 features	 of	 ChIP_QC	 and	 demonstrate	 its	 capabilities,	 we	 took	

advantage	 of	 processed	 ChIP-seq	 and	 RNA-seq	 data	 generated	 by	 the	 ENCODE	

consortium	(Consortium,	2012)	from	different	human	cell	lines	to	postulate	different	

biological	scenarios	and	analysed	obtained	results.	

	

	

Fig.	 2.1	ChIP_QC	GUI	This	 tool	 is	 composed	 of	 15	different	modules	with	each	module	designed	
with	specific	analysis	of	interest.	Different	modules	can	be	navigated	from	top	menu	bar.		
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2.1.1. Enrichment	and	coexistence	

The	 common	 question	 behind	 most	 epigenomic	 analysis	 is	 the	 requirement	 to	

determine	whether	 our	ROI	 show	 any	 preferential	 enrichment	 towards	 any	 known	

set	of	annotated	regions.	In	such	situations,	this	section	of	the	program	called	ENRICH	

becomes	useful.	For	instance,	we	were	interested	in	determining	if	a	set	of	different	

factors,	 for	which	we	have	 obtained	ChIP-seq	 location	 data,	 can	 bind	 preferentially	

active	 promoter	 or	 enhancer	 elements	 in	 human	 embryonic	 cells	 (H1hESC).	 The	

genomic	 location	of	active	promoters	or	enhancers	can	be	easily	determined	by	 the	

accumulation	 of	 H3K27	 acetylation	 (H3K27ac)	 respect	 to	 a	mapped	 TSS.	 Thus,	 we	

took	 into	 consideration	 H3K27ac	 enriched	 regions	 in	 H1hESC	 and	 separated	 these	

regions	into	two	broad	categories:	1)	regions	residing	in	close	proximity	of	promoters	

(±	2.5kb	from	TSS)	and	2)	regions	lying	away	from	promoters.	This	analysis	identified	

bona	fide	active	promoters	(n=4600)	and	enhancers	(n=2033)	in	H1hESC.	These	two	

sets	of	regions	were	used	to	determine	the	levels	of	association	of	49	different	factors	

for	which	ChIP-seq	results	were	generated	by	the	ENCODE	consortium	(Consortium,	

2012)	in	H1hESC	cells.		

The	results	of	the	analysis	are	shown	in	Fig	2.1.1A	which	represents	the	proportion	of	

ROI	being	bound	by	each	 individual	 factor.	Apart	 from	analysis	with	 input	 files,	 this	

program	provides	option	to	introduce	random	regions	in	the	analysis	(figure	2.1.1A,	

blue	bars).	Program	generates	random	regions	by	shuffling	coordinates	of	input	set	of	

regions.	Introducing	random	regions	allows	determining	the	extent	of	significance	of	

this	comparative	analysis	respect	to	random	occurrence.	This	analysis	clearly	shows	

that	these	active	regions	are	all	completely	devoid	of	repressive	factors	such	as	Ezh2	

and	 Suz12.	 Importantly,	 it	 can	 be	 noted	 that	 the	 transcription	 machinery	 such	 as	
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RNA-POLII,	 TBP,	 TAF1	 are	 present	 in	 both	 active	 promoters	 and	 enhancers,	while	

factors	like	Gabp,	Brca1,	Nrf1,	Six5,	Sp2,	Cmyc	and	Gtf2f1	are	specifically	enriched	in	

active	 promoters.	 Differently,	 transcription	 factors	 (TFs)	 like	 Oct4	 (Pou5f1)	 and	

Nanog	 resulted	 preferentially	 enriched	 at	 active	 enhancers	 as	 previously	 reported	

(Chen	et	al.,	2008;	Whyte	et	al.,	2013).	This	analysis	clearly	showed	that	a	peculiar	set	

of	 factors	 help	 in	 defining	 enhancers	 from	 promoters.	 Interestingly,	 this	 unbiased	

analysis	 allowed	 the	 identification	 of	 Bcl11a	 and	Tcf12	 as	 novel	 factors	 specifically	

associated	at	active	enhancer	regions.	

Using	 CoREG,	 we	 further	 investigated	 whether	 the	 factors	 that	 are	 specifically	

enriched	at	enhancers	co-exist	or	not.	This	 tool	helps	 in	dissecting	 the	extent	of	co-

regulation	between	different	 factors	based	on	absence	or	presence	of	 factor	 in	each	

ROI.	Taking	into	consideration	all	Bcl11a	enriched	regions	as	reference,	we	found	that	

Bcl11a	frequently	co-localized	with	the	enhancer	specific	TFs	Nanog,	Pou5f1,	Tead4,	

Tcf12	as	well	as	with	more	promiscuous	factors	such	as	P300	and	Sp1	(figure	2.1.1B).	

When	 the	 same	analysis	was	performed	using	 a	 set	 of	 promoters	 corresponding	 to	

the	top	3000	highest	expressed	genes	in	H1hESC,	this	set	of	factors	was	not	enriched	

(figure	 2.1.1C).	 Hence,	 this	 analysis	 strongly	 suggest	 that	 the	 novel	 enhancer	

associated	factors	Bcl11a	and	Tcf12	co-exsist	at	cis-regulatory	regions	together	with	

	

	
	
Fig.	2.1.1	A.	Enrichment	 (A)	Barplot	representing	proportion	of	H3K27ac	positive	promoters	(in	
red),	 H3K27ac	 positive	 enhancers	 (in	 green)	 and	 random	 regions	 (in	 blue)	 bound	 by	 different	
factors.		
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Nanog,	 Tead4	 and	 Pou5f1,	 highlighting	 the	 power	 of	 our	 new	 analytical	 tools.	 This	

observation	can	 further	be	 taken	 into	consideration	 for	experimental	 studies	 to	see	

for	 any	 co-regulation	 between	 Bcl11a	 and	 other	 enhancer	 specific	 transcription	

factors.	

2.1.2. Quantification	and	Correlation	

Most	 genome	 wide	 location	 studies	 generate	 multiple	 large	 ChIP-seq	 datasets,	 for	

which	a	major	task	is	determining	the	extent	of	correlation	among	multiple	datasets	

to	 identify	 closely	 related	 datasets	 clustering	 together	 to	 determine	 convergent	 or	

divergent	biological	behaviours.	This	type	of	analysis	is	facilitated	with	the	section	of	

the	program	called	MCOR,	which	can	take	multiple	datasets	and	perform	correlation	

at	a	genome	wide	level	or	along	specific	ROIs.	To	illustrate	this	tool,	we	have	scanned	

the	behaviour	of	27	different	factors	from	H1hESCs	respect	to	all	human	promoters.	

	

	
	
Fig.	2.1.1	B-C.	Coexistence	(B)	Heatmap	showing	presence	(dark	blue)	or	absence	(light	blue)	of	
different	 factors	 in	 Bcl11a	 regions.	 Closer	 the	 presence	 of	 any	 factor	 to	 Bcl11a	 greater	 the	 co-
presence.	 Colorbar	 at	 the	 bottom	 represents	 different	 clusters	 generated	 by	 kmeans	 clustering,	
where	k=10.	(C)	Heatmap	showing	presence	(dark	blue)	or	absence	(light	blue)	of	different	factors	
in	promoters	of	first	3000	highly	expressed	genes.	Closer	the	presence	of	any	factor	to	promoters	
greater	the	co-presence.	Colorbar	at	the	bottom	represents	different	clusters	generated	by	kmeans	
clustering,	where	k=10.		
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We	 subjected	 the	 datasets	 to	 two	 independent	 correlation	 methods:	 pearson	

correlation	(figure	2.1.2A)	and	PCA	(figure	2.1.2B).	The	results	were	consistent	with	

both	 types	 of	 analysis.	 Mainly,	 they	 have	 identified	 two	 type	 of	 clusters:	 one	

representing	a	repressive	cluster	marked	by	a	strong	correlation	between	Polycomb	

proteins	(Suz12	and	Ezh2)	and	their	related	histone	post-translational	modifications	

(PTMs;	H3K27me3);	and	a	second	cluster	 represented	by	 factors	and	histone	PTMs	

associated	 with	 active	 transcription	 (H3K27ac,	 H3K9ac	 H3K4me3,	 Pol2).	 With	

respect	 to	 Pearson	 correlation,	 PCA	 analysis	 provided	 much	 more	 extended	

information.	 First,	 the	 angle	 of	 separation	 allows	 depicting	 the	 lack	 of	 any	

relationship	between	datasets	representing	active	vs.	repressive	features.	Second,	the	

profiles	 of	H3K9me3	deposition	 strongly	 diverge	 form	all	 other	 datasets	 consistent	

with	its	well-established	deposition	in	constitutive	heterochromatin.	Third,	the	arrow	

length	 for	 each	 dataset	 provides	 information	 related	 to	 the	 contribution	 of	 each	

factor.	For	instance,	the	limited	length	of	H2AZ,	Ctcf	and	Jarid1a	highlights	its	minimal		

	
	

	
	
Fig.	 2.1.2	 A,B.	 Correlation	 (A)	 Genome	 wide	 correlation	 between	 different	 factors	 along	 all	
promoters	of	human	genome.	(B)	Variable	plot	with	different	factors	and	their	degree	of	correlation	
with	others	along	all	promoters	of	human	genome	across	first	two	principal	components.	



	42	

role	in	defining	promoter	elements.	

2.1.3. Comparative	quantification	and	its	effects	

A	great	challenge	of	ChIP-seq	analysis	is	to	move	from	qualitative	information	not	just	

knowing	 the	presence	or	absence	of	different	HMs/TFs	 to	quantitative	 information,	

where	 one	 can	 study	 how	 different	 levels	 of	 modification	 can	 affect	 the	 biological	

system.	These	 quantitative	 changes	 can	 further	 correlated	with	 transcription	 levels	

helping	us	 in	better	understanding	 the	underlying	mechanism	of	 transcription.	This	

implies	more	complex	computation	and	to	take	into	consideration	intrinsic	biases	of	

the	 sequencing	 procedure.	 To	 allow	 capturing	 of	 such	 changes	 we	 designed	

quantitative	 methods	 that	 can	 identify	 such	 changes	 among	 multiple	 datasets	 and	

relate	them	with	expression	information	(when	provided).	To	exemplify	our	tool,	we	

portrayed	 different	 scenarios	 to	 show	 how	 different	 ways	 of	 quantification	 can	 be	

experimentally	meaningful.	

2.1.3.1. Quantification	within	ROI	

We	took	two	samples	of	H1hESC,	one	representing	a	set	of	H3K27ac	enriched	regions	

(active	transcription;	n=	6633)	and	the	other	represents	a	set	of	H3K27me3	enriched	

regions	 (repressed	 transcription;	 n=	 5406)	 to	 quantify	 the	 extent	 of	 deposition	 of	

other	histone	PTMs	between	these	two	functionally	different	sets	of	genomic	region.	

For	 this,	we	 provided	 the	 program	with	 ChIP-seq	 datasets,	 comprising	 10	 different	

histone	PTMs	together	with	RNA	polymerase	II	and	complemented	with	H1hESC	gene	

expression	 data	 for	 all	 genes	with	 their	 respective	 FPKM	 values	 in	 log2	 form.	 The	

program	 processes	 the	 data,	 computes	 the	 levels	 of	 RNA	 polymerase	 II	 and	 other	

different	 PTMs	 within	 the	 ROI	 and	 present	 results	 in	 the	 form,	 which	 can	 be	

visualized	as	heatmap	(figure	2.1.3.1A).	Two	samples	are	separated	by	red	 line;	 the	
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upper	 panel	 represents	 the	 H3K27ac	 cluster	 and	 the	 lower	 panel	 represents	 the	

H3K27me3	 enriched	 regions.	 Each	 row	 in	 heatmap	 is	 one	 ROI.	 For	 uncovering	

specific	patterns	within	each	cluster,	the	data	can	be	subjected	to	either	hierarchical	

or	 k-means	 clustering.	 For	 the	 presented	 analysis,	 the	 data	 from	 each	 sample	 was	

subjected	to	k-means	with	nine	clusters.	The	clustered	data	were	further	explored	for	

specific	expression	patterns.	The	program	associates	each	ROI	to	the	closest	gene	and	

represents	the	distribution	of	expression	of	all	genes	associated	within	each	cluster	as	

boxplots	 (figure	2.1.3.1B)	allowing	easy	visual	 comparisons	of	 results.	This	analysis	

clearly	 showed	 that	 in	 general	 all	 H3K27ac	 target	 genes	 presents	 a	 higher	 level	 of	

expression	as	compared	to	H3K27me3	target	genes	consistent	with	their	respective	

roles	 in	 activating	 and	 repressing	 transcription.	Within	 H3K27ac	 enriched	 regions,	

clusters	 5/7	 identified	 active	 enhancers	 marked	 by	 the	 presence	 of	 H3K27ac,	

H3K4me1	and	by	the	absence	of	H3K4me3	deposition.		

The	 other	 clusters	 identified	 active	 promoters,	 which	 are	 marked	 by	 presence	 of	

H3K27ac	 and	 high	 levels	 of	 H3K4me3.	 Interestingly,	 the	 closest	 genes	 to	 cluster	 7	

enhancers,	 which	 contain	 higher	 levels	 of	 H4K20me1,	 H3K79me2	 and	 RNA	

polymerase	 II	 displayed	 higher	 level	 of	 expression	 respect	 to	 cluster	 5	 enhancers	

which	contains	lower	level	of	deposition	for	these	modifications.	Finally,	this	analysis	

strikingly	 identified	 set	 of	 H3K27ac	 enriched	 genomic	 regions	 cluster	 9	 devoid	 of	

other	histone	marks	suggesting	a	different	regulatory	function.	The	results	related	to	

H3K27me3	 enriched	 regions	 identified	 clusters	 2/3/5/7	 to	 represent	 bivalent	

domains	(Ku	et	al.,	2008),	which	are	marked	by	the	presence	of	both	H3K27me3	and	

H3K4me3.	 Within	 these	 clusters,	 cluster	 2	 present	 high	 levels	 of	 RNA-PolII	

association	respect	to	clusters	3/5/7	that	reflect	in	a	higher	level	of	expression	of	the		
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associated	 genes	 showing	 that	 deposition	 of	 repressive	 marks	 is	 not	 sufficient	 to	

exclude	transcription	highlighting	the	requirement	of	to	quantify	in	parallel	multiple	

type	of	datasets	to	stratify	the	functional	status	of	transcriptional	regulatory	regions.	

In	 agreement	 with	 this,	 is	 important	 to	 note	 that	 the	 small	 set	 of	 genes	 linked	 to	

cluster	 6,	 which	 are	 marked	 by	 co-deposition	 of	 both	 H3K27me3	 and	 H3K9me3,	

basically	 undetectable	 transcription,	 showing	 that	 acquisition	 of	 H3K9me3	 locks	

H3K27me3	repressed	genes	in	a	transcriptionally	non	permissive	status.			

Quantification	 can	 be	 based	 on	 a	 genome	 wide	 approach	 or	 it	 can	 be	 specifically	

applied	 to	ROIs.	While	 the	genome	wide	approaches	normalize,	quantify	 and	 scales	

the	ChIP-seq	signals	along	the	entire	genome	where	as	the	ROI-selection	performs	the	

same	 quantification	 taking	 only	 the	 ROIs	 genomic	 regions	 into	 account.	 In	 genome	

wide	approach,	quantification	 is	processed	 in	small	bins,	 then	the	bins	representing	

each	ROI	are	merged	and	the	mean	signal	is	reported.	If	the	analysis	is	restricted	to	a	

set	of	ROI,	the	quantification	and	scaling	will	be	specifically	applied	to	this	frame.	It	is	

important	to	note	that	for	capturing	true	intensities,	it	is	always	advisable	to	perform	

genome	 wide	 analysis	 since	 it	 is	 possible	 that	 by	 quantifying	 signals	 respect	 to	 a	

restricted	 set	 of	 genomic	 regions	 (ROI	 option)	 the	 intensities	 could	 result	 over	 or	

under	represented	respect	to	a	quantification	that	takes	into	account	the	entire	range	

of	signals	along	the	genome	for	a	specific	ChIP	analysis.	This	effect	can	be	appreciated	

in	Figure	2.1.3.1C,D	were	ROI-specific	normalization	result	in	the	overrepresentation	

of	specific	signals	(i.e.	H3K9me3)	or	the	under-representation	of	others	(i.e.	H3K9ac	

or	RNA-PolII).		
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Fig.	 2.1.3.1	 Quantification	 within	 ROI	 (A)	 Heatmap	 with	 genome	 wide	 based	 normalized	
intensities	 for	 different	 histone	 modifications	 and	 RNA	 polII	 in	 H3K27ac	 and	 H3K27me3	
binding	 regions	 separated	 by	 red	 line.	 (B)	 Expression	 level	 of	 target	 genes	 in	 each	 cluster	 as	
identified	 in	 A.	 Top	 panel	 represents	 expression	 levels	 for	 target	 gene	 clusters	 for	 H3K27ac	
regions	 where	 as	 lower	 panel	 represents	 for	H3K27me3	 positive	 regions.	 (C)	 Same	 as	 A	 (D)	
Same	as	A,	but	quantification,	normalization	and	scaling	are	restricted	only	to	ROI.	
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2.1.3.2. Quantification	around	ROI	

To	extract	more	information,	signal	quantification	at	specific	 loci	can	be	analysed	in	

relation	to	its	surrounding	genomic	region	to	determine	the	extent	of	spreading	of	the	

signal	respect	to	each	ROI.	To	elucidate	this	option,	we	took	into	consideration	active	

enhancers	 from	 four	 different	 tissues:	 lymphblastoid	 (Gm12878),	 leukemia	 (K562),	

liver	carcinoma	(Hepg2),	cervical	carcinoma	(HeLa-S3)	and	determined	the	spreading	

of	the	H3K27ac	signal	over	a	10kb	region.	All	enhancers	from	individual	tissues	were	

merged	 together	 and	 submitted	 to	 the	 program	 along	 with	 gene	 expression	 data	

specific	to	Gm12878.	The	program	extends	to	fixed	length	(default	5kb	up	and	down	

stream)	from	the	centre	of	each	region	and	further	segment	these	regions	into	small	

bins	of	50bp	length	(set	as	default).	Levels	of	H3K27ac	from	the	four	different	tissues	

was	 quantified,	 scaled	 and	 subjected	 to	 K-means	 clustering.	 The	 results	 of	 this	

analysis	 can	 be	 visualized	 as	 heatmap	 (Figure	 2.1.3.2A).	 This	 analysis	 clearly	

segregated	 tissue	 specific	 enhancers	 like	 cluster	 1,6	 highly	 specific	 to	 Gm12878,	

clusters	 5/7	 specific	 to	 K562,	 cluster	 2/4	 specific	 to	 Hela-S3,	 cluster	 3	 specific	 to	

Hepg2	plus	 a	 cluster	 (cluster	 8)	 that	 seems	 to	 represent	 a	 small	 set	 of	 constitutive	

enhancers	present	 in	all	 four	tissues	(figure	2.1.3.2A).	 It’s	 interesting	to	note	within	

each	 tissue	 there	 are	 set	 of	 enhancers	 with	 higher	 levels	 of	 H3K27ac	 respect	 to	

others.	In	G12878,	the	levels	of	H3K27ac	in	cluster	6	are	much	higher	than	cluster	1.	

