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1 Abstract	  

Cancer Stem Cells (CSCs) are a clinically relevant population at the apex of the inner 

hierarchical organization of many tumors. It was previously demonstrated by our group 

that loss of the p53 tumor suppressor leads to an increase in the mammary stem cell 

(MaSC) and breast CSC content, due to a switch of the mode of division from mainly 

asymmetric to symmetric. However, which of the many pathways instructed by p53 is 

directly involved in the execution of this biological phenotype remains to be determined. 

Following a candidate gene approach, we investigated Myc as the putative key 

downstream effector of p53 in breast SCs and CSCs. The Myc oncogene is very often 

altered in cancer and has been clinically associated with poor differentiation and 

aggressiveness in breast cancer. We have found that Myc endogenous expression is de-

regulated in our ErbB2 model of breast tumorigenesis, upon attenuation of p53 signaling. 

We also observed that de-regulated Myc extends the lifespan and proliferative potential of 

wild type mammospheres. This occurs by two distinct but cooperative mechanisms: the 

increase in the frequency of symmetric divisions of MaSCs and the reprogramming of 

progenitor cells. Importantly, in the ErbB2 model, de-regulated Myc levels are critical and 

sufficient to sustain the unlimited self-renewal of CSCs, independently of p53. Of note, the 

above described phenotype is characterized by the over expression of a mitotic gene 

signature which is dictated by the identified p53-Myc axis.   

Taken together these results demonstrate that the loss of a tight control on Myc levels, 

which derives from the loss of p53 functionality, is responsible for the expansion of the SC 

and CSC pool by regulating modality of SC division and reprogramming of mammary 

progenitors. Finally, our data suggest that the p53-Myc axis exerts a putative tumor 

suppressor function in SCs through the coordinated regulation of a set of mitotic genes. 
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2 Introduction	  

 

2.1 The	  heterogeneous	  nature	  of	  cancer	  

 

Cancer is a very widespread disease and represents one of the leading causes of death in 

the modern era. Based on 2012 estimates the GLOBOCAN program predicted a 

considerable increase to 19.3 million new cancer cases per year by 2025, due to growth 

and ageing of the global population. Despite the many advances made in terms of 

therapeutic options for patients, which have led to a consistent increase in the “tumor free 

time window”, cancer recurrence is still a very frequent event, often mortal.  

It is becoming more and more clear that cancer cannot be considered a single disease, as it 

is extremely heterogeneous, from tissue to tissue and from patient to patient. Intra-tumor 

heterogeneity, in particular, is a key source of complexity that ultimately leads to tumor 

progression, therapy resistance and cancer recurrence. Tumors are increasingly seen as 

ecosystems containing both malignant cells and infiltrating endothelial, hematopoietic, 

stromal, and other cell types that all together go under the definition of 

“microenvironment” and can influence the function of the tumor as a whole (Junttila and 

de Sauvage 2013). As an ecosystem, the inner nature of tumors is to evolve in response to 

cell-autonomous and non cell-autonomous stimuli that aim at increasing its fitness and that 

eventually lead to variations in the cellular processes of growth, metabolism, apoptosis and 

other “hallmarks of cancer” (Hanahan and Weinberg 2011).  
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Two main models have been proposed to dissect the mechanisms by which tumors evolve: 

the first is the Cancer Stem Cells (CSCs) theory that predicts an inherent functional 

heterogeneity among tumor cells; the second is the clonal evolution model that is based 

mainly on the observed genetic heterogeneity within tumors. Both models harbor strengths 

and limitations which I will try to summarize in the following section. 

 

2.1.1 The	  Cancer	  Stem	  Cell	  theory,	  past	  and	  present	  

 

The cancer stem cells model of tumor evolution predicts the existence, within a given 

tumor, of a cell population that is at the apex of a functional and developmental hierarchy, 

the so-called Cancer Stem Cells (CSCs). As the name implies, these cells are believed to 

share many properties with the stem cells (SCs) that compose normal tissues (normal SCs), 

above all, self-renewal ability (potential to generate new CSCs), multi-lineage capacity 

(ability to generate non-CSC) and quiescent nature. Therefore, the tumor is understood as a 

functionally organized entity with the CSC being the only population able to sustain tumor 

progression and, potentially, being responsible of relapse upon pharmacological therapies. 

The existence of this hierarchy was first demonstrated in acute myeloid leukemia by the 

pioneering work of John Dick’s lab (Lapidot, Sirard et al. 1994). In this study, the authors 

showed that only a rare population of leukemic cells, which were positive for the CD34 

surface marker and negative for the CD38 antigen, was able to seed a tumor upon 

xenotransplantation in immuno-compromised hosts. Later on, many other works 

demonstrated the existence of such tumorigenic populations also in solid tumors, taking 

advantage of cell type specific surface markers. In particular, the validity of the CSC 

theory was reported first in human breast cancer (Al-Hajj, Wicha et al. 2003), and then in 

numerous other tumors, including glioblastoma (Singh, Hawkins et al. 2004), pancreatic 
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cancer (Hermann, Huber et al. 2007), lung cancer (Eramo, Lotti et al. 2008), prostate 

cancer (Patrawala, Calhoun et al. 2006), colorectal cancer (O'Brien, Pollett et al. 2007). All 

these works rely on the transplantation, in murine hosts, of isolated cell populations which 

are then proven tumorigenic (they are therefore also known as TICs, tumor initiating cells) 

and capable to give rise to a progeny of non-TICs, thus providing evidence for a 

hierarchical organization. 

The CSCs theory has remarkable implications for therapeutic strategies aimed at curing 

cancer. Indeed, these cells seem to possess all the clinically relevant features that 

determine cancer maintenance, drive cancer heterogeneity, and cause resistance to 

conventional drug regimens. In line with this, gene expression signatures specific to CSCs 

and normal SCs are prognostic of patients’ disease outcomes, regardless of their genetic 

landscape (Ben-Porath, Thomson et al. 2008, Eppert, Takenaka et al. 2011, Merlos-Suárez, 

Barriga et al. 2011). The work of Ben-Porath and colleagues was one of the first to explore 

this correlation. The study hypothesized that the un-differentiated stage of breast cancer 

could be driven by the combined expression of oncogenes and SC-associated genes; the 

authors showed that an embryonic stem cell (ESC) gene signature is enriched in human 

tumors, particularly in poorly differentiated (grade 3) breast tumors. The ESC gene 

signature included under-expression of Polycomb target gene sets and over-expression of 

ES-expressed sets, while the well differentiated grade 1 tumors displayed an opposite 

pattern (Ben-Porath, Thomson et al. 2008). 

Not only gene signatures from ES cells, but also gene expression profiles of adult normal 

SCs and validated CSCs were proven to correlate with prognostic parameters. In the study 

of Eppert and colleagues, 16 primary human acute myeloid leukemia (AML) samples were 

tested for the presence of leukemic stem cell (LSCs) populations by the use of a classic 

combination of CD34 and CD38 surface markers (Bonnet and Dick 1997). Once found, the 
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putative LSCs were validated functionally in transplantation assay and their gene 

expression profile was assessed by microarray analysis, in parallel with normal human 

hematopoietic stem cells (HSCs). The expression profiles of the two populations resulted 

very similar and were shown to positively correlate with groups of patients expressing 

molecular markers of poor prognosis (like FLT3ITD) and to be highly expressed in high 

risk subjects (Eppert, Takenaka et al. 2011).  

The same types of conclusions were also shown to be valid for solid cancers. For example, 

Merlos-Suarez et al. demonstrated that a gene signature specific for adult intestinal stem 

cells predicts disease relapse in colorectal cancer patients (Merlos-Suárez, Barriga et al. 

2011).  

All these findings demonstrate that “stemness” is a crucial biological property for cancer 

cells and their sustainment. Indeed, despite the fact that numbers of CSCs may vary greatly 

across different tumors, and that the identified markers cannot be universally applied, it 

appears clear that the content of CSCs and/or their associated expression program correlate 

with the aggressiveness of the disease. One study clearly shows the applicability of this 

concept to breast cancer (Pece, Tosoni et al. 2010): high grade estrogen receptor- negative 

tumors (G3/ER-) are enriched in CSCs, as demonstrated by mammosphere culture and 

tranplantation assays.  

Furthermore, CSCs are also intrinsically resistant to therapies. In chronic myeloid 

leukemia (CML), LSCs are able to survive imatinib treatment independently of the 

presence of resistance-associated mutations in the BCR-ABL gene and of the selective 

inhibition of the fusion protein, suggesting that they are not oncogene-addicted like the 

non-LSC population (Corbin, Agarwal et al. 2011). A similar scenario also occurs with 

classic chemotherapy drugs: a clinical study in breast cancer showed that docetaxel or 

doxorubicin treatment leads to a significant increase in the percentage of CD44+/CD24- 
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cells (putative CSCs) (Al-Hajj, Wicha et al. 2003), from a mean of 4.7% at baseline to 

13.6%, regardless of the molecular subtype (Li, Lewis et al. 2008). Furthermore, breast 

CSCs were also shown to be resistant to radiotherapy: murine models of spontaneous 

breast cancer (MMTV-Wnt1 mice) were treated with courses of ionizing radiation and the 

percentage of CSCs (defined in this model as Thy1+CD24+Lin- cells) was found to be 

consistently increased compared to the non-TIC fraction (Diehn, Cho et al. 2009). 

Several molecular processes underlying differential sensitivities among hierarchically 

organized tumor cells have been proposed, including up-regulation of anti-apoptotic 

molecules and lower content of reactive oxygen species, with consequent less 

accumulation of DNA damage; however, a full understanding of CSC specific mechanisms 

is still lacking. 

Taken together, all these finding demonstrate that CSCs are clinically relevant entities and 

that therapeutic strategies intended to kill them would be extremely beneficial for complete 

disease eradication. Nevertheless, the concept of a hierarchical structure inherent to tumors 

has been challenged in recent years by new experimental approaches that dissected other 

sources of tumor heterogeneity, such as genetic evolution, complexity of the 

microenvironment cross talks, and reversible changes in CSC properties. 

 

2.1.2 The	  clonal	  evolution	  model	  

 

One major criticism towards the CSC theory regards the validity of the gold standard assay 

that defines CSC properties, that is, the transplantation procedure. The process of 

implanting cells in a host is, physiologically, a profound barrier to tumor development as it 

measures the tumorigenic potential on the base of a permissive environment. In order to 

avoid the xenogeneic immune response that would kill human cells in mice, mouse strains 
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with various degrees of immune dysfunction (immune-compromised mice) have been 

employed; notably, the frequency of CSCs varies a lot after transplantations in these mice, 

being much higher in more severely immunodeficient mice (Quintana, Shackleton et al. 

2008, Ishizawa, Rasheed et al. 2010). Syngeneic transplantation of murine tumors has 

given support to the CSC theory, confirming their existence in the absence of an 

immunological barrier to engraftment.  

Another limitation of the model is that it relies entirely on the presence/absence of surface 

markers both for defining the CSCs and for showing the generation of their heterogeneous 

progeny. This has two main implications: first, it does not take into consideration the 

variability among patients and, second, it does not prove that the genetic heterogeneity of 

the tumor is fully recapitulated by the SC progeny. Indeed, it was shown for some tumors 

that the identified markers are not predictive of CSC functions, while for others it is clear 

that they do not work for all patients and tumor subtypes (Meacham and Morrison 2013). 

For example, it is not true for all AML patients that the CD38-/CD34+ population is the 

most enriched in CSCs, as other fractions of cells were also shown to be tumorigenic 

(Eppert, Takenaka et al. 2011). 

Indeed, tumor heterogeneity could also arise when the cells composing the tumor differ 

genetically. If this were the case, transformation could occur through the accumulation of 

multiple stochastic genetic mutations that are selected by tumor evolution because they 

provide a survival advantage to the cell. The result is the generation of a heterogeneous 

population of cancer cells within the same tumor: this model has been named the clonal 

evolution model. 

Recent works of genome sequencing have confirmed this concept. Indeed, it was recently 

demonstrated that, within a single patient, a cancer is composed of genetically distinct sub-

clones that arise through branching evolution and that possess different mutations which, 
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in turn, can differently contribute to cancer development and, so, give rise to functional 

heterogeneity (Kreso and Dick 2014). New sub-clones survive if they are fit enough for the 

tumor environment, otherwise they can be completely lost, dominated by the fittest clone; 

some minor sub-clones, though, can persist alongside the dominant one, supporting its 

growth or acting as a reservoir of genetic diversity from which evolution can continue 

(Kreso and Dick 2014).  

In this context, the anti-cancer therapy could represent an external stimulus for the 

selection of mutations that confer resistance on the tumor clone, thus ensuring its survival.  

Therefore, the clonal evolution model can explain several features of cancer, including its 

morphological and functional heterogeneity, tumor progression and recurrence. 

Nevertheless, a recent study demonstrated that even within a single genetic clone, cancer 

cells retain functional heterogeneity (Kreso, O'Brien et al. 2013). In this work, the authors 

isolated individual subclones from patients’ colorectal cancer and propagated them in 

xenografts, creating monogenetic cancer lineages. The tumor cells in each lineage, marked 

by a lentiviral system, exhibited a very wide spectrum of behaviors in terms of 

proliferative potential and ability to survive to serial passages. Furthermore, upon 

treatment of the mice with conventional chemotherapy, the authors observed that only cells 

with a low proliferative index (i.e., quiescent) were able to survive and contribute to tumor 

regrowth, without selection of new genetic subclones (Kreso, O'Brien et al. 2013). 

Thus, these results directly identify functional diversity among cells that are part of a 

single genetic clone and add a new layer of complexity to our attempts to dissect the 

heterogeneous nature of tumors (Figure 2-1). 
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Figure 2-1: Functional heterogeneity within cancer genetic sub-clones (Kreso et al. 2014) Copyright © 

2014 Elsevier Inc. All rights reserved. 

 

Given all the available knowledge about tumor evolution, it seems reasonable to 

hypothesize that hierarchical organization and clonal evolution coexist during tumor 

progression. Regardless of the type of evolution that tumors undergo, it appears that 

“stemness”, intended as an undifferentiated state of cells which are capable of self-renewal 

and giving rise to long-lived clones of propagating cells, is a key property of cancer. 

Therefore, the dissection of self-renewal specific mechanisms (in SCs and in CSCs) might 

help us to understand the alterations that are at the basis of carcinogenesis and lead to more 

efficient anti-cancer therapies.  

In the next section, we will examine the de-regulation of specific SC pathways in the 

mammary gland tissue and how much they are predictive of malignant transformation. 
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2.2 Mammary	  stem	  cells	  and	  breast	  cancer	  stem	  cells	  

2.2.1 Mammary	  gland	  physiology	  and	  mammary	  stem	  cells	  

 

The mammary gland is a very unique organ in the female body and undergoes complex 

morphological changes and re-arrangements in response to reproductive and hormonal 

stimuli for which it is required a high level of dynamicity. It is composed of two tissue 

compartments: the epithelium, made of ductal and alveolar cells, and the stroma, that 

mainly consists of adipocytes together with fibroblasts and infiltrating hematopoietic cells. 

The epithelium is organized in a system of branched ducts terminating in lobular structures 

or alveoli which represent the core of the secretive function. The ducts are composed of 

two cellular types: the luminal cells, which express the cytokeratins 8 and 18 (K8/K18), 

reside around the central lumen, and terminally specialize in the production of milk at 

pregnancy, and the outer basal-myoepithelial cells, which express the keratins 5 and 14 

(K5/14) and are located in proximity of the basement membrane where they contract to 

facilitate milk release (Figure 2-2).    
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Figure 2-2: Composition of mammary gland epithelium. © 2014 Visvader and Stingl; Published by Cold 

Spring Harbor Laboratory Press 

 

 

The epithelial branching of the mammary gland starts at puberty, when sex hormones 

signaling stimulate the elongation of terminal lobular units and end buds (TEBs) so that 

they can penetrate the fat pad. During pregnancy, the gland reaches its full differentiation 

capacity, with the expansion and maturation of the alveolar compartment that lead to the 

secretion of milk during lactation (Figure 2-3). Lactation is followed by an involution 

stage, during which the alveoli undergo apoptosis and remodeling to restore a simple 

ductal structure. This complex cycle of rearrangements is repeated at every new pregnancy, 

suggesting the existence of a cellular reservoir which sustains and regenerates the tissue 

and is able to self-renew and give rise to a multi-specialized progeny. Therefore, it seems 

reasonable to hypothesize a differentiation hierarchy within the mammary gland tissue, 

with mammary stem cells (MaSCs) at its apex.  
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Figure 2-3: Series of re-arrangements through which the mammary gland tissue undergoes. 

(Hennighausen & Robinson 2005) Copyright © 2005 Nature Publishing Group 

 

In 2006, two pioneering works led to the isolation of a population of cells enriched in 

MaSCs in the murine gland, as demonstrated by transplantation assays and by multi-

lineage differentiation ability (Shackleton, Vaillant et al. 2006, Stingl, Eirew et al. 2006). 

This cell population was characterized by the expression of a combination of surface 

markers such as: low levels of Sca-1, CD24 (heat-stable antigen) and high levels of CD49f 

(α6 integrin) or CD29 (β1 integrin) (Sca-1neg/ CD24med/+CD49fhi/CD29hi) and was shown 

to be resident in the basal/myoepithelial layer on the epithelial ducts. Later works have 

shown that MaSCs can be preferentially enriched over other basal cells based on their 

higher expression levels of CD24 or CD61 (β3 integrin), and EpCAM (Visvader and Stingl 

2014). 

Recently, however, the concept of multi-potent SCs in the mammary gland has been 

challenged by one work in which the cell fate of basal and luminal cells was followed in 

situ in a so-called lineage tracing experiment. The study was based on basal (K14/K5) and 

luminal (K18/K8) keratins-inducible mouse models and demonstrated that both the 

myoepithelial and the luminal compartments contain long living unipotent SCs that sustain 

the development of the adult mammary gland during puberty and pregnancy, without any 
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evidence of the existence of rare multipotent SCs (Van Keymeulen, Rocha et al. 2011). 

These findings have been subjected to a long debate and were challenged by at least two 

independent works. These studies, while highlighting, with independent lineage-tracing 

approaches, the existence of MaSCs with multi-lineage capacity coordinating the 

homeostasis of the adult murine gland, conceded that unipotent long-lived progenitors 

might cooperate with SCs in the pubertal dynamics (van Amerongen, Bowman et al. 2012, 

Rios, Fu et al. 2014).   

More recently, a study by Wang et al. (Wang, Cai et al. 2015) has identified the protein C 

receptor (ProcR) as a unique marker of MaSCs (assessed by both lineage tracing and 

transplantation assays). This marker characterizes a MaSC population that is at the top of 

the functional and developmental hierarchy, supporting a model in which unipotent and 

multipotent MaSCs could coexist in the adult mammary gland, thus reconciling the 

opposite views emerged from previous lineage tracing studies (Figure 2-4).  

 

Figure 2-4: Hierarchical organization of the mammary epithelium. Wang et al. 2015 © 2014 Macmillan 

Publishers Limited. All Rights Reserved. 
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Another strategy which has been employed in the effort to isolate and characterize MaSCs 

is that of exploiting their quiescent or slowly proliferating nature. To this end, researches 

have taken advantage of a label-retaining assay based on the incorporation of a liphophilic 

fluorescent dye (PKH-26) which binds the cell membrane and whose fluorescent intensity 

gets diluted at every cell division. Therefore, actively cycling cells rapidly become 

negative for the dye, while slowly proliferating cells retain it. It was shown that, by this 

technique, it is possible to isolate a highly enriched population of MaSCs, as assessed by 

limiting dilution transplantation (SC frequency = 1:4) (Cicalese, Bonizzi et al. 2009, Pece, 

Tosoni et al. 2010).  

The perspective isolation of bona fide MaSCs has important implications not only for the 

understanding of the complex developmental dynamics within the tissue, but also because 

de-regulation of SC specific processes is known to lead to malignant transformation 

(Visvader 2009). 

 

2.2.2 Breast	  cancer	  stem	  cells	  

 

Since the 2008 estimates, breast cancer incidence has increased by more than 20%, while 

mortality has increased by 14%. Breast cancer is also the most common cause of cancer 

death among women (522,000 deaths in 2012) and the most frequently diagnosed cancer 

among women worldwide (Globocan, 2012).  

Breast tumor is a highly heterogeneous disease that comprises many different pathological 

and molecular subtypes. Indeed, it is now categorized into at least five different subtypes 

based on distinct gene expression signatures that correlate with patient outcome (Reis-

Filho and Pusztai 2011), representing a major challenge for the research of efficacious 

therapies. It is believed that the wide inter-tumor heterogeneity is a reflection of the 
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different “cells of origin” that drove the malignant transformation. This is why the 

dissection of the hierarchical structure of the normal epithelium is fundamental for 

understanding tumor development. In this context, SC defining properties of self-renewal 

and self-maintenance makes these cells prospective candidates in the search for the 

potential cells of origin of cancer, although there is also considerable evidence that 

progenitors too can be targets of the transformation process (Visvader and Stingl 2014). 

