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The assisted reproductive technologies (ARTs), oocyte in vitro maturation 

(IVM), in vitro fertilization (IVF) and in vitro embryo culture (IVC), are aimed at 

the conservation of biologic and genetic biodiversity. The in vitro embryo 

production (IVEP) is crucial for threatened and endangered wild species, but its 

efficiency is still low because of the poor information on cross-species 

embryology (Pukazhenthi & Wildt, 2004; Pukazhenthi et al., 2006). Conversely, 

in the livestock animals, as ruminants, the IVEP gives good and repeatable 

results and is widely used for improving reproductive and genetic performances 

(Galli et al., 2014; Paramio & Izquierdo, 2014). 

In the domestic carnivores, the embryo-related technologies are still at an 

experimental level because the efficiency and the clinical application are very 

limited. However, the availability of gonads from routinary surgery provides a 

source of gametes for experimental studies aimed at increasing the knowledge 

about reproductive biology and improving the ARTs in these small animals. 

Furthermore, domestic cats and dogs are optimal animal models for wild felids 

and canids. 

 

The domestic cat (Felis catus) is also an optimal research model for studying 

human diseases, as anatomic, oncologic or genetic dysfunctions (e.g. Klinefelter’s 

syndrome), and for improving fertility preservation procedures (Goodrowe et al., 
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1988). The morphological and biological similarities between human and 

domestic cat reproductive features, as the ovarian tunica albuginea, the oocytes 

and the germinal vesicle (GV) characteristics, the timing of in vitro maturation 

(24 hours), and the reproductive conditions and environment have been well 

documented (Comizzoli et al., 2010). 

Wildt and co-workers (2010) underlined other specific elements that attested 

the closest connection between these two species, as the male teratospermia or 

the female infertility syndromes, the asynchronous oocyte cytoplasmic and 

nuclear maturation, the ovarian hypersensitivity and the luteal dysfunction after 

gonadotropin therapy. 

The increasing demand in the human and wildlife ARTs generates the 

growing interest in the reproductive biotechnologies of the domestic cat.  

 

1.1. In vitro embryo production in the domestic cat 

 

To ensure a successful IVEP, the availability of highly competent gametes is 

required. 

Talking about the oocytes, the full competence is the inner ability to mature, 

be fertilized and develop to the late embryo stages. The cumulus-oocyte complex 

(COC), i.e. the oocyte surrounded by multiple layers of specialized cumulus cells 
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(CCs), is the functional unit for the in vitro biotechnologies. However, the 

recovered female gametes from isolated ovaries are a heterogeneous population 

made of competent and non-competent COCs derived from growing or atresic 

follicles. The selection of optimal COCs for IVEP is based on their 

morphological appearance that in the domestic cat and other carnivores (dog, 

leopard, tiger, and ferret) has been categorized in four distinct grades (Guraya, 

1965; Wood & Wildt, 1997). 

The grade I (=excellent) shows uniform, spherical and dark cytoplasm, due 

to the high intracellular lipid concentration, combined with a full complement of 

multiple and tightly compacted CCs layers (Fig. 1). The grade II (good) has the 

main characteristics of the grade I, but with fewer layers (2-4) of surrounding 

CCs. Conversely, the grade III (fair) shows less cytoplasmic uniformity visible as 

a diffused transparency, synonymous of large lipid droplets aggregation. These 

COCs show only a partial covering of proximal CCs “corona radiata” that lay 

adjacent to the zona pellucida (ZP). Finally, the grade IV (poor) presents 

elevated cytoplasm fragmentation and partial or total dissociation of corona 

radiata and CCs. It has been demonstrated that the excellent and good grades (I 

and II) COCs are characterized by high maturational and developmental rates, 

compared to the fair and the poor grades (III and IV) that show high levels of 

atresia (Wood & Wildt, 1997). 
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Figure 1. Domestic cat grade I cumulus-oocyte complexes (COCs). 

 

 

Cumulus-oocyte complexes (COCs): the high competence ova 

 

The presence of multiple layers of CCs surrounding the oocyte is an 

important and essential feature for an optimal IVEP. The intimate relationship 

between the germinal and the somatic compartments has been widely 

demonstrated. The oocyte and the surrounding CCs are closely associated during 

all stages of follicular development, primarily by numerous projections that cross 

the ZP and penetrate deeply into the ooplasma, very close to the oocyte nuclear 

envelope, as evidenced by electron microscopy in different mammalian species 

(Motta et al., 1994; Albertini et al., 2001). Different junctional complexes provide 

the structural anchorage for maintaining the compartments association and 
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ensuring the transfer of metabolites and messenger molecules, nutrients and 

hormones (Eppig, 1982; Buccione et al., 1990; Motta et al., 1994). 

This strong and highly specialized interaction is of crucial importance during 

the growth, the maturation and the subsequent embryo development of female 

gametes (Eppig, 1982). It is well known that during the follicle development 

there is a dynamic alteration of the trans-zonal projections (TZPs), as their 

number increases and their form changes to coordinate the oocyte growth and 

the maturation events. Motta et al. (1994) showed that in the human preantral 

follicles the TZPs are numerous and adhesively connected to the oolemma, with 

deep invaginations reaching the oocyte nucleus. During the antral stage, the 

TZPs start to retract from the inner ooplasma, maintaining only fewer 

connections, since a complete retraction occurs during ovulation making the 

CCs totally uncoupled from the oocyte (Albertini et al., 2001). 

The signaling pathway from oocytes and CCs also involves other specific 

junctional complexes, the gap junctions (GJs). They are intercellular membrane 

channels that allow the active transfer of inorganic ions, second messengers, and 

small metabolites (<1 kDa, Standring, 2009). A single GJ is composed by a 

channel of connexons, structurally constituted by a hexamer of connexins. The 

connexins are membrane proteins with different sizes and are produced by 

different specie-specific genes. They are composed by four membrane-spanning 
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domains, two extracellular and one cytoplasmic loops, and cytoplasmic –N and –

C termini. The variable sequences of the cytoplasmic loop and of the –C 

terminal determine the specific biophysical and regulatory properties of the GJ in 

different tissue and organs (Bruzzone et al., 1996; Kidder & Mhawi, 2002). 

The active participation of the GJs during the meiosis resumption of the 

fully grown mammalian oocytes has been documented by the observation of the 

dynamic changes in the connexin localization during IVM (Fagbohun & Downs, 

1991). 

For instance, in the bovine species, the connexin 43 (CX43) has been 

localized in the COCs by an immunohistochemical staining during 24 hours of 

IVM (Vozzi et al., 2001; Luciano et al., 2004). The CX43 fluorescent signals 

cross weakly the ZP at the beginning of IVM, and are strongly present in the 

CCs in large dots. After 3 h, the signals appear in the oocyte and CCs cytoplasm, 

and at the end of IVM, the signals increase in the inner oocyte cytoplasm with a 

contemporary decrease in the CCs directly in contact with the oocyte. 
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Meiotic balance: arrest and resumption 

The oocytes are typically arrested at prophase I of the first meiotic division, 

until the surge of circulating gonadotropins induces the resumption of meiosis to 

complete the nuclear divisions and to achieve the metaphase II (MII) stage, prior 

to or soon after the ovulation (Dekel and Beers, 1980). The active coupling of 

the oocyte and the surrounding CCs is necessary for the acquisition of the full 

developmental competence (Luvoni et al., 2006). The prolongation of this 

coupling in the pre-ovulatory oocytes provides the transfer of some molecules in 

the ooplasma that maintain the block of the cell cycle, ensuring the completion 

of the cytoplasmic maturation, i.e. oocyte capacitation (Hyttel et al., 1997). In 

this process, an increase of the lipid storage, a reduction in the Golgi 

compartment, a redistribution of the ribosomes near the nucleus and the 

alignment of the cortical granules under the oolemma, are observed. In addition, 

the synthesis and the storage of different proteins and of specific maternal 

transcripts (mRNA) to provide the capability of supporting the monospermic 

fertilization, the pronuclear formation, and the early embryo development, occur 

(Tanghe et al., 2002; Diez et al., 2005). 

In this scenario, the mediation of regulatory molecules via the oocyte-CCs 

GJs is essential (Fig. 2). Three major signals are involved in the meiotic arrest 

and resumption: calcium, cyclic adenosine 3’,5’-monophosphate (cAMP), and 
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membrane potential. After the gonadotropin surge, the intracellular levels of 

calcium in the CCs increase and, due to the GJs coupling, this signal reaches the 

oocyte in few minutes, ensuring its activation. There are evidences that the 

absence of surrounding CCs or their active removal from the oocyte prevents 

the intra-oocyte calcium action, impairing the cytoplasmic maturation (Zuelke et 

al., 1991; Homa, 1995).  

 

Figure 2. Molecular pattern for the achievement of full oocyte competence (O’Shea et al., 2012). 

 

Another second messenger, the cAMP peaks in the CCs and in the oocyte at 

the same time. Before the gonadotropin stimulation, the oocyte meiotic arrest is 

ensured by the maintenance of a threshold level of this molecule modulated by 

its active synthesis by a specific protein complex (G-protein and adenylate 
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cyclase 2, ADK2), and by its degradation provided by the phosphodiesterase 3A 

(PDE3A). The cAMP is reported to be responsible for preventing the activation 

of the cyclin dependent kinase 1 (CDK1), the catalytic kinase subunit that 

together with the regulatory cyclin B1 subunit, forms the maturation promoting 

factor (MPF). The MPF is directly involved in the signal pathway leading to the 

breakdown of the nuclear envelope and to the occurrence of germinal vesicle 

break down (GVBD stage, Tsafriri et al., 1996; Vaccari et al., 2009; Adhikari & 

Liu, 2014). Due to the diffusion through the oocyte-CCs GJs of some specific 

regulatory molecules, as the cyclic guanosine monophosphate (cGMP) that 

modulates the PDE3A activity, the cAMP threshold level is ensured. 

Finally, a membrane depolarization occurs in the somatic cells, particularly in 

the CCs, due to the action of specific enzymes. The CCs-GJs coupling extends 

the depolarization to the oocyte, influencing its meiotic resumption (Mattioli & 

Barboni, 2000). 

After the gonadotropin induction, the oocyte meiosis resumption is actively 

coordinated by theca and granulosa cells (GCs) that, after a ligand-receptor link, 

are induced to secrete specific factors in the follicular fluid. The CCs also 

participate in the transfer of signals to the oocyte, as specific LH-receptors are 

present on their membrane (Peng et al., 1991; Mattioli, 1994; Mattioli et al., 

1998).  
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After the gonadotropin surge some paracrine factors, known as the cumulus 

expansion-enabling factors (CEEFs, e.g. growth differentiation factor 9, GDF9 

and bone morphogenetic factor 15, BMP15), are produced in the GCs and CCs 

in order to propagate the gonadotropin signal and to promote a specific process, 

so-called “cumulus expansion” (Dragovic et al., 2007; Nagyova, 2012; Nevoral et 

al., 2014). This event involves an extensive rearrangement of the CCs 

cytoskeleton and the active synthesis of proteoglycans and glycosaminoglycans, 

as the hyaluronic acid (HA), to transform the strictly packed cumulus complex in 

a mucified extracellular matrix (ECM) with a higher viscosity. During this 

phenomenon, the CCs lose their contact with each other, moving outward the 

oocyte along the hyaluronan polymeric backbone. The uncoupling of the GJs 

interrupts the communication between the somatic and the germinal 

compartments, enabling the oocyte to resume the meiosis. The diffusion of 

extracellular cGMP is stopped and the degradation of cAMP by the PDE3A 

within the oocyte increases, triggering a pathway of phosphorylations and 

dephosphorylations of MPF and mitogen-activated protein kinase (MAPK) to 

induce the GVBD and the achievement of the mature stage of MII (Aberdam et 

al., 1987; Nurse, 1990). When an abnormal uncoupling of the GJs between the 

somatic and the germinal compartments occurs, the achievement of the full 

maturational and developmental competence is negatively affected (carnivores, 

Luvoni et al., 2001; horses, Colleoni et al., 2004; bovine, Luciano et al., 2004). 
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Cumulus-denuded oocytes (CDOs): the poor competence ova 

 

As previously mentioned, the oocytes with poor morphological 

characteristics (grade III and IV) are often associated with low rates of IVM and 

embryo development (Davachi et al., 2012; Auclair et al., 2013). Among these, 

oocytes without CCs are commonly referred to as cumulus-denuded oocytes 

(CDOs, Fig. 3). The absence of CCs and related secreted factors negatively 

affects the metabolism and the functionality of these oocytes, leading to an 

aberrant cytoplasmic maturation and an impaired cumulus-related lipid 

metabolism. 

 

Figure 3. Domestic cat cumulus-denuded oocyte (CDO). 

 

Improving the IVEP of low competence oocytes is an emerging goal and 

there are pragmatic reasons for exploring their in vitro developmental potential. 
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Gametes as the CDOs could represent an interesting option for widening 

the germinal pool in the case of high value individuals with very precious genetic 

material (Puzakenthi et al., 2006), and could be the only genetic source when the 

selected COCs (grade I) are cryopreserved. 

The oocyte cryobanking is the main tool for long-term preservation of 

genetic biodiversity (Luvoni, 2006). However, the exposure to non-physiological 

conditions, as the sub-zero temperatures of liquid nitrogen, the presence of 

cryoprotectant agents, and the osmolality differences between the extra- and 

intracellular environments, could lead to severe collateral effects on the cell 

structures (Parks, 1997). The cold-induced effects to the surrounding CCs is due 

to the different size, structure and permeability of the somatic cells compared to 

the germinal cell, which make the CCs more susceptible to the cryoprotectant 

agents and to the cold temperatures (Luvoni, 2006; Songsasen & Comizzoli, 

2009). As already mentioned, the presence of CCs is necessary for the proper 

oocyte maturation, but after thawing, the competence of the oocytes might 

decrease for the absence of CCs. 

The in vitro culture of CDOs could also be necessary during the procedures 

of gamete reconstruction, as the GV transfer (GVT). The removal of 

surrounding CCs from the immature GV oocytes is essential for the micro-

injection of the donor nucleus (karyoplast at GV stage) into the enucleated 

recipient (cytoplast) to obtain the artificial GVT oocyte. This innovative 
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technique offers the opportunity to investigate the role of maternal epigenetic 

modifications during the oocyte growth and the timing of the genomic 

imprinting. These studies might clarify the interspecific nuclear and cytoplasmic 

factors which regulate the oocyte meiotic progression (Franciosi et al., 2010). 

 

Therefore, searching the optimal enriched culture condition for oocytes 

without the CCs support (CDOs) would greatly facilitate such biotechnological 

procedures.  

 

COCs & CDOs in vitro embryo production 

 

The history of domestic cat IVEP started in the 1977 with the first 

successful IVF of in vivo matured COCs with epididymal spermatozoa (Bowen, 

1977). The better knowledge of the domestic cat endocrinology and physiology 

prompted the development of the in vitro reproductive biotechnologies. 