The	same	applies	to	K562	and	Hela-S3.	It	is	possible	that	clusters	with	highest	levels	

of	H3K27ac	may	represent	super	enhancer	region	as	reported	previously	(Whyte	et	

al.,	2013).	Consistent	with	this,	when	the	results	are	related	to	expression	of	genes	in	

Gm12878	 it	 can	 be	 seen	 that	 (figure	 2.1.3.2B)	 the	 expression	 of	 target	 genes	

associated	 with	 clusters	 1/6/8	 result	 significantly	 higher	 than	 other	 clusters	
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representing	 active	 enhancers	 in	 other	 tissues	 further	 supporting	 the	 active	 role	 in	

promoting	tissue	specific	transcription	for	the	identified	enhancers.	

Further	 advantage	 that	 this	 tool	 provides	 is	 the	 possibility	 to	 combine	 multiple	

experimental	 conditions	 scaling.	 This	 becomes	 particularly	 useful	 when	 the	 same	

factor	 or	 modification	 (i.e.	 the	 same	 antibody	 is	 used)	 is	 used	 in	 different	

experimental	 conditions.	 In	 such	 case,	 the	program	applies	 scaling	 globally	 over	 all	

datasets;	 else	 scaling	 is	 applied	 on	 individual	 dataset.	 The	 pros	 and	 cons	 of	 these	

approaches	 can	 be	 appreciated	 in	 Figure	 2.1.3.2C,D.	 Figure	 2.1.3.2C	 is	 same	 as	

2.1.3.2A,	 where	 the	 programme	 by	 defaults	 assumes	 all	 datasets	 are	 handled	

independently	 irrespective	of	which	antibody	was	used	while	 in	 figure	2.1.3.2D	this	

option	is	turned	on	and	all	datasets	are	scaled	together.		

	

Fig.	2.1.3.2	A,B.	Quantification	(A)	Intensities	of	H3K27ac	ChIP	around	±5kb	region	surrounding	
the	center	of	enhancer	regions	across	five	different	cell	lines.	(B)	Expression	levels	of	target	genes	
in	Gm12878	in	clusters	as	identified	in	A.	
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2.1.3.3. Profiling	

Previous	section	of	program	allows	to	quantify	levels	of	different	ChIP	analysis	over	

each	 and	 individual	 regions,	 we	 were	 also	 interested	 in	 determining	 the	 general	

genome	wide	behaviour	of	a	specific	factor/modification	along	different	set	of	regions	

or	 experimental	 conditions.	 In	 such	 cases	 composite	 profiles	 of	 different	 ChIP’s	

become	 simple	 and	 highly	 informative.	 In	 our	 program,	 we	 have	 supported	 such	

analysis	 with	 provision	 of	 quantifying	 target(s)	 over	 complete	 ROI	 with	 invariable	

length	 or	 over	 constant	 region	 surrounding	 from	 the	 centre.	We	 took	 advantage	 of	

expression	data	 from	H1hESC	and	sorted	the	genes	on	the	basis	of	 their	expression	

levels	 (high	 to	 low),	which	were	 further	partitioned	 into	quarters.	The	 first	quarter	

	
	
Fig.	 2.1.3.2	C,D.	Quantification	 (C)	 Intensities	of	H3K27ac	ChIP	around	 5kb	 region	 surrounding	
from	the	center	of	enhancer	regions	across	five	different	cell	lines.	(D)	Same	as	A,	where	intensities	
are	scaled	globally	over	all	samples.	
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represents	highly	expressed	genes	and	lower	quarter	represents	low	or	no	expressed	

genes.	We	 then	quantified	 the	 levels	of	H3K4me3	and	H3K36me3	 in	 the	promoters	

and	gene	bodies	of	each	individual	quarter	respectively	(figure	2.1.3.3A,B).	In	the	case	

of	 H3K4me3,	 we	 quantified	 its	 levels	 for	 each	 individual	 gene	within	 each	 quarter	

respect	 to	 the	 centre	 of	 promoters	 (i.e.	 centred	 on	 TSS	 and	 extended	 surrounding	

region	by	constant	length	of	5kb	up	and	down	stream).	Quantification	was	measured	

over	 this	 constant	 region,	where	 each	 region	was	 further	broken	 in	 smaller	bins	of	

50bp	 in	 size.	 Similarly,	 we	 quantified	 H3K36me3	 levels	 within	 gene	 bodies	 of	

individual	 gene.	 In	 this	 case,	 due	 to	 invariable	 gene	 length	 each	 gene	 is	 subdivided	

into	certain	finite	blocks	where	each	block	represents	a	fixed	proportion	of	the	total	

length	of	each	gene	body.	This	data	were	averaged	within	each	quarter	and	plotted	

together	(figure	2.1.3.3A,B).	 It	 is	well	established	that	gene	expression	and	both	the	

levels	 of	 H3K4me3	 deposition	 at	 promoters	 and	 the	 accumulation	 of	 H3K36me3	

within	gene	bodies	shows	a	positive	correlation	(Li	et	al.,	2002b).	Indeed,	our	analysis	

perfectly	 validated	 such	 behaviour	with	 the	 genes	 belonging	 to	 quarter1	 displayed	

higher	 levels	 of	 both	 H3K4me3	 at	 promoters	 and	 H3K36me3	 within	 gene	 bodies	

respect	to	the	genes	with	lower	expression	levels	(quarter	2/3/4;	figure	2.1.3.3A,B).	

One	 of	 the	 advantages	 of	 this	 analysis	 is	 that	 the	 program	 makes	 use	 of	 strand	

information	(when	provided),	which	gives	more	sense	to	the	data.	For	instance,	from	

our	 results	 can	 be	 easily	 observed	 that	 the	 deposition	 of	 H3K4me3	 preferentially	

occurs	 towards	 the	 +1	 nucleosome,	 aiding	 proper	 positioning	 and	 active	

transcription.	 In	 same	 way,	 the	 levels	 of	 H3K36me3	 are	 higher	 towards	 the	 gene	

terminal	portion.	The	differences	of	not	using	strand	 information	can	seen	 in	 figure	

2.1.3.3C,D.	

	



	50	

	

2.1.3.4. Spike-In	Normalization		

In	 addition,	 this	 tool	 also	 supports	 quantification	 based	 on	 spike-in	 data.	 Recent	

reports	have	shown	that	 the	data	generated	 through	standard	ChIP-Seq	procedures	

are	not	able	to	capture	the	real	changes	in	histone	PTM	deposition	particularly	when	

the	 overall	 global	 levels	 of	 a	 specific	 modification	 change	 between	 experimental	

conditions	due	to	a	flattening	of	the	signal	by	the	ChIP-seq	procedure	(Orlando	et	al.,	

2014).	 To	 circumvent	 this	 technical	 problem,	 a	 standard	 ChIP-Seq	 process	 can	 be	

combined	 with	 a	 spike-in	 chromatin	 from	 other	 reference	 genomes.	 This	 new	

procedure	is	able	to	quantify	the	true	levels	of	a	target	protein/PTM	among	different	

experimental	 conditions	 at	 each	 specific	 ROI.	 Our	 quantification	 tool	 also	 supports	

this	type	of	analysis.	To	prove	the	power	of	this	option,	we	analysed	data	generated	

for	H3K79me2	where	 different	 amount	 of	 chromatin	 in	which	H3K79me2	 is	 either	

	
	
Fig.	2.1.3.3	A-D.	Profiling	(A)	Average	profile	of	H3K4me3	with	confidence	interval	in	promoters	
regions	 of	 genes	 classified	 based	 on	 expression	 levels	 (high	 to	 low).	 (B)	 Average	 profile	 of	
H3K36me3	with	with	 confidence	 interval	 in	 gene	 bodies	of	 genes	 classified	 based	 on	 expression	
levels	 (high	 to	 low).	 (C)	 Same	 as	 A,	 but	 without	 using	 strand	 information.	 (D)	 Same	 as	 B,	 but	
without	using	strand	information.	 
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present	or	absent	were	mixed	in	different	proportions	(0%,	25%,	50%,	75%,	100%)	

to	mimic	a	linear	reduction	in	global	H3K79me2	levels	and	analysed	in	the	presence	

of	 an	 equal	 amount	 of	 reference	Drosophila	 chromatin.	 (Orlando	 et	 al.,	 2014).	 This	

analysis	clearly	shows	the	lack	of	linearity	of	the	ChIP-seq	signals	among	the	samples	

when	the	spike-in	normalization	is	not	used	in	the	analysis	(figure	2.1.3.4A-D)	

	
	
Fig.	2.1.3.4	A-D.	Spike-In	Quantification	 (A)	Normalized	 intensities	of	H3K79me2	around	10kb	
surrounding	TSS	(both	up	and	downstream)	in	regions	possessing	H3K79me2	in	WT	samples	and	
its	fate	in	other	samples	induced	with	different	levels	of	inhibitor	harboring	no	reference	genome.	
(B)	 Same	 as	 A,	 in	 these	 intensities	 are	 spike-in	 normalized	 intensities.	 (C)	 Average	 normalized	
profile	 of	 H3K79me2	 around	 10kb	 surrounding	 TSS	 (both	 up	 and	 downstream)	 in	 regions	
possessing	H3K79me2	in	WT	samples	and	its	fate	in	other	samples	induced	with	different	levels	of	
inhibitor	 harboring	 no	 reference	 genome.	 (D)	 Same	 as	 C,	 in	 these	 intensities	 are	 spike-in	
normalized	intensities.	
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2.1.4. Differential	quantification	

Quantification	 based	 differential	 studies	 can	 be	 helpful	 in	 identifying	markers	 that	

allows	 differentiating	 two	 or	more	 biological	 systems.	 For	 instance,	we	 questioned	

whether	 the	 deposition	 pattern	 of	 the	 same	 histone	 PTM	 in	 two	 different	 tissues	

could	be	used	to	distinguish	one	tissue	from	the	other.	To	test	this,	we	have	chosen	

ChIP-seq	data	for	H3K4me3	(marker	of	active	transcription	in	gene	promoters)	from	

SkeletalMuscle	 (Hsmm)	 and	 Keratinocytes	 (Nhek).	We	 applied	 differential	 analysis	

over	 all	 promoters	 for	 H3K4me3	 deposition.	 Using	 computed	 normalized	 read	

intensities	the	program	identified	a	set	of	genes	that	were	significantly	enriched	for	

H3K4me3	through	fisher’s	test	in	SkeletalMuscle	(n=	875)	over	Keratinocyte	(n=	409)	

(figure	2.1.4A).		

	
	
	
Fig.	 2.1.4	 A-E.	 Differentially	 regulated	 regions.	 (A)	 Volcano	 plot	 representing	 significantly	
enriched	 promoters	 (marked	 in	 cyan)	 harboring	 different	 levels	 of	 H3K4me3	 methylation	 in	
skeletal	muscle	when	compared	keratinocytes.	(B)	Distribution	of	expression	levels	of	genes	where	
their	 promoters	 show	 significantly	 higher	 levels	 of	 H3K4me3	 in	 skeletal	muscle	 as	 compared	 to	
that	of	keratinocytes.	 (C)	Distribution	of	 expression	 levels	 of	 genes	where	 their	 promoters	 show	
significantly	higher	levels	of	H3K4me3	in	keratinocytes	as	compared	to	that	of	skeletal	muscle.	(D)	
Tissue	 specificity	 of	 genes	 whose	 promoters	 were	 differentially	 regulated	 skeletal	 muscle	 as	
identified	 in	 A.	 (E)	 Tissue	 specificity	 of	 genes	 whose	 promoters	 were	 differentially	 regulated	
keratinocytes	as	identified	in	A.	
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When	we	provided	 expression	 data	 for	 all	 genes	 in	 these	 two	 tissues,	 the	 program	

linked	 all	 enriched	promoters	 to	 their	 respective	 target	 genes.	This	 analysis	 clearly	

showed	that	the	expression	levels	of	H3K4me3	target	genes	in	their	respective	tissue	

were	significantly	higher	than	others	(figure	2.1.4B,C).	This	was	further	confirmed	by	

performing	 tissue	 specificity	with	DAVID	 (Huang	 et	 al.,	 2009)	with	 the	 output	 files	

containing	 the	 list	 of	 promoters	 significantly	 enriched	 in	 either	

SkeletalMuscle/Keratinocyte.	 Both	 lists	 showed	 higher	 specificity	 toward	 their	

respective	tissue	validating	the	tissue	specificity	of	our	results	(Figure	2.1.4	D-E).	

We	come	across	situations	were	differentially	enriched	regions	needed	to	be	detected	

not	 only	 between	 two	 independent	 systems	 but	 also	 across	multiple	 systems.	 This	

possibility	is	included	in	our	tool	and	to	show	its	functionality	we	extended	biological	

logic	of	figure	2.1.4A	over	multiple	tissues	with	the	aim	of	identifying	tissue	specific	

markers.	 On	 the	 basis	 of	 normalized	 read	 intensities,	 the	 program	 identifies	

differentially	 enriched	 H3K4me3	 promoters	 across	 all	 datasets	 through	 chosen	

statistical	 test	 (ANOVA	 or	 kruskal-wallis).	 All	 statistically	 significant	 regions	 are	

represented	 in	 the	 form	 of	 heatmap	 where	 normalized	 read	 intensities	 are	

transformed	 to	 standard	z-score	 (figure	2.1.4F).	To	 identify	 tissue	 specific	patterns,	

the	results	were	subjected	to	k-means	clustering	where	k	was	set	to	10.	This	analysis	

clearly	 showed	 that	 all	 tissue	 specific	 differentially	 enriched	 H3K4me3	 promoters	

were	 clustered	 together	 (figure	 2.1.4F).	 To	 further	 cross	 validate	 that	 these	

promoters	 are	 true	 markers	 of	 tissue	 specificity,	 the	 program	 also	 linked	 all	

promoters	 with	 the	 expression	 of	 their	 respective	 genes	 across	 all	 tissues	 within	

individual	 clusters,	which	resulted	 in	 the	distribution	of	 the	expression	of	all	 target	

genes	within	 individual	 clusters	 (figure	2.1.4G).	Comparing	 the	 results	 side	by	 side,	

we	 confirmed	 that	 genes	 associated	with	 tissue	 specific	 promoter	 indeed	displayed	
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tissue	 specific	 expression	 (figure	 2.1.4F,G).	 For	 example,	 cluster1	 represents	 the	

promoters	that	are	specific	for	liver	carcinoma	(Hepg2),	which	indeed	display	greater	

expression	levels	respect	to	all	other	tissues.	Similar	conclusions	can	be	applied	for	all	

other	clusters.	

	

Fig.	2.1.4	F,G.	Differentially	regulated	regions.	(F)	Significantly	enriched	promoters	on	the	basis	
of	K4me3	across	9	 different	 cell	 lines.	 Represented	here	are	 their	 intensities	 in	 standard	 z-score	
form.	(G)	Expression	level	of	target	genes	in	each	cluster	across	9	different	cell	lines	identified	in	F.	
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2.1.5. Probabilistic	Relationships	

The	increasing	availability	as	well	as	the	capability	of	generating	large	set	of	genome-

wide	 location	 analysis,	 implies	 the	 interest	 in	 exploring	 relationship	 between	

chromatin	 associated	 factors	 among	 a	 large	 number	 of	 datasets,	 with	 the	 aim	 to	

better	 dissect	 the	 role	 of	 each	 entity	 and	 its	 functional	 contribution	 in	 a	 given	

biological	 process.	 Thus,	 we	 designed	 a	 module	 that	 helps	 in	 predicting	 the	

probabilistic	 relation	 between	 different	 factors,	 either	 at	 a	 genome	 wide	 level	 or	

specifically	 within	 ROIs,	 taking	 advantage	 of	 a	 Bayesian	 Network	 approach.	 To	

introduce	 this	 analysis,	 we	wanted	 to	 determine	which	 factors	 localize	 at	 genomic	

regions	 of	 compact	 chromatin	 and,	 among	 these,	 which	 factors	 show	 dependency	

with	each	other.	We	selected	regions	enriched	for	Suz12	(n=4789,	a	component	of	the	

Polycomb	repressive	complex	2	(PRC2)	as	established	marker	of	compact	chromatin)	

and	 test	where	does	 this	protein	 localize	 in	 respect	 to	 genomic	 features	 and	which	

other	DNA	binding	factors	could	contribute	to	such	functionality.	For	this,	we	took	the	

binding	 sites	 of	 51	 different	 DNA	 binding	 factors	 along	 with	 2	 sets	 of	 annotated	

genomic	 regions	 (CpGi,	 and	 gene	 promoters).	 When	 this	 data	 are	 provided	 to	 the	

program,	 they	 are	 processed	 by	 implementing	 a	 learning	 algorithm	where	 either	 a	

constraint	or	scoring	analysis	can	be	performed	depending	on	the	users	interest	(see	

methods	for	further	details).	In	our	analysis,	we	used	a	constraint	based	grow	shrink	

algorithm	in	an	 iterative	bootstrap	process	where	70	percent	of	 the	total	data	were	

selected	 randomly	 and	 Bayesian	 network	 was	 constructed	 from	 this.	 This	 step	 is	

repeated	500	times	and	only	the	dependency	factors	that	were	 identified	 in	95%	of	

the	 networks	 were	 retained	 generating	 a	 final	 (figure	 2.1.5A).	 We	 also	 wanted	 to	

further	 determine	 the	 validity	 of	 the	 generated	 network,	 for	 this,	 we	 repeated	 the	

above	process	using	random	regions	of	the	same	input	size	(n=4789)	and	generated	a	
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“control”	network	(figure	2.1.5B).	On	comparing	both	the	networks	it	can	be	clearly	

identified	 that	 the	 dependency	 between	 Ctcf	 and	 Rad21	 was	 not	 related	 to	 Suz12	

bound	regions,	while	the	rest	of	the	dependencies	resulted	specific	(figure	2.1.5A,B).	