The human breast cancer was the first solid malignancy for which the cancer stem model 

was described. Breast cancer SCs were isolated based on the expression of the cell surface 

markers ESA and CD44 and on the absence of CD24 (Al-Hajj, Wicha et al. 2003). Since 

then, other markers have been described to isolate human breast CSCs, as, for example, 

aldehyde dehydrogenase (ALDH) (Ginestier, Hur et al. 2007), whose expression correlated 

with aggressiveness and metastatic potential (Charafe-Jauffret, Ginestier et al. 2010). 

Furthermore, in transgenic models of spontaneous breast tumors, the same surface markers 

that were found to enrich for normal SCs, were also predictive of CSC functions. In details, 

CSC enrichment was reported: i) in the CD24posThy1pos (Cho, Wang et al. 2008) and in 

the CD29lowCD24posCD61pos (Vaillant, Asselin-Labat et al. 2008) breast cancer 

fractions derived from MMTV-Wnt-1 transgenic mice; ii) in the CD24highCD29high 

populations from p53-null mice (Zhang, Behbod et al. 2008). Perspective isolation of 

CSCs was also documented in a model of murine tumorigenesis driven by a mutated form 

of the ErbB2 gene (MMTV-NeuT), in which the positivity to the surface marker Sca1 

(Sca1+) selects a tumorigenic population of cells over a non tumorigenic one (Grange, 

Lanzardo et al. 2008). 

However, as we already discussed, surface markers have shown to be inadequate in light of 

the extreme heterogeneity that is found from patient to patient, and many of them have 

failed to recognize a CSC population in specific breast tumor subtypes (Visvader and 
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Lindeman 2008). Therefore, other methods that rely on the functional characterization of 

CSCs have been adopted.  

Taking advantage of protocols that have been established for neural SCs, a population 

enriched in SCs was isolated from the normal mammary gland and propagated in vitro as 

non-adherent spheroids called mammospheres (Dontu, Abdallah et al. 2003). Briefly, 

mammospheres were shown to be: i) clonal in origin and able to self-renew, as they can 

form successive generations of spheroids upon dissociation and re-plating; ii) able to grow 

in anchorage independent conditions; iii) able to differentiate along the basal and luminal 

epithelial lineages and, in the presence of prolactin, generate acinar structures positive for 

β-casein. Furthermore, mammospheres were shown to contain cells that are slowly 

proliferating and endowed with higher self-renewal capacities than highly proliferating 

cells, and to be hierarchically organized according to each cell’s replicative potential 

(Cicalese, Bonizzi et al. 2009, Pece, Tosoni et al. 2010).  

Therefore, the mammosphere assay represents a useful tool to model self-renewal in vitro 

since it provides a measure of: i) the clonogenic and differentiating potential of a given 

population, and ii) its self-replating ability, as only SCs can be serially passaged. Indeed, 

mammosphere assays have been widely used to estimate SC and CSC contents in the 

mammary field. For example, mammospheres arising from primary human breast tumors 

are composed of cells that show a CD44+/ CD24- phenotype and are greatly enriched in 

tumor initiating cells, thus indicating that the mammosphere assay is indeed a good system 

to propagate cancer SCs (Ponti, Costa et al. 2005). Furthermore, as mentioned before, Pece 

and colleagues demonstrated that poorly differentiated (G3) breast cancers have higher 

mammosphere forming ability than well differentiated G1 tumors, as they possess higher 

content of CSCs (Pece, Tosoni et al. 2010).  
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This explains why the mammosphere assay has been so extensively used lately to study 

SC/CSC specific players and pathways, and how their manipulation impacts on their self-

renewal ability. This assay also represents a valuable tool to test therapeutics and predict 

biological response in tumors organized according to the CSC model. 

 

2.3 Cancer	  stem	  cell	  specific	  mechanisms	  

 

Up to now, we have described the CSCs as “caricatures” of the normal adult SCs, indeed 

many are the features that are shared between these two populations, and the normal SCs 

are thought to be the “cell of origin” of particular subtypes of cancers. 

As successful therapeutic strategies should aim to minimize their impact on normal SCs 

while eradicating the malignant regenerative clones, understanding the mechanisms 

inherent to CSCs that distinguish them from their normal counterparts is a key issue in 

cancer biology. To this end, the dissection of SC de-regulated cell processes in the 

presence of an activated oncogene (or a de-activated tumor suppressor) is fundamental.  

 

2.3.1 CSC	  specific	  pathways	  

 

Many pathways have been found to be essential regulators of self-renewal and proliferation 

in SCs and profoundly de-regulated in the oncogenic process. Among them, several ligand-

dependent signaling pathways involved in normal self-renewal and development, such as 

Wnt, Notch and Hedgehog have raised the interest of many research groups. On the other 

hand, genes which regulate the apopototic and DNA damage response pathways, such as 
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p53, p21, pTEN, and negative regulators of the SC state like TGF-β are also considered for 

their role in inhibiting SC self-renewal (Visvader and Lindeman 2008) (Figure 2-5).  

 

Figure 2-5: CSC specific signaling cascades: Notch, Wnt, PTEN, Hedgehog pathways are depicted. 

(Templeton, Miyamoto et al. 2014) ©Stem Cell Investigation. 

 

The Notch receptor family is part of signaling pathways involved in the regulation of the 

fate of cells in a variety of tissues and is fundamental in the development of the embryo. In 

the mammary gland, while Notch1 and 3 are expressed in luminal committed progenitors, 

Notch4 expression is higher in bipotent MaSCs and significantly down-regulated upon 

differentiation along the luminal and myoepithelial lineages (Liu, Dontu et al. 2005). 

Transgenic mice harboring a constitutively active Notch4 (MMTV-Int3) exhibited 

impaired mammary gland development and grew poorly differentiated adenocarcinomas 

(Uyttendaele, Marazzi et al. 1996). The same tumorigenic effects on the mammary gland 

were also observed for over-activation of both Notch1 and Notch3 (Hu, Dievart et al. 

2006). Furthermore, high levels of Notch1 and Notch3 were correlated with poor prognosis 

in breast cancer patients (Reedijk, Odorcic et al. 2005). All together these findings 



Introduction	  

 18 

highlight that abnormal Notch expression is linked to breast carcinogenesis through the 

deregulation of normal mammary stem cell self-renewal. 

Wnt signaling is another very well studied pathway for its involvement in SCs, 

development and tumorigenesis. The canonical Wnt pathway has its main downstream 

effect in the stabilization of β-catenin in the nucleus, which, together with the transcription 

co-factors TCF/LEF, initiates the transcription of target genes essential for normal 

mammary gland development. Notably, it was shown that the adult mammary gland 

contain a Wnt-responsive cell population that is enriched for stem cells and that Wnt 

constitutive signaling expands this cell population (Zeng and Nusse 2010). The role of Wnt 

in tumorigenesis is being also widely studied in many different cancers. As regards breast 

carcinogenesis, the MMTV-Wnt1 mouse model develops tumors with 50% penetrance and 

6 months latency (Li, Hively et al. 2000) and presents increased number of MaSCs, which 

were shown to be radio-resistant (Diehn, Cho et al. 2009). Furthermore, it was reported 

that the active form of β-catenin is over-expressed in breast cancer (Visvader and 

Lindeman 2008). 

All together the above examples confirm that an aberrant regulation of SC self-renewal 

triggers tumor development and progression. 

A way to avoid any potential toxicity to normal SCs, since the above-mentioned 

mechanisms are shared with them, is to target mutations that are active only in CSCs.  

There have been several attempts to apply this concept, mainly in hematopoietic 

malignancies. For example, deletion of the PI-3 kinase pathway regulator Pten, combined 

with targeting of the mTOR pathway by rapamycin, led to the selective elimination of 

LSCs without affecting the survival and the function of normal HSC, which were instead 

impaired upon depletion of Pten alone (Yilmaz, Valdez et al. 2006). In addition, therapies 

against surface markers exclusively exhibited by CSCs have been tried. Monoclonal 
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antibodies against CD44, IL-3R, CD47 and the immunoglobulin mucin Tim-3 have been 

developed and utilized to specifically target LSCs in human AML (Chen, Huang et al. 

2013). Targeting CD44, in particular, might be a good candidate therapy also for CSCs in 

solid cancers, as normal HSCs do not seem to use this molecule for their adhesion 

signaling (Jin, Hope et al. 2006).  

These observations suggest that a CSC based anticancer approach should be selectively 

targeting mechanisms of tumor propagation.  

 

2.3.2 P53	  role	  in	  CSCs	  

 

The tumor suppressor p53 is unequivocally one of the most crucial genes for cancer.  

Inactivation of its function is a very common event as it happens in more than 50% of all 

sporadic human tumors (Vousden and Prives 2009). During tumor development, a 

mutational event in the p53 gene is usually followed by loss of heterozygosity, which 

results in the complete loss of p53 function. Depending on the tumor type, p53 deficiency 

is involved in the initiation or progression of cancer and it is frequently associated with 

higher tumor aggressiveness (Miller, Smeds et al. 2005). In breast cancer, inactivation of 

p53 is present in around 80% of basal-like tumors, the most malignant and undifferentiated 

subtype (Cancer Genome Atlas 2012, Curtis, Shah et al. 2012), and several reports indicate 

that p53 loss is correlated with the acquisition of a SC transcriptional signature and SC-like 

phenotypes (Spike and Wahl 2011).  

The tumor suppressive function of p53 has been historically associated with its role in 

hindering the cell cycle, through induction of apoptosis and senescence in response to a 

plethora of diverse stresses: DNA damage, hyperproliferative signals, oxidative stress, 

hypoxia, just to mention a few. In the presence of these stimuli, p53 is stabilized by the 
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displacement from the E3-ubiquitin ligases that control its levels (Mdm2, mainly, and 

Mdm4) and consequently activated. However, more recently, p53 tumor suppressive role 

has been involved in many additional biological processes including SC-related functions 

(Vousden and Prives 2009) (Figure 2-6).  

 

 

Figure 2-6: Pleiotropic nature of p53 functions in a) somatic and b) SC compartments. (Bonizzi, 

Cicalese et al. 2012) ©TRENDS in Molecular Medicine 

 

P53, in fact, acts as a negative regulator of SC self-renewal at multiple levels. First of all, 

p53 maintains the quiescent pool of HSCs, preventing their exhaustion (Liu, Elf et al. 

2009) and its loss has been shown to induce severe impairment of self-renewal in 

hematopoietic progenitors, thus facilitating AML development (Zhao, Zuber et al. 2010). 

Furthermore, a key evidence supporting this role comes from the fact that p53 can inhibit 

reprogramming of differentiated somatic cells into induced pluripotent stem cells (iPSCs) 

(Hong, Takahashi et al. 2009). This is achieved both through p21-dependent cell cycle 

arrest and through trans-activation of miR-34a and miR-145, which negatively regulate 

essential pluripotency genes (Bieging, Mello et al. 2014). Conversely, a recent study in 

liver cancer has shown that p53 loss contributes to tumorigenesis by favoring de-
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differentiation of adult hepatocytes into early progenitor cells, endowed with CSCs 

potential to give rise to hepatocellular carcinomas (Tschaharganeh, Xue et al. 2014).  

Indeed, it is becoming more and more evident that certain tumor cells have the ability to 

reversibly transit among states with different competence in tumor sustainment, a 

biological property that goes under the definition of cancer plasticity. In breast cancer, for 

example, tumor cells can switch from epithelial to mesenchymal functional specializations, 

a process called epithelial to mesenchymal transition (EMT) which also occurs 

physiologically during organism development or wound healing, with the cells in the 

mesenchymal state appearing more capable of forming tumors (Mani, Guo et al. 2008).  

In details, the expression of a certain set of genes in epithelial cells promotes the 

disassembling of cell-to-cell junctions and endows them with a mesenchymal, migratory 

phenotype. Many transcription factors promote EMT, among them the Snail, Twist and 

Zeb families, and, importantly, their activity seems to be orchestrated by p53. For example, 

p53 indirectly inhibits the expression of Snail, Zeb1 and Bmi1 by trans activating 

regulatory miRNAs (Bieging, Mello et al. 2014). In the work of Mani and colleagues, the 

induction of EMT in immortalized human mammary epithelial cells by the ectopic 

expression of snail or twist leads to the formation of cells with CSC characteristics. Also, 

markers of EMT were found to be expressed by CD24-/CD44+ cells in human breast 

cancer (Mani, Guo et al. 2008). Thus, there is increasing evidence that more differentiated 

cells can undergo phenotypical changes that allow them to acquire CSC specific features. 

This process has the direct consequence of expanding the pool of CSC. 

 

Furthermore, a role for p53 in the regulation of the balance between SC symmetric and 

asymmetric division has been demonstrated. The mode of division of SCs is a key issue in 

SC biology and one of the critical features that allows them to sustain tissue homeostasis 
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and tissue specialization. Indeed, unlike more specialized cells, SCs have the ability to 

undergo both symmetric and asymmetric cell division, generating daughter cells that are 

either both endowed with the same properties of the mother or that are distinct in terms of 

their cell-fate. Under physiological conditions, the ratio between symmetric and 

asymmetric division is tightly regulated in order to maintain the balance between SC self-

renewal and differentiation. When the choice between symmetry and asymmetry is 

uncontrolled, the consequences for development and disease are huge, inducing disruption 

of organ morphogenesis or leading to malignant transformation. This was demonstrated for 

the first time in Drosophila through genetic screens that showed how the mutagenesis of 

critical players of the asymmetric cell division (ACD), such as Brat, triggered the 

formation of brain tumors upon transplantation (Betschinger, Mechtler et al. 2006). 

Our group showed that, in a murine model of breast cancer driven by the mutated form of 

the erbB2 gene, the increased frequency of symmetric divisions in CSCs, compared to their 

normal counterparts, is the underlying mechanism of CSC expansion, as seen by sphere 

forming assay and in vivo sustainment of the cancer clone. In this work, Cicalese and 

colleagues reported that the switch towards symmetric self-renewal was instructed, at the 

molecular level, by p53 loss; indeed, by restoring p53 function, asymmetric cell division in 

the CSCs was re-established, leading to a reduced frequency of tumor formation (Cicalese, 

Bonizzi et al. 2009). Other reports confirmed the role of p53 (and its downstream effectors) 

in regulating asymmetry in neural progenitors (Sugiarto, Persson et al. 2011) and in colon 

cancer cultures, through the asymmetric segregation of miR-34a, a p53 target micro-RNA 

(miRNA), whose role is to promote differentiation in one of the daughter cells (Bu, Chen 

et al. 2013). Therefore, it appears clear that increased symmetric renewal could be the basis 

of the differentiation arrest and clone expansion that are inherent to cancer progression. 
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All together these findings highlight the importance of a negative regulation of “stemness” 

as part of the tumor suppressive program orchestrated by p53. Indeed the expansion of the 

CSC compartment could be one of the driving forces for tumor development and 

maintenance.  Nevertheless, the downstream pathways and effectors that are crucial for the 

execution of this program remain largely unknown.   

 

2.4 Myc	  at	  the	  crossroad	  of	  SC	  biology	  and	  cancer	  

 

The product of the oncogene c-myc belongs to Myc family of transcription factors, which 

also includes N-Myc and L-Myc. This family contains basic helix-loop-helix (bHLHZ) 

domains that mediate the interaction with target DNA. Endowed with a very pleiotropic 

nature, Myc coordinates an impressive number of biological functions due to its ability to 

act as a i) transcriptional activator through its hetero-dimerization with Max, ii) 

transcriptional repressor, through its interaction with Miz1, and iii) chromatin remodeler 

(Amati, Frank et al. 2001). Myc is at the center of an intricate network of growth-

promoting signals and it is activated downstream of many different ligand-dependent 

stimuli. Its expression in normal cells is highly regulated by a number of mechanisms at 

the transcriptional and post-transcriptional level (Dang 2012). The transcriptional program 

instructed by Myc touches many biological processes, such as cell proliferation, DNA 

replication, metabolic shifts, stemness, differentiation, and apoptosis, which, once de-

regulated, constitute many of the “hallmarks of cancer” (Hanahan and Weinberg 2011). 

Therefore, it is not surprising that Myc aberrant activity is often linked to malignant 

transformation. 
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2.4.1 Myc	  in	  the	  maintenance	  of	  SC	  self-‐renewal	  

 

Among its functions, the role of Myc in SC biology is one of the most intense areas of 

study, as it constitutes the paradigm for the multiple aspects of its biological activity.  

Myc plays a critical role both at the stage of organism development and in adult tissues by 

regulating the cell fate of stem and progenitor cells. In Drosophila neuroblasts, cell cycle 

exit and subsequent differentiation of one of the daughter cells generated by ACD is 

mediated by the Brat gene, that exerts this function by negatively regulating Drosophila 

Myc (dMyc) (Betschinger, Mechtler et al. 2006).  

Similar observations have also been made in mammalian SCs. Myc is required for 

embryogenesis as knock-out of both c-Myc and N-Myc results in early lethality of mice 

embryos, thus proving that Myc is essential in ESC pluripotency and self-renewal 

(Varlakhanova, Cotterman et al. 2010). Accordingly, it has been demonstrated that ectopic 

expression of Myc inhibits the differentiation of ESCs; indeed, constitutive expression of a 

mutant form of Myc (T58A, which is not degraded by Fbw7 ubiquitin ligase) maintains 

ESC self-renewal and pluripotency even in the absence of leukemia inhibitory factor (LIF) 

in the growing media. In contrast, inhibition of Myc induces ESC differentiation 

(Cartwright, McLean et al. 2005). Furthermore, it is possible to recognize a distinct 

signature of Myc-dependent targets within the set of genes expressed in ESCs (Kim, Chu 

et al. 2008); notably, this set of genes was found to correlate with human cancer signatures 

(Kim, Woo et al. 2010) (Figure 2-7). 
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Figure 2-7: Myc-dependent network is a feature of ESCs and is highly activated in cancer. (Kim, Woo 

et al. 2010) Copyright © 2010 Elsevier Inc. All rights reserved. 

 

These data are coherent with the fact that Myc has a fundamental role in somatic cell 

reprogramming together with other three transcription factors (TFs): Oct4, Sox2, Klf4 (all 

together under the name of OSKM) (Takahashi and Yamanaka 2006). Although several 

studies demonstrated that Myc is not absolutely required for iPSC generation, its presence 

increases the speed and the efficiency of the process. Indeed, for specific cell types 

harboring high levels of Myc expression (like neural progenitors and keratinocytes), Myc 

is completely dispensable from the “reprogramming cocktail” (Singh and Dalton 2009). It 

seems plausible that Myc aids reprogramming by maintaining the cells in a highly 

proliferative state, which is a characteristic of pluripotent cells (Singh and Dalton 2009). In 

addition, given that Myc-binding to promoter regions of target genes is associated with 

open chromatin marks and is correlated with the amount of RNA polymerase recruited, 

recent reports suggest that OSK factors might act as “pioneers” to enable binding of Myc 

to regions of inaccessible chromatin. At the same time, Myc might facilitate the initial 

binding of OSK factors to chromatin through a cooperative mechanism (Soufi, Donahue et 

al. 2012, Buganim, Faddah et al. 2013).  
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The role that Myc holds in ESC pluripotency and its effects on differentiation is 

maintained in adult SCs. The study of Myc in tissue SCs has revealed, however, a more 

blurred situation: depending on the cell context, Myc can enhance self-renewal and inhibit 

differentiation, or promote terminal commitment. For example, in the skin, ectopic 

expression of Myc, under the control of the SC-specific promoter K14, induces long-term 

depletion of SCs, due to increased rate of proliferation and accumulation of differentiated 

cells in the adjacent layers of the epidermis (Watt, Frye et al. 2008). In the hematopoietic 

system, depletion of Myc impedes the mobilization of HSCs from their niche causing their 

accumulation, an event that leads to concomitant loss of all the differentiated progeny. 

Interestingly, the depletion of Myc does not affect the dormant pool of HSCs, indicating 

that the dependence of cells on Myc varies according to the cell-cycle status (Wilson, 

Murphy et al. 2004, Laurenti, Varnum-Finney et al. 2008). As far as more differentiated 

progenitors are concerned, Myc overexpression confers on them higher self-renewal 

capacities; this is what happens, for example, in late-stage neural SCs, where this effect of 

Myc is exerted by its co-regulator Miz-1 (Kerosuo, Piltti et al. 2008). In line with this, it 

was reported that enforced Myc expression in an immortalized human breast line drives 

EMT through the induction of the GSK-3β/Snail signaling pathway (Cho, Cho et al. 2010), 

thus remarking the importance of Myc in reprogramming cell fates also in adult tissues.  

The essential role of Myc in SCs was also characterized in the mammary gland. 

Conditional deletion of Myc in the basal compartment impairs SC self-renewal, as assessed 

by limiting dilution transplantation and mammosphere assays, and consequently disrupts 

differentiation into the luminal and myoepithelial lineages (Moumen, Chiche et al. 2012). 

Taken together these data highlight the importance of Myc in cell fate determination as 

well as the strong dependency of its function on the cellular context. Therefore, it clearly 

emerges that a careful regulation of Myc levels is needed by each cell type to properly 
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function, according to its replicative potential and grade of specialization; however, 

additional studies are required to provide a richer mechanistic understanding. 

