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Abstract

Average cardiac acceleration (AC) and deceleration
(DC) capacity, as computed by Phase-Rectified Signal Av-
eraging (PRSA), were introduced to detect quasi-periodic
oscillations in RR series. Calculation of AC and DC de-
pends on three parameters (T , L and s). The aim of the
study was to provide further insights on AC/DC and on the
appropriate selection of these parameters.

Numerical simulations were focused on: i) changing the
frequency of the oscillations detected by AC/DC; ii) test-
ing the difference between AC and DC on synthetic data
generated by AR models, fitted on real RR series; and iii)
the effect of different growing and decreasing trends (lack
of time-reversal symmetry).

When computed on series generated by AR models, AC
and DC were quantitatively equivalent, independently of
the power spectrum (p < 0.05). The parameter s, more
than T , affected the results, while values of L > s were
equivalent. In fact, s selected the oscillations to which
AC/DC resulted maximally sensitive. On the contrary,
sawtooth-like series, with different growth and decrease
rates, showed a marked difference between AC and DC.

AC and DC are not simply related to spectral contents.
Indeed, AC and DC are linked to the asymmetries between
the rates of growth and decrease of heart rate, and might
quantify differently underlying regulatory mechanisms.

1. Introduction

Phase-Rectified Signal Averaging (PRSA) is a method-
ology capable of extracting quasi-periodic oscillations
(i.e., many periodic patches, of which the average length
defines the coherence time of the quasi-periodicity) out
of noisy and non-stationary signals [1]. The aim of such
technique is to transform the signal into a much shorter se-
quence, i.e., the PRSA series, in which only the relevant
quasi-periodicities of the original series are present.
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Figure 1. Synthetic sawtooth-like signals (with different
time-constants), mimicking changes in RR series typical
of umbilical cord occlusion in fetal animal models.

When applied on cardiac beat-to-beat interval time se-
ries (RR), PRSA is used to quantify the average cardiac
acceleration (AC) and deceleration (DC) capacity of the
heart rate. In fact, phase de-synchronizations are common
in RR series, due to extrinsic noise (e.g., runs of misde-
tected beats and signal losses) or due to intrinsic phase-
resettings (e.g., ectopic beats). AC and DC have proven to
be predictors of risk in several clinical scenarios [2–5]. Of
note, Bauer et al. [2] showed that DC was a better predic-
tor of risk after myocardial infarction than left-ventricular
ejection fraction (LVEF) and standard deviation of normal-
to-normal intervals (SDNN).

A complete description of the procedure can be found in
[1]. Briefly, anchor points are identified within the series.
Each sample x[t] satisfying the condition

1

T

T−1

∑

i=0

x[t + i] >
1

T

T

∑

i=1

x[t − i] (1)

is included into the deceleration anchor points’ list. The
acceleration anchor points’ list is instead built by chang-
ing the direction of the inequality (1). Then, a window
of length 2L is aligned on each anchor point (from t − L
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Figure 2. Values of -AC and DC (panels d-f) for various combinations of the parameters T and s, on series generated from
the 2nd order AR model HAR(z) = 1 − 2ρ cos θz−1 + ρ2z−2, with ρ = 0.95. The poles’ phase θ (panel a) was varied, while
driving the model with a WGN of variance σ2

w = [1 − ρ6 + (ρ2 − ρ4)(1 − 4 cos2 θ)]/(1 + ρ2), such that the signals’ power
was fixed at σ2

y = 1. The power spectra of the series (panel b) and PRSA signals (panel c) were concentrated around the
frequency f = θ/(2πfs). However, the low-pass FIR filter of order T − 1, HT(z) = (zT − 1)/[TzT−1(z − 1)], applied in
eq. (1) before the selection of the anchors points, reduced the PRSA’s amplitude for frequencies close to its zeros. While not
acting directly on the PRSA, the filter reduces the likelihood that related samples will turn into anchor points. In panel (d)
and (e), the sign × marks the frequency to which AC/DC should be more sensitive, as predicted theoretically by 0.371fs/s
Hz (please note that in [1] the formula was derived for s = T ). Also, a ● sign locates the zeros of the high-pass FIR filter of
order 2s − 1, Hs(z) = (zs − 1)2/[2szs(z − 1)], imposed on PRSA by the Haar wavelet transform of eq. (2). Finally, the
symbol ∎, in panel (f), indicates the zeros of the low-pass filter HT(z)