Indeed,	dependency	between	Suz12	and	Ezh2	is	well	known	from	literature	as	they	

are	components	of	polycomb	and	also	its	preferential	 localization	Suz12	at	CpG	rich	

genomic	 regions	 at	 gene	 promoters,	 all	 these	 observation	 can	 be	 captured	 in	 this	

analysis	and	can	be	seen	in	(figure	2.1.5A).		In	addition,	this	analysis	identified	novel	

specific	dependencies	between	Ezh2,	Ctbp2	and	Egr1	that	were	never	reported.	Thus,	

to	 test	 whether	 the	 dependency	 between	 Ezh2/Ctbp2	 is	 valid,	 we	 used	 ChIP-seq	

profiles	of	these	proteins	and	checked	for	their	association	among	all	Suz12	binding	

sites.	 Indeed,	 we	 found	 that	 Ctbp2	 occupies	 nearly	 more	 than	 half	 of	 the	 Suz12	

binding	sites		(figure	2.1.5C).			

2.1.6. Classification	

Recent	 studies	 have	 shown	 that	 different	 loci	 of	 the	 genome	 display	 precise	

epigenetic	characteristics.	 In	terms	of	regulation,	classifying	genomic	regions	on	the	

basis	 of	 their	 epigenetic	 characteristics	 is	 helpful	 for	 classifying	distinct	 roles.	Here	

we	 present	 a	 system	where	 different	 classes	 can	 be	 segregated	 on	 the	 basis	 of	 the	

quantification	of	different	factors	(which	can	be	either	TFs/histone	PTMs).	In	this	tool	

we	 support	 classification	 based	 on	 Support	 Vector	 Machine	 (SVM)	 approach.	 It	

employs	both	linear	and	non-linear	models	of	classification.	This	system	can	be	used	

either	for	training	or	as	a	combined	training	and	prediction	processes.	In	the	training	

scheme,	the	program	takes	into	consideration	all	provided	datasets	and	lists	out	the	

performance	as	an	area	under	ROC	with	accuracy	scores.	If	the	user	is	satisfied	with	

the	classification	on	the	training	data,	the	classification	model	can	be	further	applied	
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on	new	set	of	ROIs.	 In	addition	to	the	classification,	program	also	supports	pre	data	

analysis	 (when	 required).	 Such	 approach	 is	 however	 not	 wise	 in	 the	 case	 of	 large	

number	of	data	sets.	The	user	has	to	judge	which	datasets	contribute	the	most	for	the	

classification.	 In	 such	 situations	 user	 can	 choose	 pre-selection	 analysis,	 where	 all	

datasets	 are	 subjected	 to	 recursive	 feature	 selection	 process	 in	 which	 all-possible	

subsets	 are	 considered,	 and	 accuracies	 for	 all	 variable	 sizes	 are	 reported.	 The	

program	also	generates	a	list	of	predictors	with	the	highest	accuracies,	which	can	be	

further	used	for	the	classification.	

As	 example,	 we	 showed	 the	 process	 of	 characterizing	 active	 enhancers	 and	 active	

promoters	marked	by	H3K27ac	in	ES	cells	on	the	basis	of	42	different	TFs.	Initially	all	

42	TFs	were	subjected	to	a	variable	pre-selection	process.	This	process	helps	out	 in	

eliminating	 the	 less	 contributing	 datasets.	 From	 the	 results	 (figure	 2.1.6A),	 we	

observed	 that	 the	 combination	 of	 18	 datasets	 was	 sufficient	 for	 classifying	 active	

	
	
Fig.	 2.1.5	A-C.	Probabilistic	 relationships	 (A)	Bayesian	 network	 showing	dependency	between	
different	factors	in	compact	chromatin	regions	of	genome	presided	by	Suz12.	(B)	Bayesian	network	
showing	 dependency	 between	 different	 factors	 in	 random	 regions	 of	 genome.	 (C)	 Normalized	
intensities	of	Suz12,	Ezh2	and	Ctbp2	in	Suz12	binding	regions.	
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enhancers	 and	 active	 promoters.	 Including	 additional	 datasets	 captured	 no	 major	

improvements.		

Therefore,	using	a	pre-selection	analysis,	we	were	able	 to	down	size	 the	number	of	

datasets	for	the	further	analysis,	thus	removing	noise	and	reducing	computing	power.	

From	 the	 known	 literature,	 we	 can	 easily	 pick	 that	 all	 critical	 factors	 known	 to	

characterize	 active	 promoters	 and	 enhancers	 were	 selected	 (figure	 2.1.1A).	

Interestingly,	we	also	found	that	Bcl11a	was	one	of	the	new	selected	datasets,	which	

supports	our	 initial	 findings	 (figure	2.1.1A)	 showing	 that	Bcl11a	 is	a	TF	specifically	

associated	with	 enhancers.	 As	 final	 validation,	when	 all	 these	 18	datasets	were	 fed	

into	the	classification	process	using	SVM,	we	achieved	an	ROC	of	0.96	(figure	2.1.6B).		

	

	

	

	
	
Fig.	 2.1.6	 A,B.	 Variable	 selection	 and	 classification.	 (A)	 Plot	 signifying	 the	 accuracy	 of	
different	 set	 of	 variables	 for	 characterizing	 active	 enhancers	 and	 promoters.	 (B)	 Sensitivity	 over	
specificity	 of	 SVM	 trained	model	 for	 classifying	 active	 enhancers	 and	 promoters	 using	 variables	
with	high	accuracy	level	identified	in	A.	
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All	 above	analysis	demonstrates	how	 the	program	can	be	helpful	 in	many	different	

ways	for	epigenomic	studies.	Apart	from	these	main	features	our	program	is	packed	

with	additional	add	on	features.	These	are:		

1)	 tool	 for	 generating	 heatmaps	 from	 already	 generated	 results	 in	 different	 forms	

without	rerunning	complete	analysis	this	saves	time,		

2)	extending	aligned	reads	to	certain	fixed	length	and		

3)	tool	for	checking	correlation	between	replicates.	
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2.2. Polycomb	dependend	H3K27me1	and	H3K27me2	regulate	active	
transcription	and	enhancer	fidelity.	

2.2.1. PRC2	controls	three	different	forms	of	methylation	on	H3K27	

The	initial	aim	of	this	study	was	to	assess	the	distribution	of	different	PTMs	on	Lysine	

27	 of	 histone	H3	 (H3K27)	 tails	 in	mouse	 embryonic	 stem	 cells.	 For	 understanding	

this,	 we	 carried	 out	 a	 tandem	Mass	 Spectrometry	 study	 (Jung	 et	 al.,	 2010),	 and	 this	

helped	us	 in	measuring	relative	abundance	of	PTMs	of	K27	in	histone	variants	H3.3	

and	 H3.2.	 From	 the	 analysis,	 we	 noticed	 that,	 different	 forms	 of	 methylation	 on	

H3K27	account	for	more	than	80%	of	the	total	histone	H3,	H3K27	without	any	PTM	

accounted	 for	 on	 average	 16%	 of	 H3	 modifications,	 lastly	 H3K27ac	 account	 for	

approximately	 2%	 of	 the	 total	 H3.	 Among	 different	 forms	 of	 H3K27	 methylation,	

H3K27me2	was	observed	to	be	most	dominant	accounting	for	more	than	70%,	while	

H3K27me3	and	H3K27me1	account	 for	7%	and	4%	of	 total	H3,	respectively	(figure	

2.2.1A).	On	 comparing	 distributions	 of	 these	modifications	with	 other	H3	 isoforms,	

we	 saw	 that	 H3K27me3	 is	 preferentially	 accumulated	 in	 H3.3	 variant:	 this	 data	

confirms	that	H3.3	is	found	mostly	regions	of	genes	promoter,	which	are	both	silent	

and	expressed	(Goldberg	et	al.,	2010).	From	this	data	we	can	conclude	that	in	mESC	

the	 vast	 majority	 of	 histone	 H3K27	 is	 post-translationally	 modified,	 among	 all	

modifications	H3K27me2	is	the	most	abundant	form	of	modification.		

In	the	scientific	field,	there	was	speculation	about	H3K27me1	modification.	It	was	not	

known	clear	whether	the	modification	is	the	by-product	of	de-methylation	process	or	

is	 the	modification	dependent	 on	PRC2	 catalytic	 activity	 (Margueron	 and	Reinberg,	

2011).	 To	 address	 this,	 Western	 Blot	 (WB)	 analysis	 were	 performed	 on	 histones	

extracted	 from	mESC	 lysates,	both	wild	 type	(WT)	and	knock	out	 (KO)	 for	different	

core	members	 (Ezh,	 Eed	 and	 Suz12)	 of	 PRC2.	 	 For	 further	 cross	 validation,	 similar	
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analysis	was	conducted	in	mESC	lysates	acutely	knocked	down	for	the	protein	Eed	by	

means	of	lentiviral	transduction	of	sequence	specific	short	hairpin	RNA	(shRNA).	On	

doing	 so,	 we	 observed	 that	 levels	 of	 both	 di	 and	 tri-methylation	 were	 completely	

reduced,	 where	 as	 levels	 of	 monomethylation	 were	 significantly	 reduced	 (figure	

2.2.1B),	demonstrating	that	H3K27me1	and	H3K27me2	depositions	are	dependent	on	

PRC2	activity.		

	

2.2.2. PRC2	dependent	methylation	states	on	H3K27	form	distinct	domains	in	
genome.	

After	knowing	relative	abundance	of	three	forms	of	methylation,	as	next	step	we	were	

interested	 in	 understanding	 its	 genome-wide	 distribution.	 For	 this,	 we	 performed	

ChIP-seq	for	all	three	forms	of	methylation	and	Histone	H3	using	specific	antibodies	

against	it.	Interestingly,	from	the	analysis	we	saw	that	all	three	forms	of	methylation	

of	H3K27	are	deposited	 in	 genome	 in	mutually	 exclusive	manner	 (figure	2.2.2A).	 It	

can	 be	 noticed	 that,	 H3K27me2	 is	 spread	 across	 both	 intergenic	 and	 intragenic	

regions,	 while	 H3K27me1	 is	 preferentially	 enriched	 within	 gene	 bodies	 (figure	

2.2.2A).	 Localization	 of	 H3K27me1	 in	 genome	 drove	 us	 to	 compare	 the	 data	 with	

	
	
Fig.2.2.1	A,B.	PTMs	on	H3K27	in	mESC	and	its	regulation	by	PRC2.	(A)	Larger	pie	graph	
show	relative	abundance	of	different	PTMs	on	lysine	27	of	Histone	H3.	Smaller	pies	show	the	same	
PTMs	but	in	different	Histone	variants	H3.2	and	H3.3.	(B)	Western	blot	analysis	showing	loss	of	all	
forms	of	methylations	on	H3K27	using	in	and	Eed,	Ezh2	and	Suz12	KO	(-/-)	as	compared	to	that	of	
indicated	 antibodies	 of	 protein	 extracts	 obtained	 from	 WT	 (+/+)	 mESC	 line.	 Similar	 trend	 was	
observed	 on	 knock	 down	 of	 Eed	 and	 Suz12	 using	 shRNA	 in	 E14.	 Histone	 H3	 served	 as	 loading	
control.		
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H3K36me3,	 which	 is	 also	 known	 to	 accumulate	 in	 intragenic	 regions.	 For	 this,	 we	

made	use	of	publically	available	H3K36me3	dataset	(Mikkelsen	et	al.,	2007)	and	saw	

that	both	H3K27me1	and	H3K36me3	both	co-localize	in	gene	bodies	(figure	2.2.2A).	

	

To	 see	 whether	 above	 observation	 holds	 true	 over	 genome	wide	 scale,	 correlative	

analysis	 was	 performed	 between	 all	 datasets.	 On	 comparing	 enrichment	 scores	 of	

H3K27me1,	H3K27me2	 and	H3K36me3	within	 all	 annotated	 intragenic	 regions	we	

observe	 that	 H3K27me1	 positively	 correlate	 with	 H3K36me3	 deposition	 whereas	

H3K27me2	negatively	 correlate	with	 that	 of	H3K27me1	and	H3K36me3	deposition	

(figures	2.2.2B,C).		

	

	

	

	
Fig.	 2.2.2	 A.	 Localization	 of	 different	 forms	 of	 H3K27	 methylation	 Genomic	
regions	 showing	 enrichment	 for	 different	 forms	 of	 methylations	 on	 H3K27.	 H3K27me1	
enrichment	domains	are	highlighted	in	blue,	while	H3K27me3	domains	are	depicted	in	red.	
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2.2.3. Distinct	H3K27	methylation	domains	correlate	with	transcription	status.	

From	 literature,	 it	 is	 known	 that	 histone	 PTM	 H3K36me3	 is	 shown	 to	 have	 their	

presence	in	gene	bodies	of	genes	undergoing	active	transcription	(Kizer	et	al.,	2005;	

Li	 et	 al.,	 2003;	 Li	 et	 al.,	 2002a;	 Xiao	 et	 al.,	 2003).	We	were	 interested	 in	 exploring	

further	correlation	between	histone	marks	accumulation	and	transcriptional	status	of	

genes.	Based	on	the	levels	of	H3K27me1/2	in	intragenic	regions	we	divided	all	genes	

into	three	main	groups,	and	genes	within	each	group	were	linked	to	their	expression	

levels.	For	this	analysis	we	took	advantage	of	publicly	available	microarray	data	(Leeb	

et	al.,	2010).	From	the	results	it	can	be	clearly	observed	that,	highly	transcribed	genes	

posses	high	 levels	of	H3K27me1	 in	 their	 intragenic	regions,	while	genes	with	 lower	

transcriptional	levels	accumulate	H3K27me2	in	their	gene	bodies	(figure	2.2.3A).	This	

observation	holds	true,	even	if	we	do	analysis	in	reverse	order.	Like	ranking	all	genes	

on	the	basis	of	their	expression	levels,	and	then	correlating	with	levels	of	enrichment	

for	 both	H3K27me1	 and	H3K27me2	 along	 gene	 bodies.	 	 This	 analysis	 too	 inferred	

same	results	as	above	where	nearly	90%	of	all	highly	expressed	genes	were	enriched	

	
Fig.	 2.2.2	 B,C.	 Correlation	 between	 PTMs.	 (B)	 Scatter	 plots	 showing	 the	 correlation	 of	
enrichments	normalized	to	the	histone	H3	density	between	K27	and	K36	PTMs	in	gene	bodies	of	all	
annotated	genes.	Pearson	correlation	values	are	indicated	on	top	of	the	plot.	(C)	Variable	plot	from	
Principal	 component	 analysis	 (PCA)	 representing	 drgree	 of	 correlation	 between	 PTMs	 in	 gene	
bodies	of	all	annotated	genes.	
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for	 H3K27me1,	 whereas	 90%	 of	 low	 expressed	 genes	 showed	 enrichment	 for	

H3K27me2	in	their	gene	bodies	(figure	2.2.3B,	C).		

	

Taking	together,	above	data	indicate	that	H3K27	methylation	domains	are	deposited	

throughout	 the	 genome	 in	 a	mutually	 exclusively	manner	 and	 correlate	with	 genes	

transcriptional	activity.	

	

Fig.	2.2.3	A-C.	Correlation	between	levels	of	K27	methylation	and	gene	transcription.	
(A)	Expression	 levels	 of	 all	RefSeq	 genes	 grouped	 in	 three	 categories	 relative	 to	H3K27me2	 and	
H3K27me1	enrichments	within	their	gene	bodies.	(B)	Proportion	of	K27me1	and	K27me2	enriched	
genes	within	each	group	of	expression.	(C)	Composite	profiles	of	H3K27me1	and	H3K27me2	over	
gene	bodies	for	all	the	three	groups	of	gene	sets	classified	on	the	basis	of	their	expression	level.	
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2.2.4. Intragenic	H3K27me1	deposition	is	PRC2	dependent	and	is	linked	to	active	
transcription.	

To	 show	 that	H3K27me1	and	H3K27me2	depositions	 are	 completely	 driven	by	 the	

enzymatic	activity	of	PRC2,	we	performed	ChIP	qPCR	analysis	in	both	intergenic	and	

intragenic	 regions	 corresponding	 to	 H3K27me1	 and	 H3K27me2	 enrichment.	 This	

experiment	showed	that	both	intergenic	H3K27me2	and	intragenic	H3K27me1	were	

lost	in	Eed	KO	cells	(figure	2.2.4A).	Similar	results	were	observed	on	other	targets	too.	

To	 see	 whether	 same	 phenomena	 can	 be	 replicated	 on	 genome	 wide	 scale,	 we	

performed	 ChIP-seq	 for	 both	 H3K7me1	 and	 H3K27me2	 in	 WT	 and	 EedKO	 mESC.	

From	the	analysis	of	data,	a	difference	in	the	levels	of	H3K27me1	modification	in	WT	

and	Eed	KO	samples	can	be	easily	captured	(figure	2.2.4B).	We	demonstrated	that	in	

K27	 monomethylation	 is	 lost	 from	 genes	 harboring	 the	 modification	 in	 WT	 cells	

(figure	 2.2.4C,D).	 With	 all	 above-mentioned	 evidences,	 we	 can	 confirm	 that	

H3K27me1	deposition	in	gene	bodies	of	genes	with	active	transcription	is	dependent	

on	 the	 enzymatic	 activity	 of	 the	 PRC2	 complex.	 As	 mentioned	 earlier	 in	 2.2.3,	

H3K27me1	and	H3K27me2	correlate	with	 the	 transcriptional	 status	of	 the	genes	 in	

which	they	are	deposited.	For	this	reason	we	conceive	of	a	possible	role	for	intragenic	

H3K27me1	in	promoting	transcription	of	gene.		