Induced superovulation, after gonadotropin treatments, ensured the chance to 

recover a population of in vivo matured COCs for IVF/IVC and embryo 

transfer (ET) into synchronized recipients (Goodrowe et al., 1988). In the ‘90s, 

some researchers focused their attention on the study of IVM protocols 

(Johnston et al., 1989 - 1993; Goodrowe et al., 1991) and the first full in vitro 

procedure of IVEP was documented in the 1997 by Pope and co-workers. In 
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this work, IVM of immature COCs followed by IVF with ejaculated 

spermatozoa, IVC of presumptive zygotes, and subsequent ET (at morulae and 

blastocyst stages) were successfully performed. The same scientific team 

performed the first intra-cytoplasmic sperm injection (ICSI) in the domestic cat 

with in vivo (Pope et al., 1998) and in vitro matured COCs (Gómez et al., 2000), 

reporting that this technique could be successfully applied in this species. 

The cryopreservation of the domestic cat gametes and embryos was the main 

challenge of the third millennium. In the 2000, Luvoni and Pellizzari reported 

the successful embryo development after the IVF of cryopreserved in vitro 

matured cat oocytes and in the 2012 the important goals of live birth kittens 

from vitrified in vitro matured COCs were obtained (Pope et al., 2012; 

Tharasanit et al., 2012). 

Domestic cat COCs have also been used to produce cloned embryos of 

domestic and non-domestic felids by innovative techniques as the somatic cell 

nuclear transfer (SCNT). Some reports demonstrated that the cat COCs can 

reprogram the nuclei of several endangered felid cells, as confirmed by the in 

vitro development until the blastocyst stage and/or the production of live 

offspring (Gómez et al., 2006, 2009). 
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Regarding the IVEP with CDOs, the studies were mainly focused on other 

mammalian species, as cattle and mice, than the domestic cat. In vitro culture of 

bovine and murine CDOs with autologous or heterologous isolated GCs or CCs, 

as monolayer – suspensions - clumps or conditioned medium, has been 

performed (Hashimoto et al., 1998; Ikeda et al., 2000; Tanghe et al., 2003; Ge et 

al., 2008; Zhao et al., 2014). The presence of companion cells promoted the 

maturation and the meiotic progression of the murine CDOs by the 

improvement of different quality parameters (spindle assembly, mitochondrial 

congregation, glutathione intracellular levels and dynamics of MPF), normally 

impaired when CDOs were cultured separately. In the bovine species, the CDOs 

embryo development until blastocyst stage was also enhanced by the presence of 

companion cells, although at lower frequencies than that of the competent 

COCs. 

The COCs themselves have been used as companion cells for the CDOs in 

vitro culture. A beneficial effect on the restoration of full developmental 

capability of low competence oocytes, although at lower rates compared to the 

COCs control, was observed (Luciano et al., 2005). The oocyte maturation rate, 

the glutathione level, the embryo development capacity, the blastocyst quality 

and the genetic expression of some transcripts were also found significantly 

improved than those of the CDOs cultured separately (pig, Lin et al., 2016). 
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In the domestic cat, Chigioni and co-workers (2005) found that the co-

culture of CDOs with unattached CCs clumps or with competent COCs during 

IVM enhanced the meiosis resumption of the low competence gametes to a 

similar level of that of COCs control. Another effort to improve the cat CDOs 

developmental capability was later investigated by Godard and co-workers 

(2009). The authors found that the presence of COCs in the same culture 

condition with CDOs during both IVM and IVF improved the maturation rates 

and the embryonic developmental stages compared to that of the CDOs 

cultured separately. 

 

The mammalian oocytes are known to produce a broad range of secreted 

factors, referred to as oocyte-secreted factors (OSFs) which exert their action on 

both oocyte and CCs. Many authors report that the OSFs released in the culture 

media are promoting molecules for the oocyte overall competence (Table I; 

Gilchrist et al., 2004; Gilchrist et al., 2006; Gilchrist et al., 2008). Some of those 

secreted factors, as GDF9 and BMP15, are known to regulate the differentiation, 

activities and genetic expression of the CCs in different species (Hussein et al., 

2006; Gilchrist et al., 2008; Yeo et al., 2008; De Los Reyes et al., 2013). 

In particular, the GDF9 plays an important role in the CCs expansion and in 

the over-expression of some cumulus related genes (cumulus matrix genes) as 

the hyaluronic acid synthase 2 (HAS2) and the cyclooxygenase 2 (COX2) 
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throughout the “small mother against decapentaplegic” (SMAD) pathway. 

Furthermore, it is involved in the steroidogenesis process, promoting the 

progesterone (P4) synthesis and blocking the expression of LH membrane 

receptors on cumulus cells (Gilchrist et al., 2008). 
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Table I. Effect of the oocyte-secreted factors (OSFs) on mural granulosa cells (MGCs), cumulus cells 
(CCs) or oocyte functions (modified from Gilchrist et al., 2008). 

Signaling cascades 
Activation of GCs/CCs SMAD signaling 
Activation of MAPK signaling 

Oocyte growth 
Stimulation or suppression of KitL 

CCs/MGCs proliferation 

Stimulation of Ccnd2 

Stimulation of GCs/CCs DNA synthesis, 
cell number or follicle growth 
Interaction with IGF-I 

Stimulation of CCs Ar 

CCs apoptosis 
Prevention of CCs apoptosis 

CCs/MGCs luteinization 

Regulation of MGCs/CCs progesterone or 
estradiol production 
 
Suppression of FSH-induced Lhcgr 

Regulation of MGCs inhibin – follistatin - 
activin production 
Stimulation of CCs Amh 

Suppression of CCs Cd44 

CCs metabolism 
Stimulation of CCs glycolysis 

Stimulation of CCs aminoacid transport 

CCs expansion 

Enabling FSH/EGF-induction of 
expansion genes and secretion of 
hyaluronic acid 
Regulation of plasminogen activator 

Oocyte quality 
IVM additive increasing blastocyst  
development and fetal survival 

SMAD, small mother against decapentaplegic; MAPK, mitogen-activated protein kinase; KitL, protein-
tyrosine kinase; Ccnd2, cyclin D2; IGF-I, insulin growth factor-I; Ar, androgen receptor; FSH, follicle 
stimulation hormone; Lhcgr, luteinizing hormone/choriogonadotropin receptor; Amh, anti-müllerian 
hormone, Cd44, CD44 molecule (indian blood group); EGF, epidermal growth factor. 
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1.2. In vitro culture systems: 2D vs 3D 

 

Traditionally, the in vitro culture of mammalian follicles and oocytes is 

performed in two-dimensional systems (2D, or non-spherical), as microdrops in 

petri dishes, multiwell plates, and membranes coated with ECM proteins. 

Although these systems provide a good environment for the cell culture, their 

flat surfaces cause the adhesion of the surrounding cells of follicles and oocytes 

to the substrata, causing the perturbation of spatial arrangements (Fig. 4). The 

disruption of the communication network between the somatic and the germinal 

compartments and the high risk of phenotypic changes of the CCs can also 

occur (Desai et al., 2010). Therefore, these conditions could lead to a distorted 

cell-cell orientation and to an abnormal diffusion of the paracrine signals away 

from the target cell-surface receptors (Cukierman et al, 2002; Vanhoutte, 2009). 

It has been reported that the 2D systems can also influence the physiological 

polarity of the cells, modifying the GCs secretion of different factors, such as P4 

and 17β estradiol (Kreeger et al., 2006). In the human reproductive 

biotechnologies, these conditions could not be adequate for the culture of 

frozen/thawed ovarian cortex follicles. These biological structures require longer 

time to achieve the full development in vitro and the traditional 2D systems 

could lead to aberrant conformations and functionalities of the cultured follicles 

(Abir et al., 2006). 
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Figure 4. Comparison of in vitro culture in 2D or in 3D systems (modified from Desai et al., 2010). 
 
 

In the past years, many studies were focused on the development of 

innovative three-dimensional (3D, or spherical) culture systems: the scaffolds. 

They mimic the biological shape and structure of the tissue ECM in which the 

cells are physiologically immersed. Their action is to drive the cell spatial 

organization and to stimulate their adhesion, growth, proliferation and 

production of secreted factors, essential for tissue repairing (Desai et al., 2010). 

In these particular 3D conditions, the cells can maintain their physiological 

architecture and can recreate their specific microenvironment as in vivo (Altman 

et al., 2003). It has been documented that the cell behavior, growth, response to 

stimuli, signaling and gene expression profiles in the 3D scaffolds, compared to 

the traditional 2D systems, are most resembling those observed in living cells 

(Cukierman et al., 2002; Kreeger et al., 2006). Furthermore, a different pattern of 
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specific receptors for cell adhesion to the artificial ECM is activated in the 3D 

scaffolds than in the 2D substrata (Cukierman et al., 2001). 

 

To guarantee the physiological cell architecture, the scaffolds should be 

composed by biomaterials, defined as "any substance (other than a drug) or combination 

of substances synthetic or natural in origin, which can be used any time, as a whole or as a part 

of a system which treats, augments, or replaces any tissue, organ or function of the body" (Von 

Recum & LaBerge, 1995). 

The main characteristics of the biomaterials are listed below (Lloyd, 2002; 

Discher et al., 2005; Desai et al., 2010). 

- Biocompatibility: integration in the organism without evoking a sustained 

inflammatory or toxic response during in vivo implantation, ensuring cell 

viability for short and long culture period; 

- acceptable shelf life; 

- biodegradability: degradation time linear with healing or regeneration 

processes; 

- non cytotoxicity: the degradation products should be non-toxic, for easy 

metabolism and clearing from the organism; 

- permeability: to allow adequate gas exchange, diffusion of nutrients and 

removal of cellular waste; 

- elasticity: to allow the spatial growth and expansion of the cells; 
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- mechanical properties, as viscosity, modeling and rigidity: specific for 

indicated application and compatible with healing or regeneration 

processes. 

 

A wide range of biomaterials with different physical and chemical 

characteristics were tested for specific applications (Williams, 2009). For tissue 

regeneration, synthetic or natural polymers were widely used.  

Synthetic polymers are characterized by the absence of cellular component, 

viability, and self-repair due to their inorganic properties (Zhong et al., 2010). 

These polymers show poor integration with the biological environment and a 

high production of toxic molecules during the in situ degradation, with a 

decreased of in vivo biocompatibility. Conversely, the natural polymers 

composed by the biological molecules of the ECM are characterized by 

heterogeneity, viability, low organic toxicity and self-repair (Fan et al., 2015). For 

instance, different component of natural ECM, as collagen, HA and silk fibroin 

have been successfully applied in tissue regeneration as skin grafts (Altman et al., 

2003; Dieckmann et al., 2010). Among these natural polymers, alginate is an 

interesting biomaterial for biotechnological applications. 

Alginate is an anionic polymer produced by the alginic acid of the cellular 

wall of brown algae (Phaeophyceae), particularly of the genus Laminaria. It is the 

main component of the algae skeleton and it confers resistance and flexibility. 
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Alginic acid is composed by two types of uronic acids, β-D-mannuronic acid (M) 

and α–L-guluronic acid (G), that are converted to mannuronate and guluronate 

salts to forming alginate after a neutralization process (Brito et al., 2014). The 

alginate skeleton contains blocks of purely G, purely M and alternating G and M 

monomers, that in the presence of divalent or multivalent cations (Ca2+ or Ba2+) 

interact ionically with G blocks between two different chains forming a 3D 

network (Fig. 5). 

 

Figure 5. Chemical structures of G-block, M-block and alternating blocks (3D network) of alginate 
(Lee & Mooney, 2012). 

 

The features of the alginate 3D network are reported to be strictly dependent 

on the alginate molecular weight, the M/G ratio and the G-block length (Vigo et 

al., 2004; Lee & Mooney, 2012; Brito et al., 2014) The interesting properties of 

alginate, as high biocompatibility – biodegradability – no specifically interaction 
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with mammalian cells – easy handling, make this polymer a valid biomaterial for 

cell encapsulation in the regenerative medicine and in the tissue culture 

techniques (Gombotz & Wee, 1998; Huang et al., 2012; Lee & Mooney, 2012). 

 

Follicles, oocytes & embryos in a new dimension: the 3D system 

 

Other than in the regenerative medicine, the 3D engineering was successfully 

applied in the reproductive biotechnologies and the efficacy of the 3D systems 

for the IVC of mammalian follicles and oocytes has been confirmed (Ghidoni et 

al., 2008). 

The 3D technologies prompted the modern concept of microencapsulation. 

The entrapment of follicles and oocytes in microstructures (microcapsules) that 

provide an adequate microenvironment to maintain differentiated functions is 

the main challenge in the contemporary ARTs.  

In case of restoring the fertility potential of young cancer patients, this 

micro-technology could ensure the in vitro growth of immature primordial 

follicles until primary or secondary stages and the subsequent achievement of 

oocyte full development for IVF (Xu et al., 2009). In the domestic animals, the 

IVC of canine and feline follicles in different 3D scaffolds has been also 

evaluated. The encapsulation in gel or in microcapsules maintained the structural 
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integrity of the follicles that augmented in size and secreted hormones, as in the 

in vivo conditions (Songsasen et al., 2011; Fujihara et al., 2012).  

The alginate as biocompatible 3D scaffold is considered suitable for 

mammalian follicles (West et al., 2007). An encouraging follicle development in 

pure or modified alginate scaffolds were obtained in different species (mouse, 

Kreeger et al., 2006; human, Amorim et al., 2009; domestic cat, Fujihara et al., 

2012; macaque, Xu et al., 2013) and the proliferation and differentiation of theca 

and GCs, the steroid secretions and the specific markers expression were 

observed (Xu et al., 2006; Shikanov et al., 2011). The suitability of the 3D 

alginate scaffolds has been recently validated in the mouse model by Parrish and 

co-workers (2011). The authors found that almost 60% of the gene pattern 

expression of follicles, as well as some oocyte-specific genes (Figlα, Jag1, Mater, 

Nobox, and Vasa), were similar between the in vitro and the in vivo conditions, 

although some differences in the endocrine-related and growth-related genes 

(BMP15, Tgfβ) were found. 

 

Different biomaterials (collagen, agarose, and alginate) have also been used 

for the 3D IVC of mammalian oocytes in different species (dog, Otoi et al., 

2006; pig, Munari et al., 2007; human, Combelles et al., 2005). All natural 

polymers promoted the oocytes maturation until the MI/MII stage, ensuring the 

achievement of the full competence for further embryo development. In order 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Fujihara%20M%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fujihara%20M%5Bauth%5D
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to enhance the meiosis resumption of entrapped immature oocytes, the co-

culture with autologous CCs or GCs was also successfully performed (mouse, 

Pangas et al., 2003; human, Torre et al., 2006). 

 

The embryo culture in 3D scaffolds has been poorly investigated. 

In the swine species, the efficiency of the 3D alginate systems in sustaining 

the preimplantation embryo elongation, an important step for a successful ET, 

was evaluated. The expression gene profiles of some steroidogenic transcripts 

(STAR, CYPY11A1 and CYP19A1) and immune response transcripts (IL1B) 

showed that the entrapped embryos underwent morphological changes similar to 

the in vivo counterparts (Sargus-Patino et al., 2014). In the bovine species, the 

embryos cultured in alginate capsules showed similar developmental rates 

compared to the control group cultured in microdrops (Yaniz et al., 2002). In 

another study, the capability of post-hatching bovine embryos to undergo 

morphologic changes when cultured in 3D alginate capsules was found similar to 

the in vivo embryos (Zhao et al., 2015). 

