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Abstract

The paper introduces an improved signal decomposition model-based Bayesian framework (EKS6).

While it can be employed for multiple purposes, like denoising and features extraction, it is particularly

suited for extracting electrocardiogram (ECG) wave-forms from ECG recordings. In this framework, the

ECG is represented as the sum of several components, each describing a specific wave (i.e., P, Q, R,

S and T), with a corresponding term in the dynamical model. Characteristic Waveforms (CWs) of the

ECG components are taken as hidden state variables, distinctly estimated using a Kalman smoother from

sample to sample. Then, CWs can be analyzed separately, accordingly to a specific application. The

new dynamical model no longer depends on the amplitude of the Gaussian kernels, so it is capable of

separating ECG components even if sudden changes in the CWs appear (e.g., an ectopic beat). Results,

obtained on synthetic signals with different levels of noise, showed that the proposed method is indeed

more effective in separating the ECG components when compared with another framework recently

introduced with the same aims (EKS4). The proposed approach can be used for many applications. In

this paper, we verified it for T/QRS ratio calculation. For this purpose, we applied it to 288 signals from

the PhysioNet PTB Diagnostic ECG Database. The values of RMSE obtained show that the T/QRS ratio

computed on the components extracted from the ECG, corrupted by broadband noise, is closer to the

original T/QRS ratio values (RMSE=0.025 for EKS6 and 0.17 for EKS4).
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I. INTRODUCTION

The analysis of the electrocardiogram (ECG) is routinely performed to assess cardiac health status.

Every ECG beat is composed of different waves, classically labeled as P, Q, R, S and T, which reflect, at

the body surface, the electrophysiological activity of the heart. The cardiac cycle begins with the P wave,

linked to atrial depolarization, followed by the QRS complex and T wave, which instead corresponds

to ventricular depolarization and repolarization. Most of the clinically relevant information can be found

within the amplitudes, shapes and intervals between these waveforms. Some examples are ST-waveform

analysis for intrapartum fetal monitoring [1], [2], changes in P wave morphology due to various conditions

[3], [4], QT interval analysis [5], [6] and T wave alternans (TWA) [7]. So an accurate and robust procedure

for automatic ECG labelling is an important goal for clinicians and biomedical engineers. A preliminary

ECG components extraction phase, where the different waves are separated from each other, could surely

simplify the task.

McSharry et al. proposed an ECG dynamical model (EDM), based on a set of nonlinear state space

equations in Cartesian coordinates [8]. Their idea was to construct a dynamical model that repeats the

single beat in a pseudo-periodic manner. Subsequently, EDM has been widely used for many applications

such as filtering, compression and classification of ECG signals [9], as well as developing an extended

Kalman filter (EKF) and extended Kalman smoother (EKS) for noisy ECG filtering [10].

Sameni et al. modified the EDM model by reducing the number of state variables using polar co-

ordinates and proposed a Bayesian framework for ECG denoising, also based on EKF and EKS [10].

In the following, these will be referred to as “EKF2” or “EKS2” respectively, since two hidden state

variables were used. Thereafter, applications of the modified EDM has been proposed for removing cardiac

contaminants [11], generating multi-channels ECG, modeling fetal ECG [12], as well as generating rather

realistic synthetic electrocardiogram signals in normal and abnormal conditions [13].

Sayadi et al. introduced a modified EKF structure (“EKF17” as it uses 17 state variables) for ECG

denoising and compression [14], as well as for ECG beat segmentation [15]. They also proposed a

Gaussian basis function based EDM (“EKF4” and “EKS4”) for robust detection of premature ventricular

contractions [16] as well as modeling the temporal dynamics of ECG [17]. Finally, Niknazar et al. have

used the EKF structure for fetal ECG extraction using single-channel recordings [18].

Subsequently, a framework for morphological modeling of cardiac signals based on signal decompo-

sition, which is capable of generating a realistic synthetic ECG was proposed [19]. Three types of basis

functions, including polynomial splines, sinusoidal and Gaussian functions, were alternatively employed

to model ECG waves, following the approach of McSharry et al. [8]. However, while the average beat was
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represented as a sum of basis functions, it was then repeated in a pseudo-periodic manner to generate

multiple subsequent beats. Unfortunately, real ECG signals can be highly non-stationary in practice.

So fixing the parameters of a single beat and repeating it to generate multiple beats, is largely an

approximation.