To	prove	above	hypothesis,	we	analyzed	published	transcription	data	for	WT	and	Eed	

KO	 mESC	 (Leeb	 et	 al.,	 2010)	 correlating	 differentially	 expressed	 genes	 with	 the	

enrichment	 of	 different	 forms	 of	 H3K27	 methylation	 at	 intragenic	 regions	 in	 WT	

mESC.	From	the	results	it	is	evident	that	genes	enriched	for	H3K27me2	had	increased	

expression	in	EedKO	sample,	while	genes	enriched	for	H3K27me1	show	low	levels	of	

expression	in	Eed	KO	mESC	(figure	2.2.4E).	These	results	were	further	confirmed	by	

expression	and	ChIP	qRT-PCR	analysis	for	certain	selected	genes	(figure	2.2.4F,	G).	
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Fig.	 2.2.4	 A-D.	 PRC2	 dependent	 H3K27	 methylation.	 (A)	 qRT-PCR	 of	 K27me1/2	
ChIP	in	WT	and	Eed	KO	samples	in	the	selected	genomic	regions.	Black	boxes	indicate	
primers	position	within	genomic	 loci.	ChIP	enrichments	are	normalized	to	histone	H3	
density.	IgG	ChIPs	from	rabbit	were	used	as	negative	control.	(B)	Genomic	snapshots	of	
H3K27me1/2/3	in	WT	(Eed	+/+)	and	Eed	KO	(Eed	-/-)	in	mESC	along	with	H3K36me3	
from	E14	mESC.	H3K27me1	domains	are	highlighted	in	blue	while	H3K27me3	domains	
are	 highlighted	 in	 red.	 (C)	Heat	map	of	H3K27me1	 enrichment	 in	WT	 (Eed	+/+)	 and	
Eed	KO	(Eed	−/−)	for	genes	enriched	for	H3K27me1	in	WT	condition	(−10log10	p	value	
≥	10	scored	from	chi-square	test	between	H3K27me1	and	H3).	(D)	Box	plot	analysis	of	
H3K27me1	ChIP-seq	enrichment	intensities	between	WT	(+/+)	and	Eed	KO	(-/-)	mESC	
for	 all	 the	 annotated	 RefSeq	 genes	 that	 were	 divided	 in	 two	 groups	 based	 on	 their	
H3K27me1	levels	in	WT	mESC	(-Log10p-value	cut	off	=	10).	



	 67	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

		

	
	
	
Fig.	2.2.4	E-G.	Changes	of	genes	expression	upon	loss	of	PRC2	activity.	(E)	Box	plot	of	
fold	change	in	expression	levels	of	differentially	regulated	genes	between	WT	and	Eed	KO	mESC	for	
H3K27me2	 and	 H3K27me1.	 For	 the	 analysis,	 the	 top	 15%	 enriched	 genes	 (N~1000)	 were	
considered.	 (F)	 Relative	 differences	 in	 expression	 levels	 between	 WT	 and	 Eed	 KO	 mESC	 of	 the	
selected	 target	 genes	 determined	 by	 qRT-PCR	 analysis.	 (G)	 qRT-PCR	 analysis	 for	 the	 indicated	
intragenic	regions	of	H3K27me1	and	H3K27me2	ChIP	assays	performed	in	WT	and	Eed	KO	mESC	
using.	 ChIPs	 with	 IgG	 rabbit	 were	 performed	 as	 negative	 control.	 ChIP	 enrichments	 were	
normalized	to	histone	H3	density.		
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2.2.5. H3K27me1	PTM	is	required	for	correct	gene	transcription.	

From	 above	 results,	 we	 have	 shown	 that	 transcriptional	 changes	 on	 loss	 of	 PRC2	

correlated	 with	 H3K27me1	 deposition,	 suggesting	 that	 H3K27me1	 is	 required	 for	

proper	 activation	 of	 transcription	 of	 target	 genes.	 To	 further	 validate	 this	 link,	 we	

extended	our	analysis	to	see	if	it	also	occurred	during	the	process	of	differentiation	of	

WT	and	Eed	KO	mESC.	For	this	study	we	made	use	of	cell	culture	differentiation	into	

embryoid	 bodies	 (EBs)	 as	 our	 model.	 Eed	 KO	 cells	 were	 failed	 to	 differentiate	

properly	as	compared	to	that	of	WT	cells,	this	could	be	confirmed	by	inactivation	of	

canonical	differentiation	genes	(figure	2.2.5A).			

	

	

	
	
Fig.	 2.2.5	 A.	 mESC	 deficient	 for	 PRC2	 fail	 to	 differentiate.	 	 Relative	 expression	 of	 the	
indicated	differentiation	markers	determined	by	qRT-PCR	in	WT	and	Eed	KO	mESC	before	(ES)	and	
after	9	days	of	differentiation	(EB).		
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We	 carried	 out	 transcriptome	 profiling	 on	WT	 and	 Eed	 KO	 EBs,	 as	 well	 as	 on	 un-

differentiated	samples.	From	the	analysis,	we	observed	impairment	in	the	activation	

of	 genes	 upon	 differentiation	 in	 PRC2	 KO	 mESC,	 and	 this	 correlated	 with	 lack	 of	

deposition	 of	 H3K27me1	 at	 their	 gene	 bodies.	 The	 deposition	 of	 H3K36me3	 is	

unaltered	(figure	2.2.5B,C).	

From	 all	 these	 evidences,	 we	 can	 say	 that,	 during	 differentiation	 process	 also,	

H3K27me1	 is	 deposited	 by	 PRC2	 enzymatic	 activity	 and	 it	 is	 required	 for	 proper	

activation	 of	 PRC2	 target	 genes.	 These	 results	 also	 showed	 that	 H3K36me3	

modification	 is	 unaltered	 in	 absence	 of	 PRC2	 that	 mean	 that	 the	 modification	

precedes	H3K27me1	deposition.	

2.2.6. H3K27me2	deposition	in	genome	protects	non-cell	type	specific	enhancers.	

From	 our	 initial	mass	 spectrometry	 results	we	 observed	 that	 the	widely	 deposited	

H3K27me2	histone	mark	in	the	genome	accounts	for	approximately	the	70%	of	total	

K27	PTMs	of	histone	H3,	 this	 led	us	 to	speculate	about	 its	 functional	 importance	 in	

the	genome.	Instead	of	exploring	role	of	H3K27me2	as	any	other	histone	mark,	which	

	
	
Fig.	2.2.5	B,C.	H3K27me1	is	gained	in	genes	which	are	up-regulated	in	the	process	of	
differentiation.	(B)	Expression	levels	of	up-regulated	genes	during	differentiation	process	in	WT	
and	 Eed	 KO	 samples	 (N=844).	 (C)	 Average	 profiles	 of	 H3K27me1	 and	 H3K36me3	 through	 the	
intragenic	regions	of	genes	activated	upon	EB	differentiation.		
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is	 present	 between	 functional	 domains	marked	 by	 H3K27me1	 and	 H3K27me3,	 we	

speculated	 its	 role	 in	 the	context	of	genomic	control.	From	 literature	we	know	 that	

upon	 loss	 of	 PRC2	 enzymatic	 activity	 levels	 of	 H3K27ac	 PTM	 are	 significantly	

increased	 (Pasini	 et	 al.,	 2010;	 Tie	 et	 al.,	 2009);	 we	 too	 observed	 identical	

phenomenon	 on	 performing	 similar	 experiment	 in	mESC	 lines	KO	 or	 interfered	 for	

PRC2	component	compared	to	wild	type	or	control	mESC	(figure	2.2.6A).	It	has	been	

reported	that	H3K27ac	is	enriched,	along	with	other	PTMs.		

	

Has	H3K27me2	 is	 broadly	 distributed	 in	 intergenic,	 this	 derived	 us	 to	 suspect	 that	

H3K27me2	functionality	might	be	linked	with	regulatory	enhancer	elements.	On	the	

basis	of	H3K27ac	levels,	enhancers	can	be	either	in	active	or	poised.	Active	enhancers	

are	 characterized	 by	 high	 levels	 of	 H3K27ac	 where	 as	 poised	 enhancers	 are	

characterized	 by	 low/no	 H3K27ac	 (Creyghton	 et	 al.,	 2010b;	 Rada-Iglesias	 et	 al.,	

2011).	 To	 explore	 role	 of	 H3K27me2	 in	 enhancer	 control,	 we	 performed	 ChIP-seq	

analysis	 to	 assess	 the	 genome	 wide	 changes	 of	 H3K27ac	 both	 in	 presence	 and	

absence	 of	 PRC2	 activity	 in	 mESC	 cells.	 On	 analyzing	 data	 we	 observe	 differential	

	
	
Fig.	2.2.6	A.	Global	levels	of	H3K27ac	increase	upon	loss	of	PRC2	activity.	WB	analyses	
of	different	modifications	upon	loss	of	different	components	of	PRC2	in	mESC.		
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enrichment	 of	 H3K27ac	 between	 Eed	 KO	 and	WT	 mESC,	 which	 is	 consistent	 with	

increase	 in	 levels	 of	 H3K27ac	 from	 immunoblot	 analysis.	 Venn	 diagram	 in	 figure	

2.2.6B,	clearly	shows	that	number	of	H3K27ac	peaks	are	preferentially	gained	in	Eed	

KO	(called	as	“Eed	KO	unique”),	while	other	peaks	were	present	only	in	Eed	wt	mESC	

(called	 as	 “Eed	 wt	 unique”).	 Figure	 2.2.6C	 represents	 few	 genomic	 screenshots	 of	

“unique”	 regions	 both	 in	WT	 and	Eed	KO	 samples.	H3K27ac	 peaks	were	 annotated	

with	respect	to	promoters	(±	2.5	Kb	region	from	TSS	genes);	on	doing	so	we	observed	

that	the	peaks	which	are	shared	by	both	Eed	WT	and	Eed	KO	are	equally	distributed	

among	TSS	and	not	TSS	regions,	where	as	“unique”	peaks	in	both	Eed	WT	and	Eed	KO	

showed	 a	 preferential	 enrichment	 towards	 not	 TSS	 regions	 (figure	 2.2.6B).	 This	

suggested	 that	unique	peaks,	which	are	 influenced	by	PRC2	activity,	 could	reside	at	

regulatory	elements	throughout	the	genome.			

	

	

	

	
	
Fig.	2.2.6	B,C.	Distribution	of	H3K27ac	enriched	regions	upon	loss	of	PRC2	activity.	
(B)	Overlap	of	H3K27ac	peaks	between	WT	(Eed	+/+)	and	Eed	KO	(Eed	-/-)	mESC.	The	pies	depict	
the	percentage	distribution	of	the	different	groups	of	H3K27ac	peaks	relative	to	promoter	region	of	
all	 genes.	 Promoters	 regions	 are	 defined	 as	 a	 ±.	 2.5kb	 region	 around	 centered	 the	 TSS.	 (C)	
Snapshots	 representing	different	PTMs	 in	 regions	where	H3K27ac	 is	 lost	 and	gained	 in	WT	 (Eed	
+/+)	and	Eed	KO	(Eed	-/-)	mESC	highlighted	in	yellow.		
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In	 order	 to	 understand	 whether	 these	 unique	 regions	 are	 true	 enhancers	 we	

performed	ChIP-seq	for	H3K4me1	and	H3K4me3	in	Eed	WT	and	Eed	KO	mESC.	From	

the	 snapshots	 (figure	 2.2.6D)	 of	 unique	 acetylation	 regions	 in	 Eed	WT	 and	Eed	KO	

samples	it	can	be	noticed	that	these	are	enriched	for	H3K4me1	but	show	no	signs	of	

H3K4me3.	 Even	 through	 genome	wide	 quantification	 analysis	 we	 observe	minimal	

levels	of	H3K4me3	as	reported	by	box	plot	distribution	(figure	2.2.6E).		

	

	

	

Fig.	2.2.6	D,E.	Mapping	enhancer	elements	
upon	 loss	 of	 H3K27me2.	 (D)	 Snapshots	
representing	 different	 PTMs	 in	 regions	 where	
H3K27ac	 is	 lost	 and	gained	 in	WT	 (Eed	+/+)	and	
Eed	KO	(Eed	-/-)	mESC	highlighted	in	yellow.		(E)	
Box	plot	showing	 levels	of	H3K4me1	signal	in	the	
unique	H3K27ac	distal	peaks	of	Eed	WT	and	Eed	
KO	 samples.	 Number	 of	 Eed	 WT	 unique	 peaks	 =	
12341;	Eed	KO	unique	peaks	=	9210	
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To	 get	 global	 picture	 of	 changes	 of	 different	 histone	 modification	 in	 these	 unique	

regions	 of	 acetylation	 in	 both	 Eed	 WT	 and	 Eed	 KO	 samples	 we	 quantified	 all	

modifications	 and	 represented	 their	 normalized	 intensities	 in	 form	 of	 heat	 maps	

(figure	2.2.6F).	 From	 this	 analysis	we	noticed	 that	 on	 the	basis	 of	H3K4me1	 levels,	

activated	enhancers	in	Eed	KO	cluster	fall	into	two	different	groups	as	shown	in	figure	

2.2.6F.	 It	 can	 seen	 that,	 in	 class	 I	 enhancers	H3K4me1	was	pre-existing	 in	Eed	WT,	

while	in	class	II	enhancers	H3K4me1	is	gained	along	with	H3K27ac	deposition	(figure	

2.2.6F,G).	Class	I	enhancers	are	accounted	for	60%	of	the	total	enhancers	in	Eed	KO	

sample,	 whole	 class	 II	 enhancers	 accounted	 for	 approximately	 40%	 of	 total.	

Distributions	 of	 different	 normalized	 ChIP	 intensities	 of	 different	 PTMs,	 which	 are	

	

	
	
Fig.	2.2.6	F,	G.	Regulation	of	enhancers	upon	loss	of	H3K27me2	in	mESC.	(F)	Heatmap	
of	normalized	intensities	of	H3K27ac,	H3K4me1,	H3K4me3,	H3K27me3,	H3K27me2	in	WT	and	Eed	
KO	mESC	for	all	distal	H3K27ac	peaks	found	in	either	WT	(Eed	WT	unique	peaks)	or	Eed	KO	(Eed	
KO	unique	peaks).	Classification	of	H3K27ac	peaks	found	only	in	Eed	KO	into	two	classes,	Class	I	(n	
=	4,391)	and	Class	II	(n	=	4,819)	was	applied	on	the	basis	of	pre-existence	of	H3K4me1	in	Eed	WT	
sample.	Grouping	was	based	on	k	mean	clustering	(k	=	2)	with	respect	to	the	H3K4me1	normalized	
intensities	 in	 Eed	WT	ESCs.	 (G)	 Boxplot	 analyses	quantifying	 the	 data	 shown	 in	 figure	 2.2.6	F.	p	
value	was	calculated	by	Wilcoxon	rank	test.	
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represented	as	heatmap,	are	also	presented	in	box	plot	from	(figure	2.2.6G).	To	show	

that	above	quantification	holds	true	for	both	gain	and	loss	of	H3K27ac	in	Eed	WT	and	

KO	 cells,	 qPCR	 experiments	 were	 carried	 out	 in	 K27ac	WT	 unique	 and	 KO	 unique	

regions.	From	the	results	(figure	2.2.6H),	it	is	evident	that	the	trend	holds	true	and	is	

very	similar	to	that	of	genome	wide	phenomena	(2.2.6F,G).		

	

	

Previous	work	in	human	ESC	described	a	class	of	enhancers	enriched	for	H3K27me3	

(Rada-Iglesias	et	al.,	2011),	we	tested	for	its	levels	in	our	unique	enhancers	in	Eed	WT	

and	 Eed	KO,	 and	 showed	 that	 H3K27me3	 is	 present	 at	 very	minimal	 levels	 (figure	

2.2.6I).	 In	 accordance	with	 this,	we	 also	 show	 that	Eed	KO	unique	 enhancer	 region	

had	 no	 Ezh2	 association	 and	 did	 not	 overlap	 with	 CpGi,	 which	 are	 well	 known	

determinants	for	targeting	PRC2	and	sites	of	H3K27me3	(figure	2.2.6J).		

	

To	see	if	have	any	relation	between	activated	enhancers	in	Eed	KO	mESC	and	its	affect	

on	 gene	 activation,	 we	 carried	 out	 analysis	 linking	 enhancer	 sites	 with	 the	 closest	

upregulated	 genes	 in	 Eed	 KO	 mESC.	 As	 shown	 by	 box	 plot	 in	 figure	 2.2.6K,	 the	

distance	between	acquired	enhancers	in	Eed	KO	mESC	and	the	closest	upregulated		

	

Fig.	2.2.6	H.	Validation	of	lost	and	gained	enhancer	elements.	(H)	qRT-PCR	analyses	
of	 DNA	 purified	 from	 H3K27ac	 ChIP	 in	WT	 and	 Eed	 KO	mESC	 using	 primers	 amplifying	 the	
indicated	genomic	loci.		
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genes	was	 reduced	 respect	 to	 the	 distance	 observed	 analyzing	 enhancers	 that	 lost	

H3K27ac	 upon	 PRC2	 depletion	 (Eed	 WT	 unique).	 This	 result	 did	 not	 depend	 on	

H3K27me3	 levels	 deposition	 at	 TSS	 of	 analyzed	 genes	 in	WT	mESC	 (figure	 2.2.6L).	

	

	
	
Fig.	2.2.6	I,J.	Unique	enhancers	are	not	enriched	for	H3K27me3	and	do	not	reside	on	
CpG	islands.	(I)	Box	plot	showing	the	quantification	of	H3K27me3	signal	in	the	unique	H3K27ac	
distal	peaks	of	Eed	WT	and	Eed	KO	samples.	(J)	Percentage	of	Ezh2	peaks	occupancy	(determined	
by	 ChIP-seq	 analysis	 in	 mouse	 E14	 ES	 cells)	 and	 of	 CpG	 islands	 respect	 to	 genomic	 regions	
corresponding	to	H3K27ac	peaks	uniquely	found	in	Eed	KO	mESC.	
	

	
	
Fig.	2.2.6	K,L.	Activation	of	enhancers	upon	loss	of	PRC2	correlates	with	closest	gene	
activation	(K)	Box	plot	representating	distance	between	enhancers	(for	WT	and	Eed	KO	samples)	
and	the	up-regulated	genes	in	Eed	KO	ES	cells.	All	identified	enhancers	are	included	in	the	analysis.	
(L)	Same	as	K,	but	 in	this	case	enhancers	associated	to	a	H3K27me3	positive	gene	 in	WT	ES	cells	
were	 excluded	 from	 the	 analysis.	 H3K27me3	 enriched	 genes	 were	 defined	 by	 the	 presence	 of	 a	
H3K27me3	peak	within	+/-	2.5kb	from	the	TSS.	p-values	were	calculated	by	Mann-Whitney	Test.	
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This	 observation	 further	 endorses	 our	 protective	 model	 by	 which	 H3K27me2	

controls	 enhancer	 activation	 by	 preventing	 aberrant	 H3K27ac	 deposition	 at	 these	

regulatory	elements.	

	

If	we	assume	 that	H3K27me2	act	as	protective	model	 then	 in	 that	 case	 it	would	be	

right	to	argue	that	both	classes	of	enhancers	regions	in	Eed	WT	and	Eed	KO	should	be	

enriched	for	H3K27me2	on	losing	H3K27ac.	Using,	unique	enhancer	sites	in	Eed	WT	

mESC	 we	 show	 that	 H3K27ac	 is	 negatively	 correlated	 with	 H3K27me2	 deposition	

(figure	2.2.6M).	As	additional	proof	supporting	our	mechanism,	we	set	up	experiment	

where	we	 inhibited	 the	 enzymatic	 activity	 of	 histone	 acetyl	 transferase	 (HAT)	 Cbp	

and	 p300	 by	 treating	 WT	 mESC	 with	 the	 chemical	 compound	 C646	 for	 48	 hours.	