 

Since few information are available on the IVEP from domestic cat CDOs, 

the application of innovative culture systems, as the alginate scaffolds, could be 

of high interest to evaluate the performances of low competence oocytes in the 

3D space and to improve the traditional in vitro techniques in this species.  
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The domestic cat is an excellent animal model for wild felids 

reproductive biotechnologies, but in this species only few studies were 

focused on the improvement of the in vitro efficiency of CDOs and on the 

use of 3D systems for oocyte culture. 

 

This thesis was aimed at improving the in vitro performances of the 

domestic cat low competence CDOs. For this purpose, an enriched culture 

system represented by 3D microcapsules of barium alginate (BA) in association 

with fresh cumulus-oocytes complexes (COCs), was developed. 

The specific aims were to investigate: 

(a) the suitability of a 3D system (barium alginate microcapsules) for 

domestic cat oocytes in vitro culture (Paper I); 

(b) the efficiency of the 3D system in improving the in vitro maturation of 

CDOs co-cultured with COCs or cultured separately (Paper I); 

c) the efficiency of the association of the 3D system and the co-culture with 

competent COCs in a commercial medium during in vitro maturation on the 

domestic cat CDOs in vitro embryo development (Paper II). 
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These studies were approved by the Ethical Committee of the Università 

degli Studi di Milano (December 9th, 2014), and all animals were enrolled 

following written consent by the owner. 

 

All chemicals and reagents were purchased from Sigma Chemical Company 

(St. Louis, MO, USA), unless otherwise stated. 

 

3.1  Animals and experimental designs 
 

Cumulus-oocyte complexes were collected from 123 healthy queens (Felis 

catus) at random stages of the estrous cycle during routine ovariectomy at the 

veterinary clinics of the Department of Health, Animal Science and Food Safety 

of this University. After surgery, ovaries were immediately placed in a phosphate 

buffered saline (PBS) with a mixture of antibiotics (AB) and antimycotics (100 

IU/ml of penicillin G sodium, 0.1 mg/ml of streptomycin sulfate, and 0.25 

µg/ml of amphotericin B), and transported to the laboratory at room 

temperature (RT) where they were processed. Cat COCs were obtained by 

mincing of the ovaries in PBS and AB with 0.1% (w/v) polyvinyl alcohol (PVA) 

and only grade I COCs were selected for the experiments. 

The CDOs were obtained by mechanical deprivation, with a small bore 

pipette, of COCs’ cumulus cells. 
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In Paper I, the samples were collected from 65 queens.  

In Experiment I, to investigate the suitability of a 3D system for feline 

oocytes, barium alginate (BA) microcapsules were prepared with different 

working conditions and a scoring method was applied to evaluate the following 

physical properties of the obtained microcapsules: 

- dimensions (mm): length, width; 

- shape: R (round), E (elongated); 

- consistency: E (excellent), G (good), L (low). 

Ninety one fresh COCs were in vitro matured in the 3D system or in the 

traditional microdrops of medium (2D system) for 24 h in a controlled 

atmosphere. At the end of the in vitro maturation, viability and maturation rates 

of feline COCs were evaluated. 

In Experiment II, 216 fresh feline CDOs were co-cultured with COCs 

[CDOs(+)] or cultured separately [CDOs(-)] in 3D (Fig. 6) or 2D system to 

verify whether the BA microcapsules would improve the in vitro maturation of 

CDOs. After 24 h, the viability and maturation rates of CDOs(+), CDO(-) and 

COCs co-cultured with CDOs [COCs(+)] were evaluated. 
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Figure 6. Domestic cat cumulus-denuded oocytes (CDOs) entrapped in barium alginate microcapsules 
(3D system, objective 10X). 

 

In Paper II, the samples were collected from 58 queens.  

In Experiment I, 144 fresh feline CDOs were co-cultured with COCs 

[CDOs(+)] or cultured separately [CDOs(-)] in a commercial medium in 3D BA 

microcapsules or in 2D microdrops. A control group of COCs [COCs(-)] was in 

vitro matured in 3D (Fig. 7) or 2D conditions. After 24 h, the viability and 

maturation rates of CDOs(+), CDO(-), COCs co-cultured with CDOs 

[COCs(+)] and COCs control [COCs(-)] were compared. 

In Experiment II, 115 fresh feline CDOs were in vitro matured with COCs 

[CDOs(+)] in a commercial medium in 3D or in 2D system, as in experiment I. 

After in vitro fertilization with chilled epididymal feline spermatozoa, 

presumptive zygotes were in vitro cultured separately in 3D or in 2D system, 
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according to the IVM conditions. A control group of COCs [COCs(-)] was in 

vitro matured, fertilized and cultured in 3D or in 2D system. Embryonic 

development was recorded during 7 days of in vitro culture. 

 

Figure 7. Domestic cat cumulus-oocyte complexes (COCs) entrapped in barium alginate microcapsules 
(3D system, objective 10X). 

 

3.2  In vitro maturation in 3D and 2D systems (Paper I & Paper 

II) 

 

The feline oocytes were in vitro matured for 24 h at 38.5°C and 5% CO2 in 

air in modified Kreb’s Ringer bicarbonate buffered salt solution with AB (b-

mKRB) supplemented with 3 mg/mL of bovine serum albumin (BSA), 0.5 

IU/mL of equine chorionic gonadotropin (eCG), 1 IU/mL of human chorionic 

gonadotropin (hCG), 10 ng/mL of epidermal growth factor (EGF), 0.6 mM 

cysteine (complete maturation medium, c-mKRB) (Paper I), and in Quinn’s 
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Advantage Protein Plus Blastocyst (SBP, SAGE® In Vitro Fertilization, 

Trumbull, Connecticut, USA) medium (b-SBP) supplemented with 75 IU FSH + 

75 IU LH (Menogon®, Ferring Pharmaceuticals, Switzerland), 10 ng/ml of EGF, 

AB and 0.6 mM cysteine (complete maturation medium, c-SBP) (Paper II). 

 

3D system 

 

For the 3D system, a two-steps encapsulation technique in BA was 

developed, as a modification of the protocol previously described for living-cell 

(Conte et al. 1999; Vigo et al. 2004). The Na-alginate powder (0.5%) was 

dissolved into the different solutions reported below, to obtain the melting 

solution (MS) at medium viscosity (3.500 cP, centipose). A saturated solution of 

BaCl2 was then added to an aliquot of a different medium (see below) to obtain 

the dropping solution (DS) of BaCl2 (40 mM) that was dropped at RT with a 

25G needle into the MS maintained stirred for 30-40 minutes. The 

microcapsules were then collected, washed twice in PBS and suspended in the c-

mKRB or c-SBP for immediate use, or maintained at 4°C in a petri dish with 

PBS until use. 

To obtain the BA microcapsules, the following working conditions were 

tested (Paper I; Exp. I): 1: MS with b-mKRB and DS with b-mKRB. 2: MS 

with c-mKRB and DS with c-mKRB. 3: MS with sterile water and DS with b-

mKRB. 4. MS with sterile water and DS with c-mKRB. Based on the results of 



39 

 

the Exp. I, in Exp. II and in Paper II, MS with sterile water and DS with b-SBP 

was used. 

 

The feline oocytes [CDOs(+); CDOs(-); COCs(+); COCs(-)] were injected 

into the inner core of the microcapsule by a small bore pipette (Fig. 8A) and 

subsequently immersed in the c-mKRB (Paper I) or in the c-SBP (Paper II) in 

a multiwell dish. 

2D system 

 

For the 2D culture system, traditional microdrops (50-100µl) of c-mKRB 

(Paper I) or c-SBP (Paper II) were placed in a petri dish and covered by 

mineral oil (Fig. 8B). 

 

Figure 8. Domestic cat cumulus-denuded oocyte (CDO) in co-culture with cumulus-oocyte complex 
(COC) in barium alginate microcapsule (A) and in microdrop of medium (B) (2.5X objective). 

 

A B 
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3.3  Epididymal sperm recovery, in vitro fertilization and embryo 

culture (Paper II; Exp. II) 

 

In vitro fertilization was performed with chilled feline epididymal 

spermatozoa obtained from isolated testicles after orchiectomy at veterinary 

clinics. The epididymides were isolated from the testicles and placed in a 35 mm 

Petri dish containing 1 ml of Ham’s F-10 medium supplemented with 2 mM L-

glutamine, 5% (v/v) fetal calf serum (FCS) and AB. Epididymal spermatozoa 

were released by mincing with a scalpel blade. Tissue debris were removed by 

forceps, and the remaining sperm suspension was centrifuged (300 g, 5 min) and 

diluted 1:2 with Tris egg yolk buffer for chilling at 4°C degree for 24 h. Before 

use, the spermatozoa were washed by centrifugation and a swim-up treatment 

was performed by gently layering 50 µl of b-SBP on the sperm pellet. After 30-

45 min at 38.5°C, the supernatant was collected and concentration and motility 

were determined in the sperm suspension. 

After 24 h of maturation, the oocytes were washed twice and transferred into 

90 µl drops of fresh b-SBP supplemented with 5% of FCS and AB (c-SBP2, 

National Institutes of Health, Bethesda, MD, USA). Immediately prior to 

insemination, the sperm suspension was diluted in c-SBP2 to a final 

concentration of 0.75-1 x 106 motile spermatozoa/ml, and 10 µl were added to 

each fertilization drop containing the oocytes. 
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At 18-24 h post insemination, cumulus cells of COCs and unbound 

spermatozoa were removed from the oocytes using a small bore glass pipette. 

After washing, the presumptive zygotes were in vitro cultured for 7 days in c-

SBP2, in 3D or 2D system according to the IVM conditions. Fresh culture 

medium (c-SBP2) was added every two days and the embryonic development 

was recorded. 

 

3.4  Assessment of viability, maturation rates and embryonic 

development (Paper I & Paper II) 

 

After 24 h of IVM, CDOs and COCs were evaluated for overall viability and 

nuclear maturation rates (Paper I & Paper II: Exp. I). Sequential stainings with 

fluorescein diacetate/propidium iodide (FDA/PI) for viability and bis-benzimide 

(Hoechst 33342) for chromatin configuration were performed.  

For the viability, the oocytes were maintained at dark in 50 μl of the staining 

solution (PI: 10 mg/ml; FDA: 5 mg/ml) for 5 min and then evaluated under a 

fluorescent microscope (Axiovert 100, Zeiss, Arese, Italy). This differential 

staining allowed the evaluation of viable (bright green fluorescence) or dead cells 

(red fluorescence). 

After washing, CDOs and COCs (deprived of cumulus cells by mechanical 

displacement with a small bore glass pipette) were placed on a slide with a 
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minimum amount of medium and then covered by 10 μl of Hoechst solution. 

After 5 min of incubation in the dark, the Hoechst solution was removed and 

the oocytes were covered with an anti-fade reagent (Fluoromount™ Acqueous 

Mounting Medium). The fixed oocytes were then observed under a fluorescent 

microscope (Axiovert) at 400x magnification for nuclear evaluation. 

The chromatin configurations were classified as follows (Bolamba et al. 

1998; Hewitt and England 1999): 

- germinal vesicle (GV): identification of nucleolus and very fine filaments of 

chromatin; 

- germinal vesicle break down-Anaphase I (GVBD–AI): identification of 

different patterns of chromatin condensation (GVBD) or identification of 

bivalents (AI); 

- telophase I-metaphase II (TI–MII): identification of two groups of 

chromosomes moving to opposite ends of meiotic spindle (TI) or two sets 

of chromosomes clearly visible (MII); 

- degenerated: collapsed nucleus or irregular nuclear conformation. 

 

For the assessment of embryo development (Paper II: Exp. II), cleaved 

embryos, 8-16 cells, morulae and blastocysts stages were recorded along 7 days 

of culture  
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3.5 Statistical analysis 

  

Data for the microcapsules physical properties were reported as mean value 

and standard deviation (SD); viability, maturation and embryonic development 

rates of CDOs(+), CDOs(-), COCs(+) and COCs(-) were analyzed by Chi-

square test and the level of significance was set at p<0.05. 
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4.1. Paper I 

4.1.1. Experiment I 
 

To obtain the 3D BA microcapsules for the encapsulation of feline oocytes, 

different working conditions were tested. The working condition 3 showed the 

best physical properties (dimensions, shape and consistency, Table 2). The 

dissolution of Na-alginate powder in sterile water and the dropping of BaCl2 in 

basic medium (b-mKRB) was the proper combination (Fig. 9). 

 

Figure 9. Three-dimensional barium alginate microcapsules in Petri dish. 

 

Although the dropping solution made with complete medium (c-mKRB, 

working condition 4) allowed the formation of BA microcapsules, their shape 

and consistency were not as good as in the working condition 3. On the other 

hand, the dissolution of Na-alginate powder in b- or c-mKRB (working 

conditions 1 and 2) did not allow the formation of any microcapsule. 
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Table 2. Physical properties of the barium alginate (BA) microcapsules in different working conditions. 

Working 

conditions 

Width, mm 

(mean±SD) 

Lenght, mm 

(mean±SD) 

Shape 

(R,E) 

Consistency 

(E,G,L) 

1 

MS with b-mKRB 
DS with b-mKRB 

 

0 

 

0 

 

- 

 

- 

2 

MS with c-mKRB 
DS with c-mKRB 

 

0 

 

0 

 

- 

 

- 

3 

MS with sterile 
water 

DS with b-mKRB 

 

15.8 ± 1.81 

 

24.12 ± 4.12 

 

R 

 

E 

4 

MS with sterile 
water 

DS with c-mKRB 

 

15.03 ± 2.47 

 

31.52 ± 3.98 

 

R and E 

 

G and L 

MS, melting solution of Na-alginate (0.5%); DS, dropping solution of BaCl2 (40 mM); b-mKRB, 

modified Kreb’s Ringer bicarbonate buffered salt solution with antibiotics; c-mKRB, b-mKRB 

supplemented with 3 mg/mL of bovine serum albumin (BSA), 0.5 IU/mL of equine chorionic 

gonadotropin (eCG), 1 IU/mL of human chorionic gonadotropin (hCG), 10 ng/mL of epidermal 

growth factor (EGF) and 0.6 mM cysteine ; shape:, R (round), E (elongated); consistency: E (excellent), 

G (good), L (low). 

 

 

The results of COCs IVM in 3D and 2D systems (Table 3) showed that a 

similar high viability (p>0.05) was maintained and no differences were found in 

the meiotic resumption. Full maturation (TI-MII, Fig. 10) rates were also similar 

in the two systems (3D: 7/47=14.9% vs 2D: 7/44=15.9%; p>0.05). 
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Figure 10. Domestic cat cumulus-oocyte complex (COC) at metaphase II, after in vitro maturation in 
2D system (Hoechst 33342, 40X objective). 

 

 

Table 3. Viability and nuclear status of feline cumulus-oocyte complexes (COCs) after in vitro 

maturation in 3D or 2D system. 

System 

Viability 

 

No. of oocytes 
(%) 

Immature 

(GV) 

No. of oocytes 
(%) 

Meiotic 
resumption 

(GVBD-MII) 

No. of oocytes 
(%) 

Degenerated 

 

No. of oocytes 
(%) 

3D 41/47 (87.2) 8/47 (17) 32/47 (68.1) 7/47 (14.9) 

2D 37/44 (84) 9/44 (20.5) 26/44 (59.1) 9/44 (20.5) 

No statistical differences. 

3D, barium alginate microcapsules; 2D, microdrops of maturation medium; GV, germinal vesicle; 

GVBD, germinal vesicle break down; MII, metaphase II. 