to t + L − 1). The segments of signal x, located by each
window, are finally averaged obtaining the PRSA series.
Hence the PRSA calculation depends on two parameters:
T affects the selection of the anchor points and L defines
the length of the PRSA series. A wavelet transform (using
a Haar mother wavelet function) of the PRSA series, eval-
uated at scale s (a third free parameter) and location L+ 1,
is employed to derive the capacities:

DC (or AC) =
s

∑

i=1

PRSA(L + i)

2s
−

s−1

∑

i=0

PRSA(L − i)

2s
. (2)

Despite the proven capability of AC/DC on several clin-
ical scenarios, what they can really capture on RR series,
and what roles the parameters play, are still matter of in-
vestigation. For example, it is unclear to what extent AC
and DC are correlated with the autonomic nervous system
(ANS) modulations. Furthermore, the values of the param-

eters on which AC/DC are dependent have been typically
set to those that provided the best classification rate for the
specific application (e.g., T = 1 and s = 2 in [2]).

We performed an extensive set of numerical simulations
in order to provide insights about the meaning of AC/DC
and on the effects of the parameters. In particular, the
aims of the study were to: i) further clarify the influence of
the parameters T and s on AC/DC; ii) evaluate the inter-
correlation between AC and DC on synthetic series.

2. Methods

Three different sets of numerical simulations were pre-
pared. L = 40 was consistently employed in all of them.

First, the changes induced on AC/DC by different power
spectra were evaluated varying the phase of the poles of
a 2nd order autoregressive (AR) model, between 0 and π
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Figure 3. Values of -AC and DC for sawtooth-like signals for T = s, when varying the time-constants τ1 and τ2. For
display purposes, values were rescaled in the interval 0 (black) to 1 (white).

(step 0.01), while normalizing the variance of the signals
at 1 (the PRSA signal depends linearly on the variance of
the series). Average measures were determined on 30 re-
alizations of 3000 samples each. The hypothetical heart
rate was set to 150 bpm (fs = 2.5 Hz). Such analysis was
repeated for s between 1 to 20 and T = s or T = 1.

Synthetic signals, obtained from 2nd order AR models,
contained only a single periodic component. To have more
realistic series (in adult human heart rate at least 3 com-
ponents are present, typically labelled VLF, LF and HF),
93 AR models were fitted on 300 samples-long artifacts-
free RR series, one for each subject in the Physionet’s
nsr2db (healthy) and chf2db (congestive heart failure)
databases. Models’ orders were significantly larger than 2
(minimum model order was 8, fulfilling Akaike’s informa-
tion criterion and Anderson’s whiteness test). For each AR
model, average AC and DC values were determined on 30
synthetic series, varying s = T from 1 to 20. The power of
the signals was normalized to 1.

Sawtooth-like heart rate trends1 (e.g., fig. 1) were em-
ployed for the third set of simulations, to assess the im-
pact of time-reversal symmetry (or lack-of, as in asymmet-
ric trends, i.e., displaying different time-constants for the
growing and decreasing traits) on AC/DC. Trends y were

1Sawtooth-like RR series are common, for example, in sport medicine,
e.g., intervals training, or in fetal animal models, e.g., umbilical cord oc-
clusions (UCO). Within the context of UCO, the term u in equation 3
models the pressure signal occluding the umbilical cord and the series y
varies from 400 to 800 ms, which is typical for a sheep fetus.

generated solving the ordinary differential equation:

ẏ = −τ−12 y − (τ−11 − τ−12 )uy + u, (3)

where u is the external input (u = 1 determines the pres-
ence of the trend), and τ1 and τ2 are the time-constants
of the growing and decreasing traits, respectively. For the
simulations, τ1 was varied from 5 to 50 and τ2 from 1 to
10. Finally, white Gaussian noise was added to y (signal-
to-noise ratio: 25 db). Average values of AC/DC were
obtained from 30 realizations, using s = T .