 

2.4.2 Upstream	  of	  Myc	  

 

The regulation of Myc expression is a very complex area of study; indeed, many pathways 

and TFs converge into Myc signaling. The transcriptional regulation of the c-myc promoter 

itself is extremely challenging, with a lot of redundancy, many feedback loops, and several 

cross-‐‑regulatory circuits involved (Wierstra and Alves 2008). Indeed, besides the 

regulation acted by a number of TFs, it has been proposed that a number of unconventional 

DNA-binding proteins recognizing non–B DNAs structures, including single-stranded 

bubbles, G-quadruplexes, and Z-DNA, also regulate c-myc (Levens 2010). 

As mentioned, numerous are the TFs that have the ability to bind and regulate the c-myc 

promoter and subsequently drive a plethora of different cell responses. Few examples 

include: TCF, whose role downstream of the Wnt pathway is important for embryonic 

development, proliferation and adult SC self-renewal (Dang 2012); TGF-β, one of the most 

important cytostatic stimulator that represses the c-‐‑myc promoter through its downstream 

effectors Smad3/4; STAT3, a mediator of cell proliferation and survival that participates in 

cellular transformation and tumorigenesis; the NF-‐‑κB/Rel family, that orchestrates 

inflammatory and immune responses and regulates cell proliferation, survival, and 

differentiation; AP-1 with c-Fos/Jun, E2F. Furthermore, Notch, Hedgehog and many other 

cell fate regulators pathways converge into Myc regulation (Wierstra and Alves 2008). 

Myc itself regulates its own expression at the transcriptional level in a concentration 
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dependent manner; this represents a fundamental homeostatic mechanism of protection for 

normal cells that is lost in many transformed cell lines (Wierstra and Alves 2008).  

A fine control over Myc levels takes also place at the post-transcriptional level. For 

example, the Ras-driven pathway induces phosphorylation on Ser62, stabilizing the Myc 

protein, and at the same time inhibits the phosphorylation, by GSK-3β, of the Thr58 

residue. This last modification is recognized by the Fbw7 E3 ubiquitin ligase that binds 

Myc for proteasomal degradation (Welcker and Clurman 2008). Furthermore, other 

ubiquitin ligases contribute to the regulation of Myc half-life; among them, the murine Brat 

orthologue Trim32 is asymmetrically distributed during the ACD of neural SCs and 

becomes up-regulated during neuronal differentiation, thus enhancing the ubiquitin-

mediated degradation of Myc in the differentiating cells (Schwamborn, Berezikov et al. 

2009, Izumi and Kaneko 2014). The ubiquitin-proteasome system (UPS) is not the only 

mechanism involved as many miRNAs, such as let-7, miR-34, and miR45, are known to 

target and degrade Myc transcripts (Dang 2012).  

Therefore, it emerges that vigilant control of Myc levels is crucial for normal cells, as 

disruption of any of the regulatory mechanisms leads to pre-transformed phenotypes. 

Notably, most of the regulators of Myc activity are likely involved in the CSC specific 

mechanisms that we have described earlier. 

Among the upstream regulator of Myc there is also p53: simultaneous inactivation of p53 

and PTEN in neural SCs is accompanied by over-expression of Myc and its associated 

signature, and results in increased self-renewal and the promotion of an undifferentiated 

state that is one of the underlying traits of human glioblastoma (GBM) (Zheng, Ying et al. 

2008). These findings are concordant with observations that describe a role for p53 in the 

repression of Myc expression and which is achieved by direct binding of p53 to the Myc 
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promoter (Ho, Ma et al. 2005), or to distal regulatory elements (Li, He et al. 2012), or by 

means of intermediate regulatory miRNAs (Sachdeva, Zhu et al. 2009). 

 

2.4.3 Myc	  activation	  in	  cancer	  

 

Our brief overview emphasizes how the de-regulation of Myc in a permissive epigenetic 

and genetic cellular context allows overcoming the checkpoint mechanisms and leads to 

the establishment, in the cell, of many of the “hallmarks of cancer”. A de-regulated Myc 

drives proliferation, high rate of DNA replication and transcription, altered cellular 

metabolism, increased protein synthesis, changes in the tissue microenvironment, supports 

stemness, and blocks senescence and differentiation. Each of these processes is associated 

with tumor growth and maintenance (Gabay, Li et al. 2014). The most common events that 

could results in Myc de-regulation are: genetic amplification, chromosomal translocation 

and constitutive activation/repression of the upstream regulatory signaling.  

In breast cancer, Myc genetic amplification takes place in 22% of the cases reported in the 

Cancer Genome Atlas (TCGA) dataset (Cancer Genome Atlas 2012), while chromosomal 

translocation involving the myc locus has not been reported in breast cancer. Genetic 

amplification has been associated with higher risk of relapse and death by invasive 

metastasis and it seems to be an event correlated with other genetic predispositions: indeed, 

Myc amplification is found in 53% of tumors harboring Brca1 mutation (Xu, Chen et al. 

2010).  

Beside genetic amplification, the frequency of patients showing high levels of Myc, most 

likely due to the disruption of upstream regulatory mechanisms, is very high, but variable 

depending on the cancer subtype. Early studies on small cohorts of patients reported that 

Myc over-expression is associated with basal-like breast tumors (Sotiriou, Neo et al. 2003). 
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The basal-like breast cancer is the most challenging of the breast cancer subtypes: it 

histologically derives from the basal compartment of the normal mammary epithelia (the 

one that putatively contains SCs). It is negative for the expression of estrogen, 

progesterone and Her2 receptors; it shows an early stage onset and a strong tendency to 

metastasize, and currently there are no therapeutic options for targeted pharmacological 

treatment. In line with the data of over-expression, a Myc-dependent gene signature, which 

is included in a larger set of ESC specific genes, was reported to positively correlate with 

basal-like or ER negative breast tumors, with shorter interval to metastasis, and, generally, 

with poorer prognosis (Kim, Woo et al. 2010).  

Therefore, like for the loss of p53, a role in the progression and sustainment of the less 

well-differentiated tumors, through the maintenance of a SC-like state, also emerges for 

Myc. In line with this, in Burkitt’s lymphomas and hepatocellular carcinomas, it has been 

shown that inhibition of Myc causes tumor regression by restoring the physiological 

program of cellular differentiation (Karlsson, Giuriato et al. 2003, Shachaf, Kopelman et 

al. 2004), thus strengthening the concept that de-regulation of Myc favors tumor 

progression by enhancing self-renewal and inhibiting differentiation. Considering the role 

of both Myc and p53 in somatic cell reprogramming, it is plausible to hypothesize that they 

could be involved in tumor progression by promoting the formation of cancer cells that 

retain developmental plasticity. 
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3 Materials	  and	  Methods	  

 

3.1 Animal	  Manipulation	  

3.1.1 Animal	  Models	  

 

MMTV-ErbB2 transgenic mice were in the FVB background (Muller, Sinn et al. 1988). 

P53-/- and p53+/- mice were in the C57/BL6J background (back-crossed in our group 

starting from a 129sv background). Rosa26-MycER transgenic mice were in C57/BL6J 

background (Murphy, Junttila et al. 2008), kindly provided by B. Amati’s group 

(Department of Experimental Oncology, European Institute of Oncology). As controls we 

used mice of the same strain, negative for the presence of the transgene (called wild type 

(WT) Rosa26-MycER). Transgenic mice expressing the green fluorescent protein (GFP) 

(Hadjantonakis, Gertsenstein et al. 1998), employed for serial transplantation experiments 

were in FVB background. All the experiments with WT mammospheres were carried out 

in samples derived from FVB WT mice. 

 

3.1.2 4-‐Hydroxy-‐Tamoxifen	  (4-‐OHT)	  administration	  in	  vivo	  

 

WT C57/BL6J mice were tested for tolerability of long-term administration of 4-OHT and 

its effects on the mammary gland tissue. 3 week-old and 8 week-old mice were fed with 

Tamoxifen- containing diet or standard diet for 14 days, then they were sacrificed and their 
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mammary glands digested and analyzed at FACS for the expression of epithelial SC 

markers. Tamoxifen- containing food was purchased from Harlan (TD. 130859) and, 

according to manufacturer instructions, provided ~40 mg tamoxifen per kg body weight 

per day assuming 20-25 g body weight and 3-4 g intake.  

 

3.1.3 Nutlin-‐3	  treatment	  in	  vivo	  

   

Nutlin-3 for in vivo studies was purchased from Sigma Aldrich. FVB mice transplanted 

with tumor cells infected with either empty vector or MycER vector were treated with 

Nutlin-3 (20 mg/kg body weight) or DMSO (both diluted 1:1 with PBS) for two weeks by 

intra-peritoneal (IP) injection once every two days. Mice were sacrificed immediately after 

treatment to evaluate the effect o Nutlin-3 on tumor growth. 

 

3.1.4 Transplantation	  Experiments	  

 

For mammary gland reconstitution assays, the sample material to be injected (dissociated 

mammospheres, PKHneg cell subset) was collected; cells were counted and resuspended in 

PBS at the appropriate cell density in 25 µL of final volume per injection. 3 week-old 

female FVB mice were anaesthetized with 2.5% Avertin in PBS (100% avertin: 10 g of 

tribromoethanol, Sigma, in 10 ml of tertamyl alcohol, Sigma) and the fat-pad of their 

inguinal mammary gland was depleted of the endogenous epithelium. At 3 weeks of age 

the mammary epithelial tree has not undergone the puberty-driven development that results 

in the penetration of the fat pad, and can be easily removed by surgical cut of the area 
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spanning from the nipple to the lymph node, leaving the fat-pad clear for the injection of 

exogenous cells.  

For the injection of tumor cells (infected in vitro with MycER or the corresponding empty 

vector) we used 8 week-old virgin mice and no clearing of the fat pad was performed. 

200,000 cells were injected orthotopically in one inguinal mammary gland per mouse and 

almost 100% of mice developed secondary tumors with a latency of 40-50 days. 

 

3.1.5 Carmine	  Alum	  Whole	  Mount	  staining	  

 

Transplanted mammary glands were stretched out onto slides and fixed overnight in 4% 

formaldehyde. Slides were washed twice in distilled water for 10 minutes and then stained 

overnight at room temperature with Carmine Alum solution (0.2% carmine, 0.5% 

aluminium potassium sulfate in water, Sigma). De-staining was performed in 70% ethanol 

for 30 minutes, followed by two 30 minutes washes in 95% and 100% ethanol. Finally, 

samples were soaked in a 1:2 solution of benzylalcohol/benzylbenzoate (Sigma) until the 

fat pad color clarified. For immunohistochemistry (IHC) analyses, glands were re-hydrated 

through alcohol gradient (100% - 95% - 70%) and stored for paraffin embedding.  

 

3.1.6 Evaluation	  of	  positive	  transplants	  and	  statistical	  analysis	  

 

For the evaluation of positive outgrowths, the fat pads were collected ~12 weeks after 

transplantation, stained with Carmine Alum and analyzed as previously reported (DeOme, 

Faulkin et al. 1959). Briefly, fat pads were scored as negative for outgrowths if no 

epithelial structures could be observed. In some cases, endogenous epithelial re-growth 
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was scored. This is defined as an epithelial ductal network in which the majority of ductal 

branching had the same direction and had grown in from the cut edge of the cleared fat 

pad; in those cases the transplants were excluded from the statistics. The outgrowths were 

scored as positive if the ductal branching had originated from a central region of the 

cleared fad pad and the directionality of the ductal branching was variable in different parts 

of the fat pad. The presence of TEBs in the outgrowths was also a hallmark of exogenous 

epithelial growth.  

Limiting dilution analysis was performed using the Extreme Limiting Dilution Analysis 

(ELDA) web tool (http://bioinf.wehi.edu.au/software/elda/) (Hu and Smyth 2009). ELDA 

computes a 95% confidence interval for the active cell frequency in each population group. 

One-sided confidence intervals are developed for stem cell frequency for subpopulations 

that produce 0% or 100% positive outgrowths. Furthermore, ELDA implements a 

likelihood ratio test for the acceptance of the single-hit hypothesis, which guarantees 

greater power and much improved performance in small samples as compared to a t-

statistic approach. ELDA also computes an overall test for differences between the 

population groups, analogous to a one-way ANOVA test.  

 

3.1.7 Preparation	  of	  paraffin	  sections	  	  

 

For the preparation of paraffin-embedded sections: hydrated whole- mounted tissues were 

sequentially treated for 1 hour at room temperature with 70%, 80%, 95% ethanol, three 

times with 100% ethanol, twice with xylene and twice for two hours at 58°C with paraffin. 

The specimens were then embedded in paraffin and sectioned with a microtome at 5µm 

thickness. Slides were stained with haematoxylin-eosin for histological analysis or stained 

by IHC.  
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3.1.8 Immunohistochemistry	  

 

Paraffin sections were de-paraffinized with histolemon (Carlo Erba) for 10 minutes twice 

and hydrated through graded alcohol series (100%, 95%, 70% ethanol and water) for 5 

minutes each. Antigen unmasking was performed in boiling citrate buffer (10mM sodium 

citrate, 0.05% tween20, pH 6.0) for 30 to 50 minutes, followed by incubation with 3% 

hydrogen peroxide in distilled water for 10 minutes at room temperature. Slides were 

subsequently pre-incubated with an antibody mixture (2% BSA, 5% FBS, 0.02% Tween20 

in TBS) for 20 minutes at room temperature and then stained with primary antibody 

overnight at 4°C. After two washes with TBS slides were incubated with a secondary 

antibody (DAKO Envision system HRP rabbit or mouse) for 30 minutes at room 

temperature and washed twice again in TBS. The sections were subsequently incubated in 

peroxidase substrate solution (DAB DAKO) for 2 to 10 minutes, rinsed in water, 

counterstained with hematoxylin for 30 seconds, dehydrated through graded alcohol series 

(water and 70%, 95%, 100% ethanol) for 5 minutes each and ultimately mounted with 

Eukitt (Kindler GmbH). All primary antibodies and their relative concentrations used in 

this study are listed in Table 3-1.  

 

Antibody Clone Company Concentration 
Rabbit anti-Cytokeratin 14 (K14)  Covance; PRB-155P 1:500 
Mouse anti-Cytokeratin 18 (K18) Ks18.04 Progen; 61424 1:20 
Rabbit anti-KI67  Thermo Scientific; RM-9106-S 1:200 
Rabbit anti-βcasein  Santa Cruz Biotech.; sc30042 1:500 
Rabbit anti-GFP  Abcam; ab6556-25 1:500 
Table 3-1: List of antibodies and conditions used for IHC analysis. 
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A subset of samples was examined for detailed histopathological analysis. To assess the 

extent of the mammary epithelium in each examined sample, the area (µm2) occupied by 

mammary epithelium and the % Area = area occupied by epithelium/total area of field at 

100x * 100) were evaluated in hematoxylin-eosin (HE) stained sections using the ImageJ 

1.47v analysis program (imagej.nih.gov/ij/) in 4 100x microscopic fields selected in the 

areas with the highest amount of mammary epithelium (hot spots).  

To assess the extent of the proliferative activity, the number of Ki67-positive and Ki67- 

negative cells were counted using the ImageJ analysis program in 400x microscopic fields 

centered on mammary epithelial structures. The Ki67 index was then calculated as: nr. of 

positive cells divided by nr. of total cells.  

  

3.2 Cell	  culture	  

3.2.1 Isolation	  of	  mouse	  mammary	  epithelial	  cells	  

 

The inguinal and axillar normal mammary glands were collected from 6-10 week-old 

virgin WT, Rosa26-MycER transgenic heterozygous mice, or p53-/- and p53+/- mice. 

Tumors derived from MMTV-ErbB2 transgenic mice were collected at the time of their 

appearance (tumor latency: 12 to 16 weeks after birth). Mammary tissues were 

mechanically dissected into small pieces with scissors, and enzymatically digested with the 

following digestion mixture: Dulbecco’s modified Eagle’s medium (DMEM, 

BioWhittaker), 2 mM glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin, 

supplemented with 200 U/ml collagenase (Sigma) and 100 U/ml hyaluronidase (Sigma) on 

rotating wheel for 2-3 hours at 37°C in a humid atmosphere containing 5% CO2. When the 

digestion was complete, the cell suspensions were centrifuged at 600 rpm for 5 minutes 
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and then resuspendend in PBS and filtered through 100, 70 and 40 µm cell strainers to 

eliminate cell aggregates.	  Red blood cells were lysed with ACK lysis buffer (Lonza) for 2 

minutes in ice. Cell suspension depleted of red blood cells was washed in cold PBS and 

plated to obtain mammospheres, stained with the PKH26 fluorescent dye or used for 

growth assays.  

 

3.2.2 FACS	  analysis	  of	  epithelial	  cell	  sub-‐populations	  

 

Single cells isolated from the mammary tissue were mixed with digested organoids. 

Organoids were derived from the collection of aggregates that did not pass through each of 

the cell strainer used. This material was further digested with trypsin/EDTA (Lonza), 

dispase (5U/mL, Stem Cell Technologies) and DNase (1mg/ml, Stem Cell Technologies). 

Inactivation of the enzymes was performed with cold PBS supplemented with 2% FBS. 

The cell suspension of single cells and digested organoids was blocked in BSA 10% and 

then stained for mammary stem cell markers as listed below:  

- Lineage cocktail (Lin-): anti-CD45 (eBioscience, clone RA3-6B2); ant-Ter119 

(eBioscience, clone Ter119); anti-CD31 (eBioscience, clone 390); all PE-Cy7 

conjugated (1:300) 

- Anti-CD49f (eBioscience, clone GoH3) eFluor®450 conjugated (1:100) 

- Anti-CD61 (eBioscience, clone 2C9.C3) PE conjugated (1:40) 

- Anti-EpCAm (eBioscience, clone G8.8) APC conjugated (1:200). 

In selected experiments, Lin- cells were isolated by column-based negative selection that 

was performed through the EasySep™ Mouse Epithelial Cell Enrichment Kit (Stem Cell 

Technologies). 



Materials	  and	  Methods	  

 38 

Samples were acquired at FACS Canto II (BD bioscience) and analyzed with FlowJo 9.3-2 

analysis software. 

 

3.2.3 Mammosphere	  culture	  

 

Primary mammary cells were plated onto ultralow attachment 6-well plates (Falcon) at a 

density of 200,000 viable cell/mL (to obtain primary mammospheres) in a serum-free 

mammary epithelial basal medium (MEBM, BioWhittaker), supplemented with 2 mM 

glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin, 5 µg/ml insulin, 0.5 µg/ml 

hydrocortisone, 2% B27 (Invitrogen), 20 ng/ml EGF and βFGF (Peprotech), and 4 µg/ml 

heparin (Sigma) and cultured at 37°C in 5% CO2. In these conditions mammary epithelial 

cells grow as clonal colonies called mammospheres (Dontu, Abdallah et al. 2003) that 

reach their maximum size in 5-6 days. After 7 days of culture, primary mammospheres 

(obtained from freshly isolated mammary cells) were dissociated mechanically using a 

Gilson® pipette with filtered tips and re-plated to obtain secondary mammospheres at a 

density of 20,000 cells/ml in 6-well low-adhesion plates. The same procedure was repeated 

at each passage.  

 

3.2.4 Mammosphere	  growth	  curves	  

 

For the modelling of mammosphere growth curves, primary mammospheres were 

dissociated mechanically and re-plated (at 20,000 cells/ml) to obtain secondary 

mammospheres in 6-well low-adhesion plates coated with poly-HEMA (Sigma). After 7 

days, the newly formed mammospheres were counted, collected and manually dissociated 
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by pipetting. At each passage, the number of retrieved mammospheres reflects the number 

of mammosphere initiating cells present in the original culture and the number of cells 

counted after dissociation allows for the evaluation of the number of cells per sphere that 

was formed. At each passage spheres were enumerated using digital image analysis 

(Imagej; object threshold 100 microns). Cumulative sphere and cell curves were calculated 

based on the ratio between plated spheres and obtained spheres and cells respectively. The 

number of plated spheres was derived from the total number of cells divided by the size of 

the mammospheres (nr. of cells / nr. of spheres) over the passages, under the assumption 

that the average mammosphere size in a culture does not change (Cicalese, Bonizzi et al. 

2009).  

The cumulative curves were plotted in a semi-logarithmic scale and they approximated an 

exponential curve, as expected for a cell population that grows or dies with a constant rate 

during the time. Growth rates (GRs) were evaluated as the slope of the trend-line of the 

exponential curves. The exponential regression of the data resulted in the value of the 

coefficients of determination (R2), which approximate 1 in each of the measured curve, 

thus indicating the goodness of the fitting model.  

 

3.2.5 PKH26	  assay	  

 

Primary Rosa26-MycER heterozygous and WT FVB mammary cells were resuspended at 

the concentration of 10 million cells/ml and stained for 5 minutes at room temperature by 

adding an equal volume of a PKH26 mix (1:2500 PKH-26 in PBS) (Sigma, PKH26- GL), 

light protected. The cells were then washed twice with culture medium and plated to obtain 

primary mammospheres. PKH-labeled mammospheres were collected after 7 days, and 

mechanically dissociated to obtain single cell suspension. After a filtering step with a 40 
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µm cell strainer cells were subjected to FACS sorting (Influx cell sorter equipped with a 

488 nm laser and with a band pass 575/26 nm optical filter for PKH26 fluorescence 

detection, BD). The gate for PKH negative population was selected according to the basal 

fluorescence of unstained cells and usually included the 25% of the live cells. The obtained 

PKHneg cells were cultured as mammospheres, plated for growth curves in presence or 

absence of 4-OHT or infected with lentiviral vectors and used in transplantation assays.  