In this paper, we aim to improve the morphological model of cardiac signals, described in [19], and to

combine it with the Bayesian filtering framework, in order to separate the ECG signal into its component

waves, on a beat-to-beat basis. Some very preliminary ideas were presented in [20], and largely extended

in here. The rest of the paper is organized as follows. In Section II, the relevant background on EDM and

EKF is reviewed. Section III presents the original signal decomposition model-based Bayesian framework

for ECG components extraction, comparing it with previous approaches. Applications are presented in

Section IV. General remarks and a discussion are given in the final section.

II. BACKGROUND

A. Extended Kalman filter and extended Kalman smoother

The Kalman filter is one of the most widely used methods for estimating the hidden state of a linear

dynamical system. In fact, for linear dynamical systems, it is an optimal estimator in the minimum mean

square error (MMSE) sense [21]. For nonlinear systems, the extended Kalman filter, which is applied after

linearization of the model, might be employed instead. Specifically, let’s consider the undriven non-linear

discrete dynamical system 
xk+1 = f(xk, k)

yk = g(xk, k)

and its associated “noisy” system 
xk+1 = f(xk, wk, k)

yk = g(xk, vk, k)

, (1)

where xk is the unobserved underlying state vector, yk is the observation vector at time instant k, f(·) is

the evolution state function, g(·) represents the relationship between the hidden state and observations,

wk and vk are process and measurement noise, respectively, with the corresponding covariance matrices

Qk = E{wkwTk } and Rk = E{vkvTk }. The extended Kalman filter for (1) is given as follows [22]:

Time Update:


x̂−k+1 = fk(x̂

+
k , w, k)|w=0

H−k+1 = AkH
+
k A

T
k + FkQkF

T
k

(2)
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Measurement update:


x̂+k = x̂−k +Kk

[
yk − g(x̂−k , vk, k)|v=0

]
Kk = H−k C

T
k

(
CkHkC

T
k +GkRkG

T
k

)−1
H+
k = H−k −KkCkH

−
k

(3)

where 

Ak =
∂f(x, ŵk, k)

∂x

∣∣∣
x=x̂k

Fk =
∂f(x̂k, w, k)

∂w

∣∣∣
w=ŵk

Ck =
∂g(x, v̂k, k)

∂x

∣∣∣
x=x̂k

Gk =
∂g(x̂k, v, k)

∂v

∣∣∣
v=v̂k

(4)

and x̂−k = E {xk|yk−1, · · · y1} is a prior estimate of x at time instant k given the previous observations

y1 to yk−1 and x̂+k = E {xk|yk, · · · y1} is a posterior estimate that is obtained by correction of x̂+k after

observing yk. The matrices H−k = E{(xk − x̂−k )(xk − x̂−k )T } and H+
k = E{(xk − x̂+k )(xk − x̂+k )T } are

also defined as the prior and posterior state covariance matrices.

For smoother results, an extended Kalman smoother is usually employed after EKF. It consists of

a forward EKF stage followed by a backward recursive smoothing stage. Since EKS uses information

brought by “future” observations, it provides better estimates of the current states and follows the ECG

morphology more accurately than EKF in noisy scenarios [17].

B. An ECG model based on sum of Gaussian functions

A single ECG beat can be modeled as a sum of N Gaussian functions with different amplitudes and

widths centered at specific points in time:

z =
N−1∑
i=0

αi exp

[
−(t− θi)2

2b2i

]
, (5)

where αi, bi and θi are the amplitude, scale factor and center of the kernels, respectively. It can be

coupled with a model of the heart rate dynamics, to synthesize multiple ECG beats with arbitrary heart

rates [8] 
θ̇ = ω

z =
N−1∑
i=0

αi exp

[
−(θ − θi)2

2b2i

] , (6)
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(a) Synthetic ECG
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(d) QRS extraction provided by EKS4
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(e) T wave extraction provided by EKS4
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(f) QRS extraction provided by EKS6
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(g) T wave extraction provided by EKS6
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Fig. 1. QRS complex and T-wave estimates provided by EKS6 and EKS4, when applied to a synthetic signal corrupted by

noise with SNR = 18 dB.

where θ is the cardiac phase signal (periodical with a base period defined between −π and π) and ω

is the angular speed of the phase signal defined in [12]. A common approach [8] to obtain a dynamical

model for z is to differentiate directly (6) to get
θ̇ = ω

ż = −
N−1∑
i=0

αiω
θ − θi
b2i

exp

[
−(θ − θi)2

2b2i

] . (7)

The EDM in (7) was used in a Bayesian framework with two hidden state variables [10], thus termed

EKS2. It can estimate the cardiac phase and ECG amplitude, since they are just assumed as hidden state

variables.