Levels	of	global	H3K27ac	with	respect	to	control	cells	were	reduced	(figure	2.2.6N),	

and	then	we	performed	ChIP-seq	for	H3K27me2	and	H3K27ac	in	treated	and	control	

mESC	 to	 test	 the	 behavior	 of	 such	 histone	PTMs.	 From	 composite	 profile	 and	 from	

relative	quantification	by	box	plots,	we	found	that	upon	treatment,	there	is	a	loss	of	

H3K27ac	 at	 4800	 enhancers,	 which	 instead	 is	 accumulated	 by	 H3K27me2	 (figure	

2.2.6O,P).	 These	 results	 validate	 our	 model,	 proving	 that	 loss	 of	 H3K27ac	 from	

enhancer	elements	is	replaced	by	H3K27me2	deposition.	
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Fig.2.2.8	 M-P.	 Anti-correlation	 between	 H3K27ac	 and	 H3K27me2	 at	 unique	
enhancers	 sites	 and	 loss	 of	 H3K27ac	 at	 enhancer	 sites	 is	 replaced	 by	H3K27me2.	
(M)	Scatter	plot	showing	correlation	between	H3K27ac	and	H3K27me2	levels	 in	WT	ESCs	for	 all	
unique	enhancers	 regions	 identified	 in	WT	and	 Eed	KO	 samples.	 Left	panel	 shows	whole	density	
distributions.	Right	panel	distinguishes	Eed	WT	unique	(red)	and	Eed	KO	unique	(blue)	enhancers.	
The	Spearman	correlation	value	is	indicated	(rs	=	0.5106).	p	value	was	calculated	by	asymptotic	t	
approximation	 (N)	 Immunoblot	 analysis	 for	H3K27ac	antibody	of	histones	extracted	from	mouse	
E14	mESC	 treated	with	35	μM	C646	 p300	 inhibitor	 for	48	h.	DMSO	was	used	as	 vehicle	 control.	
Histone	 H3	 was	 used	 as	 loading	 control.	 (O)	 Average	 profiles	 of	 H3K27ac	 and	 H3K27me2	
deposition	around	2500	bp	up	and	downstream	 from	centered	H3K27ac	peak	 summit	of	 regions	
that	 loose	H3K27ac	upon	 treatment	with	C646	compound	 for	48	h	 (N=4838).	 (P)	Box	plots	with	
quantification	levels	of	H3K27ac	and	H3K27me2	at	the	same	enhancer	sites	of	figure	2.2.8	O	upon	
treatment	 with	 C646	 for	 the	 complete	 H3K27ac	 peak	 region	 or	 for	 a	 1kb	 genomic	 region	
surrounding	the	summit	of	peak.	



	78	

	

Overall,	from	our	findings	we	can	conclude	that	H3K27me2	by	PRC2	ensures	correct	

activation	 of	 enhancers,	 preventing	 aberrant	 deposition	 of	 H3K27ac	 at	 these	

regulatory	elements.	
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Chapter	3	–	MATHERIAL	AND	METHODS	

3.1.	ChIP_QC	

This	 program	 constitutes	 several	modules,	 each	with	 its	 own	 capabilities.	 They	 are	

dedicated	 for	 quantification,	 correlation,	 differential,	 enrichment,	 or	 classification	

studies.	Here	we	describe	about	its	design,	file	formats	and	different	methods	it	uses	

for	 analysis.	 ChIP_QC	 is	 available	 online	 and	 can	 be	 downloaded	 from	

https://sourceforge.net/projects/epimine/		

3.1.1. Input	Data		

Each	module	requires	input	data,	which	can	be	any	of	the	following	three	types:	bed,	

bam	or	genome	file.		

- bed	file(s)	are	tab	separated	file(s)	containing	information	about	certain	locus	

of	 genome.	 More	 details	 about	 the	 format	 can	 be	 kown	 from	

https://genome.ucsc.edu/FAQ/FAQformat.html#format1.		

- bam	 files	 are	 standard	 binary	 format	 file	 containing	 details	 about	 the	

alignment	of	sequencing	data	with	reference	genome.		

- genome	 file	 is	also	 tab-separated	 file	with	 two	columns	 listing	chromosomes	

and	their	length.	

3.1.2. Samples	and	Datasets	

Samples	are	referred	as	multiple	bed	files	containing	ROI	where	one	bed	file	implies	

one	sample.	Datasets	are	referred	to	as	aligned	files	against	which	multiple	samples	

are	to	be	analysed.	
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3.1.3. Overlap	

For	computing	overlapping	regions	between	any	two	given	samples	we	implemented	

fast	and	efficient	BITS	algorithm	(Layer	et	al.,	2013).	

3.1.4. Random	regions	

Irrespective	of	analysis	it	is	always	important	to	know	whether	the	behaviour	shown	

by	data	of	our	interest	is	something	meaningful	or	is	just	random	by	chance.	For	such	

comparison,	 we	 provide	 option	 in	 our	 program	 for	 generating	 random	 data	 (if	

enabled).	Random	regions	are	generated	with	a	similar	size	as	that	of	input	data	size	

by	shuffling	the	genomic	coordinates	and	chromosomes	of	input	data	but	within	the	

framework	 of	 the	 reference	 genome.	 These	 regions	 are	 analysed	 in	 parallel	 to	 the	

main	 input	 data	 and	 results	 are	 generated	 correspondingly.	 On	 comparing	 results	

between	main	 input	data	 and	 random	data	one	 can	easily	 judge	whether	both	 look	

similar	 or	 different.	 If	 they	 look	 completely	different	 that	means	 that	 the	 results	 of	

main	input	data	is	not	random	by	chance.	Below	is	the	table	representing	ROI	in	left	

column	 and	 right	 column	 shows	 random	 data	 generated	 by	 shuffling	 coordinates	

from	ROI.	

Regions	of	Interest	 Random	Data	

Chr1:238374-38987	 Chr5:238374-38987	

Chr2:84845-98452	 Chr4:84845-98452	

Chr4:652873-782383	 Chr10:652873-782383	

Chr5:187384-198472	 Chr2:187384-198472	
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3.1.5. Quantification	

For	 quantifying	 different	 ChIP-seq	 datasets	 ROI,	 program	 counts	 total	 number	 of	

reads	within	 each	ROI	 and	 then	 normalized	 to	 the	 sequencing	 depth,	 length	 (if	 the	

length	 of	 different	 regions	 are	 varying).	 In	 cases	where	 an	 input/control	 sample	 is	

provided,	normalized	reads	for	input	dataset	are	computed	for	individual	bin	and	is	

subtracted	from	normalized	reads	of	target	datasets.		If	spike-in	data	is	provided	then	

the	 normalization	 is	 carried	 out	 in	 a	 similar	 manner	 as	 explained	 in	 publication	

(Orlando	 et	 al.,	 2014).	 For	 avoiding	 any	 skewness	 in	 data	 distribution	 normalized	

intensities	are	log	transformed.	Program	provides	option	for	quantification	either	on	

genome	wide	basis	(fig.	3.1.5.2)	or	quantification	restricted	to	only	ROI	(fig.	3.1.5.1).	

In	 case	 of	 genome	wide	 computation,	 genome	 is	 fragmented	 into	 small	 bins	 on	 the	

basis	 of	 average	 length	 size	 of	 user	 provided	 ROI	 and	 then	 above	 mentioned	

quantification	 is	 followed	 in	 these	 regions	and	 later	only	 the	bins	 representing	ROI	

are	retrieved.	For	efficient	comparison	between	different	datasets	derived	either	with	

similar	and	or	different	antibodies,	quantification	 is	 subjected	 to	scaling.	 If	datasets	

are	 generated	 with	 the	 same	 antibody	 (option	 provided	 in	 program),	 the	 whole	

quantification	will	be	scaled	 to	0-1.	On	 the	other	hand,	 if	datasets	are	generated	by	

different	antibodies,	then	in	that	case	individual	datasets	are	scaled	to	0-1	separately	

allowing	 liable	 comparison	 between	 datasets.	 Scaling	 can	 be	 explained	 better	 by	

considering	matrix	(X)	containing	n	rows	and	m	columns	where	each	row	represents	

one	ROI	and	each	column	represents	each	dataset.	If	all	m	datasets	are	generated	with	

same	antibody,	 then	scaling	 is	performed	in	such	way	that	minimum	and	maximum	

value	of	matrix	is	set	to	0	and	1.	On	the	other	if	all	m	datasets	are	generated	through	
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different	 antibodies	 then	 scaling	 in	 performed	 in	 such	 way	 that	 minimum	 and	

maximum	value	for	each	column	of	matrix	are	set	to	0	and	1.		

	

Fig	3.1.5.1	Workflow	of	quantification	within	ROIs.		
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Fig	3.1.5.2	Workflow	for	genome	wide	based	quantification	for	selected	ROI.		
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3.1.6. Differential	regulated	regions	

For	any	two	given	datasets,	differentially	enriched	ROI	are	discovered	by	computing	

reads	 density	 within	 and	 outside	 the	 ROI	 which	 are	 then	 subjected	 to	 fisher	 test,	

followed	 by	 bonferroni	 correction.	 In	 many	 scenarios	 we	 come	 across	 situations	

where	 we	 lack	 replicates	 for	 our	 analysis.	 In	 such	 cases	 to	 support	 identifying	

enriched	regions	between	two	datasets	without	replicates	we	 implemented	Fisher’s	

test.	 In	 case	 of	 multiple	 datasets	 with	 replicates,	 differential	 regions	 are	 identified	

either	by	kruskal-wallis	or	by	ANOVA	statistical	test.	Reads	density	within	the	regions	

identified	 as	 differential	 are	 further	 converted	 into	 standard	 z-score	 which	 are	

represented	 as	 heatmap.	 To	 segregate	 differential	 regions	 specific	 to	 any	 dataset	

results	 can	be	 subjected	 to	 clustering.	 If	 expression	data	across	multiple	 systems	 is	

provided,	 then	 each	 differential	 ROI	 is	 assigned	 to	 the	 closest	 gene	 and	 the	

distribution	 of	 expression	 across	 different	 clusters	 is	 presented	 as	 boxplot.	 In	 this	

version	of	the	application	we	support	kruskal-wallis	or	by	ANOVA	statistical	test	for	

identifying	differentially	enriched	regions	among	different	datasets.	Apart	from	these	

statistical	test	much	more	powerful	test	are	also	available.	In	coming	version,	we	plan	

to	support	such	statistical	analysis	in	our	applications.	For	this,	in	coming	version	we	

aim	to	implement	limma	(Ritchie	et	al.,	2015),	which	uses	linear	models	for	analysing	

data,	and	identify	differentially	enriched	regions	accordingly.		

3.1.7. Correlation	

Using	genome	wide	or	regions	specific	quantification	(as	explained	above)	correlation	

between	different	datasets	can	be	computed	either	by	Pearson,	Spearman,	Kendall	or	

Principal	Component	Analysis	(PCA)	methods.	In	case	where	any	of	thee	three	initial	

methods	is	chosen,	the	correlation	between	all	possible	dataset	pairs	is	computed	and	
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transformed	into	a	correlation	matrix.	This	matrix	is	then	represented	as	a	heatmap	

where	 the	 degree	 of	 correlation	 is	 associated	 with	 a	 colour	 code.	 In	 case	 PCA	 is	

chosen,	the	program	generates	a	variable	graph	with	circle	of	correlation	across	the	

first	two	principal	components	capturing	maximum	variance	from	the	data.	Variable	

graph	signifies	the	degree	of	closeness/relatedness	between	multiple	datasets,	where	

each	 dataset	 is	 represented	 as	 an	 arrow.	 Variable	 graph	 can	 be	 interpreted	 at	

different	 levels.	 First,	 the	 amplitude	 of	 the	 angle	 between	 two	 arrows	 is	 directly	

linked	to	the	degree	of	correlation.	The	smaller	is	the	angle	between	two	datasets	the	

higher	 is	 their	 correlation.	 A	 90°	 angle	 signifies	 no	 correlation,	 while	 an	 opposite	

angle	(>90°)	reflects	an	anti-correlation	between	two	datasets.	Second,	the	length	of	

the	arrow	represent	how	important	is	that	dataset	in	representing	whole	data.	Longer	

the	length	greater	the	importance	of	that	variable	and	the	opposite	holds	true.	

3.1.8. Selection	and	Classification	

Many	studies	in	epigenetics	involve	characterizing/classifying	set	of	ROIs	on	the	basis	

of	some	known	properties.	For	such	studies	we	implemented	Support	Vector	Machine	

(SVM)	in	our	program.	It	can	be	used	for	characterizing	two	sets	of	ROI	on	the	basis	of	

given	datasets	to	see	whether	the	given	datasets	are	capable	of	differentiating	it.	If	the	

datasets	are	fruitful	in	characterization	of	ROI	through	above	process,	analysis	can	be	

extended	 further	 in	 classifying	 new	 set	 of	 ROIs	 using	 the	 constructed	 model.	 We	

choose	 SVM	 for	 classification	 purposes	 because	 of	 its	 advantages	 over	 others.	 SVM	

provides	 unique	 and	 accurate	 classifiers,	 it	 avoids	 over-fitting	 of	 classifier	 with	

proper	 choice	of	parameters	 and	 is	 robust	 in	 classifying	noisy	data.	With	biological	

data	we	always	tend	to	have	noise	and	data	not	necessarily	is	regularly	distributed	in	
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such	cases	we	need	to	make	choice	of	such	classifier,	which	can	perform	better	under	

such	circumstances.	In	such	situations	SVM	provides	right	choice	of	classifier.	

In	cases	where	number	of	datasets	used	for	characterizing	two	sets	ROIs	is	too	large,	

program	provides	option	for	pre-selection	of	meaningful	datasets.	Advantage	of	pre-

selection	is	that	it	tries	to	filter	out	datasets,	which	contribute	very	minimal,	or	none	

in	 classification.	 For	 filtering	 out	 non-contributing	 factors,	 this	 program	 uses	

recursive	 feature	 selection	 approach	where	 all-possible	 subsets	 are	 considered	 and	

accuracy	score	for	each	best	combination	is	reported.	Out	of	these,	variables	with	best	

combination	 scoring	 high	 accuracy	 are	 reported.	 This	 combination	 of	 datasets	 can	

now	be	further	used	for	building	SVM	model.	

For	 building	 classification	 model,	 program	 provides	 the	 facility	 of	 choosing	 either	

linear/no-linear	method	of	classification.	Given	positive	and	negative	dataset,	in	case	

of	characterizing/training,	 the	program	quantifies	provided	datasets	within	all	ROIs	

and	 employs	 classification.	 Quality	 of	 analysis	 can	 be	 improved	 by	 running	 k-fold	

cross	 validation.	 Using	 this	 approach	 the	 training	 set	 is	 split	 into	 k	 groups	 of	

approximately	the	same	size,	then	iteratively	train	a	SVM	using	k−1	groups	and	make	

prediction	on	the	group	which	was	left	aside.	By	default	this	is	set	to	10.	For	a	given	

combination	 of	 datasets,	 analysis	 presents	 the	 performance	 as	 receiver	 operating	

characteristic	 (ROC)	 curve	where	 True	 Positive	 Rate	 (TPR)	 is	 plotted	 against	 False	

Positive	Rate	(FPR).	The	program	lists	out	the	area	under	the	ROC	curve	(AUC)	for	the	

classification.	Higher	 the	AUC,	greater	 the	possibility	of	classifying	 two	sets	of	ROIs.	

Once	satisfied	with	classification	model	on	training	data,	 the	analysis	can	be	further	

extended	 in	 predicting	 a	 similar	 classification	 on	 new	 set	 of	 ROIs	 either	 in	 same	

system	or	in	different	system.	
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3.1.9. Bayesian	Network	

In	 any	 given	 cell	 type,	 different	 histone	modifications	 and	TFs	 are	 enriched/bound	

through	the	genome.	These	factors	(HMs/TFs)	together	regulate	transcription.	Using	

ChIP-seq	 approach,	 for	 many	 cell	 types	 we	 have	 mapped	 the	 localization	 of	 these	

different	factors	through	the	genome.	From	these	data,	one	can	study	which	different	

factors	function	dependently/independently	either	genome	wide	or	within	ROI.	Such	

studies	can	be	explored	in	this	program	using	Bayesian	Netowrk	(BN),	which	helps	us	

in	predicting	probabilistic	relationships	between	a	set	of	different	factors.	In	general	

terms,	for	a	given	finite	set	of	random	discrete	variables	X=(x1,	x2,	x3	...	xn),	BN	is	an	

directed	acyclic	graph	that	signifies	joint	probability	distribution	over	X.	Where	nodes	

correspond	to	variables	and	edge	correspond	to	influence	of	one	variable	on	other.	A	

unique	joint	probability	distribution	P	of	X	can	be	written	as:	

𝑃 𝑋 = 𝑃(Xi|ΠXi)
!

!!!

	

Similarly,	 for	 continuous	 variables,	 it	 can	 be	 written	 in	 terms	 of	 global	 density	

function	as:	

	

	

𝑓 𝑋 = 𝑓(Xi|ΠXi)
!

!!!

	

where	Πxi	represent	parent(s)	of	Xi	

ChIP_QC	 supports	 both	 discrete	 and	 continuous	 data	 formats.	 In	 discrete	 based	

method,	the	program	is	fed	with	n	different	bed	files	where	each	bed	file	represents	

one	 factor.	 In	 the	 case	 of	 continuous	 method,	 the	 program	 is	 instead	 fed	 with	 n	

different	 aligned	 (bam)	 files.	 Depending	 on	 the	 type	 of	 analysis	 selected	 (genome	
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wide/only	within	ROI),	for	the	discrete	method,	a	matrix	is	constructed	signifying	the	

presence	or	absence	of	the	factor	within	the	region	of	analysis.	In	case	the	continuous	

method	 is	 used,	 a	 matrix	 is	 constructed	 with	 normalized	 read	 counts.	 Using	 such	

constructed	 data,	 a	 joint	 distribution	 model	 is	 learned	 either	 by	

constraint/score/hybrid-based	 methods.	 For	 generating	 networks	 with	 high	

predictive	 power,	 a	 selected	 learning	 method	 is	 applied	 iteratively	 on	 randomly	

selected	data	(default	90%	percent)	from	original	data	for	100	times	(default).	Based	

on	a	 selected	 threshold,	 a	probabilistic	network	 is	 generated	with	only	 those	edges	

that	are	identified	at	least	in	95%	(default)	of	networks.	