  



48 

 

4.1.2. Experiment II 
 

The results presented in Table 4 showed that the overall viability was similar 

in 3D and 2D systems (p>0.05), but in the 3D BA microcapsules the presence 

of COCs resulted in a higher viability of CDOs(+), than that obtained without 

COCs [CDOs(-)] or in 2D microdrops (p=0.007 and p=0.002, respectively; Fig. 

11). 

 

Table 4. Viability of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) 

cultured in 3D or 2D system. 

Groups Viability in 3D system 

No. of oocytes (%) 

Viability in 2D system 

No. of oocytes (%) 

CDOs(+) 

COCs(+) 

51/56 (91.1) a,x 

45/47 (95.7) x 

35/52 (67.3) b,x 

44/48 (91.7) y 

CDOs(-) 37/52 (71.2) y 46/56 (82.1) x,y 

Overall Viability 133/155 (85.8) 125/156 (80.1) 

a,b Different superscripts indicate significant differences within rows (p<0.05) 
x,y Different superscripts indicate significant differences within columns (p<0.05) 

CDOs(+), CDOs co-cultured with COCs; COCs(+), COCs co-cultured with CDOs; CDOs(-), CDOs 

cultured separately; 3D, barium alginate microcapsules; 2D, microdrops of maturation medium. 
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Figure 11. Viability of domestic cat cumulus-denuded oocytes (CDOs, A) after in vitro maturation in 
3D system with cumulus-oocyte complexes (COCs, B; FDA-PI staining, 20X objective). 

 

The 3D BA microcapsules were able to support the meiotic resumption of 

COCs and CDOs, as well as the 2D microdrops (Table 5). 

The group of CDOs(+) did not benefit from the co-culture in 3D 

microcapsules, as the percentages of meiotic resumption were similar of those of 

CDO(-).The highest rates of meiosis resumption were reached by COCs(+) in 

both 3D and 2D systems (p<0.05). These gametes achieved better results of full 

maturational (TI-MII) stages than the CDOs(+) (3D: 19/47=40.4% vs 

4/56=7.1%; p=0.005. 2D: 25/48=52.1% vs. 4/52=7.7%; p=0.001) and the 

CDOs(-) (3D: 3/52=5.8%; p=0.003. 2D: 2/56=7.1%; p=0.001). 

 

 

A B 
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Table 5. Nuclear status of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) cultured in 3D or 2D system. 

Groups 

Immature 

(GV) 

No. of oocytes (%) 

Meiotic resumption 

(GVBD-MII) 

No. of oocytes (%) 

Degenerated 

 

No. of oocytes (%) 

 3D 2D 3D 2D 3D 2D 

CDOs(+) 

COCs(+) 

18/56 (32.1)x 

3/47 (6.4)y 

18/52 (42.9)x 

5/48 (10.4)y 

31/56 (55.4) x 

39/47 (83) y 

27/52 (51.9) x 

40/48 (83.3) y 

7/56 (12.5) 

5/47 (10.6) 

7/52 (13.5) 

3/48 (6.3) 

CDOs(-) 21/52 (40.4)x 20/56 (35.7)x 21/52 (40.4) x 23/56 (41.1) x 10/52 (19.2) 13/56 (23.2) 

No differences within rows. 
x,y Different superscripts indicate significant differences within columns (p<0.05). 

CDOs(+), CDOs co-cultured with COCs; COCs(+), COCs co-cultured with CDOs; CDOs(-), CDOs cultured separately; 3D, barium alginate 

microcapsules; 2D, microdrops of maturation medium; GV, germinal vesicle; GVBD, germinal vesicle break down; MII, metaphase II.

 

5
0
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4.2. Paper II 

4.2.1. Experiment I 

 

In all the treatment groups, the 3D system of BA microcapsules were able to 

sustain the viability (range: 87.9% - 100%) and the meiosis resumption of 

domestic cat CDOs and COCs in the commercial Quinn’s Advantage Protein 

Plus Blastocyst (SBP) medium, as the 2D microdrops (p>0.05).  

The resumption of meiosis (Table 6) of COCs co-cultured (+) or cultured 

separately (-) was significantly higher (p<0.001) in 3D and 2D system than that 

of CDOs(+) and CDOs(-). The rate of GVBD-MII stage of CDOs(+) did not 

differ from that of CDOs(-). No differences in degeneration rates were 

observed. 

.
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Table 6. Meiotic progression of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) after in vitro maturation in 3D or 2D system. 

Groups No. of oocytes Meiotic resumption (GVBD-
MII) 

No. of oocytes (%) 

GVBD-AI 

No. of oocytes (%) 

TI-MII 

No. of oocytes (%) 

Degenerate 

No. of oocytes (%) 

 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

CDOs(+) 

COCs(+) 

39 

39 

33 

33 

13 (33.3)a 

34 (87.2)b 

16 (48.5)a 

28 (84.8)b 

8 (20.5)a 

20 (51.3)b 

12 (36.4)a 

15 (45.5)a 

5 (12.8)a 

14 (35.9)b 

4 (12.1)a 

13 (39.4)b 

4 (10.3) 

2 (5.1) 

2 (6.1) 

2 (6.1) 

CDOs(-) 36 36 16 (44.4)a 13 (36.1)a 3 (8.3)a 7 (19.4)a,b 13 (36.1)b 6 (16.7)a 6 (16.7) 1 (2.8) 

COCs(-) 35 35 30 (85.7)b 32 (91.4)b 8 (22.9)a,x 2 (5.7)b,y 22 (62.9)c,x 30 (85.7)c,y 0 (0) 1 (2.9) 

x,y Different superscripts indicate significant differences within rows (p<0.05). 
a,b,c Different superscripts indicate significant differences within columns (p<0.05). 

CDOs(+), CDOs co-cultured with COCs; COCs(+), COCs co-cultured with CDOs; CDOs(-), CDOs cultured separately; COCs(-), COCs cultured separately 

(control group); 3D, barium alginate (BA) microcapsules; 2D, microdrops of maturation medium; GV, germinal vesicle; GVBD, germinal vesicle break down; 

MII, metaphase II. 

5
2
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4.1.1. Experiment II 

 

The embryo development in terms of cleavage, 8-16 cells and morulae 

and blastocysts rates was similar in the oocytes matured and cultured in 3D 

BA microcapsules and in the 2D microdrops (p>0.05, Table 7). The 

CDO(+) matured in the co-culture with COCs developed at lower rates 

than the associated COCs (p<0.05) in both systems. However, the 

CDOs(+) achieved the 8-16 cells and the late embryo stages (morulae and 

blastocysts) at similar rates of COCs(-). The proportions of the morulae 

and blastocysts (Fig. 12) on the total number of cleaved embryos showed 

that CDOs(+) embryonic development was similar to that of associated 

COCs(+) and COCs control. 

 

Figure 12. Domestic cat morulae and blastocysts at day 7 of in vitro culture in microdrops of 

medium (2D system, objective 5X
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Table 7. Embryonic developmental rates of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) matured and cultured in 3D or 2D 

system. 

Groups No. of oocytes Cleavage  

No. (%) 

8-16 cells 

No. (%) 

Morulae + blastocysts  

No. (%) 

Morulae + blastocysts/cleaved 

No. (%) 

 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

CDOs(+) 

COCs(+) 

56 

57 

59 

57 

7 (12.5)a 

30 (52.6)b 

10 (16.9)a 

28 (49.1)b 

4 (7.1)a 

25 (43.9)b 

8 (13.6)a 

22 (38.6)b 

4 (7.1)a 

23 (40.4)b 

6 (10.2)a 

22 (38.6)b 

4 (57.1)a,b 

23 (76.7)b 

6 (60) 

22 (78.6) 

COCs(-) 45 57 14 (31.1)c 12 (21.1)a 6 (13.3)a 12 (21.1)a 3 (6.7)a 11 (19.3)a 3 (21.4)a,x 11 (91.7)y 

a,b,c Different superscripts indicate significant differences within columns (p<0.05) 
x,y Different superscripts indicate significant differences within rows (p<0.05) 

CDOs(+), CDOs co-cultured with COCs during IVM; COCs(+), COCs co-cultured with CDOs during IVM; COCs(-), COCs cultured separately (control 

group); 3D, barium alginate (BA) microcapsules during IVM and IVC; 2D, microdrops of culture medium during IVM and IVC. 
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This thesis was aimed at developing an enriched culture system to improve 

the in vitro performances of low competence domestic cat CDOs. At very low 

rates these gametes reach the full developmental competence because the 

functional and metabolic support of their somatic cells is missed (Tanghe et al. 

2002; Luciano et al. 2005). 

For this purpose the enriched culture system, consisted in the 3D 

microcapsules of barium alginate (BA) in association with fresh cumulus-oocytes 

complexes (COCs), was tested. 

 

In Paper I, the dissolution of Na-alginate powder in sterile water and the 

subsequent dropping of BaCl2 dissolved in the basic maturation medium (b-

mKRB), was the best protocol to obtain round microcapsules with a solid inner 

core useful for feline oocytes encapsulation. The working conditions that 

involved media with hormones and growth factors supplementation (c-mKRB), 

as melting or dropping solution, seemed to inhibit the complete dissolution of 

Na-alginate powder and the ionic interactions with BaCl2, compromising the 

effective creation and use of the microcapsules. However, the metabolic effect 

of nutrients, growth factors and hormones on the encapsulated oocytes was 

ensured by the immersion of the BA microcapsules in complete media. The 

effective exchange of different molecules through these systems has been 

documented (Vigo et al. 2004). 
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A similar viability and maturation rate of feline COCs cultured in these 

proper BA microcapsules compared to those cultured in 2D microdrops, proved 

that the 3D system was a suitable culture condition for feline oocytes (Exp. I). 

The CDOs co-cultured with COCs showed a higher viability in 3D than in 

2D system, but no beneficial effects of this association was observed in meiosis 

resumption and full maturation (TI-MII stages) rates. Conversely, the associated 

COCs had the highest viability and maturation rates in both systems (Exp. II). 

Present data differed from previous studies in the domestic cat and in other 

species (Luciano et al. 2005; Ge et al. 2008; Godard et al. 2009) in which the 

presence of COCs during in vitro maturation and in vitro fertilization seemed to 

promote the achievement of MII stage and of the subsequent embryo 

development of CDOs. In these experiments, fresh domestic cat COCs were 

mechanically deprived of the surrounding CCs to obtain the CDOs. This 

method, that differs from those of the aforementioned studies in which vortex 

or incubation with hyaluronidase were used, could have influenced the results. It 

remains to investigate how the oocytes without CCs, and not denudated ad hoc, 

behave in the same culture conditions. 

It is notable that the presence of CDOs seemed to enhance the meiotic 

competence of the associated COCs. In bovine and murine model, the positive 

effect of denuded oocytes in the same culture condition as companion cells of 
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COCs has been already reported (Hussein et al. 2006; Gilchrist et al. 2008). It is 

well known that the oocytes produce some specific paracrine factors, known as 

the oocyte-secreted factors (OSFs), which act specifically on surrounding CCs, 

regulating their differentiation, functional activity and gene expression. These 

factors could presumably have provided some beneficial support to ameliorate 

the maturation rates of COCs in both 3D and 2D culture conditions. 

 

In Paper II, the domestic cat CDOs achieved the full maturational 

competence and developed until morula and blastocyst stages at the same 

proportions of the competent COCs. However, the enriched conditions 

represented by 3D barium alginate microcapsules during maturation and culture 

did not improve the results, as similar rates of CDOs viability, meiotic 

progression and embryonic development were obtained in 3D and 2D systems. 

Differently from other studies in which bovine embryos in vitro-derived from 

competent oocytes developed at higher rates in 3D system compared to 

traditional 2D microdrops (Zhao et al., 2015), in this study the embryo 

development of feline COCs did not differ in the two systems. In addition, the 

enrichment of the in vitro maturation with competent COCs did not exert a 

beneficial effect for the CDOs performances. No differences were found in the 

maturation (Exp. I) and in the subsequent embryonic development (Exp. II) 

when the CDOs were in vitro matured with or without the associated COCs, in 
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both 3D and 2D systems. The results of IVM confirm what has been found in 

the Paper I, but differ from other studies, which demonstrated a positive effect 

of the co-culture with COCs on bovine and domestic cat CDOs (Luciano et al., 

2005; Godard et al., 2009). 

The presence of own CCs is crucial for the oocyte quality. The CCs are 

involved in many cellular processes, as the metabolism of different substrates 

(i.e. glucose, fatty acids, carbohydrates, and amino acids), and provide the 

specialized microenvironment for cytoplasmic and nuclear oocyte maturation 

and development (Sutton-McDowall et al., 2010). The deprivation of CCs has a 

strong and negative impact on the developmental competence of the oocyte in 

different species (Auclair et al., 2013). For instance, the absence of CCs and 

related specific secreted factors, lead to aberrant cytoplasmic maturation, 

including an impaired cumulus-related lipid metabolism compared to that of the 

competent COCs (Auclair et al., 2013). In the domestic cat, no information were 

available regarding the lipid metabolism of CDOs. A more detailed investigation 

of the different metabolism in high and low competence oocytes should be of 

high interest to design a proper enriched culture condition for this species. 

The Quinn’s Advantage Protein Plus Blastocyst (SBP) medium, specifically 

designed for the IVC of human embryos, was used in both experiments (Exp. I, 

II). This commercial medium is easy to handle, pathogen free, high reproducible 

and routinely used for assisted reproductive techniques. Present data suggest that 
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the SBP could support the full maturation and development of COCs and 

CDOs. 

The COCs benefit from the association with CDOs, as their embryo 

development rates were higher than that of COCs cultured separately. The 

positive effect of the association presumably depends on the paracrine effects 

the OSFs. The presence of CDOs in the same culture with COCs during 

maturation has been shown not only to improve their achievement of full 

maturational stages, as previously mentioned, but also to promote their embryo 

development in different species (Hussein et al., 2006). 



61 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

 

 

 

  



62 

 

The 3D barium alginate microcapsules are suitable systems for the in vitro 

culture of domestic cat oocytes, as viability, maturation and embryo 

development rates were similar to that obtained in the traditional 2D microdrops 

(Paper I & Paper II). 

 

The enriched culture system based on the association with competent COCs 

did not improve the in vitro meiosis resumption of the domestic cat CDOs, as 

their full maturational (TI-MII) rates were similar to that of CDOs cultured 

separately. The domestic cat low competence oocytes need more specific and 

designed ad hoc in vitro conditions, as well as the formulation of specific 

maturation media (Paper I). 

 

However, the domestic cat CDOs could fully mature and develop until 

blastocyst stage at similar proportion to the associated COCs and COCs control. 

The commercial Quinn’s Advantage Protein Plus Blastocyst (SBP) medium 

specifically designed for human embryos, resulted adequate for the domestic cat 

in vitro culture, although it did not enhance the CDOs full competence (Paper 

II). 

 

The presence of CDOs in the co-culture had beneficial effects on the in 

vitro performances of competent COCs, as their viability, maturation and 
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embryonic development rates were higher than those obtained when cultured 

separately as control group (Paper I & Paper II). 