Another approach which is more suitable when applying the model to filtering arrhythmias, is to

consider different events of the ECG separately as hidden state variables. This idea has been proposed

by Sayadi et al. for generating synthetic ECG as well as separate ECG characteristic waveforms (CWs)
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[16], [17]. Seven Gaussian kernels were employed to model ECG beats, corresponding to each of the

ECG components (P wave, QRS complex, and T wave), and for modeling asymmetries two Gaussian

kernels were used for P or T waves (indicated by + and − superscripts), leading to:

θ̇ = ω

Ṗ = −
∑

i∈{P−,P+}
αiω

θ − θi
b2i

exp

[
−(θ − θi)2

2b2i

]

˙QRS = −
∑

i∈{Q, R, S}
αiω

θ − θi
b2i

exp

[
−(θ − θi)2

2b2i

]

Ṫ = −
∑

i∈{T−,T+}
αiω

θ − θi
b2i

exp

[
−(θ − θi)2

2b2i

]

z = P +QRS + T

, (8)

While the kernels are seven, the number of state variables is four, thus the method was termed EKS4.

The parameters αi, bi, and θi are identified before applying the Kalman filter. To this aim, after QRS

complex detection, an ECG waveform template is obtained by averaging the time-warped beats [10] and

then used to fit the parameters by nonlinear least square estimation. However, morphological changes in

abnormal ECG beats or artifacts, which are included when computing the average ECG beat, influence

the value of the parameters. This is particularly true for the amplitudes αi. Although they are considered

as a noise process in EKS4, their changes can dramatically impact on filter output, since they appear in

the time update (8). To further clarify the issue and to highlight the reasons which motivated our work,

the synthetic ECG in Fig. 1(a) displays an episode of alternation of T-wave forms (macroscopic T-wave

alternans, TWA). It was inspired by figure 2 in [23]. Such alterations often precede torsade de pointes

and sudden cardiac death and their detection is clearly relevant. During the episode depicted in Fig. 1(a)

or its noisy version in Fig. 1(b), the T wave amplitude changes in time. The different polarity affects the

value of the average template in Fig. 1(c), which is obtained by averaging the noisy signal in Fig. 1(b).

The CWs obtained with EKS4 are shown in Fig. 1(d) and 1(e). Unfortunately, the low amplitude of the T

waves detected is evident. Morphological changes, especially in abnormal ECG sequences, lead to large

errors on the updating state variables and low accuracy on the corresponding ECG component separation.

For this reason, in section III we will introduce a new EDM, which no longer depends on the amplitude

of the Gaussian kernels, to be used with EKS.

C. Signal modelling using basis functions

Kheirati Roonizi and Sameni [19] worked on the different, but related, problem of morphological

modelling of a single ECG beat, through its projection over a set of basis functions. In fact, a single
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(a) ECG record08378m.
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(c) T wave extraction provided by EKS4
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(d) QRS extraction provided by EKS6

Samples ×104

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

A
m
p
l
i
t
u
d
e

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

EKS6

Original ECG

QRS detection

(e) T wave extraction provided by EKS6
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Fig. 2. QRS complex and T-wave estimates provided by EKS6 and EKS4, for record 08378m from the MIT-BIH Atrial

Fibrilation Database (afdb).

ECG beat can be represented as the linear combination:

z =
N−1∑
i=0

αiφi(θ), (9)

where {φi}N−1i=0 is a set of functions used for signal expansion, αi are the expansion coefficients and θ is,

as before, the cardiac phase which is defined between −π and π. Their interest was mainly rooted in signal

modelling, not in differentiating CWs, as in the present work. However, some signals, like ECG, admit

a decomposition into “natural” components, with a clear physiological meaning (e.g., the well-known P,

QRS, and T waves for ECG). If each of the φi components, in the model (9), or their combination, are

meant to describe one of these “natural” subparts of the signal, then the interpretation is straightforward.

Gaussian kernels are good candidates for describing each of the ECG component waveforms (even if not

orthogonal, the Gaussian expansions is very efficient for describing bumpy waves, e.g., P, QRS and T

waves), as the works of the previous section implied. Therefor, putting (5) and (6) in the context of [19],
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(a) Mean SNRdif
i
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Fig. 3. Mean values of SNRdif
i , NSRi and impi for ECG components estimated by EKS6 and EKS4, as a function of the

power of the broadband noise corrupting the input signal.

we now have 

θ̇ = ω

φi = exp

[
−(θ − θi)2

2b2i

]

z =
N−1∑
i=0

αiφi

. (10)

Taking the derivative of the basis function φi, instead of the signal z, they derived the following dynamical

model 

θ̇ = ω

φ̇i = −ω
(
θ − θi
b2i

)
φi

z =
N−1∑
i=0

αiφi

, (11)

which was used to generate synthetic ECG signals.