3.1.10. Datasets	

All	 presented	 results	 are	 generated	with	 human	ENCODE	 (Consortium,	 2012)	 data.	

We	used	histone	modification	 (HM),	 transcription	 factor	and	expression	datasets	of	

human	 embryonic	 stem	 cells	 (H1hESC),	 lymphblastoid	 (Gm12878),	 umbilical	 vein	

endothelial	 cells	 (HUVEC),	 cervical	 carcinoma	 (HeLa-S3),	 liver	 carcinoma	 (HepG2),	

leukemia	 (K562),	 skeletal	muscle	 fibroblast	 (HSMM),	human	 lung	 fibroblast	 (NHLF)	

and	epidermal	kertainocytes	(NHEK).	

	

3.1.11. Design	and	Dependencies	

Complete	program	is	developed	in	python	platform.	Different	components	wxpython,	

numpy,	pysam	and	rpy2	are	integrated	together.	R	(http://www.r-project.org/)	with	

following	 packages	 gplots,	 RColorBrewer,	 FactoMineR,	 ROCR,	 kernlab,	 bnlearn,	

fastcluster,	igraph.	wxpython	is	used	for	graphical	user	interface,	numpy	for	handling	
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numerical	data	in	form	of	matrix,	pysam	for	processing	alignment	files	and	rpy2	for	

statistical	analysis	through	R.	This	program	is	supported	in	Mac	OS	and	Linux.	

3.1.12. Aligned	Datasets	Structure	

Each	target	dataset	can	be	processed	individually	or	in	support	of	input	and/or	spike	

in	data	(if	provided).			

If	input	data	is	provided	then	it	should	be	provided	in	either	of	the	following	ways:	

- each	target	dataset	can	have	corresponding	input	with	same	filename	(Table1	

Scenario	1),		

- or	all	target	datasets	can	have	one	input	(Table1		Scenario	2).	

	

Scenario	1	
	

Scenario	2	

Target	
Directory	

Input	Directory	

X1.bam	 X1.bam	
X2.bam	 X2.bam	
X3.bam	 X3.bam	
X4.bam	 X4.bam	
Xn.bam	 Xn.bam	

	

Target	
Directory	

Input	Directory	

X1.bam	 	
	

X.bam	
X2.bam	
X3.bam	
X4.bam	
Xn.bam	

	

	

Table1:		ChIP_QC	supports	aligned	datasets	with	input	data,	which	can	be	provided	in	
following	folder	structure.	Scenario	1:	representing	folder	structure	where	each	input	
file	 corresponding	 to	 individual	 target	 dataset.	 Scenario	 2:	 representing	 folder	
structure	where	single	input	file	corresponding	to	all	target	datasets.	

Similarly,	 if	 spike-in	 data	 is	 provided,	 then	 each	 target	 dataset	 should	 have	

corresponding	spike-in	with	same	filename	(Table	2).	

	

Target	
Directory	

Spike-In	
Directory	

X1.bam	 X1.bam	
X2.bam	 X2.bam	
X3.bam	 X3.bam	
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X4.bam	 X4.bam	
Xn.bam	 Xn.bam	

	

Table2:	 	 ChIP_QC	 supports	 aligned	 datasets	 with	 spike-in	 data,	 where	 program	
expects	each	Spike-In	file	corresponding	to	individual	target	dataset.	

	

3.1.13. Modules	

ChIP_QC	has	different	modules,	each	module	with	its	paramters	are	listed	below:	

3.1.13.1. TCOR	

Program	to	compute	correlation	between	two	different	datasets	or	replicates.	

Command	line	usage	

usage:	python	TCOR.py	[options]	roi	afiles	

Mandatory	arguments:	

taf1		 target	aligned	file	1	(bam	file	format)	

taf2	 target	aligned	file	2	(bam	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

--roi	 file	with	 list	 of	 Regions	Of	 Interest	 to	 be	 analyzed	 (bed	

file	 format).	 Analysis	 will	 be	 restricted	 to	 this	 set	 of	

regions.	

-w,	--window	 window	Size.	Allowed	values.	(default	10000)	

-o,	--output	 output	directory	(default:	execution	directory)	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	

Allowed	values	between	0-1	(default	value	0.995)	

--method	 correlation	 method	 (default	 Pearson).	 Allowed	
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values:['Pearson',	'Spearman',	'Kendall'].	

	

Output	

• Generates	scatter	plot	(Correlation.pdf)	with	color	density	distribution	where	

low,	medium	and	high	dense	population	are	colored	with	blue,	green	and	red.	

Correlation	coefficient	and	p-value	are	listed	as	title	of	the	plot.	

3.1.13.2. MCOR	

Program	to	compute	correlation	between	more	than	two	different	datasets.	

Command	line	usage	

usage:	python	MCOR.py	[options]	taf	genome	

Mandatory	arguments:	

taf	 directory	with	target	aligned	files	(bam	file	format)	

genome	 genome	file	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

--roi	 file	with	 list	 of	 Regions	Of	 Interest	 to	 be	 analyzed	 (bed	

file	 format).	 Analysis	 will	 be	 restricted	 to	 this	 set	 of	

regions.	

--caf	 directory	with	control	aligned	files	(bam	file	format)	

--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	

corresponding	dataset	(bam	file	format)	

-p	 pearson	correlation	(default:	True)	

-s	 spearman	correlation	(default:	False)	
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-k	 kendall	Correlation	(default:	False)	

--pca	 principal	component	analysis	(default:	True)	

-w,	--window	 window	size.	(default	10000)	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	

Allowed	values	between	0-1	(default	value	0.995)	

--color	 heatmap	 color	 (default	 Blues).	 Allowed	 values:['Blues',	

'BuGn',	'BuPu',	'GnBu',	'Greens',	'Greys',	'Oranges',	'OrRd',	

'PuBu',	 'PuBuGn',	 'PuRd','Purples',	 'RdPu',	 'Reds',	 'YlGn',	

'YlGnBu',	 'YlOrBr','YlOrRd',	 'BrBG',	 'PiYG',	 'PRGn',	 'PuOr',	

'RdBu',	'RdGy','RdYlBu',	'RdYlGn',	'Spectral'].	

-o,	--output	 output	directory	(default:	execution	directory)	

	

Output	

• On	 choosing	 pearson/spearman/kendall	 as	 method	 of	 correlation,	 program	

generates	two	files	Correlation_X.pdf	and	Correlation.txt.		

• Correlation_X.pdf	 represents	 the	 correlation	 between	 factors	 in	 form	 of	

heatmap	where	the	degree	of	correlation	is	signified	through	color	code.	X	in	

file	name	refers	to	correlation	method	chosen,		

• Correlation.txt	 later	 file	 contains	 the	 matrix	 with	 correlation	 coefficient	

between	factors.	

• On	choosing	PCA,	program	generates	two	files	Correlation_PCA.pdf	and	PCA.txt.		

• Correlation_PCA.pdf	represents	variable	map	with	circle	of	correlation	through	

first	 two	 principal	 components	 capturing	maximum	 variance	 from	 the	 data.		

All	 datasets	 analyzed	 through	 PCA	 are	 represented	 as	 arrows.	 It	 can	 be	

interpreted	 at	 different	 levels:	 lower	 the	 angle	 between	 two	 datasets	 higher	
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the	 correlation;	 if	 they	 are	 90	 degree	 apart	 from	 each	 other	 signify	 no	

correlation,	 if	 they	 are	 opposite	 to	 each	 other	 signifying	 anti-correlation	

between	two	datasets.	Similarly,	length	of	the	arrow	represent	how	important	

is	 that	 dataset	 in	 representing	 whole	 data.	 Longer	 the	 length	 greater	 the	

importance,	lower	the	length	lesser	the	importance.		

• PCA.txt	 file	contains	details	about	correlation	coefficient	of	each	dataset	with	

two	components	along	with	their	level	of	significance.	

3.1.13.3. ENRICH	

Program	to	compute	to	find	preferential	enrichment	of	different	factors	in	given	ROI.	

Command	line	usage	

usage:	python	ENRICH.py	[options]	roi	afiles	

Mandatory	arguments:	

roi		 directory	 with	 single/multiple	 files	 with	 Regions	 Of	

Interest	to	be	analyzed	(bed	file	format)	

afiles	 directory	 with	 single/multiple	 files	 with	 annotated	

Regions	Of	Interest	to	be	analyzed	(bed	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

-g	,	--genome	 genome	file	

-r,	--random	 generate	and	analyze	random	regions		(default:	False)	

--stringency	 Stringency	

-c	,	--cutoff	 proportion/extent	 of	 overlap	 to	 be	 considered	 (default	

0.1,	 this	 means	 at	 least	 10	 percent	 region	 of	 interest	
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should	overlap	with	target	region).	Allowed	values	0-1.	

-o	,	--output	 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	

• <roi	filename>_<afile	filename>.txt	file(s)	containing	list	of	ROI	being	bound	by	

provided	annotated	regions	(afile),	

• Factors_Plot.pdf	consists	of	barplot	representing	the	proportion	by	which	ROI	

is	bound	by	different	sets	of	annotated	regions	(afile).	

3.1.13.4. CoREG	

Program	to	compute	to	multiple	factors	co-localization	and	expression	studies.	

Command	line	usage	

usage:	python	CoREG.py	[options]	roi	afiles	

Mandatory	arguments:	

roi		 directory	 with	 single/multiple	 files	 with	 Regions	 Of	

Interest	to	be	analyzed	(bed	file	format)	

Afiles	 directory	 with	 single/multiple	 files	 with	 annotated	

Regions	Of	Interest	to	be	analyzed	(bed	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

-g	,	--genome	 genome	file	

-e,	--expression	 expression	file	(bed	file	format)	

--hc	 hierarchical	clustering.	(default:	False)	
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--km	 kmeans	clustering.	(default:	False)	

--cut	 cut	tree	at	height.	Goes	with	--hc	(default	value	1.5)	

--clusters	 number	of	clusters.	Goes	with	--km	(default	value	10)	

-r,	--random	 generate	and	analyze	random	regions		(default:	False)	

--color	 heatmap	 color	 (default	 Blues).	 Allowed	

values:['Blues','BuGn',	 'BuPu',	 'GnBu',	 'Greens',	 'Greys',	

'Oranges',	 'OrRd',	 'PuBu',	 'PuBuGn',	 'PuRd',	 'Purples',	

'RdPu','Reds',	 'YlGn',	 'YlGnBu',	 'YlOrBr',	 'YlOrRd',	 'BrBG',	

'PiYG',	 'PRGn',	 'PuOr',	 'RdBu',	 'RdGy',	 'RdYlBu',	 'RdYlGn',	

'Spectral']	

--stringency	 stringency	for	overlap	

-c	,	--cutoff	 proportion/extent	 of	 overlap	 to	 be	 considered	 (default	

0.1,	 this	 means	 at	 least	 10	 percent	 region	 of	 interest	

should	overlap	with	target	region).	Allowed	values	0-1	

-o	,	--output	 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	

• <roi	 filename>_<hm/hc/km>.png	 heatmap	 showing	 presence	 or	 absence	 of	

different	 sets	 of	 annotated	 regions	 (afiles)	 in	 each	 individual	 ROI.	 File	 with	

suffix	 hm	 is	 generated	 when	 no	 clustering	 is	 turned	 on.	 Similarly	 file	 with	

suffix	hc/km	refers	to	the	analysis	subjected	to	either	hierarchical	or	kmeans	

clustering,	

• <roi	filename>.txt	matrix	file	representing	presence	or	absence	of	different	sets	

of	annotated	regions	in	each	individual	ROI.	Presence	of	any	annotated	regions	
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in	ROI	is	denoted	by	value	greater	than	or	equal	to	0.99999999999.	Similarly,	

absence	is	denoted	by	value	less	than	or	equal	to	0.00000000001.	

• All_<hm/hc/km>.png	this	file	is	generated	only	when	the	number	of	sets	of	ROI	

is	more	than	1,	in	that	case	this	file	contains	combined	heatmap	view	of	all	sets	

of	ROI.	

• <roi	 filename>_<hc/km>_cluster_<cluster	 number>_<color	 represented	 in	

heatmap>.txt	 these	 file(s)	 are	 generated	 only	 when	 either	

(hierarchical/kmeans)	 clustering	 options	 is	 turned	 on.	 Depending	 on	

clustering	options	this	file	will	contain	list	of	ROI	being	part	of	that	particular	

selection.	

• <roi	 filename>_expDist_<hc/km>.pdf	 this	 boxplot	 file	 is	 generated	 when	

clustering		option	is	turned	on	and	expression	data	is	provided	for	the	analysis.	

This	 represents	 distribution	 of	 target	 genes	 expression	 among	 different	

clusters.	

3.1.13.5. QIRI	

Program	to	quantify	different	chip-seq	datasets	in	different	sets	of	ROI.	

Command	line	usage	

usage:	python	QIRI.py	[options]	roi	taf	

Mandatory	arguments:	

Roi	 directory	 with	 single/multiple	 files	 with	 regions	 of	

interest	to	be	analyzed	(bed	file	format)	

taf		 directory	with	target	aligned	files	(bam	file	format)	

Optional	arguments:	
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-h,	--help	 show	this	help	message	and	exit	

--caf	 directory	with	control	aligned	files	(bam	file	format)	

--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	

corresponding	target	aligned	file	(bam	file	format)	

-g,	--genome	 genome	file	

--expression	 expression	file	(bed	file	format)	

--cg	 compute	genome	wide	analysis	(default:	False)	

--stat	 generate	boxplots	and	statistics.	(default:	False)	

--hc	 hierarchical	clustering.	(default:	False)	

--km	 kmeans	clustering.	(default:	False)	

--cut	 cut	tree	at	height.	Goes	with	--hc	(default	value	1.5)	

--clusters	 number	of	clusters.	Goes	with	--km	(default	value	10)	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	

Allowed	values	between	0-1	(default	value	0.99)	

--sameAb	 used	 when	 all	 datasets	 are	 generated	 against	 same	

antibody	(default:	False)	

-r,	--random	 generate		and	analyze	random	regions	(default:	False)	

--color	 heatmap	 color	 (default	 Blues).	 Allowed	 values:['Blues',	

'BuGn',	'BuPu',	'GnBu',	'Greens',	'Greys',	'Oranges',	'OrRd',	

'PuBu',	 'PuBuGn',	 'PuRd',	 'Purples',	 'RdPu',	 'Reds',	 'YlGn',	

'YlGnBu',	'YlOrBr',	'YlOrRd']	

-o,	--output	 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	
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• <roi	 filename>_<hm/hc/km>.png	 heatmap	 showing	 normalized	 intensities	 of	

different	 datasets	 (--taf)	 in	 each	 individual	 ROI.	 File	 with	 suffix	 hm	 is	

generated	 when	 no	 clustering	 is	 turned	 on.	 Similarly	 file	 with	 suffix	 hc/km	

refers	to	the	analysis	subjected	to	either	hierarchical	or	kmeans	clustering,	

• <roi	 filename>.txt	 matrix	 file	 quantifying	 different	 datasets	 (--taf)	 in	 each	

individual	ROI.	

• All_<hm/hc/km>.png	this	file	is	generated	only	when	the	number	of	sets	of	ROI	

is	more	than	1,	in	that	case	this	file	contains	combined	heatmap	view	of	all	sets	

of	ROI.	

• <roi	 filename>_<hc/km>_cluster_<cluster	 number>_<color	 represented	 in	

heatmap>.txt	 these	 file(s)	 are	 generated	 only	 when	 either	

(hierarchical/kmeans)	 clustering	 options	 is	 turned	 on.	 Depending	 on	

clustering	options	this	file	will	contain	list	of	ROI	being	part	of	that	particular	

selection.	

• <roi	 filename>_expDist_<hc/km>.pdf	 this	 boxplot	 file	 is	 generated	 when	

clustering		option	is	turned	on	and	expression	data	is	provided	for	the	analysis.	

This	 represents	 distribution	 of	 target	 genes	 expression	 among	 different	

clusters.	

• <taf	filename>_boxplot.pdf	this	boxplot	file	is	generated	on	turning	on	statistics	

option.	 It	represents	the	distribution	of	quantification	of	 that	specific	dataset	

among	 different	 sets	 of	 ROI	 and	 the	 level	 of	 significance	 between	 all	 two	

combinations	of	ROI	is	listed	in	Statboxplot.txt.	
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3.1.13.6. QARI	

Program	to	quantify	different	chip-seq	datasets	around	different	sets	of	ROI.	

Command	line	usage	

usage:	python	QARI.py	[options]	roi	taf	

Mandatory	arguments:	

roi	 directory	 with	 single/multiple	 files	 with	 regions	 of	

interest	to	be	analyzed	(bed	file	format)	

taf		 directory	with	target	aligned	files	(bam	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

--caf	 directory	with	control	aligned	files	(bam	file	format)	

--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	

corresponding	target	aligned	file	(bam	file	format)	

-g,	--genome	 genome	file	

--expression	 expression	file	(bed	file	format)	

--extension	 number	of	base	pairs	to	extend	from	center	of	region	of	

interest	(default	2500bp)	

--binSize	 bin	size	in	base	pair	(default	50bp)	

--hc	 hierarchical	clustering.	(default:	False)	

--km	 kmeans	clustering.	(default:	False)	

--cut	 cut	tree	at	height.	Goes	with	--hc	(default	value	1.5)	

--clusters	 number	of	clusters.	Goes	with	--km	(default	value	10)	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	

Allowed	values	between	0-1	(default	value	0.95)	
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--sameAb	 used	 when	 all	 datasets	 are	 generated	 against	 same	

antibody	(default:	False)	

--smooth	 smooth	profiles.	(default:	False)	

--strand	 use	strand	information.	(default:	False)	

-r,	--random	 generate	and	analyze	random	regions	(default:	False)	

--color	 color	 of	 heatmap	 for	 correlation	 plots	 (default	 Blues).	

Allowed	 values:['Blues',	 'BuGn',	 'BuPu',	 'GnBu',	 'Greens',	

'Greys',	 'Oranges',	 'OrRd',	 'PuBu',	 'PuBuGn',	 'PuRd',	

'Purples',	 'RdPu',	 'Reds',	 'YlGn',	 'YlGnBu',	 'YlOrBr',	

'YlOrRd']	

-o,	--output	 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	

• <roi	 filename>_<hm/hc/km>.png	 heatmap	 showing	 normalized	 intensities	 of	

different	 datasets	 (--taf)	 in	 each	 individual	 ROI.	 File	 with	 suffix	 hm	 is	

generated	 when	 no	 clustering	 is	 turned	 on.	 Similarly	 file	 with	 suffix	 hc/km	

refers	to	the	analysis	subjected	to	either	hierarchical	or	kmeans	clustering,	

• <roi	 filename>.txt	 matrix	 file	 quantifying	 different	 datasets	 (taf)	 in	 each	

individual	ROI.	