 

3.2.6 Viral	  Infections	  

 

293-T and Phoenix-ECO packaging cells were cultured in DMEM supplemented with 10% 

FBS, 2 mM glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin. For lentiviral 

production 293-T cells were transfected with the calcium-phosphate procedure with a 

mixture of: 2,5 µg of pRSV (Rev), 5 µg of pMDL/pRRE (gag&pol), 3 µg of pENV (VSV-

G), and 10 µg of the lentiviral vector per plate. The same procedure was applied for 

transfection of Phoenix-ECO cells for retroviral production, which were transfected with: 5 

µg of PKAT2, 10 µg of retroviral vector. 62.5 µl of 2M CaCl2 were added to the DNA mix 

and brought to a total volume of 500 µl with water. The mix was added drop-wise to 500 µl 

of 2X HBS (HEPES buffered saline: 250mM HEPES pH 7.0, 250mM NaCl and 150mM 

Na2HPO4) by bubbling. After 15 minutes of incubation, the precipitate was distributed on 

70% confluent exponentially growing cells. The medium was replaced 12-16 hours later 

with mammosphere medium deprived of EGF and FGF. Viral supernatant was collected 24 

and 48 hours after and filtered through a 0.45 µm syringe-filter. Cells from dissociated 

primary mammospheres were resuspended in viral supernatants supplemented with growth 

factors and Polybrene (4 µg/mL) to a final concentration of 50,000 cell/ml and subjected to 
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two cycles of infection in suspension (overnight and 6h). Then, the cells were plated in 

fresh mammosphere medium to obtain secondary mammospheres.  

In selected experiments, the viral supernatant was concentrated by ultra-centrifugation for 

2h at 20,000 rpm at 4°C and the viral pellet obtained was resuspended in PBS at 1000X 

concentration. The viral stock was frozen (-80°C) and subsequently used to infect target 

cells in order to achieve high multiplicity of infection (MOI). The concentrated virus was 

employed for the infection of ErbB2 primary tumor cells in adhesion prior to the injection 

in congenic recipient mice. This alternative protocol allows for shorter culture periods 

compared to the mammosphere assay. 

In this study we employed the following viral vectors (Table 3-2): 

Lenti/Retro 
virus 

Backbone Insert Reference 

Lentivirus pWPI (Addgene #12254) MycER (Littlewood, Hancock et al. 1995) 

Lentivirus pTRIPZ Omomyc (Annibali, Whitfield et al. 2014) 

Retrovirus pBABE-puro (Addgene #1764) p53ER (Vater, Bartle et al. 1996) 
Table 3-2: List of viral vectors used in this study for stable transduction. 

	  

3.2.7 Cell	  Cycle	  Analysis	  

  

Clik-iT® Plus EdU kit for flow cytometry assay was purchased from Life Technologies. 

WT FVB and MMTV-ErbB2 mammospheres were labelled each day of the culture (from 

day 1 to day 5) for 1.5 hours and stained according to the manufacturer protocol. Cells 

were then fixed in ethanol 100% for 1 hour on ice and stained with propidum iodide (PI) 

solution (final 2.5µg/mL). Cells were then incubated with RNaseA (final 0.25mg/mL) at 

4°C for a minimum of 3 hours; then, the fluorescence signal was acquired at FACS Canto 

II (BD Bioscience) and files analyzed with the FlowJo 9.3-2 analysis software. 
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3.3 Expression	  Analyses	  

3.3.1 Quantitative	  PCR	  (qPCR)	  

 

Total RNA from mammospheres was isolated using Maxwell® 16 LEV simplyRNA cells 

kit (Promega), and reverse transcribed using random primers and ImProm-II™ reverse 

transcriptase (Promega), following manufacturer instructions. Real-time RT-PCR analyses 

were done in triplicate on the Applied Biosystems 7500 Fast Real-Time PCR System with 

the fast-SYBR Green PCR kit as instructed by the manufacturer (Applied Biosystems). 

The amount of each mRNA was normalized to the amount of GusB mRNA. The genes 

whose expression was under analysis in this study and the relative primers used for their 

amplification are listed in Table 3-3: 

 

Gene name Primer FW Primer RV 

GusB GTGGGCATTGTGCTACCTC ATTTTTGTCCCGGCGAAC 

c-Myc TTTGTCTATTTGGGGACAGTGTT CATCGTCGTGGCTGTCTG 

Ncl CATGGTGAAGCTCGCAAAG TCACTATCCTCTTCCACCTCCTT 

Odc1 GCTAAGTCGACCTTGTGAGGA  AGCTGCTCATGGTTCTCGAT  

Cad GATCATCATGGGGGAGAAAG  CCAAGCGTGAGAAGGAGAAC  

P21 TCCACAGCGATATCCAGACA GGACATCACCAGGATTGGAC 

Noxa CAGAGCTACCACCTGAGTTCG TACACTTTGTCTCCGATCTTCCT 

Bax AAGCTGAGCGAGTGTCTC CCTTGAGCACCAGTTTGC 

Table 3-3: List of genes and corresponding primers used for quantitative PCR analysis. 
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3.3.2 RNAseq	  and	  statistical	  analysis	  

 

A total amount of 300,000 cells were collected for each experimental group in biological 

triplicates and RNA was extracted as described in previous section. Libraries of template 

RNA molecules suitable for subsequent sequencing were prepared from 0.5 to 2 µg high 

quality input RNA using the Illumina® TruSeq® RNA Sample Preparation Kit v2 and 

following the manufacturer instructions. Sequencing was performed on Illumina HiSeq 

2000 sequencer, read length was 50 base pairs and sequencing depth was 35 million reads 

per sample. 

FastQ files were filtered discarding low quality reads (threshold on the quality score across 

all bases= 28). Alignment of the reads was performed with TopHat 2.0.8 and HTseq-count 

algorithm was used to annotate the reads to the Mm10 reference genome (NCBI reference 

sequence database annotation) and to calculate the per gene raw counts (http://www-

huber.embl.de/users/anders/HTSeq/doc/count.html) (Anders, Pyl et al. 2015). The read 

count was normalized via Loess normalization by the DESeq2 algorithm (Anders and 

Huber 2010). DESeq is an R package to analyze count data from high-throughput 

sequencing assays such as RNASeq to test for differential expression. In details, DESeq2 

calculates the total counts in each condition, and then it performs test statistics under the 

assumption of negative binomial distribution from which it calculates the pvalue. The 

statistics is then adjusted for benjamini-hochberg correction to calculate the False 

Discovery Rate (FDR or qvalue). The final step of the DESeq algorithm calculates the log2 

fold change between the two samples under comparison. Additionally a filter on the 

average low represented genes in terms of read count (cutoff = 10) is applied. The 

differentially expressed genes (DEGs) were obtained, as such, from pairwise confrontation 

of the selected sample and its relative control.  
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For the Gene Set Enrichment Analysis (GSEA, 

http://www.broadinstitute.org/gsea/index.jsp) we applied a filter on the q value setting the 

threshold as lower or equal to 0.01. The analysis was performed on GSEA v2.2.0 platform 

running the 5,618 ranked DEGs of the MycER list on the GSEA pre-ranked tool. As gene 

sets to overlap and calculate the normalized enrichment score (NES) we used the DEGs of 

selected experimental groups (ErbB2, p53-/- and ErbB2+Nutlin) subdivided in UP and 

DOWN regulated lists. P-values of GSEA were calculated by performing 1.000 random 

permutations of gene labels to create ES null distribution. 

Pathway and Gene Ontology analyses were performed by overlap of our gene set with the 

Molecular signature database (MSigDB v5.0) on the GSEA website 

(www.broadinstitute.org/gsea). 

 

3.3.3 Immunofluorescence	  

 

Cells from dissociated mammospheres were fixed in suspension with 2% formaldehyde for 

5 minutes at room temperature, washed three times in PBS and plated onto poly-lysinated 

coverslips, where they were let adhere O/N at 4°C. Cells were then permeabilized for 10 

minutes with 0.1% Triton-X100 in PBS at room temperature, washed three times in PBS 

and blocked with donkey serum (blocking solution) for 45 minutes. Staining with primary 

antibodies was performed in a humid chamber for 1 hour at room temperature and 

followed by three washes in PBS. Coverslips were then stained with secondary antibodies 

for 30 minutes at room temperature, washed three times in PBS, counterstained with DAPI 

and mounted with mowiol. Samples were analysed under an UpRight BX61 (Olympus) 

fluorescence microscope with a 60X/1.35 oil objective (Olympus). Acquired images were 

analyzed through MetaMorph® Microscopy Automation & Image Analysis Software 
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(Molecular Devices). In this work we used a rabbit monoclonal c-Myc antibody (1:250 in 

blocking solution, clone Y69, ab32072 Abcam) followed by an anti-rabbit A647-

conjugated antibody (1:400 in blocking solution).  

 

3.3.4 Western	  Blot	  Analysis	  

 

100,000 to 500,000 cells from dissociated mammosphere were collected, washed in PBS 

and lysed in 50 to 100 µl of RIPA buffer (Tris-HCl 50mM; NaCl 150mM; 1% NP-40; 

EDTA 1mM; 0.5% Sodium Deoxylcholate; 0.1% SDS) supplemented with protease 

inhibitors (Roche). Proteins were quantified with the use of the DC™ Protein Assay 

(Biorad) in a 96-well format and the absorbance was measured at 750 nm with the 

GloMax® 96 Microplate Luminometer (Promega). SDS-PAGE was performed using the 

NuPage® Novex® Gel System apparatus (Invitrogen) at a constant current of 120 V for 

approximately 2 hours. Samples were loaded on precast gels Nupage Novex 4-12% Bis-

Tris (Invitrogen) and the 1X NuPAGE® MOPS SDS was used as running buffer 

(Invitrogen). Following SDS-PAGE electrophoresis, proteins were transferred to 

nitrocellulose membranes (Protan; Schleicher & Schuell) by electroblotting for 1.5 hours at 

100 V and then were stained with Ponceau S to verify the efficiency of the transfer. 

Membranes were blocked for 1 hour in blocking solution: 10% low fat milk in TBS-T (Tris 

Buffered Saline, 0.1% Tween 20) for all the antibodies used except for anti-phospho-S15 

p53, which was in 5% BSA (Bovine serum albumin). The detailed conditions used for each 

antibody employed in this study are listed in Table 3-4: 
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Antibody Clone Company Concentration Antibody Mix 

Mouse anti-Vinculin  Sigma 1:10,000 1% milk in TBS-T 

Rabbit anti-c-Myc  
Cell Signaling 

cat.nr. 9402 
1:500 1% milk in TBS-T 

Mouse anti-p53 AI25 In house 1:5 1% milk in TBS-T 
Rabbit anti-
phosphoS15 p53 

 
Cell Signaling 

cat.nr. 9284 
1:500 1% BSA in TBS-T 

Mouse anti-p21 F-5 
Santa Cruz 

Biotechnology 
cat.nr. sc6246 

1:500 1% milk in TBS-T 

Table 3-4: List of the antibodies used for western blot analysis and relative conditions. 

 

The membranes were washed three times in TBS-T (10 minutes each) and incubated with a 

secondary antibody linked to horseradish peroxidase for 1 hour at room temperature. After 

three washes in TBS-T, the proteins were visualized using enhanced Clarity™ Western 

ECL Blotting Substrate (Biorad) and the ChemiDoc™ MP System (Biorad). 

 



 	  
4	  -‐	  Results	  

	  
	   	  

 

4 Results	  

 

4.1 Myc	  is	  a	  downstream	  target	  of	  p53	  	  

 

Our group has contributed to elucidate one of the CSC specific mechanisms for breast 

cancer progression: the role of p53 in governing the SCs mode of division, favoring 

asymmetric segregation. Loss of function of p53 was shown to lead to unlimited expansion 

of a population enriched in CSCs, as assessed by mammosphere assay and limiting dilution 

transplantation (Cicalese, Bonizzi et al. 2009). Nevertheless p53 is implicated in a plethora 

of pathways involving responses to stress and cell cycle arrest. Therefore, the role of p53 

in the regulation of SC divisions requires further analyses to understand the mechanisms 

with which this function is carried out. Following a candidate gene approach and based on 

the available knowledge that places Myc as a target of p53 (Ho, Ma et al. 2005, Sachdeva, 

Zhu et al. 2009, Li, He et al. 2012), we decided to evaluate the role of the myc oncogene as 

the key downstream effector of p53 loss in breast cancer. 

 

4.1.1 Myc	  is	  over-‐expressed	  in	  ErbB2	  mammary	  tumors	  

 

As a first step we investigated whether Myc is overexpressed in our murine model of 

spontaneous breast tumorigenesis, driven by the ErbB2 oncogene. This model consists of a 

transgenic mouse carrying a constitutively active form of the ErbB2 oncogene (with the 

activating mutation Val664 to Glu664) under the control of the Mouse Mammary Tumor 
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Virus (MMTV) promoter (Muller, Sinn et al. 1988). It is characterized by attenuated p53 

signaling and enhanced self-renewal potential, as assessed by mammospheres re-plating 

ability compared to non-tumor mammary cells (Cicalese, Bonizzi et al. 2009). 

Furthermore, it was demonstrated that tumors that are formed in the MMTV-ErbB2 mouse 

follow a CSC model, as it was possible to isolate a tumorigenic population, marked by the 

expression of Sca1, from a non-tumorigenic one (Grange, Lanzardo et al. 2008). 

To evaluate levels of Myc protein, we collected three mammary tumors from independent 

MMTV-ErbB2 transgenic mice and mammary glands of WT FVB mice, as control. We 

purified the epithelial cells by column-based negative selection of cells carrying antigens 

specific for hematopoietic or endothelial tissues (Ter119, CD45, CD31) and prepared cell 

lysates for protein quantification. The western blot in Figure 4-1 shows that Myc is 

overexepressed in ErbB2-tumors, as compared with the normal tissue, though protein 

levels vary significantly among different tumors.  

 

Figure 4-1: Myc expression in MMTV-ErbB2 tumors ex vivo. 

Cells from three independent tumors arisen in 3 months old MMTV-ErbB2 mice and from adult WT mice 

were collected and CD31negTer119negCD45neg cells purified through column-based negative selection. 

Levels of Myc were analyszed by Western Blot using anti-Vinculin antibody as loading control. 

 

To investigate whether over-expression also occurred in a population enriched in CSCs, we 

took advantage of the “mammospheres assay”. Mammary cells endowed with self-renewal 

potential can be propagated in culture in anchorage-independent conditions, in the absence 
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of serum and in the presence of selected growth factors. Under those conditions, they 

expand clonally to form spheroids, which contain SCs and early progenitors (Dontu, 

Abdallah et al. 2003, Liao, Zhang et al. 2007), thus they represent a useful tool to study SC 

properties and functions.  

Therefore, we analyzed levels of Myc (mRNA and protein) in mammospheres derived 

from either WT or MMTV-ErbB2 transgenic mice. The data in Figure 4-2 indicate that 

Myc transcript expression is strongly up regulated in a CSC-enriched population of our 

tumor model. Equally, Myc protein levels were also increased in mammospheres obtained 

from two independent tumors, as compared to WT mammospheres (Figure 4-3).  

 

Figure 4-2: Myc mRNA is over-expressed in tumor mammospheres 

Myc expression was assessed in WT (n=7) and MMTV-ErbB2 tumor (n=5) derived mammospheres by qPCR 

analysis of Myc mRNA (means ± standard deviation). Values are expressed as fold change relative to WT 

samples. Myc expression was normalized against the GusB housekeeping gene. Significance of differences 

between the two samples was calculated by t-test (*pvalue<0.05). 
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Figure 4-3: Myc protein is over-expressed in tumor mammospheres 

Western blot analysis of the expression of Myc in WT mammospheres and in 2 independent MMTV-ErbB2 

tumor cultures. Vinculin used as loading control. 

	  

4.1.2 Myc	  over-‐expression	  is	  the	  consequence	  of	  p53	  loss	  of	  function	  

 

P53 is not mutated in our tumor model, nevertheless its signaling is attenuated, as shown 

by its blunted response upon DNA damage (Cicalese, Bonizzi et al. 2009). To investigate 

whether the up-regulation of Myc in ErbB2-tumor cells is a consequence of reduced p53 

activity, we decided to analyze the effect of p53 reactivation on Myc levels, by in vitro 

administration of Nutlin-3. Nutlin-3 is a small molecule antagonist of Mdm2-p53 binding, 

that, preventing its degradation, stabilizes p53 and restores its levels in the cells (Vassilev 

2004).  

We first investigated the effective restoration of p53 function in Nutlin-treated tumor 

mammospheres, by measuring p53 response after Adriamycin administration, a known 

DNA damage agent inducing p53-dependent apoptosis (Wang, Konorev et al. 2004). The 

result confirms that when p53 is stabilized by Nutlin administration (2.5 or 10 µM) it re-

gains its functional competences, as established by the increase in the levels of its 

phosphorylated and active form (phospho-S15) and up-regulation of its target p21 during 

the 4 to 8 hours exposure to doxorubicin (Figure 4-4). 
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Figure 4-4: Nutlin-3 restores functional p53 signaling 

ErbB2 tumor cells were plated and treated with Nutlin 2.5 or 10 µM for 16 hours and then administered with 

Adriamycin (0.5µM) for 4 or 8 hours, as indicated. Western blot analysis of the expression of phosphorylated 

form of p53 (phospho Serine 15) and p21. Vinculin used as loading control. 

 

 

 

We then analyzed the levels of Myc in the ErbB2 tumor mammospheres, untreated or 

treated with Nutlin-3 for 72h. The results are reported in Figure 4-5 and show that Myc 

mRNA is severely down-regulated, and its expression is brought back to the levels of WT 

mammospheres. Accordingly, Myc protein expression decreases upon Nutlin treatment of 

~20%-30% of its levels, depending on the tumor under analysis (Figure 4-6). 
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Figure 4-5: Effects of p53 restoration on Myc mRNA levels 

Myc expression was assessed in WT (n=7), MMTV-ErbB2 tumor (n=3) and 3 corresponding ErbB2 tumors 

treated with Nutlin-3 (2.5µM) for 72h by qPCR analysis of Myc mRNA (means ± standard deviation). 

Values are expressed as fold change relative to WT samples. Myc expression was normalized against the 

GusB housekeeping gene. Significance of differences between treated and not-treated samples was calculated 

by paired t-test (*pvalue<0.05). 

 

 

 

Figure 4-6: Effects of p53 restoration on Myc protein levels 

Western blot analysis of the expression of Myc in two ErbB2 tumors grown as mammospheres. Cells were 

untreated or treated with Nutlin-3 (2.5µM) for 72h. Vinculin used as loading control. 
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To exclude p53-independent effects of Nutlin, we administered Nutlin to p53-/- derived 

mammospheres. No down regulation of Myc could be observed at any of the indicated 

timepoints after compound administration (Figure 4-7). 

 

Figure 4-7: Nutlin administration has no effect on myc regulation in the absence of p53 

P53-/- cells were plated as mammospheres in the presence or absence of Nutlin-3 (2.5µM). Cells were 

collected 24, 48 and 72 hours after plating and levels of Myc were evaluated by western blot analysis. 

Vinculin used as loading control. 

 

4.1.3 Myc	  is	  a	  target	  of	  p53	  also	  in	  non	  tumor	  contexts	  

 

To investigate whether p53 and Myc are epistatically linked independently of the tumor 

context, we analyzed levels of Myc expression in normal mammary cells, as a function of 

p53 expression and activation (p53+/- and -/- cells, Adriamycin treated WT cells, p53ER 

expression in p53-/- cells).  

 

a) First, we evaluated Myc mRNA and protein levels in mammospheres derived from 

the mammary gland of p53+/- or p53-/- mice against levels in mammospheres from 

WT glands. Interestingly, while we observed a marked over-expression of Myc 

protein levels in the p53-/- mammospheres, levels in the p53+/- mammospheres 
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were approximately midway between those in p53 null and in WT spheres, 

suggesting that Myc abundance is strongly dependent on the levels of p53 (Figure 

4-8, right). Again, Myc mRNA expression mirrored the protein levels (Figure 4-8, 

left). 

 

Figure 4-8: Myc levels depend on p53 abundance in normal mammary stem and progenitor cells 

LEFT: Myc expression was assessed in WT (n=7), p53+/- (n=3) and p53-/- (n=4) mammospheres by qPCR 

analysis of Myc mRNA (means ± standard deviation). Values are expressed as fold change relative to WT 

samples. Myc expression was normalized against the GusB housekeeping gene. Significance of differences 

between samples and WT was calculated by t-test (*pvalue<0.05). RIGHT: representative western blot 

analysis of Myc protein in WT, p53+/- and p53-/- mammospheres. Vinculin used as loading control. 