III. METHODOLOGY

As described before, generating multiple ECG beats using (11) is largely an approximation, due to the

non-stationary nature of the ECG. For example, it is known that the QT-interval changes significantly

under varying heart rates [5]. Our objective is to estimate the states of a model derived from a modification

of (11) using the Bayesian filtering framework described in section II-A. While improving the approach

described in section II-B, we will target our goal of separating the ECG components, on a beat-to-beat

basis, for further analysis and easier feature extraction.
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A. Signal decomposition model-based Bayesian framework

In a preliminary attempt to remove the EDM dependency on CWs amplitude [20], we combined the

Bayesian filtering framework with (11) to estimate ECG components. However, in (11), the observation

equation still depends on αi.

We move here a step further by defining φ̃i ≡ αi exp[−(θ− θi)2/(2b2i )]. A new model can be derived

as follows 

θ̇ = ω

φ̃i = αi exp

[
−(θ − θi)2

2b2i

]

z =
N−1∑
i=0

φ̃i

.

Comparing it with (10), the amplitudes now pertain to the basis functions and φ̃i correctly model the

ECG components, not just the state as in [20]. In the following, for simplifying the notation, we will

drop the tilde and we will simply refer to the new basis functions as φi.

Taking again the derivative of φi, instead of the signal z, the EDM becomes

θ̇ = ω

φ̇i = −αiω
(
θ − θi
b2i

)
exp

[
−(θ − θi)2

2b2i

]

z =
N−1∑
i=0

φi

, (12)

which, in our notation, is similar to the model (8) that is used in EKS4. Nonlinearity is decreased

significantly by substituting αi exp[−(θ − θi)2/(2b2i )] with φi in the second equation. Our final EDM

model, which is capable of generating continuous ECG waveforms, is thus as follows

θ̇ = ω

φ̇i = −ω
(
θ − θi
b2i

)
φi

z =
N−1∑
i=0

φi

. (13)

It no longer depends on αi, which are absorbed completely into the state φi.

B. Discretization and implementation

While in the previous section a continuous formulation was used for the ECG dynamical model (as it

is more convenient for analytical manipulations), in practical applications a discretized version is needed

for EKS. The modified EKS is defined by process and observation equations:
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Process equation: 
θk+1 = (θk + ω∆) mod 2π

φi,k+1 =

(
1− ω∆

θk − θi
b2i

)
φi,k + ηi,k

(14)

where θk and φi,k, i ∈ {P, Q, R, S, T} are state variables, ηi,k are i.i.d. Gaussian random variables

considered to be random additive noise and ∆ is the sampling interval. At each time step k, the proposed

discrete ECG model consists of six state variables (one for each of P, Q, R, S and T components), plus

the cardiac phase θk. To have a more accurate representation, the number of Gaussian basis functions

could be increased, at the cost of an increased complexity of the overall scheme and the risk of modelling

noise (see section V for a discussion on the issue). When ηi,k goes to zero in (14), the time evolution of

each state variable, linked to an ECG waveform, is described by a Gaussian basis functions. However,

in any other situation, the new formulation of the EDM is not strictly based on Gaussian kernels, like

EKS4 was.

Observation equation: 
ψk = θk + v1,k

sk =
∑

i∈{P,Q,R,S,T}
φi,k + v2,k

, (15)

where sk is the noisy observation (the real ECG) and ψk is the noisy cardiac phase at time instant k.

v1,k and v2,k are zero mean random variables considered to be observation noise. As a result, the state

variables vector, xk, the observation vector, yk, the process noise vector, wk, and the observation noise

vector, vk, are defined as follows:

xk = [θk, φP,k, . . . , φT,k]

yk = [ψk, sk]

wk = [bP , . . . , bT , θP , . . . , θT , ηP , . . . , ηT , ω]

vk = [v1,k, v2,k]

.

Putting (14) and (15) together, our non-linear discrete dynamical system is as follows:

θk+1 = (θk + ω∆) mod 2π

φi,k+1 =

(
1− ω∆

θk − θi
b2i

)
φi,k + ηi,k

ψk = θk + v1,k

sk =
∑

i∈{P,Q,R,S,T}
φi,k + v2,k

, (16)
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The dynamical model in (16) is still nonlinear. However, the nonlinearity is largely reduced with respect

to (8), and it is limited to the product θkφi,k. To linearize it, and then build the EKS, we first reformulate

it into the terminology of (1): 

θk+1 = f1(θk, ω, k)

φi,k+1 = fi(θk, φi,k, ω, bi, θi, ηi,k, k)

ψk = g1(θk, k)

sk = g2(θk, φi,k, k)

.