• <taf	filename>.pdf	profile	of	target	dataset	over	all	sets	of	ROI.	

• <taf	 filename>_Smooth.pdf	 same	as	above	but	 the	profile	 is	smoothed.	This	 is	

generated	on	turning	on	–-smooth	option.	
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• All_<hm/hc/km>.png	this	file	is	generated	only	when	the	number	of	sets	of	ROI	

is	more	than	1,	in	that	case	this	file	contains	combined	heatmap	view	of	all	sets	

of	ROI.	

• Composite_hm.png	composite	heatmap	of	all	datasets	over	all	ROI.	

• <roi	 filename>_<hc/km>_cluster_<cluster	 number>_<color	 represented	 in	

heatmap>.txt	 these	 file(s)	 are	 generated	 only	 when	 either	

(hierarchical/kmeans)	 clustering	 options	 is	 turned	 on.	 Depending	 on	

clustering	options	this	file	will	contain	list	of	ROI	being	part	of	that	particular	

selection.	

<roi	 filename>_expDist_<hc/km>.pdf	 this	 boxplot	 file	 is	 generated	 when	 clustering		

option	is	turned	on	and	expression	data	is	provided	for	the	analysis.	This	represents	

distribution	of	target	genes	expression	among	different	clusters.	

3.1.13.7. PMS	

Program	to	profile	chip-seq	datasets	over	different	sets	of	ROI.	

Command	line	usage	

usage:	python	PMS.py	[options]	--midpoint/--complete	roi	taf	

Mandatory	arguments:	

Roi	 directory	 with	 single/multiple	 files	 with	 regions	 of	

interest	to	be	analyzed	(bed	file	format).	

taf		 directory	with	target	aligned	files	(bam	file	format).	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit.	

--caf	 directory	with	control	aligned	files	(bam	file	format).	
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--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	

corresponding	target	aligned	file	(bam	file	format)	

-g,	--genome	 genome	file.	

--midpoint	 compute	analysis	from	the	midpoint	of	region	of	interest	

(default:	False)	

--complete	 compute	 analysis	 over	 complete	 region	 of	 interest	

(default:	False).	

--strand	 use	strand	information	(default:	False).	

--smooth	 apply	smoothing	to	profiles	(default:	False).	

--scale	 apply	scaling	(default:	False).	

--sameAb	 used	 when	 all	 datasets	 are	 generated	 against	 same	

antibody.	Goes	with	--scale	option	(default:	False).	

-r,	--random	 generate	and	analyze	random	regions	(default:	False).	

--extension	 number	 of	 base	 pair	 to	 be	 extended	 from	 center.	 Goes	

with	--midpoint	option.	(default	2500bp)	

--binSize	 bin	Size.	Goes	with	--midpoint	option.	(default	50bp)	

--bins	 number	of	bins.	Goes	with	--complete	option.	(default	20)	

--type	 profiling	 type	 (default	 mean).	 Allowed	 values:	

mean/median	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	

Allowed	values	between	0-1	(default	value	1)	

-o,	--output	 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	
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• Profile.pdf	profile	of	target	datasets	(taf)	over	all	sets	of	ROI.	

• Profile_Smooth.pdf	 same	 as	 above	 but	 the	 profile	 is	 smoothed.	 This	 is	

generated	on	turning	on	–smooth	option.	

• Profile_CI.pdf	profile	of	target	datasets	(taf)	wilth	confidence	intervals	over	all	

sets	of	ROI	(--roi).	

• scaledProfile.pdf	scaled	profile	of	target	datasets	(taf)	over	all	sets	of	ROI.	

• scaledProfile_Smooth.pdf	 same	 as	 above	 but	 the	 profile	 is	 smoothed.	 This	 is	

generated	on	turning	on	–smooth	option.	

3.1.13.8. TDIFF	

Program	to	identify	differentially	enriched	regions	between	two	datasets	

Command	line	usage	

usage:	python	TDIFF.py	[options]	roi	taf1	taf2	

Mandatory	arguments:	

Roi	 file	with	 list	 of	 Regions	Of	 Interest	 to	 be	 analyzed	 (bed	

file	format)	

taf1	 target	aligned	file	1	(bam	file	format).	

taf2	 target	aligned	file	2	(bam	file	format).	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit.	

--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	

corresponding	target	aligned	file	(bam	file	format)	

--fc	 fold	change	cutoff	.	(default	4)	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	
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Allowed	values	between	0-1	(default	value	0.99)	

--sig	 level	of	signficance.	(default	0.05)	

--expression	 expression	file	(bed	file	format)	

--discard	 discard	lower	distribution	of	data.	(default	0.10)	

-o,	--output	 output	directory	(default:	Current	Directory)	

	

Output	

This	program	generates	following	output	files:	

• Results.txt	 file	 containing	 list	 of	 all	 ROI	 along	 with	 their	 intensities	 in	 two	

different	datasets,	fold	change,	p-value	and	bonferroni	corrected	p-values.	

• DiffEnhRegions_pValue_Up.txt	file	containing	list	of	ROI,	which	are	significantly	

enriched	in	taf1	as	compared	to	that	of	taf2	with	their	level	of	significance	less	

than	--sig.		

• DiffEnhRegions_pValue_Down.txt	 file	 containing	 list	 of	 ROI,	 which	 are	

significantly	 enriched	 in	 taf2	 as	 compared	 to	 that	 of	 taf1	with	 their	 level	 of	

significance	less	than	--sig.	

• VolcanoPlot_pValue.png	plot	representing	all	significantly	enriched	ROI	on	the	

basis	of	p-value	in	taf1	and	taf2	on	right	and	left	side	in	cyan	color.	

• DiffEnhRegions_qValue_Up.txt	file	containing	list	of	ROI,	which	are	significantly	

enriched	in	taf1	as	compared	to	that	of	taf2	with	qValue	is	less	than	--sig.	

• DiffEnhRegions_qValue_Down.txt	 file	 containing	 list	 of	 ROI,	 which	 are	

significantly	 enriched	 in	 taf2	 as	 compared	 to	 that	 of	 taf1	with	qValue	 is	 less	

than	--sig.	

• VolcanoPlot_qValue.png	plot	representing	all	significantly	enriched	ROI	on	the	

basis	of	q-value	in	taf1	and	taf2	on	right	and	left	side	in	cyan	color.	
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• expDist_DiffEnhRegions_pValue_Up.pdf	 boxplot	 representing	 distribution	 of	

expression	in	taf1	and	taf2	datasets	of	target	regions	significantly	enriched	in	

taf1	 dataset	 on	 the	 basis	 of	 p-value.	 This	 file	 is	 only	 generated	 on	providing	

expression	data	using	--expression.	

• expDist_DiffEnhRegions_pValue_Down.pdf	 boxplot	 representing	 distribution	 of	

expression	in	taf1	and	taf2	datasets	of	target	regions	significantly	enriched	in	

taf2	 dataset	 on	 the	 basis	 of	 p-value.	 This	 file	 is	 only	 generated	 on	providing	

expression	data	using	--expression.	

• expDist_DiffEnhRegions_qValue_Up.pdf	 boxplot	 representing	 distribution	 of	

expression	in	taf1	and	taf2	datasets	of	target	regions	significantly	enriched	in	

taf1	 dataset	 on	 the	 basis	 of	 q-value.	 This	 file	 is	 only	 generated	 on	providing	

expression	data	using	--expression.	

• expDist_DiffEnhRegions_qValue_Down.pdf	 boxplot	 representing	 distribution	 of	

expression	in	taf1	and	taf2	datasets	of	target	regions	significantly	enriched	in	

taf2	 dataset	 on	 the	 basis	 of	 q-value.	 This	 file	 is	 only	 generated	 on	providing	

expression	data	using	--expression.	

3.1.13.9. MDIFF	

Program	to	identify	differentially	enriched	regions	between	multiple	datasets	

Command	line	usage	

usage:	python	MDIFF.py	[options]	roi	taf	

Mandatory	arguments:	

Roi	 file	with	list	of	regions	of	interest	to	be	analyzed	(bed	file	

format)	
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Taf	 directory	 with	 target	 aligned	 files	 with	 replicates	 (bam	

file	format).	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit.	

--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	

corresponding	target	aligned	file	(bam	file	format)	

--expression	 expression	file	(bed	file	format)	

--hc	 hierarchical	clustering.	(default:	False)	

--km	 kmeans	clustering.	(default:	False)	

--cut	 cut	tree	at	height.	Goes	with	--hc	(default	value	1.5).	

--clusters	 number	of	clusters.	Goes	with	--km	(default	value	10).	

--color	 Heatmap	 color	 (default	 Blues).	 Allowed	 values:['Blues',	

'BuGn',	'BuPu',	'GnBu',	'Greens',	'Greys',	'Oranges',	'OrRd',	

'PuBu',	 'PuBuGn',	 'PuRd',	 'Purples',	 'RdPu',	 'Reds',	 'YlGn',	

'YlGnBu',	'YlOrBr',	'YlOrRd'].	

--discard	 discard	lower	distribution	of	data.	(default	0.10)	

-p	 level	of	signficance.	(default	0.05)	

-o,	--output	 output	directory	(default:	Current	Directory)	

--test	 statistical	 test	 to	 be	 used	 for	 analysis.	 Allowed	 values:	

Kruskal-Wallis/ANOVA	(default:	Kruskal-Wallis)	

	

Output	

This	program	generates	following	output	files:	

• Results.txt	file	containing	list	of	all	ROI	along	with	their	intensities	in	different	

datasets,	p-value	and	bonferroni	corrected	p-values.	
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• zscore.txt	file	containing	intensities	transformed	zscore	for	all	list	of	ROI.	

• pValueBased_Diff_<hm/hc/km>.png	 heatmap	 showing	 intensities	 transformed	

z-score	for	all	differentially	regulated	regions	filtered	on	the	basis	of	p-value.	

File	with	suffix	hm	is	generated	when	no	clustering	is	turned	on.	Similarly	file	

with	 suffix	 hc/km	 refers	 to	 the	 analysis	 subjected	 to	 either	 hierarchical	 or	

kmeans	clustering.	

• qValueBased_Diff_<hm/hc/km>.png	 heatmap	 showing	 intensities	 transformed	

z-score	for	all	differentially	regulated	regions	filtered	on	the	basis	of	q-value.	

File	with	suffix	hm	is	generated	when	no	clustering	is	turned	on.	Similarly	file	

with	 suffix	 hc/km	 refers	 to	 the	 analysis	 subjected	 to	 either	 hierarchical	 or	

kmeans	clustering.	

• pValueBased_Diff_<hm/hc/km>_cluster_<cluster	number>_<color	represented	in	

heatmap>.txt	 these	 file(s)	 containing	 list	 of	 differentially	 regulated	 ROI	 on	

basis	 of	 p-value	 are	 generated	 only	 when	 either	 (hierarchical/kmeans)	

clustering	options	 is	 turned	on.	Depending	on	clustering	options	this	 file	will	

contain	list	of	ROI	being	part	of	that	particular	selection.	

• qValueBased_Diff_<hm/hc/km>_cluster_<cluster	number>_<color	represented	 in	

heatmap>.txt	 these	 file(s)	 containing	 list	 of	 differentially	 regulated	 ROI	 on	

basis	 of	 q-value	 are	 generated	 only	 when	 either	 (hierarchical/kmeans)	

clustering	options	 is	 turned	on.	Depending	on	clustering	options	this	 file	will	

contain	list	of	ROI	being	part	of	that	particular	selection.	

• pValueBased_Diff_<hc/km>_cluster_<cluster	 number>_<color	 represented	 in	

heatmap>_expDist.pdf	this	boxplot	file	is	generated	when	clustering		option	is	

turned	 on	 and	 expression	 data	 is	 provided	 for	 the	 analysis.	 This	 represents	

distribution	of	target	genes	expression	among	different	datasets	(taf).	
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3.1.13.10. 	ABRI	

Program	to	predict	probabilistic	dependencies	between	different	datasets	(in	bed	file	

format)	

Command	line	usage	

usage:	python	ABRI.py	[options]	roi	datasets	

Mandatory	arguments:	

roi		 file	with	list	of	Regions	Of	Interest	to	be	analyzed	(bed	file	format)	

datasets							 directory	 with	 single/multiple	 files	 with	 regions	 of	 interest	 to	 be	

analyzed	(bed	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

--cgw		 perform	genome	wide	analysis.	Provide	genome	file	using	–g	

-g	,	--genome		 genome	file	

--bs	 bin	Size.	(default	500bp)	

--stringency	 stringency	for	overlap	

--cutoff	 cutoff	for	overlap	(default	10	percent)	

--boots		 number	of	bootstraps.	(default	100)	

--size		 datasize	for	each	bootstrap.	(default	0.90)	

--strength		 consider	edges	which	occur	in	all	networks	(default	0.80)	

-w	,	--white	 white	list	

-b	,	--black					 black	list	

--algo											

	

learning	 algorithms	 (default	 Grow-Shrink).	 Allowed	 values:	 Hill-

Climbing,	 Grow-Shrink,	 Incremental_Association,	

Fast_Incremental_Association,	Interleaved_Incremental_Association	
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-o	,	--output				 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	

• data.txt	file	containing	information	of	presence	or	absence	of	different	sets	of	

annotated	regions	in	each	individual	ROI.	

• arc_strength_direction.txt	 file	 containing	 list	 of	 edges	 between	 two	 datasets	

along	with	its	their	strength	and	direction.	

• Network.pdf	 file	 representing	 connectivity	 between	 different	 datasets	 with	

their	strength	fulfilled.	

3.1.13.11. ABD	

Program	to	predict	probabilistic	dependencies	between	different	datasets	(in	aligned	

bam	format)	

Command	line	usage	

usage:	python	ABD.py	[options]	genome	datasets	

Mandatory	arguments:	

roi	 file	with	list	of	Regions	Of	Interest	to	be	analyzed	(bed	file	format)	

taf	 directory	with	target	aligned	files	(bam	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

--caf	 directory	with	control	aligned	files	(bam	file	format)	

--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	 corresponding	 dataset	

(bam	file	format)	



	110	

-g,	--genome	 genome	file	

--cgw		 perform	genome	wide	analysis.	Provide	genome	file	using	–g	

--bs	 bin	Size.	(default	500bp)	

--boots		 number	of	bootstraps.	(default	100)	

--size		 datasize	for	each	bootstrap.	(default	0.90)	

--strength		 consider	edges	which	occur	in	all	networks	(default	0.80)	

-w	,	--white	 white	list	

-b	,	--black					 black	list	

--algo											

	

Learning	 algorithms	 (default	 Grow-Shrink).	 Allowed	 values:	 Hill-

Climbing,	 Grow-Shrink,	 Incremental_Association,	

Fast_Incremental_Association,	Interleaved_Incremental_Association	

-o	,	--output				 output	directory	(default:	execution	directory)	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	 Allowed	 values	

between	0-1	(default	value	0.99)	

	

Output	

This	program	generates	following	output	files:	

• Profile.txt	matrix	file	quantifying	different	datasets	(taf)	in	each	individual	ROI.	

• arc_strength_direction.txt	 file	 containing	 list	 of	 edges	 between	 two	 datasets	

along	with	its	their	strength	and	direction.	

• Network.pdf	 file	 representing	 connectivity	 between	 different	 datasets	 with	

their	strength	fulfilled.	
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3.1.13.12. 	VarSEL	

Program	to	filter	meaningful	datasets	best	describing	two	sets	of	ROI.	

Command	line	usage	

usage:	python	VarSEL.py	[options]	genome	class1	class2	taf	

Mandatory	arguments:	

genome	 genome	file	

class1	 class	1	regions	of	interest	(bed	file	format)	

class2	 class	2	regions	of	interest	(bed	file	format)	

taf	 directory	with	target	aligned	files	(bam	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

--caf	 directory	with	control	aligned	files	(bam	file	format)	

--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	 corresponding	 dataset	

(bam	file	format)	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	 Allowed	 values	

between	0-1	(default	value	0.999)	

--method	 type	of	analysis	(default	CrossValidation).	Allowed	values:['Bootstrap',	

'CrossValidation']	

--number	 either	the	number	of	folds	or	number	of	resampling	iterations	

-o,	--output	 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	
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• Class1.txt	 matrix	 file	 quantifying	 different	 datasets	 (taf)	 in	 each	 individual	

class1	ROI.	

• Class2.txt	 matrix	 file	 quantifying	 different	 datasets	 (taf)	 in	 each	 individual	

class2	ROI.	

• Predictors.txt	 file	 containing	 list	 of	 shortlisted	 datasets	 capable	 of	 explaining	

two	sets	of	ROI.	

• Stats.txt	file	containing	other	statistics.	

• Score.pdf	plot	representing	score	on	considering	different	size	of	datasets.		

3.1.13.13. 	CLASS	

Program	 to	 generate	 and	 apply	 classification	 model	 set	 of	 ROI	 on	 the	 basis	 of	

provided	datasets.	

Command	line	usage	

usage:	python	CLASS.py	[options]	genome	class1	class2	taf	

Mandatory	arguments:	

genome	 genome	file	

class1	 class	1	regions	of	interest	(bed	file	format)	

class2	 class	2	regions	of	interest	(bed	file	format)	

taf	 directory	with	target	aligned	files	(bam	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

--caf	 directory	with	control	aligned	files	(bam	file	format)	

--spikein	 directory	 with	 spikein	 aligned	 files	 for	 each	 corresponding	 dataset	

(bam	file	format)	
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--test	 test	regions	of	interest	to	be	classified	(bed	file	format)	

--sigma	 sigma.	(default	value	1)	

--cost	 cost	of	constriant	violation.	(default	value	100)	

--kcross	 k-means	cross	validation.	(default	value	10)	

--kernal	 type	 of	 kernal	 to	 be	 used	 for	 classification	 (default	 Linear).	 Allowed	

values:['Radial_Basis',	'Linear',		'Laplacian']	

--ctype	 classification	 type	 (default	 C	 classification	 ).	 Allowed	 values:['C	

classification',	'nu	classification']	

--type	 type	of	analysis	(default	Train).	Allowed	values:['Train',	'TrainPredict']	

--method	 classification	 method	 (default	 Support_Vector_Machine).	 Allowed	

values:['Support_Vector_Machine']	

--qn	 set	 values	 greater	 than	 quantile(x)	 to	 quantile(x).	 Allowed	 values	

between	0-1	(default	value	0.999)	

-o,	--output	 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	

• Class1.txt	 matrix	 file	 quantifying	 different	 datasets	 (taf)	 in	 each	 individual	

class1	ROI.	