 

b) To exclude an indirect effect of p53 on Myc levels, possibly mediated by the high 

proliferating rate of p53-/- cells, we “acutely” activated p53 by DNA damage and 

evaluated the effect on Myc expression. WT, p53+/- and p53-/- mammospheres 

were treated with Adriamycin (0.5 µM) and cells were collected after 2, 4, 6 and 8 

hours. The histogram in Figure 4-9 depicts the levels of Myc expression as 

measured by qPCR. Myc mRNA appears progressively down-regulated in the 

presence of a functional p53 (both in WT and in p53+/- mammospheres), while in 

the p53-/- mammospheres it is not perturbed at any of the timepoints. The western 

blot in Figure 4-10, however, shows that, levels of the Myc protein in WT 
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mammospheres are only slightly down-regulated, despite strong p53 activation and 

up-regulation of p53-transcriptional targets (Figure 4-10, right). 

 

Figure 4-9: Effects of p53 acute stimulation on Myc mRNA levels 

Myc expression was assessed by qPCR analysis of Myc mRNA in WT, p53+/- and p53-/- mammospheres 

treated with Adriamycin (0.5µM) for the indicated time points (means ± standard deviation of three 

independent experiments). Values are expressed as fold change relative to untreated (UT) samples of each 

cell-type. Myc expression was normalized against the GusB housekeeping gene. Significance of differences 

between treated and not-treated samples was calculated by t-test (*pvalue<0.05). 

 

Figure 4-10: Effects of acute stimulation of p53 on Myc protein expression 

LEFT: Western blot analysis of the expression of Myc and the phosphorylated form of p53 (phospho Serine 

15) in WT mammospheres upon Adriamycin treatment (0.5µM) for the indicated times. Vinculin used as 

loading control. RIGHT: qPCR analysis of selected targets of p53 activation (p21 and Noxa genes). Values 

are expressed as average fold change relative to untreated (UT) sample, error bars indicate standard deviation 

of three biological replica.  
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Likely, the degree of down-regulation of Myc is not fully appreciable given the basal low 

levels of the Myc protein in WT cells. However, when we performed the same experiment 

in p53+/- mammospheres, which harbor one functional allele of p53 and higher basal 

levels of Myc, we observed a more evident down-regulation of Myc upon DNA damage, as 

opposed to the absent regulation of Myc levels in the p53-/- cells (Figure 4-11). As further 

evidence, we performed the same Adriamycin treatment on NMuMG cells, a murine breast 

immortalized line, and again we noticed a striking down-regulation of Myc expression in 

response to p53 acute activation (Figure 4-12). 

 

 

Figure 4-11: Effects of acute stimulation of p53 by DNA damage in p53+/- and p53-/- mammospheres 

Western blot analysis of the expression of Myc and the phosphorylated form of p53 (phospho Serine 15) in 

p53+/- and p53-/- mammospheres upon Adriamycin treatment (0.5µM) for the indicated times. Vinculin used 

as loading control. P53+/+ ESCs are loaded as positive control for the p53 band.  
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Figure 4-12: Effects of acute stimulation of p53 by DNA damage in NMUMG cells. 

Western blot analysis of the expression of Myc and phosphorylated form of p53 (phospho Serine 15) in 

NMUMG cell line upon Adriamycin treatment (0.5µM) for the indicated times. Vinculin used as loading 

control.  

 

c) Finally, taking advantage of a retroviral expression vector (pBABE-puro) harboring 

an inducible p53-ER sequence, we re-expressed p53 in p53-/- mammospheres by 4-

OHT administration (200nM). The effectiveness of restoration is demonstrated by 

the up-regulation of p53 transcriptional targets p21 and Bax as shown in the qPCR 

in Figure 4-13, left. Through this last approach, we could also observe acute down-

regulation of both Myc protein and RNA levels at all of the time-points following 

4-OHT treatment (Figure 4-13, left and right). 

 

 



Chapter	  4.1	  -‐	  Results	  

 58 

Figure 4-13: Effects of re-expression of p53 in p53-/- mammospheres  

LEFT: qPCR analysis of Myc mRNA in p53-/- cells transduced with pBABE-puro-p53ER vector and treated 

with 4-OHT (200µM) for the indicated times. Values are expressed as average fold change relative to 

untreated (UT) sample, bars indicate standard deviation of three biological replica. RIGHT: Western blot 

analysis of the expression of Myc in WT mammospheres upon 4-OHT treatment at the indicated time points. 

Vinculin used as loading control.  

 

 

 

 

All together these data suggest that a functional p53, either directly or indirectly, imposes a 

control over the levels of Myc mRNA and protein. When p53 is absent, as in the knock-out 

murine model, or dysfunctional, as in our ErbB2 tumour model, this control is lost and 

Myc levels are de-regulated, and this, in turn, could be the causative mechanism that leads 

to the unlimited growth described in the mammosphere assay (Cicalese, Bonizzi et al. 

2009). 

 

Notably, WT mammospheres down-regulate Myc during their growth (in a 5-days culture, 

from single cells to formed mammospheres), and exit the cell cycle (Figure 4-14). In the 

erbB2 tumor spheres, instead, Myc expression remains stable during the culture; cells do 

not exit the cell cycle and continue to proliferate (Figure 4-14). Therefore, the extended 

replicative potential of tumor spheres might be the consequence of both Myc over- 

expression and de-regulation. 
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Figure 4-14: Myc is de-regulated in ErbB2 tumors  

TOP: schematic representation of mammosphere growth over the days of culture. Mammospheres are used a 

surrogate of an organ development (the mammary gland) and originate from a single cell that gives rise to 

more differentiated progenitors. MIDDLE: Western blot analysis of the expression of Myc in WT and ErbB2 

mammospheres during their formation. Vinculin used as loading control. BOTTOM: Cell cycle analysis of 

mammospheres at the indicated time points (BrDU coupled with PI staining). Cycling cells are defined as 

cells positive for BrDU (S-phase) and with 2n DNA content (G2/M). Values are calculated as percentage of 

cycling cells on day1 (mean ± standard deviation of three independent experiments). 

	  

4.1.4 The	  Myc	  transcriptional	  program	  is	  activated	  in	  ErbB2-‐tumor	  cells	  and	  depends	  

on	  levels	  of	  p53	  

 

We then investigated whether Myc overexpression in ErbB2 mammary cells correlates 

with its transcriptional activity. Since the transcriptional program of Myc is cell-context 

and cell-state dependent (Littlewood, Kreuzaler et al. 2012, Tansey 2014), we first defined 
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the transcriptional effects of Myc in mammary epithelial cells. To this end, we performed 

RNAseq analyses of WT mammospheres transduced with a lentiviral vector expressing the 

inducible MycER fusion protein (fusion of human Myc with a modified version of the 

estrogen receptor), grown in the absence of the 4-OHT ligand (Littlewood, Hancock et al. 

1995). Under these conditions, MycER is expressed at moderate levels in the nucleus of 

mammary cells and induces their immortalization [(Pasi, Dereli-Oz et al. 2011) and see 

next section].   

Comparison of the normalized-reads-count per gene between MycER cells and control 

cells (transduced with the corresponding empty vector) led to the identification of 5,618 

differentially regulated genes (cut-off on the q-value: lower or equal to 0.01) out of the 

around 13,000 genes expressed in our system. Of them, 3,023 genes are up-regulated 

compared to the empty vector-expressing cells and 2,595 genes result down-regulated.  

To investigate whether the Myc transcriptional-program is activated in the ErbB2 

mammary cancer-cells, we performed Gene Set Enrichment Analysis (GSEA) 

(Subramanian, Tamayo et al. 2005) of the MycER dataset in ErbB2 cells. 

We first generated RNAseq datasets of three independent ErbB2 tumors in mammosphere 

cultures, and calculated the ratio of the mean of their normalized reads to that of WT 

mammospheres (n=3). A total of 2,460 genes resulted differentially expressed in tumors 

compared to WT cells. We then created two separate lists for the up-regulated (ErbB2-UP 

1,162 genes) and the down-regulated (ErbB2-DOWN 1,298 genes) and aligned those to the 

ranked list of Myc transcriptional targets.  

In the Gene Set Enrichment analyses, each gene set is ordered according to the regulation 

of a query dataset from the most up-regulated to the most down-regulated genes. If the 

gene set under analysis is not correlated with the query dataset, genes will be distributed 

randomly in the query dataset. Conversely, if the two datasets are correlated (positively or 
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negatively), the distribution will be asymmetric. GSEA computes the overlap between the 

gene sets mathematically, returning a normalized enrichment score (NES), which expresses 

the overlap within the two signatures, and a FDR (or q-value) as measure of statistical 

significance. We performed the GSEA analysis distinguishing each cell-type specific 

signature in UP and DOWN regulated genes that were then ranked according to their 

regulation in the MycER dataset.  

GSEA analysis of ErbB2 and MycER datasets showed impressive correlation between the 

up-regulated genes in ErbB2 tumors and the core of genes that are up-regulated in WT 

cells by the presence of MycER; a similar correlation is also observed between ErbB2 

tumor down-regulated genes and the genes that localize towards the bottom side (more 

down-regulated) of the ranked MycER list of target genes (Normalized Enrichment Score, 

NES = 4.9 and -4.6, respectively) (Figure 4-15).  

 

Figure 4-15: MycER signature in MMTV-ErbB2 tumors 

Gene set enrichment analysis was performed to correlate the tumor (ErbB2-driven) transcriptional program 

with gene expression changes upon MycER infection (5,618 genes). The normalized enrichment score (NES) 

is shown and significance (FDR, qvalue) was reported to be approximately equal to 0.  
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We then asked whether the Myc transcriptional-program is dependent on p53 function. To 

do so, we analyzed the enrichment of the MycER program in p53-/- mammospheres. We 

performed RNAseq analyses of WT (n=3) and p53-/- (n=3) mammospheres and generated 

lists of p53ko-UP and p53ko-DOWN using the same cut-off criteria described for the 

previous RNAseq datasets (5,192 differentially regulated genes: 2,462 UP; 2730 DOWN). 

Once run on the GSEA software, we observed high enrichment of the MycER signature in 

the p53null genetic context, similarly to that of our tumor model (Figure 4-16), suggesting 

that a vast part of Myc activity is enhanced in the absence or impairment of p53. These 

findings further confirm that Myc de-regulation in tumors can be widely attributed to the 

missing functionality of p53 signaling. 

 

Figure 4-16: MycER signature in p53-/- cells 

Gene set enrichment analysis was performed to correlate the p53-/- transcriptional program with gene 

expression changes upon MycER infection (5,618 genes). The normalized enrichment score (NES) is shown 

and significance (FDR qvalue) was reported to be approximately equal to 0 

 

 

Finally, to address this point directly, we investigated whether the Myc-transcriptional 

program in the ErB2 cells depends on p53. To this end, we performed RNAseq analyses of 

ErbB2 cells treated, or not, with Nutlin-3 (n = 3 independent tumors). In this case, the UP 
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and DOWN lists of genes were obtained by calculating the paired ratio of gene expression 

and then the GSEA analysis was performed with the same cut-off criteria described earlier. 

Strikingly, when we ran the Nutlin-UP and DOWN lists on the GSEA software, we 

observed an enrichment curve profile completely opposite to that of the ErbB2 tumor. 

Indeed, the up-regulated side of the ranked list appears enriched for the “DOWN-list” and 

vice versa for the down-regulated side, thus demonstrating that the restoration of p53 

induces a transcriptional response that completely reverts the MycER-dependent activity in 

ErbB2 tumors (Figure 4-17).  

 

Figure 4-17: MycER signature in MMTV-ErbB2 tumors treated with Nutlin-3. 

Gene set enrichment analysis was performed to correlate the transcriptional program of ErbB2 tumors treated 

with Nutlin-3 (2.5µM) with gene expression changes upon MycER infection (5,618 genes). The normalized 

enrichment score (NES) is shown and significance (FDR, qvalue) was reported to be approximately equal to 

0.  

 

Collectively these data demonstrate that Myc transcriptional activity is enhanced in the 

ErbB2 cancer cells, thus mirroring the data of its overexpression, and that, in mammary 

cells, it is strongly dependent on the levels of a functional p53. 
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All together, we have shown that p53 and Myc are epistatically related and that the loss of 

p53 has remarkable effects on the de-regulation of Myc levels in cell populations enriched 

for mammary SCs and breast CSC. 

 



 	  
4	  -‐	  Results	  

	  
	   	  

 

4.2 De-‐regulated	   Myc	   extends	   the	   life	   span	   and	   proliferative	   potential	   of	  

mammary	  stem	  and	  progenitor	  cells	  

4.2.1 Transgenic	  R26-‐MycER	  mice	  as	  a	  tool	  to	  induce	  de-‐regulation	  of	  Myc	  levels	  

 

It emerges from our data that the de-regulation of Myc levels due to loss of p53 has 

important implications for mammosphere growth in culture. To define the effects of this 

de-regulation on mammary epithelial cells, we took advantage of a murine model 

harboring an inducible Myc-ERT2 allele within the Rosa26 locus, whose translocation into 

the nucleus can be finely tuned by the administration of 4-OHT (Murphy, Junttila et al. 

2008).  

Mammary glands derived from these animals were collected and digested enzymatically in 

order to obtain single cell suspensions. Cells were then plated for mammosphere culture 

and dosage-dependent effects of 4-OHT evaluated in terms of proliferation potential and 

sphere forming ability. Specifically, the cells were plated at a clonal density of 20,000 

cells/ml in 6 well plates and serially passaged in the presence or absence of 4-OHT. At 

each passage, we enumerated the spheres, disaggregated them, and counted the total 

number of cells, in order to measure their replicative potential (i.e., cells/sphere). The data 

were then arranged into cumulative growth curves showing the variation in the number of 

mammospheres and cells during passages. As shown in Figure 4-18 bulk mammospheres 

not treated with 4-OHT progressively decrease in number, exhaust in culture after 6-7 

passages and cannot be further propagated, confirming that WT SCs have limited lifespan 

and self-renewing potential, as previously shown by our group (Cicalese, Bonizzi et al. 

2009). Immunofluorescence analysis demonstrated that basal levels of nuclear Myc in 
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heterozygous Rosa26-MycER derived mammospheres were comparable to those of WT 

mammospheres, while when 4-OHT was administered, a bright nuclear signal could be 

detected, thus indicating that the fine-tuning of the inducible system is tightly controlled 

Figure 4-19. As previously observed in other cellular systems, different levels of Myc 

expression (e.g. different doses of 4-OHT) elicit different biological effects (Murphy, 

Junttila et al. 2008). When 500 nM or 1 µM 4-OHT was administered, mammospheres 

derived from heterozygous Rosa26-MycER mice rapidly faced self-exhaustion (Figure 

4-18) due to Myc-dependent apoptotic cellular death (Figure 4-20). The same treatment 

did not induce cell death of spheres derived from mice of the same colony but negative for 

the presence of the transgene (from here on called Rosa26-MycER WT) (Figure 4-20). 

Intriguingly, when the sphere cultures were exposed to lower doses of 4-OHT (20 nM or 

200 nM), they exhibited a remarkable increase in their self-renewing potential. Indeed, the 

cumulative sphere number approximated an exponential curve (R2= 0.95 and 0.99 

respectively) with a growth rate going from 121% for the 20 nM dose to 161% for the 200 

nM (Figure 4-18), and the spheres could be passaged indefinitely (data not shown). 

Strikingly, this behavior of Myc-ER mammospheres was undistinguishable from that of 

p53 KO or ErbB2-tumor mammospheres (Cicalese, Bonizzi et al. 2009).  
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Figure 4-18: Growth curve of Rosa26-MycER mammospheres. 

Semi-logarithmic plot of Cumulative Sphere numbers. Numbers were obtained from serial replating of 

Rosa26-MycER mammospheres in the absence or continuous presence of different concentrations of 4-OHT. 

Each dot in the curve represents the mean of six independent curves; error bars indicate the standard 

deviation. Regression analysis was performed to obtain trend lines (dashed lines) that best approximate the 

curves. Growth rates (GR) and coefficients of determination (R2) for each trend line are reported inside the 

graph. 

 

Figure 4-19: Myc translocation is inducible upon 4-OHT administration. 

Immunofluorescence analysis of Myc expression with a Myc-specific antibody in WT and Rosa26-MycER 

heterozygous (HE) untreated or treated with 4-OHT (200 µM). Nuclei were counter-stained with Dapi (right 

panels).  
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Figure 4-20: Morphology of mammospheres treated with different doses of 4-OHT. 

Representative images of spheres derived from Rosa26-MycER mice heterozygous (top) or WT (bottom) for 

the transgenic allele. Both cultures were exposed to the lowest and highest dose of 4-OHT tested (20nM and 

1µM) and pictures were taken at the third passage of the serial replating assay. Scale bar as represented. 

 

Furthermore, compared to the untreated control, a dramatic increase in the total number of 

cells and in mammosphere size (number of cells per sphere) was observed upon low doses 

of 4-OHT, suggesting that treated Rosa26-MycER mammospheres also possess increased 

replicative potential (Figure 4-20 and Figure 4-21). As shown in other systems (Reavie, 

Della Gatta et al. 2010), these observations indicate that tight regulation of Myc protein 

expression is critical in the control of numbers of mammary stem and progenitor cells. 

 

 

 

 

 

 



Chapter	  4.2	  -‐	  Results	  

 69 

 

Figure 4-21: Growth curve of Rosa26-MycER cells grown as mammospheres. 

Semi-logarithmic plot of Cumulative Cell number. Numbers were obtained from serial replating of Rosa26-

MycER mammospheres in the absence or continuous presence of the two lowest doses of 4-OHT. Each dot in 

the curve represents the mean of six independent curves; error bars indicate the standard deviation. 

Regression analysis was performed to obtain trend lines (dashed lines) that best approximate the curves. 

Growth rates (GR) and coefficients of determination (R2) for each trend line are reported inside the graph. 

 

 

 

4.2.2 Low	   levels	   of	   Myc	   expand	   the	   mammary	   stem	   cell	   pool	   and	   are	   able	   to	  

reconstitute	   the	   mammary	   gland	   in	   transplantation	   assays,	   without	   inducing	  

transformation	  

 

The above results show that the continuous presence of low levels of myc is able to confer 

increased self-renewal and replicative potential to mammary stem cells and progenitors. 

We then decided to investigate the consequences of these effects on the development of the 

mammary gland in vivo. To this end, we planned transplantation experiments of our 
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Rosa26-MycER mammospheres in the cleared fat pad of recipient mice fed with a 4-OHT-

containing diet.  

Tamoxifen is an ER antagonist that is used in the treatment of ER positive breast cancer 

(Mouridsen, Palshof et al. 1978). Given that estrogen and its receptor have essential roles 

in mammary gland development, we first investigated the effects of continuous tamoxifen 

treatment on ductal development and function. Indeed, it was reported that acute doses of 

tamoxifen change the distribution of mammary epithelial populations (Shehata, van 

Amerongen et al. 2014), and severely affect mammary gland development when 

administered at puberty (3 administrations at 1.5mg; 1 administration at 2.5mg; (Rios, Fu 

et al. 2014)). We fed adult control mice (same genetic background of the Rosa26-MycER 

mice) with 4-OHT-containing food continuously for 2 weeks (40mg/kg, around 1mg per 

mouse every 3-4 days), and evaluated the distribution of mammary cell types using known 

surface markers (EpCAM; CD49f; CD61) (Guo, Keckesova et al. 2012). As shown in 

Figure 4-22, the effect of a Tamoxifen diet on the distribution of mammary progenitor 

populations is remarkable and leads to a significant decrease in the most differentiated 

population of luminal cells, and to a strong and unexpected increase in the percentage of 

basal (SC-enriched) cells, thus suggesting an impairment in the terminal differentiation of 

the treated glands. Also, when mice were treated at puberty (21 days after birth), we 

observed a dramatic decrease in the lin- EpCAM positive cells, hinting to potential 

disruption of mammary gland development, as previously shown (Rios, Fu et al. 2014). 
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Figure 4-22: In vivo administration of 4-OHT in control adult or pubertal mice.  

8 weeks or 3 weeks old mice were fed for two weeks with 4-OHT containing-food or with standard diet; 

mammary glands were then collected, single cells were stained for surface markers and their intensity was 

assessed by FACS. LEFT: percentage of Luminal Mature (EpCAM+/CD49f-/CD61-), Luminal Progenitor 

(EpCAM+/Cd49f-/CD61+) and Mammary stem cells (MaSC - EpCAM+/Cd49f+/CD61+) within the Lin-

(CD31-/Ter119-/CD45-)/EpCAM+ cell population derived from the mammary glands of 8 week old mice. 

Values are shown as the mean of the relative percentage of each population from three independent mice 

treated with 4-OHT food and from two mice on standard diet; error bars indicate the standard deviation; 

significance of differences between the two experimental groups was calculated by t-test (*pvalue <0.05). 

RIGHT: percentage of Lin-/EpCAM+ cells in total mammary cell populations from 3-week-old mice. Values 

are shown as the mean of the relative percentage of each population from three independent mice treated with 

4-OHT food and from two mice on standard diet; error bars represent the standard deviation; significance of 

differences between the two experimental groups was calculated by t-test (*pvalue <0.05).  