Then, following (4):

∂f1
∂θk

= 1
∂fi
∂θk

=
−ω∆

b2i
φi,k

∂f1
∂φi,k

= 0
∂fi
∂φi,k

=

(
1− ω∆

θk − θi
b2i

)
∂f1
∂bi

= 0
∂fi
∂bi

=
2ω∆(θk − θi)

b3i
φi,k

∂f1
∂θi

= 0
∂fi
∂θi

=
ω∆

b2i
φi,k

∂f1
∂ηi,k

= 0
∂fi
∂ηi,k

= 1

∂f1
∂ω

= ∆
∂fi
∂ω

=
−∆(θk − θi)

b2i
φi,k

∂g1
∂θk

= 1
∂g1
∂φi,k

= 0

∂g2
∂θk

= 0
∂g2
∂φi,k

= 1

∂g1
∂v1,k

= 1
∂g1
∂v2,k

= 0

∂g2
∂v1,k

= 0
∂g2
∂v2,k

= 1
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so that the matrices Ak, Fk, Ck and Gk are obtained as follows:

Ak =

 1 O1×5

γ5×1 M5×5


6×6

Fk =

 O1×5 O1×5 O1×5 ∆

Γ5×5 Λ5×5 I5×5 β5×1


6×16

Ck =

 1 O1×5

0 11×5


2×6

Gk = I2×2

,

where

γ5×1 =

[
−ω∆

b2i
φi,k

]T

M5×5 = diag

[
1− ω∆

θk − θi
b2i

]

Γ5×5 = diag

[
2ω∆(θk − θi)

b3i
φi,k

]

Λ5×5 = diag

[
ω∆

b2i
φi,k

]

β5×1 =

[
−∆(θk − θi)

b2i
φi,k

]
and I , O are identity and zero matrices, respectively. In the new formulation of the ECG dynamical model

proposed herein, the state matrix Ak is not anymore a constant diagonal matrix, as it was for EKS4, and

it changes at each step k. The non-constant nature of Ak let the overall EKS scheme (which we will

refer to as “EKS6” in the following, as the state is six-dimensional) to be more capable of adapting to

changes in amplitude in the ECG waveforms. We will return on this issue, in particular with respect to

the comparison with EKS4, in the discussion section.

After linearization, the state variables are propagated in time using equations (2) and (3). This is

equivalent to having a set of basis functions updated over time, such that they are distinctly estimated

from sample to sample. Therefore ECG components can be extracted even in noisy scenarios, leading to

a higher accuracy of the fitting of the model.

IV. APPLICATIONS

The EKS6-based decomposition can find various applications in ECG processing, such as ECG com-

ponents extraction, e.g., for T/QRS ratio calculation, denoising or QT interval measurement. As proof of
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Fig. 4. Panel (a): Noisy ECG beats (SNR = 10 dB) with QRS and T-waves components overlaid, as extracted by means of

EKS6. Panel (b): The same noisy ECG overlaid with its de-noised version (the superposition of components produced by EKS6).

concept, we focus on two specific applications.

As a preliminary remark, we clarify that in the following sections, the initial value for the state vector,

kernels as well as the covariance matrices of the process and the measurement noise were initialized

using the procedure described in [10] and [16]. In particular, using the location of the R-peaks in the

signal, an ECG average template waveform, ECG(θ), and its standard deviation, σECG(θ), were obtained

by averaging the time-warped beats. Then, nonlinear least squares was employed (due to the nonlinear

dependence) to fit the model

zk =
∑

i∈{P,Q,R,S,T}
αi exp[−(θk − θi)2/(2b2i )]

to the ECG template and get the initial values of the parameters of the Gaussian kernels. The angular

frequency of the model was set to ω = 2π/〈RR〉, where 〈RR〉 is the average RR-interval of the whole

signal and we set θ0 = −π.

The process noise covariance matrix Qk was set to E{wkwTk } = diag(σ2bp , ..., σ
2
bT
, σ2θp , ..., σ

2
θT
, σ2ηp , ..., σ

2
ηT , σ

2
ω),

where the values were found by computing the magnitude of the amount of deviation of the parameters

of φi,k around ECG(θ) to stay within the upper and lower bound of ECG(θ) ± σECG(θ) [14], [10].