• Class2.txt	 matrix	 file	 quantifying	 different	 datasets	 (taf)	 in	 each	 individual	

class2	ROI.	

• ROC.pdf	file	depicting	area	under	ROC.	
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3.1.13.14. MatHM	

Program	to	generate	heatmap.	

Command	line	usage	

usage:	python	VarSEL.py	[options]	genome	class1	class2	taf	

Mandatory	arguments:	

dmf	 directory	with	matrix	file(s)	with	.txt	extension	

nsamples	 number	of	samples	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

-e,	--expression	 expression	file	(bed	file	format).	This	option	should	be	supported	with	

ROI	(bed	file	format	with	.bed	extension)	for	each	matrix	file	with	same	

filename.	

--hc	 hierarchical	clustering.	(default:	False)	

--km	 kmeans	clustering.	(default:	False)	

--cut	 cut	tree	at	height.	Goes	with	--hc	(default	value	1.5)	

--clusters	 number	of	clusters.	Goes	with	--km	(default	value	10)	

--qn	 set	 values	 greater	 than	 quantile	 x	 to	 x.	 Allowed	 values	 between	 0-1	

(default	value	0.99)	

--sortd	 sort	on	the	basis	of	intensities	of	dataset	(default	value	0).	

--rownames	 data	contains	row	names	(default:	False)	

--colnames	 data	contains	coloumn	names	(default:	False)	

--zscore	 transform	data	to	z-score	(default:	False)	

--gs	 global	sample	scaling	(default:	False)	

--ss	 individual	sample	scaling	(default:	False)	
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--color	 heatmap	color	 (default	Blues).	Allowed	values:['Blues',	 'BuGn',	 'BuPu',	

'GnBu',	 'Greens',	 'Greys',	 'Oranges',	 'OrRd',	 'PuBu',	 'PuBuGn',	 'PuRd',	

'Purples',	 'RdPu',	 'Reds',	 'YlGn',	 'YlGnBu',	 'YlOrBr',	 'YlOrRd',	 'BrBG',	

'PiYG',	'PRGn',	'PuOr',	'RdBu',	'RdGy',	'RdYlBu',	'RdYlGn',	'Spectral']	

-o,	--output	 output	directory	(default:	execution	directory)	

--height	 image	height	(default:	7)	

--width	 image	width	(default:	7)	

--res	 image	resolution	(default:	300)	

	

Output	

This	program	generates	following	output	files:	

• <dmf	 filename>_<hm/hc/km>.png	 heatmap	 showing	 intensities	 of	 different	

datasets	 in	each	 individual	matrix	 file	(dmf).	File	with	suffix	hm	is	generated	

when	no	clustering	is	turned	on.	Similarly	file	with	suffix	hc/km	refers	to	the	

analysis	subjected	to	either	hierarchical	or	kmeans	clustering.	

• <dmf	 filename>_<hc/km>_cluster_<cluster	 number>_<color	 represented	 in	

heatmap>.txt	 these	 file(s)	 are	 generated	 only	 when	 either	

(hierarchical/kmeans)	 clustering	 options	 is	 turned	 on.	 Depending	 on	

clustering	 options	 this	 file	 will	 contain	 list	 of	 records	 being	 part	 of	 that	

particular	selection.	

• <dmf	 filename>_expDist_<hc/km>.pdf	 this	 boxplot	 file	 is	 generated	 when	

clustering		option	is	turned	on	and	expression	data	is	provided	for	the	analysis.	

This	 represents	 distribution	 of	 target	 genes	 expression	 among	 different	

clusters.	
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3.1.13.15. ExtBAM	
	

Program	for	extending	aligned	reads	

Command	line	usage	

usage:	python	ExtBAM.py	[options]	taf	

Mandatory	arguments:	

taf	 directory	with	aligned	files	(bam	file	format)	

Optional	arguments:	

-h,	--help	 show	this	help	message	and	exit	

--extend	 number	of	base	pairs	by	which	each	should	be	extended.	(default	value	

200bp).	

-o,	--output	 output	directory	(default:	execution	directory)	

	

Output	

This	program	generates	following	output	files:	

• <taf	filename>_ext.bam	extended	aligned	reads	in	bam	file.	

3.2. Data	Analysis	for	characterizing	polycomb	dependent	methylation	

forms	

3.2.1. ChIP	sequencing	data	analysis.	

Sequencing	data	generated	from	the	Illumina	platforms	related	to	the	second	project	

described,	 were	 aligned	 to	 mouse	 reference	 genome	 (mm9)	 using	 Bowtie	 version	

0.12.7	(Langmead	et	al.,	2009).	Only	reads	with	unique	alignment	were	retained	for	

downstream	 analysis.	 Peak	 calling	 and	 bigWig	 files	 were	 generated	 using	 MACS	

version	1.4	(Zhang	et	al.,	2008).	Only	peaks	with	10x-Log	p-value	≥70	are	considered	
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for	 further	 processing.	 bigWig	 files	 were	 visualized	 using	 the	 UCSC	 browser	

(http://genome.ucsc.edu).	 The	 list	 of	 mm9	 annotated	 RefSeq	 genes	 used	 for	 the	

different	analysis	was	downloaded	from	the	UCSC	database.	Intragenic	reads	density	

for	 histone	 H3,	 H3K27me1,	 H3K27me2	 and	 H3K36me3	 were	 determined	 by	

computing	 the	 aligned	 reads	 within	 each	 RefSeq	 genes	 normalized	 for	 sequencing	

depth.	 PTM	 enrichments	 relative	 to	 histone	 H3	 density	 were	 determined	 for	 each	

gene	 as	 the	 –Log10p-value	 computed	 using	 a	 chi-square	 test	 (PTM	 vs.	 H3)	 and	

adjusted	using	Bonferroni	correction.	The	corrected	p-values	between	different	PTMs	

were	 compared	 using	 Pearson	 correlation	 test.	 Genome	 wide	 correlation	 among	

H3K27me1,	 H3K27me2	 and	 H3K36me3	 modifications	 with	 the	 read	 intensities	 in	

gene	 bodies	 was	 computed	 using	 PCA	 method	 in	 R	 factorMineR	

(http://factominer.free.fr/)	package.	TSS	vs.	non-TSS	location	of	H3K27ac	peaks	was	

determined	by	overlapping	H3K27ac	peaks	with	 a	5	 kb	 region	 centered	on	TSS	 for	

each	mm9	RefSeq	annotated	gene	

Each	 H3K27ac	 KO	 distal	 peak	was	 assigned	 to	 the	 closest	 TSS	 RefSeq	 gene.	 These	

genes	were	then	classified	accordingly	to	their	expression	levels	between	WT	and	Eed	

KO	and	classified	as	up	regulated	 (FC	>	1.5)	or	down-regulated	 (FC	<	 -1.5).	For	 the	

genes	belonging	to	each	class	as	well	as	in	the	entire	RNA-seq	dataset,	we	determined	

if	the	observed	frequencies	of	up-regulated	and	down-regulated	genes	under	putative	

control	 of	 the	 H3K27ac	 distal	 peaks	 were	 significantly	 different	 respect	 to	 the	

expected	 frequencies	 determined	 by	 analyzing	 the	 whole	 RNA-seq	 dataset.	

Accordingly,	 we	 determined	 the	 relative	 distance	 of	 each	 H3K27ac	 distal	 peak	

identified	in	either	WT	or	Eed	KO	samples	respect	to	the	closest	up-regulated	gene	in	

Eed	KO	ES	cells.	
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Active	 enhancers	 were	 classified	 on	 the	 basis	 of	 presence	 of	 both	 H3K27ac	 and	

H3K4me1	 peaks,	 the	 absence	 of	 H3K4me3	 and	 a	 minimal	 distance	 of	 2.5Kb	 from	

annotated	TSSs.	Poised	enhancers	were	defined	by	the	absence	of	H3K27ac	using	the	

same	 criteria.	 The	 relative	 intensities	 of	 all	 the	 indicated	 histone	 marks	 were	

determined	 at	H3K27me3	positive	 promoters,	 at	 poised	 and	 at	 active	 enhancers	 in	

mESC.	

3.2.2. RNA	sequencing	data	analysis.	

RNA-seq	data	 generated	 for	ES	WT,	ES	Eed	 KO,	Ebs	WT,	Ebs	Eed	 KO	 samples	were	

aligned	 to	 mouse	 reference	 genome	 using	 TopHat	 (Trapnell	 et	 al.,	 2009).	

Differentially	 expressed	 genes	 were	 identified	 with	 cuffdiff	 (Trapnell	 et	 al.,	 2010).	

Microarray	 raw	 data	 were	 retrieved	 from	 the	 Gene	 Omnibus	 Database	

(http://www.ncbi.nlm.nih.gov/geo/)	 at	 the	 accession	 number	 GSE19076	 and	 were	

processed	using	affy	(Gautier	et	al.,	2004)	package	in	R.		
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Chapter	4	-	DISCUSSION		

4.1.	ChIP_QC	

The	 fast	 development	 of	 NGS	 technologies	 has	 radically	 changed	 the	 experimental	

approaches	 in	“wet	 labs”	 leading	to	the	generation	of	a	surplus	of	high	quality	data,	

which	are	also	available	as	public	resources.	Due	to	this	increasing	availability	of	data	

both	 in	 terms	 of	 size	 and	 complexity,	 we	 need	 a	 platform	with	 efficient	 analytical	

methods.	Aiming	this,	we	designed	ChIP_QC	and	showed	with	what	flexibility	it	can	be	

applied	for	different	epigenomic	studies.	This	development	is	an	attempt	to	open	new	

window	for	high	throughput	data	analysis,	where	we	provide	platform	with	methods,	

which	are	at	most	helpful	 for	genome	wide	studies.	The	uniqueness	of	 the	program	

lies	 in	 handling	 and	 analyzing	 the	 changes	 within	 and/or	 across	 multiple	 samples	

against	different	datasets	and	their	 flexible	 linkage	to	expression	data.	Each	module	

of	the	program	generates	all	necessary	results,	different	plots	of	good	resolution	and	

many	 other	 supplementary	 files.	 Supplementary	 files	 can	 be	 helpful	 for	 further	

downstream	analysis,	which	 can	be	used	 as	 input	 to	 other	modules	 of	 the	ChIP_QC	

program,	 thus	 increasing	 its	 flexibility	 without	 any	 major	 computational	 skills.	

Depending	on	the	module,	the	program	offers	some	additional	features	for	enhancing	

the	 results.	 This	 includes,	 option	 for	 smoothing	 the	 data,	 making	 use	 of	 strand	

information	 for	 analysis,	 plotting	 confidence	 intervals,	 selecting	 color	 for	 heatmaps	

etc.	 Data	 are	 kept	 in	 a	 format	 that	 allows	 its	 usage	 by	 a	wide	 range	 of	 users.	 This	

program	comes	with	both	graphical	and	command	line	utility	allowing	its	usage	by	all	

type	 of	 users	 mainly	 experimental	 biologists	 with	 very	 minimal	 computational	

background.	It	can	be	executed	in	both	Mac	and	Linux	operating	systems.		
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Taking	advantage	of	publicly	available	human	ENCODE	(Consortium,	2012)	datasets	

and	analyzing	them	using	ChIP_QC,	we	have	cross-verified	some	known	observations	

to	show	the	power	and	accuracy	of	ChIP_QC	and	at	the	same	time	we	have	generated	

some	novel	 findings	such	as	 the	preferential	association	of	 the	Bcl11a	 transcription	

factor	 at	 active	 enhancers	 with	 respect	 to	 that	 of	 promoters	 and	 the	 association	

between	Suz12	and	Ctbp2	 in	chromatin	compact	regions	of	human	embryonic	stem	

cells.	

We	have	specifically	chosen	to	restrict	the	program	on	tertiary	analysis.	We	tried	to	

avoid	redundancy	of	running	alignment,	peaking	calling	and	others.	These	steps	are	

now	 very	 much	 standardized	 and	 many	 pipelines	 have	 been	 well	 established	 for	

doing	 such	 tasks.	 Apart	 from	 this	 many	 sequencing	 facilities	 by	 default	 provide	

support	 for	 both	 primary	 and	 secondary	 analysis.	 Most	 crucial	 step	 is	 to	 handle	

further	downstream	analysis	on	the	basis	of	experimental	design.	Except	very	few,	we	

didn’t	see	many	programs,	which	are	capable	for	performing	comprehensive	genome	

wide	 analysis	 with	 multiple	 datasets	 as	 this	 program	 does.	 For	 instance,	 both	

HOMER’s	(Heinz	et	al.,	2010)	ChIP-seq	functions,	seqMINER	(Ye	et	al.,	2011)	perform	

quantifications	within	ROI,	but	doesn’t	support	multiple	class	of	ROI,	performs	only	

kmeans	clustering,	lacks	facility	to	link	results	with	expression	data.	Apart	from	such	

advantages,	 this	 program	 is	 first	 of	 its	 kind,	which	 provides	much	wider	 scope	 for	

performing	genome	wide	analysis	with	new	approaches.	Table3	 list	out	advantages	

and	disadvantages	of	ChIP_QC	in	comparison	with	other	GUI	and	command	line	based	

applications.	Here	we	 compared	ChIP_QC	with	 seqMINER	 (Ye	 et	 al.,	 2011),	HOMER	

(Heinz	et	al.,	2010),	ChIPSeeqer	(Giannopoulou	and	Elemento,	2011),	CIstrome	(Liu	et	

al.,	2011),	macs2	bdgdiff	(https://github.com/taoliu/MACS)	and	diffReps	(Shen	et	al.,	

2013).	In	this	version	of	ChIP_QC,	we	aimed	at	analyzing	datasets	generated	through	
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ChIP-seq	or	 related	approach,	RNA-seq	and	annotated	datasets.	 In	coming	versions,	

we	want	to	 integrate	other	statistical	methods	for	analysis	 like	 incorporating	limma	

for	 differential	 analysis,	 support	 other	 classification	 methods	 and	 extend	 its	

capabilities	to	integrate	and	support	methylation	and	nucleosome-based	studies.		

	

	

	

 
	

	

	

	

	

	

	

	

	

	

	

Table3:	Comparison	of	features	of	ChIP_QC	with	other	GUI	and	command	line	tools	
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4.2.	 Polycomb	 dependent	 H3K27me1	 and	 H3K27me2	 regulate	 active	
transcription	and	enhancer	fidelity.	

	

On	 the	 basis	 MS	 data	 we	 showed	 here	 that	 most	 abundant	 PTM	 on	 H3K27	 is	

methylation	accounting	for	80%	of	total	histone	and	all	three	forms	of	methylations	

are	PRC2	dependent.	In	our	study	we	used	genome	wide	approaches	and	showed	that	

all	 three	 forms	of	methylation	 accumulate	 in	mutual	 exclusive	manner	 through	out	

the	 genome.	 	Monomethylation	 is	 enriched	 in	 intragenic	 regions	 and	 this	 behavior	

seems	to	be	conserved	in	other	species,	this	was	already	reported	in	correlation	with	

human	CD4+	T	cells	(Barski	et	al.,	2007).	Reduced	expression	of	H3K27me1	enriched	

genes	 in	 PRC2	 deficient	mESC,	 and	 its	 strong	 positive	 correlation	with	H3K36me3,	

strongly	 suggests	 importance	 of	 PRC2	 activity	 for	 proper	 expression.	 Various	

mechanisms	 underlying	 this	 correlation	 can	 be	 envisaged.	 For	 instance,	 both	

H3K27me1	 and	 H3K36me3	modifications	 deposited	 in	 intragenic	 regions	 of	 active	

genes	could	lead	to	nucleosome	mobility,	or	H3K27me1	could	be	involved	in	the	RNA	

splicing-dependent	 recruitment	 of	 Setd2	 (de	Almeida	 et	 al.,	 2011),	 thus	 acting	 as	 a	

permissive	modification	for	elongation	or	splicing,	while	H3K27me2	could	inhibit	this	

process.	

We	also	show	that	upon	 loss	of	PRC2	activity	 in	mESC	global	 levels	of	H3K27ac	are	

increased	suggesting	that	these	conditions	favor	histone	acetyltransferases	(HATs)	to	

access	 to	 chromatin.	 H3K27ac	 is	 regarded	 as	 a	 marker	 of	 active	 enhancer	 and	

discriminates	it	from	poised	enhancer	(Creyghton	et	al.,	2010a).	Thus,	in	our	work	we	

showed	 that	 loss	 of	 PRC2	 activity	 triggers	 activation	 of	 poised	 enhancers,	 possibly	

through	 greater	 accessibility	 of	 chromatin	 to	 HATs;	 this	 makes	 possible	 reasoning	

that	the	broad	unspecific	deposition	of	H3K27me2	protects	H3K27	from	HAT	activity.	

This	 logic	 is	 supported	 by	 the	 rapid	 accumulation	 of	 H3K27me2	 at	 sites	 that	 lose	
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H3K27ac	upon	inhibition	of	global	HAT	activity.	We	also	observed	that,	60%	of	newly	

marked	 H3K27ac	 occurs	 at	 regions	 that	 were	 already	 marked	 by	 H3K4me1,	

suggesting	 a	 possible	 link	 between	 HATs	 recruitment	 and	 H3K4me1.	 Aberrantly	

activated	 enhancers	 upon	 PRC2	 loss	 could	 contribute	 to	 the	 several	 defects	 in	

development	and	 lineage	specification.	 In	general	Figure	4.2	summarizes	 the	model	

that	we	propose.	

	

From	our	 results	 further	questions	 about	 the	 roles	of	methylation	 forms	of	H3K27,	

and	 mechanisms	 underlying	 their	 deposition	 arise.	 As	 mentioned	 above	 about	 the	

	

Fig.	4.2.	Our	proposed	model	on	different	functionalities	of	PRC2	dependent	methylation	forms.		



	124	

conserved	phenomena	of	H3K27me1	enrichment	at	intragenic	regions	of	transcribed	

genes	seems;	it	would	also	be	interesting	to	know	if	this	mutual	exclusivity	between	

different	 forms	 of	 methylation	 is	 maintained	 in	 other	 cellular	 models,	 terminal	

differentiated	cells,	and	see	if	there	are	any	differences	in	cancer	cells	too.		
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