 

As an alternative to the continuous administration of 4-OHT, we decided to use the 

lentiviral vector mentioned in section 4.1.4 (Littlewood, Hancock et al. 1995). Our group 

demonstrated that WT mammospheres transduced with the aforementioned vector undergo 

a severe p53-dependent apoptotic response upon induction with 4-OHT (Pasi, Dereli-Oz et 

al. 2011). Conversely, if cultured in the absence of 4-OHT, MycER infected cells become 

immortalized, expand unlimitedly in culture, and form larger mammospheres, suggesting 

that they possess increased self-renewal and replicative potential (Pasi, Dereli-Oz et al. 

2011). This behavior is identical to that observed for the Rosa26-MycER spheres at low 
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doses of 4-OHT, suggesting that it could be due to a leakage in the Myc-ER infected cells 

of the ER conditional system. Immunofluorescence analysis of Myc nuclear translocation 

revealed, indeed, that while basal levels of Myc are almost undetectable, upon infection 

with the MycER vector a slightly higher nuclear signal could be detected also in the non-4-

OHT treated mammospheres (Figure 4-23). Real time PCR (qPCR) of three Myc targets 

(Nucleolin; ODC1 and CAD) revealed upregulation of their expression upon MycER 

mammosphere infection, in the absence of 4-OHT induction, as compared to the control 

mammospheres transduced with the empty-vector (Figure 4-24). Likewise, qPCR showed 

that endogenous Myc expression is down regulated as expected by the auto regulatory loop 

that Myc exerts on its own promoter (Figure 4-24).  

 

 

Figure 4-23: Immunofluorescence staining for Myc expression in control or 4-OHT untreated or 

treated MycER infected cells. 

Staining of single cell suspensions from secondary WT mammospheres transduced with an empty vector 

(top) or MycER, in the absence (middle) or presence of 4-OHT (200 µM, bottom) for 72 hours, with a Myc 

specific antibody. Nuclei were counter-stained with Dapi (right panels).  
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Figure 4-24: Myc targets are up-regulated in cells transduced with MycER in the absence of any 4-

OHT stimulus.  

RT qPCR of selected targets of Myc was performed in WT mammospheres transduced with Empty or 

MycER vectors and cultured for the indicated time points (means ± standard deviation of two biological 

replicas). Values are expressed as fold change relative to the empty vector expression (Empty vector = 1). 

Each gene expression was normalized against the GusB housekeeping gene.  

 

 

Interestingly, the extent of regulation of the Myc targets was comparable to that observed 

in the Rosa26MER mammospheres upon 72h of low doses 4-OHT treatment (Figure 

4-25). Therefore, we concluded that, prior to any 4-OHT induction, the lentiviral construct 

recapitulates what we saw in the inducible R26-MycER murine model, demonstrating that 

it represents a suitable system as a substitute for the Tamoxifen in vivo treatment 

experiments.  
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Figure 4-25: Myc transcriptional activity upon MycER infection is enhanced to the same extent to 

what observed for Rosa26-MycER mammospheres upon low doses of 4-OHT stimulation. 

RT qPCR of selected targets of Myc was performed in WT mammospheres transduced with Empty or 

MycER vectors and cultured for 72 hours (means ± standard deviation of two biological replica) and in 

Rosa26-MycER mammospheres upon 72 hours induction by 4-OHT at the indicated doses (means ± standard 

deviation of five biological replica). Values are expressed as fold change relative to Empty vector expression 

or untreated cells (both = 1). Each gene expression was normalized against the GusB housekeeping gene.  

 

 

Thus, we moved to an in vivo setting using Myc-ER infected mammospheres. To 

investigate whether continuous presence of low levels of Myc leads, in vivo, to an increase 

in mammary stem cell content, we performed limiting dilution transplantation experiments 

of the mammospheres transduced either with the MycER vector or with the corresponding 

empty vector in the cleared fat pad of three-weeks old virgin recipients. As shown in Table 

4-1, MycER infected cells are able to give rise to positive outgrowths when as little as 100 

cells were transplanted, unlike the empty vector transduced cells. These data suggest that 

low levels of Myc expression lead to an expansion of the pool of stem cells in vivo.  
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Table 4-1: Limiting dilution transplantation experiment on mammospheres transduced with Empty 

vector or MycER. 

Cells suspension from WT mammospheres infected with Empty or MycER vectors were inoculated in 

recipient mice in limiting dilution conditions (500 and 100 cells). Results show the number of positive 

outgrowths as defined by the presence of epithelial structures with radial organization in stained whole 

mounts 12 weeks after the injection. SC frequencies (estimates and upper/lower limits) were calculated by 

limiting dilution analysis, as described in the Materials and Methods section. The significance of the 

difference in SC frequency is indicated by the p-value (<0.05). 

 

 

We then investigated whether low-levels of Myc expression initiates tumorigenesis in vivo. 

To address this question, we transplanted a total of 15 mice and kept them under 

observation for tumor formation for up to 1 year. Notably, no palpable masses could be 

detected in our cohort of mice and analysis of the outgrowths after whole mount staining 

showed that the morphology of the epithelial tree was not altered (Figure 4-26). Taken 

together these data demonstrate that low levels of Myc expression induce expansion of SC 

numbers in vivo, without initiating the transformation process.   
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Figure 4-26: Whole mount staining of a positive outgrowth resulting from the injection of MycER 

expressing cells. 

Representative image of carmine alum whole mount staining of a reconstituted gland after injection of 100 

MycER transduced cells. Scale bar as indicated.  
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4.3 De-‐regulation	  of	  Myc	  expression	   increases	  numbers	  of	  mammary	  SCs	  by	  a	  

dual	  mechanism	  

 

The results described in the previous chapters showed Myc to be a downstream target of 

p53 in mammary stem and progenitor cells: at the molecular level we observed a negative 

interplay that is dependent on p53 function, with Myc being constitutively expressed in the 

absence of p53. Accordingly, we saw that constitutive Myc expression phenocopies the 

biological effects of p53-loss, e.g. expansion in number of SCs, both in vitro and in vivo. 

We then investigated the biological mechanisms underlying the effects of Myc on SC 

numbers, starting from those documented for p53-loss.  

It has been shown that p53 acts as a master regulator of homeostasis within several tissues, 

by controlling the size of the SC pool (Bieging, Mello et al. 2014). The effects of p53 on 

SCs are to ensure the correct balances between quiescence versus proliferation (Liu, Elf et 

al. 2009) and asymmetric versus symmetric self-renewing divisions (Cicalese, Bonizzi et 

al. 2009). Both functions are considered part of its well-known role as a tumor suppressor 

in cells, as the increase in the rate of SC symmetric division is thought to be one of the 

causes of the formation of a malignant clone (Morrison and Kimble 2006). P53 was also 

shown to affect numbers of SCs indirectly, by inhibiting reprogramming of more 

differentiated population into SCs. This was shown both in the context of iPS generation 

(Hong, Takahashi et al. 2009) and in physiological conditions (Tschaharganeh, Xue et al. 

2014); our group’s unpublished data). This is also very relevant for the tumor suppressive 

function of p53, as de-differentiation and developmental plasticity, particularly in epithelial 

tissues, were demonstrated to be key mechanisms supporting cancer growth (Mani, Guo et 

al. 2008). 
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Notably, we have previously reported that constitutive expression of low levels of Myc 

(those ensured through the “leaky” MycER vector) is able to skew the modality of division 

of mammary SCs towards symmetry, as demonstrated by the segregation of the cell-fate 

determinant Numb and time-lapse analysis of SC first mitotic events (Pasi et al. 

unpublished results). Furthermore, low levels of Myc also conferred mammosphere 

replating ability to progenitors in culture, suggesting that Myc confers self-renewal 

properties to progenitors (Pasi, Dereli-Oz et al. 2011). Thus, we investigated whether Myc 

induces reprogramming of mammary progenitors into SCs, using the Rosa26-MycER 

murine model (for in vitro assays) and the aforementioned MycER lentiviral construct (for 

in vivo assays). 

 

4.3.1 Effect	  of	  Myc	  on	  the	  ability	  of	  mammary	  progenitors	  to	  form	  spheres	  

 

To separate the effects of enforced expression of Myc on SCs or progenitors, we purified 

these two populations, taking advantage of the PKH26 assay developed in our laboratory 

(Cicalese, Bonizzi et al. 2009, Pece, Tosoni et al. 2010). PKH26 is a lipophilic dye that 

binds the cell membrane and segregates in daughter cells after each cell division, such that 

the intensity of staining inversely correlates with the number of undergone cell divisions 

(Lanzkron, Collector et al. 1999). This method exploits one of the well-accepted properties 

of adult SCs, that is, their being mostly dormant (quiescence). By this assay, cell 

suspensions obtained from mammosphere cultures are separated in at least two subsets, 

among which only those retaining the dye (top 1.5% most brilliant; PKHhigh) contain SCs, 

while those where the intensity of the dye appears most diluted (bottom 25%; PKHneg) 

comprise lineage-restricted cells, as demonstrated by limiting dilution transplantation 

(Cicalese, Bonizzi et al. 2009). 
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PKH negative cells consist of a heterogeneous population of cells that has gone through 

multiple rounds of division. These actively cycling cells were previously characterized as 

mono-potent progenitors, able to give rise to either epithelial or, rarely, myoepithelial 

colonies, in 2D-differentiation matrigel assays and unable to form mammospheres upon 

serial replating (Pece, Tosoni et al. 2010) or a mammary gland upon transplantation 

(Cicalese, Bonizzi et al. 2009). Notably, PKHneg cells, as compared to PKHhigh, do not 

express many genes specific for the mammary SCs (Lim, Wu et al. 2010, Soady, Kendrick 

et al. 2015), including CD24, epcam, jag1, dll1, Apoe, Id4, Erg, Krt5, Krt14, grik3, Ift57, 

Ltbp2, Mllt3, Nfatc2, Ngfr, Ppp1r14a, scube3, Stk39, Tm6sf1, cdh5, Pdgfb, Ptprb, Ptprz1 

(data not shown; obtained from RNAseq analyses of PKHhigh and PKHneg from WT 

mammosphere cultures). 

To investigate if Myc can confer SC-like behavior onto more differentiated progenitors we 

employed the Rosa26-MycER transgenic model. Therefore, we sorted the population that 

had not retained the PKH26 dye after one week of labeling and plated the cells in 

anchorage independent conditions in order to favor mammosphere formation (Figure 

4-27). As expected, PKHneg cells not treated with 4-OHT rapidly exhausted after few 

passages (GR=-73.7%), thus confirming that they consist of short living progenitors with 

limited self-renewal capacity. On the contrary, PKHneg cells treated with low-dose 4-OHT 

indefinitely extend their replating potential, thus implying the acquisition of unlimited self-

renewal potential (Figure 4-28). This was mirrored, as previously observed for the bulk 

mammosphere culture, by an increase in the size and cumulative cell number of 4-OHT-

treated spheres, as compared to the untreated cells (UT), which indicates acquisition of 

greater replicative potential (Figure 4-29).  
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Figure 4-27: Schematic representation of the PKH-26 assay. 

Rosa26-MycER HE cells were plated in mammosphere culture and labeled with PKH-26 dye for one week. 

Cells that did not retain the dye (PKHneg) were sorted at FACS and re-plated as mammospheres in the 

presence or absence of 4-OHT for the induction of Myc. 

 

 

 

 

Figure 4-28: Growth curve of Rosa26-MycER progenitor spheres.  

Semi-logarithmic plot of Cumulative Sphere numbers. Numbers were obtained from serial replating of 

PKHneg mammary progenitors derived from Rosa26-MycER mice in the absence or continuous presence of 

two different concentrations of 4-OHT. Each dot in the curve represents the mean of three independent 

curves; error bars indicate the standard deviation. Regression analysis was performed to obtain trend lines 

(dashed lines) that best approximate the curves. Growth rates (GR) and coefficients of determination (R2) for 

each trend line are reported inside the graph. 
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Figure 4-29: Growth curve of Rosa26-MycER progenitor cells. 

Semi-logarithmic plot of Cumulative Cell numbers. Numbers were obtained from serial replating of PKHneg 

mammary progenitors derived from Rosa26-MycER mice in the absence or continuous presence of the two 

different concentrations of 4-OHT. Each dot in the curve represents the mean of three independent curves; 

error bars indicate the standard deviation. Regression analysis was performed to obtain trend lines (dashed 

lines) that best approximate the curves. Growth rates (GR) and coefficients of determination (R2) for each 

trend line are reported inside the graph. 

 

4.3.2 Effect	  of	  Myc	  on	  the	  ability	  of	  mammary	  progenitors	  to	  reconstitute	  a	  mammary	  

gland	  tissue	  

 

To investigate whether Myc-expressing progenitors are able to differentiate into all the cell 

types that compose the mammary gland, we transduced PKHneg cells with the MycER 

vector and transplanted them under limiting dilution conditions into the cleared fat-pad of 

pre-pubertal recipient mice. The mice were sacrificed after 12 weeks and their inguinal 

mammary glands collected for whole mount staining to evaluate the presence of positive 

outgrowths (DeOme, Faulkin et al. 1959). Strikingly, PKHneg cells expressing MycER 

were able to give rise to complete outhgrowths with a calculated SC frequency of around 
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1:100,000 (Table 4-2, Figure 4-30), while PKHneg progenitors transduced with the empty 

vector never reconstituted the gland in the cleared fat pad. This suggests that low levels of 

Myc can reprogram progenitors into bona fide SCs, e.g. cells with repopulating ability, 

albeit at a low frequency.  

 

 

 

Table 4-2: Limiting dilution transplantation experiment of PKHneg progenitors transduced with 

Empty vector or MycER. 

Cells suspension from PKHneg progenitors infected with Empty or MycER vector were inoculated in 

recipient mice in limiting dilution conditions (from 100,000 to 5,000 cells). Results show the number of 

positive outgrowths as defined by the presence of epithelial structures with radial organization in stained 

whole mounts 12 weeks after the injection. SC frequencies (estimates and upper/lower limits) were 

calculated by limiting dilution analysis, as described in the Materials and Methods section. Slope is a 

measure of the linearity of the limiting dilution test; its nominal value is equal to 1. Fitting to the single hit 

model is indicated by p-values >0.05. 
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Figure 4-30: Whole mount staining of a positive outgrowth resulting from the injection of PKHneg-

MycER cells. 

Representative image of carmine alum whole mount staining of a reconstituted gland after injection of 50,000 

MycER-transduced PKHneg progenitors. Scale bar as indicated.  

 

 

To investigate whether PKHneg-MycER SCs are capable of normal physiological 

differentiation in vivo, we analyzed mammary glands from six outgrowths of 50,000 

transplanted PKHneg-MycER cells, as compared to outgrowths derived from the 

transplantation of the same number of WT cells. We first tested the regenerative potential 

of PKHneg-MycER progenitors calculating the extent of mammary epithelium within the 

fat pad by digital image analysis (DIA). Results showed that the percentage of the area 

occupied by epithelial structures was around 2% in each acquired field and was in the same 

range of the value reported for outgrowths derived from WT mammospheres (Table 4-3). 

Staining for KI67, a nuclear marker of cycling cells, confirmed that the rate of proliferation 

was also comparable between the two experimental groups (Table 4-3). Analyses of 

histology of the mammary glands (on haematoxylin-eosin staining) showed some degree of 
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hyperplastic and dysplastic features in all mammary glands obtained from the PKHneg-

MycER progenitors. (Figure 4-31, HE staining).  Notably, however, when compared with 

those from four mammary-gland outgrowths arisen from WT control cells, we observed a 

similar degree of hyperplasia/dyspasia, suggesting that it is rather a consequence of active 

regeneration inherent to the transplantation procedure, not related to a process of 

transformation fired by Myc (Table 4-3). In line with this, a total of 6 mice were kept 

under observation for one year after the transplantation procedure and none of them 

displayed any palpable masses.  

 

 

Table 4-3: Histological evaluation of the outgrowths resulting from “reprogrammed” progenitor and 

WT cells. 

Outgrowths resulting from WT (n=4) and PKHneg-MycER (n=6) transplantations were stained for whole 

mount evaluation, paraffin embedded and sectioned for histopathological evaluation. To assess the extent of 

the mammary reconstitution in each examined sample, the area (µm2) occupied by the mammary epithelium 

was calculated by DIA and it is shown as percentage of the total area (mean±sd) of the field under 

examination. Anti-KI67 staining was performed; KI67 index was calculated as the ratio between KI67 

positive vs. negative cells (mean±sd) in 400X microscopic fields (four fields per sample). Histological 

grading of epithelial hyperplasia/dysplasia of ductular and alveolar epithelial structures was performed 

according to the following criteria: (++) = multifocal to diffuse moderate ductular and/or alveolar epithelial 

hypertrophy and hyperplasia, without relevant cell atypia; (+++) = focal to multifocal areas of mammary 

epithelial dysplasia with variable cell atypia 

 



Chapter	  4.3	  -‐	  Results	  

 85 

Differentiation capacity of the “reprogrammed” progenitors was analyzed on paraffin-

embedded slides by immunohistochemical analysis for the terminal differentiation markers 

of the mammary gland epithelial structures. The results show that the PKHneg-MycER 

transplanted glands correctly express markers for basal (K14) and luminal (K18) 

development, thus demonstrating the ability of the “reprogrammed” cells to give rise to a 

normally differentiated gland (Figure 4-31).  

 

 

Figure 4-31: “Reprogrammed” progenitors form normal differentiating tissue upon transplantations 

in vivo. 

Twelve weeks after transplant, whole mounts of outgrowths formed in the transplanted fat pads of injected 

mice were stained with carmine and then paraffin-embedded and sectioned for immuno-histochemical 

analysis. Tissue sections of samples from WT cells and PKHneg-MycER transplanted mice were then stained 

for HE evaluation of the epithelial structures (left); for basal epithelial marker K14 (middle) and for luminal 

epithelial marker K18 (right). All images were acquired with a 10X magnification objective. 

 

Finally, to test the capacity of PKHneg-MycER progenitors to generate fully functional 

mammary glands, we analyzed mammary-gland changes during pregnancy. Therefore, 10 

weeks after the injection of 50,000 PKHneg-MycER cells, we mated the transplanted mice 
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with control male mice and analyzed mammary glands at day 18.5 of pregnancy for the 

presence of milk, by staining whole mounts for beta-casein.  

All the glands under analysis (n=5) resulted positive for beta-casein staining and to the 

same extent of not transplanted pregnant control animals (Figure 4-32), thus indicating 

that the transplanted glands are able to fully differentiate into a completely functional 

tissue.  

 

 

Figure 4-32: “Reprogrammed” progenitors form functional tissue upon transplantations in vivo. 

Female mice were transplanted with PKHneg-MycER cells, successfully mated, and outgrowths collected at 

day 18.5 of pregnancy. The glands were stained with carmine for whole mount evaluation and then paraffin-

embedded and sectioned for immuno-histochemical analysis. Tissue sections were stained for hematoxilin-

eosin (H&E) evaluation of the epithelial structures (left) and for beta-casein as a marker of the presence of 

milk in the alveolar buds. All images were acquired with a 20X magnification objective. 

 

 

4.3.3 Myc	  reprograms	  mammary	  progenitors	  into	  long	  living	  stem	  cells	  

 

Finally, we investigated the in vivo self-renewal properties of PKHneg-MycER 

progenitors, by the serial transplantation assay, which unequivocally proves the existence 

of long living SCs in a given population.  
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To perform serial transplantation assay of the PKHneg-MycER progenitors we took 

advantage of a GFP transgenic mouse model that allowed us to track the transplanted cells. 

We transduced with MycER vector the PKHneg cells derived from this model and we 

performed the first transplantation experiment (P1 in Figure 4-33). Twelve weeks later, we 

collected the glands and performed FACS-sorting of the GFP positive cells. These were 

then re-transplanted in the cleared fat pad of new recipients and positive outgrowths were 

scored 12 weeks later. As shown in Table 4-4, 2 out of 8 glands resulted positive to whole 

mount evaluation and, notably, their epithelial structures were positive to anti-GFP 

staining, thus confirming their derivation from the original “reprogrammed” population 

(P2, Figure 4-33). Furthermore, the predicted SC frequency of the secondary transplants 

(1:2607) is in line with the frequencies reported for total epithelial cell transplantations 

(Cicalese, Bonizzi et al. 2009), thus strengthening the concept of reconstitution of a 

completely normal gland upon transplantation of MycER transduced progenitors.  
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Figure 4-33: Serial transplantation of positive outgrowth. 

TOP: Description of the experiment. Female mice were transplanted with 50,000 PKHneg-MycER cells 

derived from GFP-FVB mice, and glands collected 12 weeks after the injection (P1). The presence of 

positive outgrowths was scored with whole mount staining and IHC analysis of GFP expression (bottom). 

GFP positive cells from a pooled group of 8 glands were sorted by FACS and re-transplanted in 8 recipient 

mice. 12 weeks after, the presence of positive outgrowths was scored with whole mount staining and IHC 

analysis of GFP expression (P2, bottom).   

 

 

 

Table 4-4: Efficiency of serial transplantation.  

750 GFP+ total epithelial cells derived from P1 transplanted mice were re-transplanted into the cleared fat 

pad of 8 recipient mice. SC frequencies (estimates and upper/lower limits) were calculated by limiting 

dilution analysis, as described in the Materials and Methods section.   