With respect to the measurement noise covariance matrix R0, E{v21,k} was set to (ω∆)2/12, implying

a uniform error in the location of the R-peak. Then, E{v22,k} was set to the average variance of the

perturbation found around baseline (where no P, QRS or T waves are present), across the different beats

used to build the template. The measurement noise covariance matrix Rk was considered to be diagonal

as in [10].
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A. ECG components extraction

1) Preliminary examples: As preliminary example, Fig. 1(f) and 1(g) show the result of applying

EKS6 to the synthetic ECG displaying alternation of T-wave forms, as discussed in section II-B. The

T wave component follows more precisely, when compared to EKS4 in Fig. 1(d) and 1(e), the ECG

morphology, due to the independence of the model from the amplitude.

Furthermore, the decomposition for a specific case (record 08378m from MIT-BIH Atrial Fibrilation

Database [24]), using both EKS6 and EKS4, are reported in Fig. 2. EKS4 leads to the distortion of

T waves before premature ventricular contractions (PVC), while EKS6 does not, as highlighted using

circles in panels (c) and (e). A PVC is a heart beat which is autonomously triggered in the ventricles,

and not in the sinus node. PVCs are common events which do not necessarily imply a negative heart

condition [25].

2) Synthetic data: For evaluating the performance of the proposed method, we applied it on simulated

data, which permit to quantify the decomposition error directly (no gold-standard is available for the

decomposition of ECG components of real recordings). Application to real ECG series, will be discussed

in the next section.

Single-channel synthetic data were obtained using the EDM on which EKS4 is based and reported

in (8). The sampling rate was set to 1000 Hz, the 250 synthetic series were 20s long and the RR interval

durations were allowed a random fluctuation of up to 5% in each beat. To make the comparison between

EKS6 and EKS4 fair, after applying the former, the Q, R and S waveforms were combined to obtain the

QRS complex. Thus, we had three components for each ECG (P wave, QRS complex, and T wave). We

produced signals varying the power of v2,k in (15). The signal-to-noise ratio (SNR) was modulated from

−10 to 50 dB.

To simplify the definition of the error metrics, we group together the estimated components into the

matrix Φ̂ and we call Φ the corresponding matrix of “true” components. Inspired by [18], the estimates

Φ̂ are taken to be the linear combination of the true components plus noise v, that is

Φ̂ = UΦ +Dv,

where

Φ̂ = [φ̂P , φ̂QRS , φ̂T ]T = [φ̂1, φ̂2, φ̂3]
T

Φ = [φP , φQRS , φT ]T = [φ1, φ2, φ3]
T

U = [uij ]3×3, i, j = 1, 2, 3

D = [di]3×1, i = 1, 2, 3
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Fig. 5. Panel (a): histogram of T/QRS ratio values for ECG signals from the PhysioNet PTB Diagnostic ECG Database. After

contaminating the ECG signal with broadband noise (SNR=10 dB), the T/QRS ratio was recalculated in panel (b) after bandpass

(0.5 to 40 Hz) filtering and in panel (c) after EKS6.

and the coefficient matrix U and D have to be estimated. Given the fact that the ECG components only

minimally overlap in time, we can take their inner product to be approximatively zero. Moreover, ECG

components and noise are assumed to be orthogonal. Under these conditions, the estimator Φ̂ achieves

minimum mean square error (MMSE) if and only if E{(Φ̂ − Φ)T Φ̂} = 0. Hence the MMSE estimates

of the matrices of coefficients U and D are:

ûij =
E{φ̂Ti φj}
E{φTj φj}

,

d̂i =
E{φ̂Ti v}
E{vT v}

.

In a successful component extraction procedure, the interference of undesired components should be

minimal, as well as the contribution of noise to the desired component. In other words, in the output of

φ̂i, the power of ûiiφi (target component) should be much larger than the power of
∑3
j=1,j 6=i ûijφj + d̂iv

(other components). That is, in an optimal component separation, the coupling matrix U should be close to

the identity matrix and D close to a null vector. The input signal-to-noise ratio and output signal-to-noise

ratio are, respectively, defined as follows:

SNRin
i =

Pφi∑3
j=1,j 6=i Pφj

+ Pv
,

SNRout
i =

û2iiPφi∑3
j=1,j 6=i û

2
ijPφj

+ d̂2iPv
,

where Pφ1
, Pφ2

, Pφ3
and Pv denote powers of P wave, QRS complex, T wave and noise respectively.