 

The more physiological microenvironment, as the oocyte architecture 

maintained by the 3D culture, represents an enriched condition that deserves 

further investigations. A better knowledge of the expression profiles of potential 

oocyte quality markers, as the OSFs, and how they could differ from COCs and 

CDOs in the 3D and 2D systems could help the design of the optimal enriched 

culture conditions for the domestic cat low competence oocytes. 
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The cumulus-denuded oocytes (CDOs) are not commonly involved in the 

assisted reproductive techniques (ARTs), as the absence of their surrounding 

cumulus cells negatively affects their maturational and developmental 

competence in vitro. 

In some cases these gametes could represent an interesting option for 

widening the germinal pool of high value individuals with very precious genetic 

material and could be the only genetic source when the selected cumulus-oocyte 

complexes (COCs, grade I) are cryopreserved. 

Therefore, enriched culture conditions to improve the CDOs in vitro full 

competence should be adopted. 

The innovative three-dimensional (3D) scaffolds, derived from the 

bioengineering and nanotechnology research, ensure the optimal culture 

conditions to maintain the cells physiological conformation and behavior as in 

the in vivo environment. 

In this thesis, the association of 3D barium alginate microcapsules with 

competent COCs was used to improve the in vitro performances of domestic cat 

CDOs. 

The results showed that the 3D BA microcapsules are suitable systems for 

the in vitro culture of feline oocytes, as their viability and in vitro maturation 
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rates and embryonic development were similar to those obtain in the traditional 

2D system. 

The enriched co-culture condition did not improve the in vitro competence 

of CDOs, as their full maturational (TI-MII) rates and late embryo stages 

(morulae and blastocysts) were similar to those of the CDOs cultured separately 

or to those of the COCs control. 

However, the presence of CDOs in the co-culture with COCs improved 

significantly the in vitro developmental rates of the high competence oocytes, 

presumably for the paracrine action of some specific oocyte-secreted factors 

(OSFs).  

A better knowledge of the expression profiles of potential oocyte quality 

markers, as the OSFs, and how they could differ from COCs and CDOs in the 

3D and 2D systems could help the design of the optimal enriched culture 

conditions for the domestic cat low competence oocytes. 
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Abstract 

In the case of high valuable individuals with very precious genetic material, 

widening the genetic pool including gametes with poor morphological 

characteristics, as cumulus-denuded oocytes (CDOs), could be an option. 

To improve the in vitro culture of low competence feline CDOs, an 

enriched three-dimensional (3D) system of barium alginate microcapsules in 

association with competent cumulus-oocyte complexes (COCs) was 

developed. The overall viability and the meiotic progression of feline CDOs 

co-cultured with COCs or cultured separately in 3D or in 2D (traditional 

microdrops) system were compared. The 3D system was able to support 

viability and meiotic resumption of the feline oocytes, as well as the 2D 

microdrops. In 3D microcapsules the presence of COCs resulted in a higher 

viability of CDOs, than that obtained without COCs or in 2D microdrops, 

but the percentages of meiotic resumption were similar of those of CDOs 

cultured separately. It is notable that the presence of CDOs seemed to 

enhance the meiotic progression of the associated COCs. 

In conclusion, the 3D barium alginate microcapsules are a suitable system 

for feline oocytes in vitro culture, but more specific enriched conditions 

should be developed to improve the CDOs full competence in vitro. 
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Introduction 

Cumulus-denuded oocytes (CDOs) are generally not included in the in vitro 

procedures due to their poor nuclear and cytoplasmic competence caused by the 

lack of surrounding cumulus oophorus cells. These closely associated cumulus 

cells (CCs) form an intimate network with the oocyte, thus the somatic-germinal 

two-way transfer of different small molecules is ensured through the highly 

specialized projection through the zona pellucida, i.e. gap junctions (Eppig 

1982). The structural integrity of CCs and the functional coupling between the 

two compartments is of crucial importance for the successful subsequent 

embryo development (Fagbohun and Downs 1991; Tanghe et al. 2002; Luciano 

et al. 2004). 

Several attempts have been made to improve the in vitro performances of 

oocytes with poor developmental potential, as well as oocytes deprived of CCs. 

The co-culture with companion cumulus-oocyte complexes (COCs) seemed to 

have beneficial effects on the CDOs in vitro outcomes. In the bovine species, 

the presence of intact COCs during both in vitro maturation and fertilization 

promoted the restoration of CDOs competence, although the blastocyst rates 
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remained low (Luciano et al. 2005). Co-culture of feline CDOs with cumulus 

cells clumps enhanced the resumption of meiosis, although the frequency of 

complete nuclear maturation was lower than that of competent COCs (Chigioni 

et al. 2005). 

In the case of high valuable individuals with very precious genetic material, 

widening the genetic pool including gametes with poor morphological 

characteristics, as CDOs, could be an option. Therefore enriched conditions for 

the culture of these low competence oocytes should be further developed. 

 

The traditional culture systems for follicles and oocytes are based on microdrops 

of medium, but this condition seemed to lead to a non-physiological cells 

conformation and biological activity. To mimic more faithfully the in vivo 

follicular architecture and cellular spatial arrangement, bioengineering and 

nanotechnology researches have been focused on developing different in vitro 

conditions. With the support of natural or synthetic polymers, three-dimensional 

(3D) innovative culture systems were developed to enhance the adhesion, the 

proliferation and the release of secreted factors by cultured cells (Desai et al. 

2010; Antoni et al. 2015). The 3D environment also resulted in cell behavior, 

signaling and gene expression profiles most resemble those observed in living 

cells (Cukierman et al. 2002). It has been demonstrated that the encapsulation of 

follicles and oocytes in biocompatible three-dimensional systems allows the 
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maintenance of their physiological structure and functional integrity in different 

species (mouse, Pangas et al. 2003; human, Combelles et al. 2005, pig, Munari et 

al. 2007). 

The domestic cat is an excellent animal model for wild felids reproductive 

biotechnologies, but in this species only few studies were focused on the 

improvement of the in vitro performances of low competence oocytes and on 

the use of 3D systems for oocyte culture (Godard et al. 2009; Fujihara et al. 

2012). 

Thus, the present study was performed to investigate: (a) the suitability of a 3D 

system (barium alginate microcapsules) for feline oocytes in vitro culture, and (b) 

whether 3D system would improve in vitro maturation of CDOs co-cultured 

with COCs or cultured separately. 

 

Material and methods 

The study was approved by the Ethical Committee of the Università degli Studi 

di Milano (December 9th, 2014), and all animals were enrolled following written 

consent by the owner. 

 

Chemicals and reagents 

All chemicals and reagents were purchased from Sigma Chemical Company (St. 

Louis, MO, USA), unless otherwise stated. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Fujihara%20M%5Bauth%5D
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Experimental design 

Experiment I 

To investigate the suitability of a 3D system, barium alginate (BA) microcapsules 

were prepared with different working conditions and a scoring method was 

applied to evaluate the physical properties of the obtained microcapsules. 

Fresh feline COCs were in vitro cultured in the 3D system or in traditional 

microdrops of medium (2D system) for 24 h. At the end of the in vitro 

maturation, viability and maturation rates of feline COCs were evaluated. 

 

Experiment II 

To verify whether the 3D system would improve the in vitro maturation of 

cumulus-denuded oocytes, fresh feline CDOs were co-cultured with COCs 

[CDOs(+)] or cultured separately [CDOs(-)] in 3D or 2D system. After 24 h, the 

viability and maturation rates of CDOs(+), CDO(-) , and COCs co-cultured with 

CDOs [COCs(+)] were evaluated. 

 

Animals and collection of feline oocytes 

Ovaries from domestic cats were harvested at random stages of the estrous cycle 

during routine ovariectomy at veterinary clinics. After surgery, ovaries were 

immediately placed in a phosphate buffered saline (PBS) with a mixture of 

antibiotics (AB) and antimycotics (100 IU/ml of penicillin G sodium, 0.1 mg/ml 



90 

 

of streptomycin sulfate, and 0.25 µg/ml of amphotericin B), and transported to 

the laboratory at room temperature (RT) where they were processed. 

Feline COCs were obtained by mincing of the ovaries in PBS and AB with 0.1% 

(w/v) polyvinyl alcohol (PVA) and only grade I COCs were selected for the 

experiments. 

The CDOs were obtained by mechanical deprivation, with a small bore pipette, 

of COCs’ cumulus cells. 

 

In vitro maturation in 3D and 2D systems 

The feline oocytes were matured in vitro for 24 h in a controlled atmosphere 

(38.5°C and 5% CO2 in air) in modified Kreb’s Ringer bicarbonate buffered salt 

solution with AB (b-mKRB) supplemented with 3 mg/mL of bovine serum 

albumin (BSA), 0.5 IU/mL of equine chorionic gonadotropin (eCG), 1 IU/mL 

of human chorionic gonadotropin (hCG), 10 ng/mL of epidermal growth factor 

(EGF) and 0.6 mM cysteine (complete maturation medium, c-mKRB). 

For the 3D system, a two-steps encapsulation technique in BA was developed, as 

a modification of the protocol previously described for living-cell (Conte et al. 

1999; Vigo et al. 2004). The Na-alginate powder (0.5%) was dissolved into the 

different solutions reported below, to obtain the melting solution (MS) at 

medium viscosity (3.500 cP, centipose). A saturated solution of BaCl2 was then 

added to an aliquot of a different medium (see below) to obtain the dropping 
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solution (DS) of BaCl2 (40 mM) that was dropped at RT with a 25G needle into 

the MS maintained stirred for 30-40 minutes. The microcapsules were then 

collected, washed twice in PBS and suspended in the c-mKRB for immediate 

use, or maintained at 4°C in a petri dish with PBS until use. 

To obtain the BA microcapsules, the following working conditions were tested: 

1: MS with b-mKRB and DS with b-mKRB. 2: MS with c-mKRB and DS with 

c-mKRB. 3: MS with sterile water and DS with b-mKRB. 4. MS with sterile 

water and DS with c-mKRB. 

The feline COCs, the CDOs(+), the CDOs(-) and the COCs(+) were injected 

into the inner core of the microcapsule by a small bore pipette and subsequently 

immersed in the c-mKRB in a multiwell dish. 

For the 2D culture system, traditional microdrops of c-mKRB (50-100µl) were 

placed in a petri dish and covered by mineral oil. 

 

Assessment of viability and maturation rates 

After 24 h of in vitro maturation, COCs and CDOs were evaluated for overall 

viability and nuclear maturation rates. Sequential stainings with fluorescein 

diacetate/propidium iodide (FDA/PI) for viability and bis-benzimide (Hoechst 

33342) for chromatin configuration were performed. 

For the viability, the oocytes were maintained at dark in 50 μl of the staining 

solution (PI: 10 mg/ml; FDA: 5 mg/ml) for 5 min and then evaluated under a 
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fluorescent microscope (Axiovert 100, Zeiss, Arese, Italy). This differential 

staining allowed the evaluation of viable (bright green fluorescence) or dead cells 

(red fluorescence). 

After washing, CDOs and COCs (deprived of cumulus cells by mechanical 

displacement with a small bore glass pipette) were placed on a slide with a 

minimum amount of c-mKRB, and then covered by 10 μl of Hoechst solution. 

After 5 min of incubation in the dark, the Hoechst solution was removed and 

the oocytes were covered with an anti-fade reagent (Fluoromount™ Acqueous 

Mounting Medium). The fixed oocytes were then observed under a fluorescent 

microscope at 400x magnification for nuclear evaluation. 

The chromatin configurations were classified as follows (Bolamba et al. 1998; 

Hewitt and England 1999): 

- germinal vesicle (GV): identification of nucleolus and very fine filaments 

of chromatin; 

- germinal vesicle break down-Anaphase I (GVBD–AI): identification of 

different patterns of chromatin condensation (GVBD) or identification of 

bivalents (AI); 

- telophase I-Metaphase II (TI–MII): identification of two groups of 

chromosomes moving to opposite ends of meiotic spindle (TI) or two sets of 

chromosomes clearly visible (MII); 

- degenerated: collapsed nucleus or irregular nuclear conformation. 
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Statistical analysis 

Data for physical properties of the microcapsules were reported as mean value 

and standard deviation (SD), the viability and maturation rates of COCs, 

CDOs(+), CDOs(-) and COCs(+) were analyzed by Chi-square test and the level 

of significance was set at p<0.05. 

 

Results 

A total of 131 feline ovaries were processed for this experiment and 402 COCs 

of grade I were assigned to the treatments. 

 

Experiment I 

For the physical evaluation of the microcapsules, the following properties were 

recorded: 

- dimensions (mm): length, width; 

- shape: R (round), E (elongated); 

- consistency: E (excellent), G (good), L (low). 

The working condition 3 showed the best physical properties of BA 

microcapsules for feline oocytes encapsulation (Table 1). 
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Table 1. Physical properties of the barium alginate (BA) microcapsules in different working conditions. 

Working 

conditions 

Width, mm 

(mean±SD) 

Lenght, mm 

(mean±SD) 

Shape 

(R,E) 

Consistency 

(E,G,L) 

1 

MS with b-mKRB 
DS with b-mKRB 

 

0 

 

0 

 

- 

 

- 

2 

MS with c-mKRB 
DS with c-mKRB 

 

0 

 

0 

 

- 

 

- 

3 

MS with sterile 
water 

DS with b-mKRB 

 

15.8 ± 1.81 

 

24.12 ± 4.12 

 

R 

 

E 

4 

MS with sterile 
water 

DS with c-mKRB 

 

15.03 ± 2.47 

 

31.52 ± 3.98 

 

R and E 

 

G and L 

MS: Melting solution of Na-alginate (0.5%) 
DS: Dropping solution of BaCl2 (40 mM) 
b-mKRB: modified Kreb’s Ringer bicarbonate buffered salt solution with antibiotics; 
c-mKRB: b-mKRB supplemented with 3 mg/mL of bovine serum albumin (BSA), 0.5 IU/mL of 
equine chorionic gonadotropin (eCG), 1 IU/mL of human chorionic gonadotropin (hCG), 10 ng/mL 
of epidermal growth factor (EGF) and 0.6 mM cysteine. 
Shape: R (round), E (elongated). 
Consistency: E (excellent), G (good), L (low) 

 

The dissolution of Na-alginate powder in sterile water and the dropping of BaCl2 

in b-mKRB was the proper combination. Although the dropping solution made 

with c-mKRB (working condition 4) allowed the formation of BA 

microcapsules, their shape and consistency were not as good as in working 

condition 3. On the other hand, the dissolution of Na-alginate powder in b- or 
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c-mKRB (working conditions 1 and 2) did not allow the formation of any 

microcapsule. 

The results of in vitro maturation of the COCs cultured in both 3D and 2D 

systems, showed that they maintained a similar high viability (p>0.05), and no 

differences were found in their meiotic resumption (Table 2), nor full maturation 

(TI-MII stages) rates (3D: 7/47=14.9% vs 2D: 7/44=15.9%; p>0.05). 

 

Table 2. Viability and nuclear status of feline cumulus-oocyte complexes (COCs) after in vitro 
maturation in 3D or 2D system. 

System 

Viability 

 

No. of oocytes 
(%) 

Immature 

(GV) 

No. of oocytes 
(%) 

Meiotic 
resumption 

(GVBD-MII) 

No. of oocytes 
(%) 

Degenerated 

 

No. of oocytes 
(%) 

3D 41/47 (87.2) 8/47 (17) 32/47 (68.1) 7/47 (14.9) 

2D 37/44 (84) 9/44 (20.5) 26/44 (59.1) 9/44 (20.5) 

No statistical differences. 