 

 

To summarize, we have shown that low levels of Myc expression in mammary progenitors: 

1) confer on them mammosphere initiating potential; 2) endow them with reconstitution 

ability; 3) reconstitute a gland that is morphologically normal and fully functional; 4) 

generate true SCs able to survive upon serial transplantation. All together, these data 

demonstrate that Myc is able to reprogram a heterogeneous population of committed 

progenitors into bona fide SCs (albeit at low frequency).  
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Thus reprogramming might represent, together with the increased frequency of SC 

symmetric divisions (Pasi et al. unpublished results), one of the key mechanisms instructed 

by p53 loss and operated by Myc dysregulation that ultimately leads to the uncontrolled 

expansion of a SC-pool.  
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4.4 Myc	  expression	  alone	  is	  sufficient	  for	  the	  expansion	  of	  the	  SC	  pool	  

 

We next investigated whether constitutive Myc expression in ErbB2 tumors is the critical 

effector of p53-loss, by a reverse genetic approach.  

 

4.4.1 Depletion	  of	  Myc	  impairs	  CSCs’	  unlimited	  expansion	  

 

First, we evaluated whether suppression of Myc activity, using a Myc-specific shRNA or a 

dominant-negative Myc mutant, leads to the disruption of the “p53-loss phenotype” of 

CSCs, e.g. immortality and exponential growth (Cicalese, Bonizzi et al. 2009).  To this 

end, we infected ErbB2-tumor or WT mammospheres with a vector expressing Myc-

specific shRNAs (pLKO-c-Myc-shRNA). Myc silencing, however, resulted in a rapid and 

complete cell growth arrest of both WT and ErbB2-tumor cells, likely due to a strict Myc-

dependency of mammary epithelial cell proliferation (data not shown). As alternative 

approach, we expressed in ErbB2 mammospheres the dominant-negative mutant of Myc 

(Omomyc), which omo-dimerizes with endogenous Myc leading to its irreversible 

functional impairment (Soucek, Whitfield et al. 2008). The coding sequence for the 

Omomyc cDNA is downstream of a tetra- cycline-responsive promoter element (TRE) and 

was cloned in frame with a TurboRFP cassette in the pTRIPZ backbone, which harbors a 

TetO element ensuring Omomyc inducibility upon doxycycline administration. Once the 

tumor mammospheres had been transduced with the Omomyc construct, we induced its 

expression with two different concentrations of doxycycline (0.5 and 1 µM) and monitored 

sphere forming efficiency and replicative potential of our cells. In parallel, as a control, we 
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also induced cells transduced with the pTRIPZ empty vector. The results shown in Figure 

4-34 (right) depict the successful induction of the RFP-Omomyc fusion protein, as 

indicated by RFP positivity, and a significant drop in tumor sphere forming efficiency 

upon induction at both concentrations of doxycycline (Figure 4-34, left). This suggests 

that the presence of a functional Myc is a fundamental pre-requisite for CSC expansion in 

culture. Notably, Omomyc expression had little effect on the growth of WT 

mammospheres (data not shown). 

 

        

Figure 4-34: The expression of the pTRIPZ-Omomyc-TurboRFP vector impairs tumor sphere forming 

ability. 

LEFT: ErbB2 mammospheres transduced with the Omomyc vector or the empty backbone and treated with 

doxycycline (1µM) for one week; the efficiency of induction is indicated by the RFP signal. Spheres pictures 

were acquired at a stereomicroscope with 0.8X magnification. RIGHT: Relative sphere forming efficiency 

(SFE) of cells transduced with the empty vector or the Omomyc vector and treated for one week with 

doxycycline at the indicated concentrations (untreated spheres of each group =1). 

 

 

Additionally, qPCR of two known Myc targets (Nucleolin and ODC1) revealed a very 

modest effect of Omomyc expression on Myc transcriptional activity (Figure 4-35), 

suggesting that pTRIPZ-Omomyc vector does not allow high levels of expression of 

Omomyc in our cell system. Possibly this is why its expression is compatible with cell 

viability, in contrast with what we observed with Myc-shRNA.  
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Figure 4-35:  mRNA expression of Myc target genes upon Omomyc induction. 

qPCR analysis of two known Myc target genes (NCL and ODC1) in empty vector or Omomyc transduced 

spheres. Induction was performed with two concentration of doxycycline (0.5 and 1 µM) for 72 hours. For 

each experimental group, values are normalized against the qPCR data of untreated spheres (UT=1). 

 

Collectively, these data demonstrate that inhibition of Myc in mammary epithelial cells 

leads to an impairment of the sphere forming ability of CSCs, thus highlighting its 

fundamental role in the maintenance of cell growth and viability. However, this approach 

did not allow asking the question as to whether Myc constitutive expression alone is 

sufficient to maintain the increased self-renewal in the ErbB2-tumor CSCs. 

 

4.4.2 Uncoupling	  the	  p53:Myc	  axis	  

 

As a complementary approach, we tried to uncouple the p53:Myc axis, in order to 

investigate the effects of myc on CSCs independently of the loss of function of p53. 

Restoration of p53 signaling in ErbB2 mammospheres has the effect of re-establishing the 

balance between SC asymmetric and symmetric divisions, thus leading to the gradual 



Chapter	  4.4	  -‐	  Results	  

 93 

functional exhaustion of mammosphere initiating cells in culture and, more generally, 

depletion of the content in CSCs, as demonstrated by limiting dilution transplantations in 

vivo (Cicalese, Bonizzi et al. 2009). We now know that this effect happens concomitantly 

with the down regulation of Myc protein and mRNA levels upon Nutlin treatment (see 

section 4.1.2). To uncouple the p53 and Myc pathways, we first enforced the Myc 

expression in the ErbB2-tumor mammospheres, by transducing them with the MycER 

lentiviral vector. Then, we restored levels of p53 in the MycER-expressing tumor 

mammospheres by treating them with Nutlin-3, as described in section 4.1.2. In this 

scenario, we can analyze the effect of constitutive Myc expression on CSCs in the presence 

of functional p53. 

Strikingly, results show that, while the treatment with one dose of Nutlin has the effect of 

slowing down the growth of tumor mammospheres transduced with the empty vector, as 

expected (GR=76%), the presence of MycER renders the restoration of p53 ineffective and 

leads to a complete rescue of the CSC phenotype, as indicated by the fact that the spheres 

show typical CSC unlimited exponential growth (GR=196%) in culture (Figure 4-36). In 

line with this, the cumulative number of cells in culture (replicative potential) also remains 

unaffected by Nutlin administration when Myc is constitutively expressed (Figure 4-37). 
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Figure 4-36: ErbB2 mammospheres transduced with MycER are rescued from the Nutlin effect. 

Semi-logarithmic plot of Cumulative Sphere numbers. Numbers were obtained from serial replating of 

MMTV-ErbB2 mammospheres, transduced with empty or MycER vector, in the absence or continuous 

presence of Nutlin-3 (2.5µM). Each dot in the curve represents the mean of three independent curves; error 

bars indicate the standard deviation. Regression analysis was performed to obtain trend lines (dashed lines) 

that best approximate the curves. Growth rates (GR) and coefficients of determination (R2) for each trend line 

are reported inside the graph. 
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Figure 4-37: Cumulative cell number of ErbB2 mammospheres transduced with MycER and rescued 

from the Nutlin effect. 

Semi-logarithmic plot of Cumulative Cell number. Numbers were obtained from disaggregation to single 

cells of MMTV-ErbB2 mammospheres, transduced with empty or MycER vector, in the absence or 

continuous presence of Nutlin-3 (2.5µM). Each dot in the curve represents the mean of three independent 

curves; error bars indicate the standard deviation. Regression analysis was performed to obtain trend lines 

(dashed lines) that best approximate the curves. Growth rates (GR) and coefficients of determination (R2) for 

each trend line are reported inside the graph. 

 

 

Thus, in the context of the enforced expression of Myc, restoration of p53 function in 

tumor mammospheres is not sufficient, by itself, to prevent CSC expansion, suggesting 

that: 1) Myc acts downstream of p53 and 2) Myc is the critical key effector of CSC 

maintenance. 

To validate these findings in vivo, we transplanted ErbB2 tumor cells, infected with either 

MycER or its corresponding empty vector, in a total of 25 recipient mice; then, when the 

tumors were palpable (tumor volume ≈ 100 mm3), we divided the cohort of mice in two 

further groups: those to be treated with Nutlin-3 (20 mg/kg of body weight) and those to be 

treated with the treatment vehicle (DMSO). The treatment consisted of seven IP injections 

every other day for a total period of 14 days. At the end of it, we measured the volume of 

the resulting tumors: while for the Empty vector-transplanted cohort the Nutlin treatment 

effectively led to a reduction in tumor size, as compared to the vehicle treated cohort, the 

same was not true for the MycER-transplanted cohort. In this experimental group, in fact, 

all the tumors grew at the same rate, regardless of the administration of Nutlin (Figure 

4-38). Therefore, the in vivo data mirror the growth behavior we observed in the 

mammosphere cultures, with MycER expression being able, by itself, to maintain cancer 

expansion, independently of p53 functionality. 
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Figure 4-38: Nutlin treatment does not affect the growth of MycER expressing tumors. 

Mice were transplanted with ErbB2 cells transduced with the Empty (n=13) or the MycER (n=12) vector. At 

the time of palpability (tumor volume ≤ 100mm3) the mice of each group were treated with DMSO (VEH; 

n=7 for Empty and n=6 for MycER) or with Nutlin-3 (NUT: 20 mg/Kg, n=6 for both Empty and MycER). 

Tumor volume was measured at the end of the 2 weeks of treatment. 

 

All together these data suggest that attenuated p53 function, which is a common event in 

many types of tumors, including breast cancer, has profound effects on a cancer population 

that has the features of CSCs by acting through the de-regulation of its downstream 

effector Myc. De-regulated Myc is able by itself to fuel the maintenance of the cancer 

clone, most likely by the rewiring of SC-like mechanisms that ultimately sustain cancer 

development and progression.   
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4.5 Downstream	  of	  the	  p53:Myc	  axis	  

 

A further question we have been trying to answer with this thesis work is which 

intracellular pathway is directly instructed by the p53:Myc axis and is responsible of the 

biological processes we have described. To address this issue we took advantage of the 

genome-wide expression data derived from the previously described RNAseq datasets (see 

section 4.1.4).  

In summary, we have generated 4 relevant datasets of differentially expressed genes 

(DEGs): i) genes that are deregulated by oncogene expression in mammary tumor cells 

(obtained by comparing RNAseq data from ErbB2-tumor vs. WT mammospheres); ii) 

genes that are regulated by p53 expression in mammary normal cells (obtained by 

comparing RNAseq data from p53-/- vs. WT mammospheres); iii) genes that are de-

regulated by constitutive Myc expression in mammary cells (obtained by comparing 

RNAseq data from Myc-ER-expressing and control WT mammospheres); and iv) genes 

that are deregulated in tumor cells as a consequence of p53-loss (obtained by comparing 

RNAseq data from non-treated ErbB2-tumor vs. Nutlin-treated tumor mammospheres). For 

all these dataset, we applied stringent conditions of comparative analyses, setting a cut-off 

on the q-value (≤ 0.05) and on the log2fold change (log2FC = |1|) (Table 4-5).  
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Table 4-5: Differentially expressed genes (DEGs) in selected RNAseq datasets. 

Number of DEGs in each of the indicated comparisons among cell types that satisfy the following thresholds: 

q value equal or lower than 0.05; Log2FC = |1|. Total: total number of DEGs per group; UP: up-regulated 

genes; DOWN: down-regulated genes. The last row indicates the total number of non-redundant genes 

among all the experimental groups. 

 

 

To identify p53:Myc dependent genes in the erbB2 tumors, we searched for genes in 

common among the four datasets. Strikingly, from a total of 5,236 non-redundant DEGs 

present in the 4 datasets, comparative analyses revealed 140 DEGs, including 136 up-

regulated genes and 4 down-regulated genes (Figure 4-39). Thus, the ErbB2 tumors are 

characterized by 140 genes whose de-regulated expression depends on ErbB2, p53-loss 

and constitutive Myc expression, which should represent the downstream effectors of the 

deregulated p53:Myc axis in mammary cancer cells. 
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Figure 4-39: Intercrosses among the four datasets generated by RNAseq.  

Venn diagrams show the overlap among the UP regulated and DOWN regulated genes in each of the four 

datasets under analysis (ErbB2 vs. WT; p53-/- vs. WT; MycER vs. WT; ErbB2 vs ErbB2+NUT) 

 

To investigate which cellular processes might be affected by the identified 140 DEGs, we 

then performed a pathway analysis and gene ontology (GO) search, taking advantage of the 

molecular signature database (MSigDB) available on the GSEA website 

(www.broadinstitute.org/gsea). In details, we computed the overlap between our gene-set 

and curated gene datasets (C2) which consist of a collection of various databases, such as 

online pathway databases, including KEGG, BIOCARTA and REACTOME, and 

knowledge of domain experts. In Table 4-6 the top 20 pathways are listed together with 

the number of genes, among the 140, in overlap with a given dataset. Remarkably, all the 

pathways we found are cell cycle related, with a particular focus on mitotic processes. As a 

visual aid, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway named “Cell-

Cycle” is shown in Figure 4-40, and the genes present in our list are highlighted with a red 

star. As it is clear from the figures, most of these genes are key component of the G2/M 

and mitotic processes. 
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Table 4-6: Pathway analysis of the 140 genes in our signature. 

Computed overlap between our signature and curated gene signatures performed through the C2 tool 

(www.broadinstitute.org/gsea). The top 20 pathways are shown under the Gene set name. # Genes in the gene 

set (K): total number of genes in the called dataset; # Genes in overlap (k): number of genes of our signature 

that overlap with those of the called dataset; k/K: ratio of the genes in overlap with the total number of genes 

of the called dataset. 
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Figure 4-40: KEGG pathway: cell cycle. 

Representative image of the KEGG cell cycle pathway as depicted by DAVID (the Database 

for Annotation, Visualization and Integrated Discovery) bioinformatics tool. Red stars indicate the genes 

present in our signature 

 

 

Furthermore, when we performed a GO analysis (C5), in which the overlap between our 

dataset and annotated genes based on their ontology (biological processes, cellular 

component, molecular function), we could again observe an enrichment of cell cycle and 

mitosis-specifically-related terms (listed in Table 4-7).  
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Table 4-7: Gene Ontology analysis of our gene signature. 

Computed overlap between our signature and genes annotated by their ontology, performed through the C5 

tool (www.broadinstitute.org/gsea). The top 20 GO terms are shown under the Gene set name. # Genes in the 

gene set (K): total number of genes in the called GO term; # Genes in overlap (k): number of genes of our 

signature that overlap with those of the called GO term; k/K: ratio of the genes in overlap with the total 

number of genes of the called GO term. 

 

 

More in details, the list enrolls a total of 82 genes related to mitosis. Functionally, 

expression of all these genes is required for: the APC/C mediated mitotic spindle 

checkpoint (Bub1, Bub1B, Mad2l1, cdc20) that is activated by mis-attachment of 

microtubules and sister-chromatids to kinetochores, and delays mitosis until all 

kinetochores are properly attached; the G2/M checkpoint (Cdc45, Cdc25c, Mcm5/6/8/10, 

Chek1); mitosis-entry or progression (Cdk1, cyclinA and B1, CDC25A/B, Plk1, 
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AuroraA/B, Nek2, Plk1/4); spindle assembly at metaphase (AurkA, AurkB, Plk1, Nek2); 

association to kinetochore complexes (CenpH/I/Q/M/N, Nls1, Nuf2, Kntc1). Furthermore 

the list includes the M-phase promoting factor Cdk1-Ccnb1 and many genes involved in 

the assembly and motility of the spindle microtubules, like Kif2c, Kif18a, Kif20a, 

Racgap1. 

 

Taken together, it emerges from these data that our p53-Myc dependent signature in 

tumors is enriched for genes involved in the process of mitosis and cytokinesis, suggesting 

that the p53:Myc axis could exert its tumor suppressive role by tightly regulating cell 

division mechanisms, in terms of organization of the mitotic spindle, regulation of 

cytoskeleton changes, and distribution of the organelles.  

 



 	  
5	  -‐	  Discussion	  

	  
	   	  

 

5 Discussion	  

5.1 Epistatic	  relationship	  between	  p53	  and	  Myc	  in	  mammary	  SCs	  and	  CSCs	  

 

The CSC population is defined as the rare population of cells which maintain the cancer 

clone and sustain its progression and its recurrence after chemotherapy. CSCs share many 

properties with normal SCs, including the ability to regenerate (self-renewal) and the 

capacity to form differentially specialized progeny. These two properties can be 

accomplished at the same time by a peculiar type of mitosis, the asymmetric cell division, 

whereby one SC gives rise to two daughter cells: one committed toward differentiation, the 

other maintaining SC identity. In situations requiring tissue regeneration, SCs can also 

divide symmetrically, generating two identical daughter cells endowed with the same self-

renewal potential of the mother. 

These two modalities of division, symmetric and asymmetric, are tightly regulated in 

normal tissues and allow maintenance of constant numbers of SCs under homeostatic 

conditions. SCs mode of division is one of the cellular processes that are altered in CSCs 

and that promote their transformation. Our group demonstrated that a switch from 

asymmetric to symmetric SC division is the underlying force determining CSC unlimited 

expansion in a model of breast tumorigenesis. The growth and self-renewal properties of 

CSCs were modeled with in vitro (i.e., via the ability of SCs and CSCs to form 

mammospheres that could be propagated in culture) and in vivo (i.e., via the ability to 

repopulate the cleared fat-pad of a mouse and develop into normal tissues or tumors with 

the same complexity of the tissues of origin) assays. They led to the observation that CSCs 

constantly expand, both in vitro and in vivo, and thus have increased replicative potential. 
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The tumor suppressor gene p53 was found to be the master regulator governing the choice 

between symmetry and asymmetry at SC mitosis, and its absence or functional impairment 

was demonstrated to be the leading cause of CSC extended self-renewal. Moreover, 

restoration of p53 signaling by Nutlin-3 administration in tumors was shown to re-assess 

the balance between symmetric and asymmetric divisions and, consequently, set a brake on 

the geometric growth of CSCs and reduce their total number, as demonstrated by 

transplantation experiments (Cicalese, Bonizzi et al. 2009). 

Being p53 at the center of a plethora of regulatory networks that go from DNA damage 

response to cell cycle arrest, we wanted to understand which one is the relevant 

downstream pathway in the described biological phenotype. 

To this end, we used a candidate gene approach and investigated Myc as the putative 

downstream effector of p53. Myc is frequently de-regulated in cancer and is also a key 

player in SC biology. Its transcriptional program has been linked to SC-like signatures and 

is found enriched in the more aggressive, metastatic and poorly differentiated breast 

cancers (Kim, Woo et al. 2010); furthermore, Myc is a known key gene in the maintenance 

of the pluripotent state in ESCs. Of note, Myc expression is repressed by p53 (Ho, Ma et 

al. 2005, Sachdeva, Zhu et al. 2009, Li, He et al. 2012).  

In line with our hypothesis, we found that both Myc levels and Myc transcriptional activity 

are up-regulated and de-regulated in our ErbB2 driven tumor model of mammary gland 

carcinogenesis. In this model, a constitutively active ErbB2 affects the regulation of 

Mdm2, an E3 ubiquitin-ligase which targets p53 for degradation, by activating the Akt 

pathway that, in turn, enhances Mdm2 phosphorylation and therefore inhibits p53 

functions (Zhou, Liao et al. 2001). We have shown that the treatment of MMTV-ErbB2 

mammospheres with the Mdm-2 inhibitor Nutlin-3 and the consequent disruption of the 

p53-degrading pathway result in the down-regulation of Myc both at the mRNA and at the 
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protein level. Our data, derived from p53-/- and p53+/- models and from acute activation 

of p53, suggest that p53 and Myc are epistatically related, with the first molecule actively 

repressing the second. These results contribute to add complexity to the intricate network 

involving these two master regulators of transcription in the cell. It is also very well 

known, in fact, that over-expression of Myc leads to p53-dependent induction of apoptosis 

(Hermeking and Eick 1994). This notion found confirmation in previous data from our 

group showing that high levels of Myc lead to p53 mediated apoptotic death (Pasi, Dereli-

Oz et al. 2011). Together these findings suggest that a tight regulation of the interaction 

between p53 and Myc in a cell is essential to determine its destiny and that any change in 

the levels of these two molecules could lead to important, and different, biological outputs. 

In this thesis, we envision a model in which the loss of function of p53 impacts on the fine 

regulation of Myc, which, once de-regulated, is the key effector of the biological processes 

that alter SC functions. Whether this regulation is direct or indirect remains still unknown, 

although we have indication that a transcriptional mechanism could be involved. Indeed, 

we have shown that Myc mRNA abundance is strongly dependent on the levels of p53. 

When we examined Myc expression in non-transformed mammospheres harboring the 

homozygous or hemizygous knock-out of the p53 allele, the levels of Myc transcript were 

varying coherently; furthermore, the acute activation of p53 upon Adriamycin treatment of 

WT cells profoundly down-regulated Myc at the transcriptional level. Preliminary data 

based on ChIP-qPCR experiments on a murine immortalized mammary cell line, 

confirmed that high levels of p53 lead to its recruitment on the Myc promoter. 