3. Results

3.1. Varying location of AR models’ poles

First, the mean value of AC (or DC), for a given phase
of the poles of the 2nd order AR models, was more af-
fected by s than T (fig. 2d-f). Hence s played a major
role on selecting the frequency of the oscillations which
most influenced AC/DC. Changing T surely modified the
PRSA series by limiting its frequency content. However,
if PRSA is subsequently used to assess AC/DC, the band-
pass filtering effects imposed by eq. (2) are predominant
(fig. 2f) and changing T only affects frequencies in the
neighborhoods of the zeros of the low-pass filter applied
on both side of eq. (1). Second, no relevant differences
were detected between -AC and DC for any values of s and
T (fig. 2d and 2e). The latter findings were quantitatively

603



5 10 15 20

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

s (=T)

C
ap

ac
iti

es
 [a

.u
.] 

 

 
DC (healthy)
−AC (healthy)
DC (heart failure)
−AC (heart failure)

Figure 4. Mean (± standard deviation) -AC and DC values
for signals generated by two AR models fitted on a healthy
and heart failure subjects.

confirmed on higher order models, where the mean values
of -AC and DC were not statistically different within the
same AR model (t-test, p < 0.05). However, AC (and DC)
differed between models for a large range of s = T values
(see fig. 4 for an example).

3.2. Sawtooth-like heart rate trends

Notwithstanding they resulted practically identical on
AR models in section 3.1, -AC and DC clearly differed
when using sawtooth-like signals (fig. 3) with asymmetric
trends. Indeed, both capacities varied independently, and
DC was modulated by τ1, which determines the growing
trends (the “decelerating” part of the series) and, on the
opposite, AC by τ2 (the time-constant which dictates the
“accelerations” in the sequence).

However, when employing small values of T , while DC
was largely independent from τ2 (fig. 3d and 3e), AC was
also slightly dependent on τ1 (fig. 3a and 3b). This is due
to the fact that for τ1 ≫ T , simply due to short erratic
fluctuations, AC anchor points were selected also on the
growing trends. On the other hand, for larger values of T ,
the number of points in the decaying trends was compara-
ble to T , reducing the number of DC anchor points close to
the transitions (and viceversa, increasing the number of AC
anchor points). This resulted in an increased dependence
of DC on τ2 (fig. 3f).

4. Conclusion

The value of s, more than T , determines the frequency
band (centered around f = 0.371fs/s) of the oscillations
which lead to larger AC/DC values, at a fixed signal’s
power. On the other hand, the value of T plays a major
role in the selection of the anchor points, and it should be
smaller than the average time-constant of the trends of in-
terest (e.g., τ1 and τ2 in fig. 3).

Moreover, a difference between the values of -AC and

DC does not depend on the shape of the power spectrum,
which is unchanged after time-reversal of the series (the
anchor points of AC become those of DC). In fact, -AC
and DC did not differ in AR models with largely differ-
ent spectral content. A difference between the two capaci-
ties was found only when asymmetries in time-constants of
growing and decaying trends were present. Hence, AC and
DC do not simply reflect the change in power of selected
frequency bands contained in the series. On the contrary,
they are strictly related to asymmetries present in the time
series, and so they might quantify different underlying reg-
ulatory mechanisms, as in [2] where the predictive value of
DC was higher than that of AC.

Of minor relevance, the simulations also confirmed that
L should be larger than the length of the period of the slow-
est oscillation of interest, and AC/DC are linearly depen-
dent on the power of the signal.

A limitation of the study was that we only employed
simulated series to study the effects of T and s on AC/DC.
A large study on the predictive value of DC in post-MI pa-
tients [2], obtained optimal results for s = T +1. Therefore,
from a clinical point of view, it is not clear if the selection
of s and T should be separated, and preliminary tests might
be of help in each specific application.
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