3D: barium alginate microcapsules 

2D: microdrops of maturation medium  

GV, germinal vesicle; GVBD, germinal vesicle break down; MII, metaphase II 

 

Experiment II 

The results presented in Table 3, showed that the overall viability was similar in 

3D and 2D systems (p>0.05). In 3D microcapsules the presence of COCs 
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resulted in a higher viability of CDOs(+), than that obtained without COCs 

[CDOs(-)] or in 2D microdrops (p=0.007 and p=0.002, respectively). 

Table 3. Viability of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) 
cultured in 3D or 2D system. 

Groups Viability in 3D system 

No. of oocytes (%) 

Viability in 2D system 

No. of oocytes (%) 

CDOs(+) 

COCs(+) 

51/56 (91.1) a,x 

45/47 (95.7) x 

35/52 (67.3) b,x 

44/48 (91.7) y 

CDOs(-) 37/52 (71.2) y 46/56 (82.1) x,y 

Overall Viability 133/155 (85.8) 125/156 (80.1) 

a,b Different superscripts indicate significant differences within rows (p<0.05) 
x,y Different superscripts indicate significant differences within columns (p<0.05) 
CDOs(+): CDOs co-cultured with COCs 
COCs(+): COCs co-cultured with CDOs 
CDOs(-): CDOs cultured separately 
3D: barium alginate microcapsules 
2D: microdrops of maturation medium 

 

The 3D system was able to support the meiotic resumption of the feline oocytes, 

as well as the 2D microdrops (Table 4). The group of CDO(+) did not benefit 

from the co-culture in 3D microcapsules, as the percentages of meiotic 

resumption were similar of those of CDO(-). The highest values were reached by 

COCs(+) in both 3D and 2D system (p<0.05). This group achieved better 

results of full maturation (TI-MII stages) than the CDOs(+) (3D: 19/47=40.4% 

vs 4/56=7.1%; p=0.005. 2D: 25/48=52.1% vs. 4/52=7.7%; p=0.001) and the 

CDOs(-) (3D: 3/52=5.8%; p=0.003. 2D: 2/56=7.1%; p=0.001).
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Table 4. Nuclear status of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) cultured in 3D or 2D system. 

Groups 

Immature 

(GV) 

No. of oocytes (%) 

Meiotic resumption 

(GVBD-MII) 

No. of oocytes (%) 

Degenerated 

 

No. of oocytes (%) 

 3D 2D 3D 2D 3D 2D 

CDOs(+) 

COCs(+) 

18/56 (32.1)x 

3/47 (6.4)y 

18/52 (42.9)x 

5/48 (10.4)y 

31/56 (55.4) x 

39/47 (83) y 

27/52 (51.9) x 

40/48 (83.3) y 

7/56 (12.5) 

5/47 (10.6) 

7/52 (13.5) 

3/48 (6.3) 

CDOs(-) 21/52 (40.4)x 20/56 (35.7)x 21/52 (40.4) x 23/56 (41.1) x 10/52 (19.2) 13/56 (23.2) 

No differences within rows. 
x,y Different superscripts indicate significant differences within columns (p<0.05). 
CDOs(+): CDOs co-cultured with COCs 
COCs(+): COCs co-cultured with CDOs 
CDOs(-): CDOs cultured separately 
3D: barium alginate microcapsules 
2D: microdrops of maturation medium 
GV, germinal vesicle; GVBD, germinal vesicle break down; MII, metaphase II 

 

9
7
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Discussion 

The present study was aimed at developing an enriched culture system to 

improve the in vitro performances of low competence feline oocytes that lost 

their surrounding cumulus cells (cumulus-denuded oocytes, CDOs). At very low 

rates, these gametes reach the full cytoplasmic and nuclear competence because 

the functional and metabolic support of their somatic cells is missed. The 

subsequent in vitro fertilization and embryo development is also highly 

compromised (Tanghe et al. 2002; Luciano et al. 2005). 

The enriched culture system used for CDOs in this work consisted in a three-

dimensional microcapsules of barium alginate (BA) in association with fresh 

feline cumulus-oocytes complexes (COCs). 

To obtain the 3D BA microcapsules different working conditions were tested. 

The results showed that the dissolution of Na-alginate powder in sterile water 

and the subsequent dropping of BaCl2 dissolved in the basic maturation medium 

(b-mKRB), was the best protocol to obtain round microcapsules with a solid 

inner core useful for feline oocytes encapsulation. The working conditions that 

involved media with hormones and growth factors supplementation (c-mKRB), 

as melting or dropping solution, seemed to inhibit the complete dissolution of 

Na-alginate powder and the ionic interactions with BaCl2, compromising the 

effective creation and use of the microcapsules. However, the metabolic effect 

of nutrients, growth factors and hormones on the encapsulated oocytes was 
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ensured by the immersion of the BA microcapsules in c-mKRB. The effective 

exchange of different molecules through these systems has been documented 

(Vigo et al. 2004). 

A similar viability and maturation rate of feline COCs cultured in these proper 

BA microcapsules compared to those cultured in 2D microdrops, proved that 

the 3D system was a suitable culture condition for feline oocytes. 

Many authors reported the efficiency of 3D systems for mammalian follicles and 

oocytes in vitro culture. In vitro growth and development (i.e. the proliferation 

and the differentiation of theca and granulosa cells, the steroid secretion and 

markers expression) of murine and human follicles were enhanced after in vitro 

culture in 3D alginate microcapsules, and the achievement of the full 

competence of the inner oocytes was also obtained (Xu et al. 2006; Xu et al. 

2009; Shikanov et al. 2011). In addition, the encapsulation of human or swine 

oocytes in a collagen gel or in a BA capsules helped the in vitro meiosis 

progression until MII stage (Combelles et al. 2005; Munari et al. 2007). 

In the present study, the CDOs co-cultured with COCs showed a higher viability 

in 3D than in 2D system, but no beneficial effects of this association was 

observed in meiosis resumption and full maturation (TI-MII stages) rates. 

Instead, the associated COCs had the highest viability and maturation rates in 

both systems. 
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Present data differed from previous studies in the domestic cat and in other 

species (Luciano et al. 2005; Ge et al. 2008; Godard et al. 2009) in which the 

presence of COCs during in vitro maturation and in vitro fertilization seemed to 

promote the achievement of MII stage and of the subsequent embryo 

development of CDOs.  

In this study, fresh feline COCs were mechanically deprived of the surrounding 

cumulus cells to obtain the CDOs. This method, that differs from those of the 

aforementioned studies in which vortex or incubation with hyaluronidase were 

used, could have influenced the results. It remains to investigate how the oocytes 

without cumulus cells, and not denudated ad hoc, behave in the same culture 

conditions.  

It could also be hypothesized that the feline CDOs need different conditions to 

improve their performances in vitro, as the formulation of more specific 

maturation media. 

It is notable that the presence of CDOs seemed to enhance the meiotic 

competence of the associated COCs. In bovine and murine model, this positive 

effect of denuded oocytes in the same culture condition as companion cells of 

COCs has been already reported (Hussein et al. 2006; Gilchrist et al. 2008). It is 

well known that the oocytes themselves produce some specific paracrine factors, 

known as the oocyte-secreted factors (OSFs), which act specifically on 

surrounding cumulus cells, regulating their differentiation, functional activity and 
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gene expression. In the present study, these factors could have provided some 

beneficial support to ameliorate the maturation rates of COCs in both 3D and 

2D culture conditions. 

In conclusion, the 3D barium alginate microcapsules could support the in vitro 

culture of the feline oocytes, as well as the traditional 2D system. Since the in 

vitro maturation rates of CDOs remain low, more specific and designing ad hoc 

in vitro conditions for these low competence oocytes should be adopted. 

The more physiological microenvironment, i.e. the maintenance of oocytes 

architecture ensured by the 3D culture, represents an enriched condition that 

might also modulate the molecular expression of some oocyte quality markers, as 

the OSFs. The genetic expression of these factors in oocytes cultured in 3D or 

2D system should be investigated for improving the feline oocytes in vitro 

performances. 
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Abstract 

To improve the in vitro full competence of oocytes with poor morphological 

characteristics, different culture conditions were evaluated. Domestic cat 

cumulus-denuded oocytes (CDOs) were in vitro matured in an enriched system 

of three-dimensional (3D) barium alginate microcapsules in association with 

cumulus-oocyte complexes (COCs) in a commercial medium. After in vitro 

fertilization with chilled feline spermatozoa, the subsequent embryonic 

development in 3D system was evaluated. The results were compared with those 

obtained after in vitro maturation and culture in a traditional culture system 

(two-dimensional, 2D, microdrops). The feline CDOs achieved the in vitro full 

maturation (TI-MII stages) and developed until late embryo stages (morulae and 

blastocysts) at the same proportions of the high competence COCs. The 

enriched conditions during maturation and culture represented by 3D barium 

alginate microcapsules did not improve the results, as similar rates of CDOs 

viability, meiotic progression and embryonic development were obtained in 3D 

and 2D systems.  

In conclusion, although in this study the in vitro embryo production from feline 

CDOs was obtained, the optimal culture conditions for these low competence 

oocytes deserve further investigations. 

 

Key words: Domestic cat; denuded oocytes; embryo development; 3D system. 
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Introduction 

The poor maturational and developmental competence of oocytes that lost their 

surrounding cumulus cells (CCs) is ascertained. The lack of CCs negatively 

affects the metabolism and the functionality of the oocytes because the bi-

directional communication between germinal and somatic compartments, 

through the exchange of different molecules, nutrients and secreted factors, is 

crucial for the regulation of oocyte meiotic arrest and meiosis resumption 

(Eppig, 1982; Fagbohun & Downs, 1991; Tanghe et al., 2002). Only cumulus-

oocyte complexes (COCs) surrounded by multiple layers of CCs are selected for 

in vitro embryo production, but in some cases the cumulus-denuded oocytes 

(CDOs) represent the only available genetic source. 

For instance, cryopreserved COCs generally lose their CCs due to the intrinsic 

cold-damages of freezing or vitrification procedures. The different size, structure 

and permeability of these somatic cells compared to the germinal cell, are 

responsible of their high susceptibility to the cryoprotectant agents and to the 

cold temperature that are detrimental for their survival. This affects the 

maturational and developmental full competence of thawed oocytes in vitro 

(Songsasen & Comizzoli, 2009). 

Widening the germinal pool with oocytes with poor morphological 

characteristics could also be of high interest for increasing the chance of fertility 
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preservation in case of limited numbers of female gametes, as in wild felids 

(Puzakenthi et al., 2006). 

Some attempts of enriched cultures aimed at improving the maturation rates and 

the subsequent embryo development of low competence oocytes have been 

reported. The in vitro association of CDOs with competent COCs enhanced the 

achievement of the metaphase II (MII) stage and the embryo development until 

blastocyst stage in different species including cats (Ikeda et al., 2000; Luciano et 

al., 2005; Godard et al., 2009). The domestic cat is an optimal animal model for 

reproductive biotechnologies of wild felids and for comparative studies on 

human fertility preservation medicine (Comizzoli et al., 2010) 

Recently, the co-culture of cat CDOs with competent COCs in an innovative 

culture system of 3D barium alginate microcapsules was described for the first 

time (Morselli et al., 2015). The results showed that the 3D system was able to 

support the viability and the meiosis resumption of feline oocytes, but their in 

vitro embryo development was not investigated. The 3D in vitro culture system 

mimics more faithfully the conformation of biological extra-cellular matrix, and 

its efficiency in maintaining the viability and promoting the growth of follicles 

and oocytes, other than supporting the embryo development, has been 

demonstrated in different mammalian species (Kreeger et al., 2006; Torre et al., 

2006; Munari et al., 2007; Zhao et al., 2015). 
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This study was developed to investigate whether the association of a 3D system 

and a co-culture with competent COCs in a commercial medium during in vitro 

maturation could sustain the feline CDOs in vitro embryo development. 

 

Material and methods 

The study was approved by the Ethical Committee of the University of Milan 

(December 9th, 2014), and all animals were enrolled following written consent 

by the owner. 

 

Chemicals and reagents 

All chemicals and reagents were purchased from Sigma Chemical Company (St. 

Louis, MO, USA), unless otherwise stated. 

 

Experimental design 

 

Experiment I 

Fresh feline CDOs were co-cultured with COCs [CDOs(+)] or cultured 

separately [CDOs(-)] in a commercial medium in 3D (barium alginate 

microcapsules) or 2D (microdrops) system. A control group of COCs [COCs(-)] 

was in vitro matured in 3D or in 2D conditions. After 24 h, the viability and 
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maturation rates of CDOs(+), CDO(-) , COCs co-cultured with CDOs 

[COCs(+)] and COCs control [COCs(-)] were compared. 

 

Experiment II 

Fresh feline CDOs were in vitro matured with COCs [CDOs(+)] in a 

commercial medium in 3D or 2D system, as in experiment I. After in vitro 

fertilization with chilled epididymal feline spermatozoa, presumptive zygotes 

were in vitro cultured separately in 3D or 2D system, according to the IVM 

conditions. A control group of COCs [COCs(-)] was in vitro matured, fertilized 

and cultured in 3D or 2D system. Embryonic development was recorded during 

7 days of in vitro culture. 

 

Animals and collection of feline oocytes 

Ovaries from domestic cats were harvested at random stages of the estrous cycle 

during routine ovariectomy at veterinary clinics. After surgery, ovaries were 

immediately placed in a phosphate buffered saline (PBS) with a mixture of 

antibiotics (AB) and antimycotics (100 IU/ml of penicillin G sodium, 0.1 mg/ml 

of streptomycin sulfate, and 0.25 µg/ml of amphotericin B), and transported to 

the laboratory at room temperature (RT) where they were processed. 

Feline COCs were obtained by mincing of the ovaries in PBS and AB with 0.1% 

(w/v) polyvinyl alcohol (PVA) and only grade I COCs were selected for the 

experiments. 
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The CDOs were obtained by mechanical deprivation, with a small bore pipette, 

of COCs’ cumulus cells. 

 

In vitro maturation and in vitro culture in 3D and 2D systems 

The feline oocytes were in vitro matured for 24 h in a controlled atmosphere 

(38.5°C and 5% CO2 in air) in Quinn’s Advantage Protein Plus Blastocyst (SBP, 

SAGE® In Vitro Fertilization, Trumbull, Connecticut, USA) medium (b-SBP) 

supplemented with 75 IU FSH + 75 IU LH (Menogon®, Ferring 

Pharmaceuticals, Switzerland), 10 ng/ml of epidermal growth factor (EGF), AB 

and 0.6 mM cysteine (c-SBP). 

After fertilization (see below), the presumptive zygotes were in vitro cultured for 

7 days in a controlled atmosphere (38.5°C and 5% CO2 in air) in b-SBP 

supplemented with 5% of fetal calf serum (FCS) and AB (c-SBP2, National 

Institutes of Health, Bethesda, MD, USA). 

For the 3D system, a two-steps encapsulation technique in barium alginate (BA) 

was performed as previously described (Morselli et al., 2015; Vigo et al., 2004; 

Conte et al., 1999). Briefly, the sodium alginate powder (0.5%) was dissolved 

into sterile water to obtain the melting solution at medium viscosity (3.500 cP, 

centipose). A saturated solution of BaCl2 was then added to an aliquot of b-SBP 

medium to obtain the dropping solution of BaCl2 (40 mM) that was dropped at 

RT with a 25G needle into the melting solution maintained stirred for 30-40 
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minutes. The microcapsules were then collected, washed twice in PBS, and 

suspended in the b-SBP medium for immediate use, or maintained at 4°C in a 

Petri dish with PBS until use. 