SNRin
i characterizes the problem at hand before performing any separation of components: some compo-

nents might be very small with respect to the others and thus difficult to detect. A large SNRout
i indicates
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instead that the power of the estimated component φ̂i is high against other components and noise. We

further define the improvement SNRdif
i = SNRout

i −SNRin
i . A summary of the results of the components

extraction procedures on synthetic data is reported in Fig. 3(a). SNRdif
i for EKS6 outperformed EKS4.

For evaluating the performance of the proposed method, we also used two other measures of improve-

ment. The first one, given by

NSRi =


∑
k

(
φi,k − φ̂i,k

)2
∑
k φ

2
i,k


1/2

,

is a classical ratio between the power of the reconstruction error and the power of the component φi,k

(a noise-to-signal ratio). The results, reported in Fig. 3(b), show that the reconstruction improvement

continues for EKS6 even when the noise corrupting the input signal is small, while it saturates for EKS4.

In fact, the results are referred to components separation, not ECG modelling. A wrong component

detection or the mixing in the components detected might happen also when little noise is contaminating

the input signal. Clearly EKS6 is more tailored to component separation than EKS4, confirming Fig. 3(a).

A similar result is conveyed in Fig. 3(c) by the second metrics, inspired by [17]

impi = −10 log10

∑
k

(
φ̂i,k − φi,k

)2
∑
k (sk − φi,k)2

(dB), (17)

which instead considers the ratio between the power of the reconstruction error and the power of the

other components contained in the original signal sk, defined in (15), including the noise v2,k.

B. T/QRS ratio estimation

Abnormality of ventricular repolarization in the ECG (like ST depression, T wave inversion and QT

prolongation) have been shown to be related to cardiovascular mortality. A possible marker of ventricular

repolarization is the ratio of T amplitude to QRS amplitude, also known as the T/QRS ratio. The T/QRS

ratio has been shown important in distinguishing acute myocardial infraction (AMI) from left ventricular

aneurysm (LVA) [26] or very relevant in fetal surveillance [27], [28]. However, the automatic and accurate

calculation of this index in noisy scenarios can be very challenging given the possible errors in the location

of the fiducial points. EKS6 can improve the estimated T/QRS ratio calculating it from the estimated

components, hence reducing the impact of noise.

We tested the approach over the PhysioNet PTB Diagnostic ECG Database [24]. The database contains

549 records from 290 subjects. Each record consists of twelve conventional ECG leads plus the three

Frank’s ones, sampled at 1kHz with 16-bit resolution. The feasibility study was limited to 288 ECG

segments, of 10s each, obtained from the beginning of selected records (about one for each subject; we

considered the twelve standard leads only). The choice was based on the fact that 10s is the standard
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duration for diagnostic ECG recordings, where components separation would be of large help (e.g., QT

measurement [6]). The T/QRS ratio computation was repeated three times. First, it was performed directly

on the original ECG data. Then, white Gaussian noise with a signal-to-noise ratio of 10 dB was added

to the ECG signal (“noisy ECG”) and the T/QRS ratio was recomputed. Finally, T-wave and QRS-wave

were automatically separated by EKS6, starting from the noisy ECG signal, and the T/QRS ratio was

computed a third time employing the amplitudes of the components. In every case, the QRS and T peaks

were located as the maximum values in the two windows of length 200ms and 250ms, starting from

the Q onset and 100ms after the R-peak, respectively. Beat annotations contained into the database were

employed. A Butterworth 3rd order bandpass filter (0.5 to 40 Hz) was employed as preprocessing step

when EKS6 was not used. In Fig. 4(a), a couple of noisy ECG beats and the EKS6 outputs are shown.

The amplitudes of T and QRS components, as obtained by EKS6, are close to the original ECG. Then,

in Fig. 4(b) the ECG, as reconstructed by adding the components, is compared with the original noisy

signal. Finally, in Fig. 5, scatter plots of the T/QRS ratios are compared for the original and noisy ECG.

When using EKS6, the results are better aligned along a straight line, which indicates that the model

rendered the results more resilient to noise.

We also compared EKS6 and EKS4 on this problem. To quantify the performance of the two methods,

we employed the root mean square error (RMSE) defined as:

RMSE =

 1

n

∑
n

(
Tn

QRSn
− T̂n

ˆQRSn

)2
1/2

,

where Tn/QRSn was calculated on the original ECG (nth beat) while T̂n/ ˆQRSn on the components

extracted by EKS4 or EKS6, after contaminating the same signal with a broadband noise. The additive

Gaussian noise was added with varying SNR (from 0 to 20 dB). The mean and standard deviation (SD)

of the RMSE versus different input SNRs achieved over 288 ECG segments (20 repetitions each) are

plotted in Fig. 6. A similar approach can be followed for calculating metrics based on other ECG fiducial

points, such as the P-wave, PR segment and QT-interval.