Nevertheless, considering also that there are many controversies around the mechanisms of 

trans-repression by p53, we cannot exclude that additional post-transcriptional regulation is 

taking place in the peculiar phenotype we describe. Indeed, in the context of somatic cell 

reprogramming to ESCs and tissue de-differentiation, it is known that p53 can “put a 
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brake” on SCs through the activation of specific families of miRNAs, such as miR-34, 

miR-145, and miR146, which are involved in numerous inhibitory activities of SC self-

renewal (Bieging, Mello et al. 2014). In particular, the miR-145 family has been shown to 

negatively regulate Myc (Sachdeva, Zhu et al. 2009), while miR-34 is predicted to bind 

Myc 3’-UTR sequence (our unpublished observations). Both transcriptional and post-

transcriptional mechanisms of regulation are concordant with the fact that exogenous 

MycER expression is not controlled by p53 in our system, as this human coding sequence 

does not possess the Myc-3’UTR. Therefore, it seems plausible that p53 exerts its control 

on Myc through multiple mechanisms, according to the complex upstream signaling 

network that carefully regulates the levels of Myc in the cell. 

 

5.2 The	  p53:Myc	  axis	  in	  the	  self-‐renewal	  of	  mammary	  SCs	  

 

The tight regulation of Myc expression is a key tumor suppressive mechanism. Indeed, it is 

evident from both our data and published studies that too little or too much Myc is harmful 

to a cell; this is why its levels and its activity are so stringently controlled by multiple 

mechanisms and restrained by feedback loops. Our results show that the over-expression of 

Myc leads to very different outcomes, depending on the extent of its activation: in our 

studies, both mammary SCs and progenitor cells composing the mammospheres responded 

either by activating an apoptotic response (high level up-regulation) or by intensifying their 

self-renewal (low level increase). Conversely, too little Myc was shown to be extremely 

deleterious for mammary SCs, as infection with a Myc-targeting shRNA was not 

compatible with cell survival. Only when we impaired Myc functions through the 

exogenous expression of low levels of a Myc dominant-negative mutant (Omomyc), we 

managed to observe a reduction in the CSCs’ sphere-forming ability. Notably, preliminary 
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observations suggest that Omomyc expression does not induce toxicity to WT 

mammosphere cultures. All together, these observations indicate that a precise regulation 

of the amount of the Myc protein and its concomitant signaling are important factors in the 

control of mammary stem and progenitor cell fate decisions. Clearly, in cancer, these 

regulatory networks are altered and Myc is found de-regulated in a very high fraction of 

human tumors. 

In line with this, Myc is found over-expressed and de-regulated in our model of breast 

tumorigenesis. Indeed we have shown both ex vivo and in vitro that ErbB2 tumors display 

higher levels of the Myc protein and Myc mRNA than WT mammary glands. Furthermore, 

these levels remain constantly high during mammosphere formation, while WT cells stop 

proliferating and down-regulate Myc expression. Remarkably, Myc transcriptional activity 

mirrors this behavior, thus showing that a Myc-dependent gene signature is active in our 

ErbB2-driven tumors. 

In our system, over-expression of Myc did not transform normal SCs, as transplantation of 

cells transduced with the MycER vector into recipient mice resulted in the formation of 

normal tissues two months after engraftment, and in the absence of palpable masses up to 

one year after the injection. This is in accordance with what is known in the literature: Myc 

alone can initiate tumorigenesis but needs cooperating events to induce a full-blown 

transformed phenotype (Gabay, Li et al. 2014). Therefore, it is reasonable to hypothesize 

that tumor formation in low Myc-expressing cells does not occur, even after a very long 

latency, until these cells undergo a second oncogenic hit. 
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5.2.1 Dissecting	  the	  p53:Myc	  axis	  in	  stem	  and	  progenitor	  cells	  

 

We have shown that precise de-regulation of the levels of Myc induces profound changes 

in the balance between self-renewal and differentiation. Indeed, the number of SCs within 

a mammosphere culture appears to increase upon enforced expression of Myc, as 

demonstrated by mammosphere assays and by transplantation in the cleared fat pad. We 

showed that this effect can be explained by two mechanisms: on the SCs’ side, low-Myc 

promotes switching of the modality of division of purified SCs, from mainly asymmetric to 

mainly symmetric; on the progenitors’ side, it induces phenotypic changes that bestow 

them a new identity, with properties and functions that usually define SCs. To be able to 

dissect the two mechanisms, we purified a population enriched in SCs (Cicalese, Bonizzi et 

al. 2009), which was slowly proliferating and therefore retaining the PKH-26 dye, as 

opposed to the putative progenitor population (PKHneg).  

PKHneg cells in fact do not contain cells with SC properties as they i) are not able to form 

clonal mammospheres in culture, but only small and irregular aggregates that cannot be 

passaged; ii) can only form mono-lineage colonies in matrigel assays, and, most 

importantly, iii) do not reconstitute the mammary gland structure upon transplantation in 

pre-pubertal mice. However, we have demonstrated that PKHneg cells expressing low 

levels of Myc possess increased self-renewal ability in culture. Strikingly, they fully 

recapitulate the mammary gland morphogenesis and function when transplanted in the 

cleared fat pad (as demonstrated by the presence of myoepithelial and luminal cytokeratins 

and by the ability to produce milk during pregnancy), and possess high self-renewal 

potential (as suggested by serial transplantation), thus proving that they contain multipotent 

SCs. These acquired regenerative potential and self-renewing abilities suggest therefore 
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that progenitor cells can undergo a cellular reprogramming that leads to the formation of 

SCs.  

The reprogramming event driven by Myc happens at a very low frequency (1:100,000 

progenitors), indicating that only a few cells within this heterogeneous population of 

PKHneg cells respond to low-Myc levels and de-differentiate. This could be interpreted in 

two ways: i) the reprogramming phenomenon is completely stochastic and randomly 

targets only few cells that have a permissive genetic or epigenetic state; or ii) there exist 

preferential target populations, sharing a particular replicative history or degree of 

differentiation, which are more prone to the “low-Myc” effect. Both scenarios are plausible 

as it was demonstrated that enforced expression of Myc can have profoundly diverse 

effects depending on the differentiation stage of a cell (Wilson, Murphy et al. 2004, Watt, 

Frye et al. 2008, Reavie, Della Gatta et al. 2010), and that the epigenetic state of a cell 

influences the degree of availability of the target genes to the binding by Myc. Recent 

findings that assign to Myc a role as a general amplifier of previously activated gene 

expression programs could provide the mechanistic basis for the described heterogeneous 

responses (Lin, Lovén et al. 2012, Nie, Hu et al. 2012). 

Despite being very infrequent, this reprogramming effect is likely to have dramatic effects 

in vivo if one considers the large quantity of progenitors, at different differentiation stages, 

which reside in a tissue. 

Finally, as regards the effects of Myc on the SC population, we showed that while normal 

SCs mainly divide asymmetrically, cells with enforced expression of Myc switch to the 

symmetric mode of division. Indeed, purified PKH positive (PKHpos) cells infected with 

the MycER vector preferentially underwent symmetric divisions, generating two cells with 

analogous proliferating capacities. This was also confirmed by staining the dividing SCs 

with an antibody that recognizes the fate determinant Numb and finding that it was 
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asymmetrically distributed in WT SCs, while uniformly localized on the membrane of 

dividing SCs that expressed low levels of Myc (unpublished data). Interestingly, Numb 

was reported to be regulating the activity of p53 (Colaluca, Tosoni et al. 2008), therefore 

acting as a potential upstream link to the p53:Myc axis in the regulation of SC mitosis. 

Notably, the effect of Myc on symmetric/asymmetric divisions is undistinguishable from 

that previously described for p53-loss (Cicalese, Bonizzi et al. 2009). 

Regardless of their relative impact, the different effects of Myc on SCs and progenitors 

may contribute to the maintenance, in vivo, of the expanding pool of CSCs. We have 

shown, indeed, that Myc constitutive expression in ErbB2 tumors renders cells resistant to 

the effect of Nutlin treatment, thus demonstrating that Myc, by itself, is sufficient to 

maintain the pool of CSCs in vitro and in vivo, even when p53 is reactivated. 

In conclusion, by contributing to the continuous generation of new CSCs, both the above-

mentioned biological effects of Myc constitutive expression appear to participate in the 

process leading to tumor sustainment.  

 

5.2.2 Implications	  for	  the	  process	  of	  tumorigenesis	  

 

P53 and Myc have been implicated in the pathogenesis of different tumors, and their 

relevance for CSC specific mechanisms further confirms their criticality for the 

transformation process. 

Somatic mutations and/or deletion of the tp53 gene are found in almost every type of 

cancer at various rates (up to nearly 100% in high-grade serous carcinoma of the ovary) 

(Rivlin, Brosh et al. 2011). In tumors with low mutation rates, p53 is found in their 

germline configuration and it is often inactivated by genetic alterations of genes involved 

in the regulation of p53 functions. For example, many tumors, most frequently 



Discussion	  

 112 

hematological malignancies, exhibit amplification of the E3-ligase Mdm2, which leads to 

Mdm2 overexpression and p53 degradation, in the presence of WT p53 alleles (Kruse and 

Gu 2009). In breast cancer, p53 loss correlates with aggressiveness and un-differentiated 

subtypes (Mizuno, Spike et al. 2010). 

We have shown in this thesis that a functional p53 targets the expression of Myc, as its 

downstream effector for the regulation of SC self-renewal. Myc is one of the most studied 

proto-oncogenes. Mutations affecting the myc gene are found infrequently, and their effect 

on Myc function is not clear. Myc is translocated in Burkitt’s lymphomas, where it forms a 

fusion gene with the regulatory regions of the constant region of the genes coding for the 

immunoglobulin heavy or light chains (Boxer and Dang 2001). In breast cancer, genetic 

amplification of myc is reported for 22% of the cases collected by the TCGA consortium 

(Cancer Genome Atlas 2012). Nevertheless, Myc expression is elevated or de-regulated in 

a much higher fraction of breast tumors and is particularly associated with the most 

aggressive triple negative subtype (Cancer Genome Atlas 2012, Horiuchi, Kusdra et al. 

2012). A number of studies have demonstrated that the gene signature dictated by Myc 

does not only characterize ESCs but is also predictive of poor prognostic parameters, 

mainly defining the most un-differentiated, highly metastatic types of cancer (Ben-Porath, 

Thomson et al. 2008, Kim, Woo et al. 2010). 

Therefore, p53 loss and Myc activation appear to be integral processes that sustain tumor 

“stemness” in the vast majority of tumors. The continuous generation of cells with the 

properties of CSCs might represent an invariable property of many tumor types, likely the 

most aggressive ones, and the manipulation of the p53:Myc axis seems to constitute a 

potential tool to modulate tumor development. 
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5.3 A	  mitotic	  gene-‐signature	  fuels	  the	  expansion	  of	  the	  CSC	  pool	  

 

Analysis of the p53:Myc downstream pathway might provide novel insights in the 

mechanisms of regulation of SCs in normal and transformed tissues. We have shown that 

the activity of the p53:Myc axis in CSCs might converge towards a small cluster of 140 

genes. Gene-ontology analysis of p53:Myc-regulated genes revealed enrichment of 82 

genes that are involved in the regulation of the G2 or mitotic phases of the cell cycle, 

namely mitosis-entry or progression and execution of the mitotic spindle checkpoint. 

Strikingly, all of them were down regulated by p53 and up regulated by Myc in normal 

mammary epithelial cells, while, in the ErbB2 tumor cells, they were all up-regulated. 

Most notably, expression of these genes in the tumor cells was strictly dependent on p53-

loss and Myc-activation (as inferred by the ErbB2-Nutlin dataset).  

Transcription from all these genes is usually repressed in G1 and activated in S-phase to 

progress to G2 and M. Our list enrolls many players of the mitotic spindle checkpoint 

which are important regulators of the cell replicative fate. Indeed, it is known that reduced 

levels of several components of the spindle checkpoint, including Bub3 and BubR1, induce 

cellular senescence (Stark and Taylor 2004). Thus, down-regulation of these genes in 

normal cells, following p53 activation (and down-regulation of Myc), would unequivocally 

lead to inhibition of cell proliferation, through a block of the G2-M transition or the mitotic 

process, or by acceleration of senescence. Vice versa, in cancer cells, loss of p53 function 

(and Myc activation) would favor mitotic entry and execution of the mitotic processes.  

Predicting the effects of the de-regulation of these genes in SCs and CSCs is much more 

challenging, as very little is known about their specific role in SCs. We know that de-

regulation of mitotic kinase activity, of regulators of the spindle assembly, and of 

cytokinesis has profound effect on the correct execution of SC asymmetric division. For 
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example, in Drosophila neuroblasts, mutations in mitotic kinases like Cdk1, Aurora A, 

Aurora B and Plk1 result in mis-localization of asymmetric markers and cell fate 

determinants, including Numb and Prospero, thus influencing the correct execution of 

mitosis and differently modulating cell polarity and the balance between asymmetric and 

symmetric cell divisions (Malumbres 2011). Furthermore, in Drosophila, mutagenesis of 

different centrosomal proteins causes impaired ACD of neural SCs and is tumorigenic in 

larval brain tissue; also, loss of astral microtubules can lead to inefficient spindle 

orientation and mis-segregation of cell-fate determinants (Castellanos, Dominguez et al. 

2008). 

With regard to reprogramming, it is known that differentiated cells are required to be 

cycling in order to better respond to the action of the four “reprogramming factors”, Myc, 

Oct4, Sox2 and Klf4, and turn into iPSCs. Indeed, pluripotent SCs have a peculiar cell 

cycle structure and spend relatively short time in G1 and most of the time in the S/G2/M 

phases of the cell cycle, a pre-requisite for inhibition of differentiation and for preservation 

of an epigenetic state with open chromatin (Singh and Dalton 2009).  

 

Regardless of how de-regulation of these mitotic genes might influence SC properties, a 

role for Myc and p53 in mitosis has been clearly demonstrated.  

P53 is known to be at the center of a regulatory network with several mitotic kinases, like 

Plk1, BubR1 and Aurora (Ha and Breuer 2012), which are all included in our signature. 

Several lines of evidence have demonstrated that, in mammalian cells, p53 takes part in 

pathways that maintain G2 arrest in response to DNA damage. In particular, it has been 

shown that activation of p53 induces transcriptional repression of many mitotic genes, 

including Cdc2, cyclin B2 and Cdc25C (Stark and Taylor 2004), which are all included in 

our list. P53 loss has been shown to favor reprogramming (Hong, Takahashi et al. 2009), 
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and p53 regulation of mitotic players could have a role in this process. The continuous 

proliferative state typical of ESCs halts the onset of replicative senescence, thus the 

concomitant loss of p53 does constitute an important pre-condition for reprogramming. It 

is known that upon mitotic-entry, all the transcriptional regulators dissociate from the 

genome and re-associate with chromatin only after cell division, thus establishing new 

gene expression patterns, as it happens during reprogramming (Egli, Birkhoff et al. 2008). 

The involvement of Myc in the regulation of mitotic progression is less well understood. It 

is known that Myc transcriptionally regulates Aurora kinases A and B, which are included 

in our list of mitotic genes, and whose role in tumorigenesis is an intense area of study also 

at the clinical level (Kollareddy, Zheleva et al. 2012). Furthermore, very recent works 

studying Myc inhibition point towards Myc involvement in cell mitotic proficiency. 

Annibali and colleagues describe defective mitosis and induction of mitotic catastrophe 

upon suppression of Myc activity through Omomyc, an effect that is mediated by Sae1, a 

protein involved in the SUMO pathway and implicated in the control of the mitotic 

chromosome structure, cell cycle progression, kinetochore function and cytokinesis 

(Annibali, Whitfield et al. 2014). These data demonstrate a central role of Myc in the 

regulation of mitotic programs, even though the precise molecular mechanisms through 

which it works are still only partially delineated, and could possibly vary among cell types 

and cell-cycle states. Additionally, enforced Myc expression might be relevant for keeping 

cells in a high rate of cycling, thus favoring the reprogramming process (Singh and Dalton 

2009). Therefore, we could speculate that by enforcing the transit through G2/M, Myc and 

the loss of p53 establish the conditions that allow the association of transcriptional 

regulators and chromatin remodelers to the genome, determining the fate of a cell at the 

onset of the new G1. 

 



Discussion	  

 116 

The molecular mechanism through which the p53:Myc axis regulates mitotic genes is 

unknown. A number of indirect data suggests that a subset of them, including those that 

came out of our analysis, shares common regulatory motifs in their promoter region that 

allow p53-mediated trans-repression. Indeed, several mitotic genes are characterized by the 

presence, in their promoters, of tandem repressor-elements (CDE/CHR) responsible for 

G1-specific silencing, namely the cell cycle-dependent element (CDE) and the cell cycle 

genes homology region (CHR).  

Many CDE⁄CHR genes, such as Cdc2, Cyclin B1, Cyclin B2 and Cdc25C, are down-

regulated by the tumor suppressor p53. The mechanisms of p53 recruitment to promoters 

of repressed target genes are not definitively ascertained. It was reported that, upon DNA 

damage, p53 binding to these promoters does not require canonical p53 binding-sites and 

depends on intact CDE/CHR/ elements (Muller and Engeland 2010). 

How Myc interacts and activates these promoters is less clear. Usually the CDE/CHR 

promoters also contain a site for transcriptional activation; indeed, they are frequently 

found in conjunction with two or three CCAAT-box elements through which NF-Y 

transcription factors activate the promoters. Thus, it is tempting to speculate that Myc is 

recruited to the CAAT-box elements at the G1-S transition, thus allowing their 

transcriptional activation during G2 and M. This would lead to envision a model in which 

these mitotic genes are directly repressed by p53 and activated by Myc by alternative 

binding to their promoters, and where p53 and Myc are epistatically related, thus providing 

coordinated repressing or activating signals in G0/G1 (by p53) and in S-G2-M (by Myc).  
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5.4 Clinical	  relevance	  

 

The p53:Myc axis might represent a critical target for anti cancer therapeutic strategies. 

Patients with tumors carrying WT p53 can be treated with drugs that reactivate p53 

function. Nutlin-3 is a small molecule that inhibits the binding between Mdm2 and p53 and 

it is currently being tested in phase I of clinical trials, together with other compounds that 

exploit the inhibition of the same catalytic pocket. Clearly, to be effective, these p53 

activators require the existence of a WT p53 as mutations in the p53 gene mainly disrupt 

its ability to bind Mdm2 (Moll and Petrenko 2003). The possibility of re-expressing p53 in 

tumors is a very promising area of therapeutics, not only because it results in an apoptotic 

or senescent response and enhancement of immune-mediated activity (Suzuki and 

Matsubara 2011), but also because it reduces the tumor mass by acting on CSCs (Cicalese, 

Bonizzi et al. 2009).  

Our experiments, both in vitro and in vivo, show that the impossibility to restore p53 

functions, due, for example, to the presence of a mutated p53, makes the tumor dependent 

on the levels of the de-regulated Myc. In line with this, it was shown that a mutant p53 

(p53-143A) binds Myc and activates its transcription, leading to Myc de-regulation 

(Frazier, He et al. 1998). “Addiction” to the “correct” levels of Myc is a common feature 

of cancer, especially of cancers driven by oncogenes other than Myc (Gabay, Li et al. 

2014), exactly like in our ErbB2 model of breast tumorigenesis. This provides relevant 

opportunities for therapy, as the suppression of Myc would efficiently promote tumor 

regression and, eventually, eradication. Currently, several strategies have been developed 

for the inhibition of Myc activity; they are either focused on inhibiting Myc expression or 

Myc ability to interact with its DNA-binding partner Max (as Omomyc does), or they 

interfere with Myc target genes. BET-bromodomain inhibitors fall in the first category 
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(Filippakopoulos, Qi et al. 2010). It has been shown that these domains are potent 

regulators of myc transcription in different tumors and the use of these inhibitors led to 

regression of multiple myeloma (Delmore, Issa et al. 2011) and acute myeloid leukemia 

(Zuber, Shi et al. 2011) in murine models. 

Omomyc was shown to be able to revert KRas-induced lung cancers and human gliomas 

without apparent toxic effects to the normal tissues (Soucek, Whitfield et al. 2013, 

Annibali, Whitfield et al. 2014). Indeed, in the in vitro testing of the efficiency of Omomyc 

in the inhibition of the CSC expansion of our tumor cells, we have observed the same 

finding as our preliminary data suggest that the mutant has no effect on the survival of WT 

cells. It would be very useful to discover whether the Myc dependency of our tumor model 

might be exploited in vivo as a CSC specific therapy, and to elucidate how it could 

cooperate with p53 restoration strategies. 

Notably, Omomyc, by disrupting the interaction between Myc and Max, functionally 

impairs only the trans-activating activity of Myc and not the trans-repressing. Thus, its 

action would affect the downstream pathways of Myc that we have characterized and that 

mainly concern cell cycle promotion and mitotic proficiency.  

Finally, our findings have clinical implications with respect to the issue of biological 

heterogeneity and tumor targeting. They suggest that the elimination of CSCs might not be 

enough for effective cancer eradication, and that targeting those cellular mechanisms that 

induce reprogramming of tumor cells into cells with CSC properties is also required.
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