The feline CDOs(+), the CDOs(-), the COCs(+) and the COCs of the control 

group [COCs(-)] were injected into the inner core of the microcapsule by a small 

bore pipette and subsequently immersed in the culture medium (c-SBP ) in a 

multiwell dish. 

For the 2D culture system, traditional microdrops of c-SBP (50-100 µl) were 

placed in a Petri dish and covered by mineral oil. 

 

Epididymal sperm recovery and in vitro fertilization 

In vitro fertilization was performed with chilled feline epididymal spermatozoa 

obtained from isolated testicles after orchiectomy at veterinary clinics. The 

epididymides were isolated from the testicles and placed in a 35 mm Petri dish 

containing 1 ml of Ham’s F-10 medium supplemented with 2 mM L-glutamine, 

5% (v/v) FCS and AB. Epididymal spermatozoa were released by mincing with a 

scalpel blade. Tissue debris were removed by forceps, and the remaining sperm 

suspension was centrifuged (300 g, 5 min) and diluted 1:2 with Tris egg yolk 

buffer for chilling at 4°C degree for 24 h. Before use, the spermatozoa were 

washed by centrifugation and a swim-up treatment was performed by gently 

layering 50 µl of b-SBP on the sperm pellet. After 30-45 min at 38.5°C, the 
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supernatant was collected and concentration and motility were determined in the 

sperm suspension. 

After 24 h of maturation, the oocytes were washed twice in c-SBP2 and 

transferred into 90 µl drops of fresh c-SBP2. Immediately prior to insemination, 

the sperm suspension was diluted in c-SBP2 to a final concentration of 0.75-1 x 

106 motile spermatozoa/ml, and 10 µl were added to each fertilization drop 

containing the oocytes. 

At 18-24 h post insemination, cumulus cells of COCs and unbound spermatozoa 

were removed from the oocytes using a small bore glass pipette. After washing, 

the presumptive zygotes were in vitro cultured for 7 days in c-SBP2, in 3D or 

2D system according to the IVM conditions. Fresh culture medium (c-SBP2) 

was added every two days and the embryonic development were recorded. 

 

Assessment of viability, maturation rates and embryonic development 

Sequential stainings with fluorescein diacetate/propidium iodide (FDA/PI) for 

viability assessment and with bis-benzimide (Hoechst 33342) for the evaluation 

of chromatin configuration were performed in Experiment I.  

Briefly, the oocytes were maintained at dark in 50 μl of the staining solution (PI: 

10 mg/ml; FDA: 5 mg/ml) for 5 min and then evaluated under a fluorescent 

microscope (Axiovert 100, Zeiss, Arese, Italy). This differential staining allowed 

the evaluation of viable (bright green fluorescence) or dead cells (red 
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fluorescence). After washing, CDOs, COCs (after removal of cumulus cells) 

were placed on a slide with a minimum amount of medium, and then covered by 

10 μl of Hoechst solution. After 5 min of incubation in the dark, the Hoechst 

solution was removed and the oocytes were covered with an anti-fade reagent 

(Fluoromount ™Acqueous Mounting Medium). The fixed oocytes were then 

observed under a fluorescent microscope at 400x magnification for the 

evaluation of nuclear stages. 

The chromatin configurations of the oocytes were classified as follows (Bolamba 

et al., 1998; Hewitt and England, 1999): 

- germinal vesicle (GV): identification of nucleolus and very fine filaments of 

chromatin; 

- germinal vesicle break down-Anaphase I (GVBD–AI): identification of 

different patterns of chromatin condensation (GVBD) or identification of 

bivalents (AI); 

- telophase I-Metaphase II (TI–MII): identification of two groups of 

chromosomes moving to opposite ends of meiotic spindle (TI) or two sets 

of chromosomes clearly visible (MII); 

- - degenerated: collapsed nucleus or irregular nuclear conformation. 

 

In Experiment II for the assessment of embryo development, cleaved embryos, 

8-16 cells, morulae and blastocysts stages were recorded along 7 days of culture. 
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Statistical analysis 

Data for viability, maturation and embryonic development rates of CDOs(+), 

CDOs(-), COCs(+) and COCs control [COCs(-)] were analyzed by Chi-square 

test and the level of significance was set at p<0.05. 

 

Results 

A total of 115 feline ovaries were processed for this study and 617 grade I COCs 

were assigned to the treatments. 

 

Experiment I  

In all the treatment groups, the BA microcapsules of 3D system were able to 

sustain the viability (range: 87.9% - 100%,) and the meiosis resumption of feline 

oocytes, as the 2D microdrops (p>0.05).  

The resumption of meiosis (Table 1) of COCs co-cultured (+) or cultured 

separately (-) was significantly higher (p<0.001) in 3D and 2D system than that 

of CDO(+) and CDO(-). The rate of GVBD-MII stage of CDOs(+) did not 

differ from that of CDO(-). No differences in degeneration rates were observed. 
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Experiment II 

The results reported in the Table 2 showed that the embryo development, in 

terms of cleavage, 8-16 cell and morula and blastocyst rates, was similar in 

oocytes matured and cultured in 3D BA microcapsules and in the 2D 

microdrops (p>0.05). The CDO(+) matured in the co-culture with COCs 

developed at lower rates than the associated COCs (p<0.05) in both systems. 

However, the CDOs(+) achieved the 8-16 cells and the late embryo stages 

(morulae and blastocysts) at similar proportions of COCs(-). The proportions of 

morulae and blastocysts on the total number of cleaved embryos, showed that 

CDOs(+) embryonic development was similar to that of associated COCs(+) 

and COCs(-). 
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Table 1. Meiotic progression of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) after in vitro maturation in 3D or 2D system. 

Groups No. of oocytes Meiotic resumption (GVBD-
MII) 

No. of oocytes (%) 

GVBD-AI 

No. of oocytes (%) 

TI-MII 

No. of oocytes (%) 

Degenerate 

No. of oocytes (%) 

 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

CDOs(+) 

COCs(+) 

39 

39 

33 

33 

13 (33.3)a 

34 (87.2)b 

16 (48.5)a 

28 (84.8)b 

8 (20.5)a 

20 (51.3)b 

12 (36.4)a 

15 (45.5)a 

5 (12.8)a 

14 (35.9)b 

4 (12.1)a 

13 (39.4)b 

4 (10.3) 

2 (5.1) 

2 (6.1) 

2 (6.1) 

CDOs(-) 36 36 16 (44.4)a 13 (36.1)a 3 (8.3)a 7 (19.4)a,b 13 (36.1)b 6 (16.7)a 6 (16.7) 1 (2.8) 

COCs(-) 35 35 30 (85.7)b 32 (91.4)b 8 (22.9)a,x 2 (5.7)b,y 22 (62.9)c,x 30 (85.7)c,y 0 (0) 1 (2.9) 

x,y Different superscripts indicate significant differences within rows (p<0.05). 
a,b,c Different superscripts indicate significant differences within columns (p<0.05). 

CDOs(+), CDOs co-cultured with COCs; COCs(+), COCs co-cultured with CDOs; CDOs(-), CDOs cultured separately; COCs(-), COCs cultured separately 

(control group); 3D, barium alginate (BA) microcapsules; 2D, microdrops of maturation medium; GV, germinal vesicle; GVBD, germinal vesicle break down; 

MII, metaphase II. 

 

1
1
9
 

 



120 

 

 

Table 2. Embryonic developmental rates of feline cumulus-denuded oocytes (CDOs) and cumulus-oocyte complexes (COCs) matured and cultured in 3D or 2D 

system. 

Groups No. of oocytes Cleavage  

No. (%) 

8-16 cells 

No. (%) 

Morulae + blastocysts  

No. (%) 

Morulae + blastocysts/cleaved 

No. (%) 

 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

CDOs(+) 

COCs(+) 

56 

57 

59 

57 

7 (12.5)a 

30 (52.6)b 

10 (16.9)a 

28 (49.1)b 

4 (7.1)a 

25 (43.9)b 

8 (13.6)a 

22 (38.6)b 

4 (7.1)a 

23 (40.4)b 

6 (10.2)a 

22 (38.6)b 

4 (57.1)a,b 

23 (76.7)b 

6 (60) 

22 (78.6) 

COCs(-) 45 57 14 (31.1)c 12 (21.1)a 6 (13.3)a 12 (21.1)a 3 (6.7)a 11 (19.3)a 3 (21.4)a,x 11 (91.7)y 

a,b,c Different superscripts indicate significant differences within columns (p<0.05) 
x,y Different superscripts indicate significant differences within rows (p<0.05) 

CDOs(+), CDOs co-cultured with COCs during IVM; COCs(+), COCs co-cultured with CDOs during IVM; COCs(-), COCs cultured separately (control 

group); 3D, barium alginate (BA) microcapsules during IVM and IVC; 2D, microdrops of culture medium during IVM and IVC. 

 

1
2
0
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Discussion 

The achievement of in vitro-derived embryos from low competence oocytes, as 

those without cumulus cells, represents a current challenge for improving the 

chance of fertility preservation.  

In the present study, the feline cumulus-denuded oocytes achieved the full 

maturational competence and developed until morula and blastocyst stages at the 

same proportions than the competent COCs. 

However, the enriched conditions represented by 3D barium alginate 

microcapsules during maturation and culture did not improve the results. Similar 

rates of CDOs viability, meiotic progression and embryonic development were 

obtained in 3D and 2D systems. Differently from other studies in which bovine 

embryos in vitro-derived from competent oocytes developed at higher rates in 

3D system compared to traditional 2D microdrops (Zhao et al., 2015), in this 

study the embryo development of feline COCs did not differ in the two systems. 

In addition, the enrichment of the in vitro maturation with competent COCs did 

not exert a beneficial effect for the CDOs performances. No differences were 

found in the maturation and in the subsequent embryonic development when 

the CDOs were in vitro matured with or without the associated COCs, in both 

3D and 2D systems. These results of maturation confirm what has been found 

in a previous work (Morselli et al., 2015), but differ from other studies, which 
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demonstrated a positive effect of the co-culture with COCs on bovine and 

domestic cat CDOs (Luciano et al., 2005; Godard et al., 2009).  

The presence of own cumulus cells is crucial for the oocyte quality. The CCs are 

involved in many cellular processes, as the metabolism of different substrates 

(i.e. glucose, fatty acids, carbohydrates, and amino acids), and provide the 

specialized microenvironment for cytoplasmic and nuclear oocyte maturation 

and development (Sutton et al., 2010). The deprivation of CCs has a strong and 

negative impact on the developmental competence of the oocyte in different 

species (Auclair et al., 2013). For instance, the absence of CCs and related 

specific secreted factors, lead to aberrant cytoplasmic maturation, including an 

impaired cumulus-related lipid metabolism compared to that of the competent 

COCs (Auclair et al., 2013). In the domestic cat, no information were available 

regarding the lipid metabolism of CDOs. A more detailed investigation of the 

different metabolism in high and low competence oocytes should be of high 

interest to design a proper enriched culture condition for this species. 

In the present study, the Quinn’s Advantage Protein Plus Blastocyst (SBP) 

medium, specifically designed for the in vitro culture of human embryos, was 

used in both experiments. This commercial medium is easy to handle, pathogen 

free, high reproducible and routinely used for assisted reproductive techniques. 

Present data suggest that the SBP could support the full maturation and 

development of COCs and CDOs. 
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As already observed in the previous work (Morselli et al., 2015), the COCs 

benefit from the association with CDOs, as their embryo development rates 

were higher than that of COCs cultured separately. The positive effect of the 

association presumably depends on the paracrine effects of some specific growth 

factors, known as the oocyte-secreted factors (OSFs). These diffusible molecules 

are produced by the oocytes themselves and up-regulates the expression of some 

CCs-related genes, regulating their functions. The presence of CDOs in the same 

culture with COCs during maturation has been shown to improve their 

achievement of full maturational stages and to promote their embryo 

development in different species (Hussein et al., 2006). 

In conclusion, the feline CDOs could fully mature and develop until blastocyst 

stage, but the enriched culture conditions (3D BA microcapsules and association 

with competent COCs) during in vitro maturation did not improve the results. 

The potential benefit of the maintenance of the feline oocyte architecture in the 

3D culture deserves further investigations. A better knowledge of specific 

expression profiles and how they could differ from COCs and CDOs in the 3D 

and 2D systems could help the design of the optimal enriched culture conditions 

for the low competence oocytes. 
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Ubiquitin is a 8.5-kDa peptide that tags other proteins for proteasomal degradation. It has
been proposed that ubiquitination might be responsible for the elimination of defective
spermatozoa during transit through the epididymis in humans and cattle, but its exact
biological function in seminal plasma has not yet been clarified. In the domestic cat (Felis
catus), the percentage of immature, unviable, and abnormal spermatozoa decreases during
the epididymal transit, indicating the existence of a mechanism that removes defective
spermatozoa. Magnetic cell separation techniques, based on the use of magnetic beads
coated with anti-ubiquitin antibodies, may allow the selective capture of ubiquitinated
spermatozoa from semen, thus contributing to the identification of a potential correlation
between semen quality and ubiquitination process. Moreover, the selective identification
of all the ubiquitinated proteins in different epididymal regions could give a better un-
derstanding of the ubiquitin role in feline sperm maturation. The aims of this study were
as follows: (1) to verify the possibility of separating ubiquitinated spermatozoa with
magnetic ubiquitin beads and identify the morphological and acrosomal differences be-
tween whole sample and unbound gametes, (2) to characterize all the ubiquitinated
proteins in spermatozoa retrieved in the three epididymal regions by a proteomic
approach. The data indicated the presence of ubiquitinated proteins in cat epididymal
semen. However, a correlation between abnormal and ubiquitinated spermatozoa has not
been found, and ubiquitin cannot be considered as a biomarker of quality of epididymal
feline spermatozoa. To the author’s knowledge, this is the first identification of all the
ubiquitinated proteins of cat spermatozoa collected from different epididymal regions. The
proteomic pattern allows a further characterization of cat epididymal semen and repre-
sents a contribute to a better understanding of the ubiquitin role in feline sperm
maturation.

� 2014 Elsevier Inc. All rights reserved.
ax þ39 02 503 18148.
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02
1. Introduction

Ubiquitin is a 8.5-kDa peptide that tags other proteins
for proteasomal degradation, and it is also involved in the
regulation of protein function. This protein is a normal
component of human blood, ovarian follicular fluid, and
seminal plasma [1], and its role in the elimination of
defective spermatozoa during transit through the epidid-
ymis has been described in humans and cattle [2,3].
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The hypothesis of epididymal removal by ubiquitination
of defective spermatozoa is based on the fact that pro-
portions of ubiquitinated bovine spermatozoa decrease
along the transit from the head to the corpus epididymis
and that cultured epididymal epithelial cells are capable of
spermiophagy [4].

The results demonstrated that the increase of sperm
ubiquitin is inversely associated with spermatic concen-
tration, motility, and normal morphology, indicating that
ubiquitination could be a biomarker of poor semen quality
[3]. Conversely, some authors [5] found a positive correla-
tion between sperm ubiquitin and good semen parameters,
suggesting a different role for sperm ubiquitination.