V. DISCUSSION AND CONCLUSION

In this paper, a signal decomposition model-based Bayesian filtering method (EKS6) has been in-

troduced for ECG signal processing and separation into its components (P, Q, R, S and T waves), by

employing an original dynamical model. In the proposed method, the ECG components are directly

utilized as hidden state variables, and simultaneously estimated as a time series through an EKS. The

simulation results demonstrated that EKS6 has the capability of correctly tracking ECG component waves,

on a beat-to-beat basis.
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Fig. 6. Mean and standard deviation of RMSE in T/QRS ratio values computed from ECG components extracted by means of

EKS4 and EKS6, as a function of the broadband noise contaminating the input signal.

There are some theoretical advantages that EKS6 has over other recent works in this context. As

compared with EKS2, that uses only two state variables, six state variables are employed, with the

advantage of permitting ECG components separation (and not only ECG filtering). Compared to EKS4,

it no longer depends on the amplitudes of the Gaussian kernels, so it is able to separate the ECG

components, even when abrupt changes happens in the signal. Also, the matrix Ak in EKS6 is not constant

in time, hence making it able to better model the nuances in the ECG signal. Finally, EKS linearizes the

dynamical system at an operating point by approximating the state model through a first order Taylor

series approximation. The truncation of the Taylor series is a poor approximation for most non-linear

functions. In fact, the accuracy of the linearization depends on the amount of local nonlinearity in the

functions being approximated. Then, the posterior mean and covariance estimations become suboptimal

and model errors are introduced. This can lead to instability, particularly when the system dynamics are

strongly nonlinear [29]. The EDM proposed here for EKS6 was derived to reduced the nonlinearity of

the state model with respect to previous solutions.

From a practical point of view, EKS6 outperformed EKS4 in the tests we performed. For example,

components were sometimes mixed up by EKS4 but not by EKS6, as shown for QRS and T waves

in Fig. 1 and 2. Surely, EKS6 has two extra state variables with respect to EKS4 (a price to pay for

removing amplitude from the model), and, in principle, a larger number of degrees of freedom surely helps

EKS6 in better following the ECG components. However, this is not the main source of the performance

improvement, but the improvement is due to the new EDM proposed in (13). To support this claim, we

increased the number of hidden state variables of EKS4 to six, by using the EDM in (12), which in our
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notation corresponds to (8). The results are reported in Fig. 7. EKS6 still outperformed the previously

suggested solution, even when the number of hidden state variables was made equal. The same figure also

contains the partial results (only related to QRS to make the figure easier to read), obtained employing

the method described in [20], our preliminary attempt based on (11) and six hidden state variables. Also

in this second case, EKS6 displayed better performance. These two further tests support the idea that

the improvements derive from the new EDM model itself, possibly underlining the importance of the

complete removal of the amplitude dependence. A second technical reason favoring EKS6, might be

related to what reported recently by [30], where an EDM, similar to (8), was found to produce a baseline

drift in non-invasive fetal ECG, obtained from a similar Bayesian framework.

In the experiments performed in this work, six hidden state variables were employed. The number

could be increased to have a more accurate representation of ECG components, at the cost of an increased

complexity of the overall scheme. However, this might cause the model to follow undesired observation

noises. Information on the measurement and process noises (vk and wk) might help in selecting the

values of the matrixes Qk and Rk, and hence the actual smoothness of the results. The eigenvalues

of R−1k should be large when the SNR is high, i.e., little measurement noise vk is assumed, while the

eigenvalue of Q−1k should be large when the state model is accurate, i.e., wk is supposed to be small

in (1).

The tests on data coming from real world problems, including T/QRS ratio calculation, showed that
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ECG components separation through EKS6 is feasible. The same approach is also applicable to robust

extraction of other ECG fiducial point markers, including ST-level, QT and PR-intervals. One of the

limitation of the present work is the fact that only 10s ECG recordings were considered. The choice was

based on the fact this is the standard duration for diagnostic ECG recordings. However, the approach

should be tested on longer recordings and we plan to do it in the future. Other immediate future extensions

of the present work might be either (i) fetal ECG components separation using non-invasive abdominal

ECG recording or (ii) QRST cancellation during atrial fibrillation in adult cardiology for subsequent

fibrillatory wave analysis. For example, for fetal ECG components separation, one could modify the

parallel EKS introduced in [18] using the new EDM model in (13) for fetal ECG and the one in (7) for

maternal ECG.
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