Therefore, the role played by ubiquitination of sper-
matozoa proteins and their function during the transit
through the epididymis is still an open question, even in
species whose semen properties have been extensively
studied, such as human and bovine.

Regarding the domestic cat (Felis catus), only in one
study ubiquitin staining of both normal and altered
epididymal spermatozoa has been described [6].

It has been ascertained that in the cat, the percentage of
immature, unviable, and abnormal spermatozoa decreases
during epididymal transit, indicating the existence of a
mechanism that removes defective spermatozoa [7,8].
Thus, the epididymis that is responsible for sperm devel-
opment and maturation might also act as a quality control
organ to prevent misshapen, genetically abnormal, or
infertile spermatozoa from entering the ejaculate.

Magnetic cell separation techniques, based on the use of
magnetic beads coated with anti-ubiquitin antibodies, may
allow the selective capture of ubiquitinated spermatozoa
from semen, thus contributing to the identification of a
potential correlation between semen quality, spermatozoa
maturation, and ubiquitination process. This would
contribute to an understanding whether ubiquitin could be
considered as a biomarker of quality of epididymal feline
semen.

The selective identification of all the ubiquitinated
proteins in spermatozoa of different epididymal regions
could give a better understanding of the ubiquitin role in
feline sperm maturation [9–12].

The evaluation of ubiquitination pattern of seminal
proteins has been applied to humans [13,14], and today,
with the advances of proteomic techniques, thousands of
proteins have been described as being part of normal
human semen [15]. The challenges for analyzing protein
ubiquitination are largely due to low stoichiometry of
ubiquitinated species in cells [16]. To overcome these lim-
itations, it is essential to enrich for ubiquitinated proteins
before mass spectrometry (MS) analysis. In the present
study, this strategy, combined to a shot-gun proteomic
approach, has been applied for the first time to semen of
domestic cat treated with magnetic ubiquitin beads before
MS/MS analysis to identify all the ubiquitinated proteins in
spermatozoa of different epididymal tracts.

Therefore, the aims of the present study were as fol-
lows: (1) to verify the possibility of separating ubiquiti-
nated spermatozoa with magnetic ubiquitin beads and
identify the structural (morphological and acrosomal) dif-
ferences betweenwhole sample and unbound gametes, (2)
to extensively characterize all the ubiquitinated proteins in
spermatozoa retrieved in the three epididymal regions by a
proteomic approach.

2. Materials and methods

All chemicals were purchased from the Sigma Chemical
Company (St. Louis, MO, USA), unless otherwise stated.

2.1. Animals and experimental design

Twenty-two healthy and pubertal cats presented to the
Department for routine orchiectomy were included in this
study.

In experiment 1, semen samples were obtained from 10
pairs of isolated testes by squeezing cauda epididymis and
vasa deferentia in a warm (37 �C) PBS solution. Ubiquiti-
nation of the epididymal spermatozoa was evaluated by
Western blot analysis as described in detail in the below
section.

To verify the possibility of separating ubiquitinated
spermatozoa with magnetic ubiquitin beads, the sample
was divided into two aliquots: the first was processed with
magnetic ubiquitin beads, and the second aliquot was not
treated and used as control. Sperm parameters (concentra-
tion, motility, morphology, and acrosomal integrity) were
evaluated in whole sample (control) and in the sample
treatedwith beads (unbound spermatozoa, see Section 2.3).

In experiment 2, 12 pairs of epididymides were pro-
cessed. The epididymis was dissected from each testis and
pampiniform plexus using a scalpel blade. The small vessels
were removed with scissors to reduce blood contamina-
tion. Each pair of epididymides was macroscopically
divided into three anatomical portions, caput, corpus, and
cauda, according to the previous studies [17,18]. Each pair of
caput, corpus, and cauda was placed in a Petri dish con-
taining 2 mL of PBS and minced with a scalpel blade. After
30 minutes of incubation at 37 �C, 1 mL of the suspension
was collected from each dish. Each sample was processed
with magnetic ubiquitin beads, and proteomic analysis was
assessed in spermatozoa bound to the beads to extensively
characterize all the ubiquitinated proteins in the three re-
gions of the epididymis.

2.2. Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis, two-dimensional electrophoresis, and
Western blot analysis

Whole semen samples were suspended in 0.5 M Tris–
HCl, pH 6.8, 10% glycerol, and 10% sodium dodecyl sulfate
(SDS). The protein content was determined by Bradford
method [19] and separated on an homemade 11% poly-
acrylamide gel according to Laemmli [20]. Two-
dimensional (2D) electrophoresis was carried out as
described in Tedeschi et al. [21]. For the first dimension,
proteins were applied to rehydrated Immobilized pH
Gradient strips (70 mm, 3–10 Non Linear) (Amersham
Biosciences, Cologno Monzese, Italy). Isoelectric focusing
was performed at 15 �C as follows: 600 V for 10 minutes,
900 V for 15 minutes, 1500 V for 15 minutes, 2500 V for
15 minutes, and 3500 V for 5 hours and 15 minutes. Before
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the second dimension, each strip was rinsed with buffer
(6 M urea in 0.375 M Tris–HCl, pH 8.8, 2% SDS, 20% glycerol,
bromophenol blue). The second dimension was performed
on homemade 12% SDS minigels (8.5 � 6 � 0.15 cm) at
20 mA/gel.

Proteins in the gel (either 1D or 2D) were stained with
ammonium silver stain or transferred from the gel onto a
polyvinylidene difluoride (PVDF) membrane (Immobilon P,
Millipore, Bedford, MA, USA) by electrophoretic elution at
180 mA for 1 hour. The transfer buffer was 10 mM 3-
(Cyclohexylamino)-1-propanesulfonic acid and 10% meth-
anol. Membranes were then probed for immunoreactivity
as follows: for ubiquitin detection, the membrane was
blocked with 5% dry milk in Tris-buffered saline (TBS),
washed five times with TBS-T 0.25%, incubated in rabbit
anti-ubiquitin polyclonal antibody (AbCam, Cambridge,
UK) to 1:1000 in 2% drymilk in TBS-T 0.25%. Themembrane
was washed five times with TBS-T 0.25%, incubated in anti-
IgG rabbit HRP conjugated (Calbiochem, Darmstadt, Ger-
many) 1:1000 in 2% dry milk in TBS-T 0.25%.

2.3. Sperm separation with magnetic ubiquitin beads

Magnetic ubiquitin beads (Li Starfish S.r.l., Cernusco S/N,
Milan, Italy) suspended in 10 mM phosphate (pH 7.5) with
0.02% sodium azide were added to semen aliquots (80 mL
beads/mL of semen) in a 1.5-mL tube. The tube was gently
mixed for 20 minutes to allow contact between the mag-
netic beads and the targeted spermatozoa before placing it
in amagneticfield for 10minutes. The separationprocedure
is a negative depletion in which the magnetic beads attach
to the targeted surface marker and are collected against the
wall of the tube by application of an external laboratory
magnet. The separated sample was decanted and collected
while the tube was still in the magnetic field, whereas the
ubiquitinated spermatozoa bound to the beads remained
attached to thewall of the tube as long as themagnetwas in
place. Thus, two fractions were obtained: spermatozoa
bound to the beads and spermatozoa unbound in the tube.

2.4. Spermatozoa evaluation

As previously mentioned, sperm parameters were
evaluated in whole sample (control) and in the sample
treated with beads (unbound spermatozoa). Sperm con-
centrationwas determinedwith a Bürker chamber. Motility
was subjectively assessed under a light microscope (�40)
with a heated stage at 38 �C. Spermatozoa were considered
to be motile only if they exhibited progressive motility of a
score of at least 3 or 4 on a scale of 0 to 4 (0, absent; 1, weak
or sluggish; 2, definite; 3, good; and 4, vigorous) [22].

The morphology of spermatozoa was assessed after
staining of the smear with Bengal Rose and Victoria Blue B.
A total of 100 spermatozoa were evaluated under light
microscope with oil immersion objective at �100 magni-
fication. Normal spermatozoa and site of defects in
abnormal spermatozoa (head, neck/midpiece, and tail)
were recorded [23]. The acrosome status was evaluated by
staining the spermatozoa with peanut agglutinin (PNA)
conjugated with fluorescein isothiocyanate (FITC) and
propidium iodide (PI) according to the procedure described
for stallion spermatozoa [24]. Staining solution was pre-
paredwith 90 mL of FITC–PNA (40 mg/mL in PBS) addedwith
10 mL of PI (340 mM in PBS).

An amount of 10 mL of sperm suspensionwas smeared on
a microscope slide and fixed in 96% ethanol for 30 seconds.
The slide was dried in dark, and then a droplet of 20 mL of
FITC–PNA/PIwas added to the slide. The slidewas incubated
in amoist chamberat 4 �C, andafter 30minutes itwas rinsed
with 4 �C distilled water and air dried at 4 �C in dark over-
night. At least 100 spermatozoa were evaluated under
fluorescent microscope (Axiovert 100, Zeiss, Oberkochen,
Germany). The intact acrosomewas stained green, whereas
the head of the spermwas stained red.

The observed fluorescence images of ethanol-
permeabilized spermatozoa, stained with FITC–PNA/PI,
were classified into three patternsd(1) intact acrosome:
spermatozoa displaying intensively bright fluorescence of
the acrosomal cap; (2) abnormal acrosome: spermatozoa
displaying disrupted, patch-like, fluorescence of the acro-
somal cap or swollen acrosomal cap; and (3) absent acro-
some: spermatozoa displaying a fluorescent band at the
equatorial segment or displaying no fluorescence.

Mean � SD of sperm characteristics were analyzed by
Student’s t-test (P < 0.05).

2.5. Mass spectrometry analysis

To increase the homogeneity of the sample and over-
come the inter- and intrasample variability, epididymal
spermatozoa of different cats collected from caput (A),
corpus (B), or cauda (C) and bound to the magnetic beads
were pooled.

The ubiquitin-conjugate proteins were analyzed by
liquid chromatography-tandem mass spectrometry to
determine the identities and the ubiquitination sites after
tryptic digestion, and missed tryptic cleavage at the
modified site. In particular, the spermatozoa bound to the
magnetic beads were collected and lysed in a buffer con-
taining 7 M urea, 2 M thiourea, 50 mM ammonium bicar-
bonate and the complete protease inhibitor cocktail (Roche,
Basel, Switzerland).

On sonication, the lysates were clarified by centrifuga-
tion at 15,000 rpm for 15 minutes, and the total protein
concentration was determined using the Bradford method
[19]. Protein samples were reduced with 45 mM dithio-
threitol, alkylated with 100 mM iodoacetamide, and sub-
sequently digested with sequencing grademodified trypsin
overnight at 37 �C. Digestion was stopped by adding 1 mL of
98% formic acid. The proteolytic digests were desalted on a
ZipTipC18 (Millipore, Billerica, MA, USA) beforeMS analysis.
Each sample was separated by liquid chromatography
using an UltiMate 3000 HPLC (Dionex, now Thermo Fisher
Scientific, Waltham, MA, USA). Buffer A was 0.1% vol/vol
formic acid, 2% acetonitrile; buffer B was 0.1% formic acid in
acetonitrile. Chromatography was performed using a Pep-
Map C18 column (15 cm, 180 lm ID, 3 lm resin, Dionex). The
gradient was as follows: 5% buffer B (10 minutes), 5% to 40%
B (60 minutes), 40% to 50% B (10 minutes), 95% B (5 mi-
nutes) at a flow rate of 0.3 mL/min.

Mass spectrometry was performed using an LTQ-
Orbitrap Velos (Thermo Fisher Scientific) equipped with a
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nanospray source (Proxeon Biosystems, now Thermo Fisher
Scientific). Eluted peptides were directly electrosprayed
into the mass spectrometer through a standard noncoated
silica tip (New Objective, Woburn, MA, USA) using a spray
voltage of 2.8 kV. The LTQ-Orbitrap was operated in posi-
tive mode in data-dependent acquisition mode to auto-
matically alternate between a full scan (m/z 350–2000) in
the Orbitrap and subsequent CID MS/MS in the linear ion
trap of the 20 most intense peaks from full scan. Three
replicate analysis of each sample were performed.

Data acquisition was controlled by Xcalibur 2.0 and
Tune 2.4 software (Thermo Fisher Scientific).
Fig. 1. One- and two-dimensional electrophoresis of whole cat epididymal
semen and Western blot analysis by anti-ubiquitin antibodies. (A) One-
dimensional electrophoresis: proteins were separated on two homemade
11% polyacrylamide gels. One was blotted on a PVDF membrane to detect
ubiquitinated proteins by anti-ubiquitin antibodies, whereas the other was
stained by silver to detect all the proteins present in the sample. (B, C)
Semen proteins were separated by two-dimensional electrophoresis and
either stained by silver (B) or blotted and immunodecorated with anti-
ubiquitin antibodies (C). PVDF, polyvinylidene difluoride; STD, molecular
weight standard.
2.6. Protein identification and computational analysis

For identification of ubiquitinated proteins, raw data
files were processed and analyzed using MaxQuant 1.3.0.5.
[25]. Parent ion and MS2 spectra were searched against the
human and Felis catus Uniprot/SwissProt database (release:
04/10/2013) using the Andromeda search engine. Search
parameters allowed for two missed tryptic cleavages, a
mass tolerance of 6 ppm in MS mode, and 20 ppm in CID
MS/MS mode, a static modification carbamidomethylation
(Cys), and up to three total dynamic modifications [(N-
acetylation (protein), oxidization (Met), and ubiquitination
(Lys))]. To achieve highly reliable identifications, the
following criteria were used: maximal protein, peptide and
site false discovery rate (FDR) of 0.01, and minimal peptide
length of 6. The default setting of the maximal peptide
posterior error probability of 1 was used. The presence of
ubiquitinated amino acids on each peptide was confirmed
by visual inspection of the corresponding MS/MS spectrum
by Perseus, discharging all the spectra presenting a modi-
fication at the C-terminal lysine.

3. Results and discussion

The presence of ubiquitinated proteins in cat epididymal
semen was evaluated in experiment 1 by anti-ubiquitin
antibodies upon separation on 1D electrophoresis of the
whole cell extract (Fig. 1A). The pattern of ubiquitination is
very similar to the one described by Thompson et al. [26] in
bovine seminal plasma for the proteins at higher molecular
weight (more than 50 kDa) (see Fig. 5C in Thompson et al.
[26] for comparison). Themajor differences can be observed
at lower molecular weight (37–20 kDa) where few bands,
clearly detectable in cat semen, are absent in the bovine
sample.

The semenwas analyzed by 2D electrophoresis to better
separate all the proteins and evaluate the ubiquitination
pattern. Figure 1B shows all the proteins detected by silver
staining, whereas Figure 1C reports the corresponding
Western blot analysis using anti-ubiquitin antibodies,
which clearly shows that the proteins ubiquitinated are
mainly present in the 70- to 40-kDa region, except for few
spots at lower molecular weight. This observation was
further confirmed in the proteomic analysis described in
the section below.



Table 1
Sperm parameters in cat epididymal semen untreated or treated with magnetic ubiquitin beads.

Samples Sperm concentration
(sp/mL) � 106

Sperm count
(sp/sample) � 106

Normal
morphology (%)

Motility (%) Acrosome
integrity (%)

Untreated control 148.9 � 102.8a 12.0 � 7.5a 44.5 � 16.4 51.0 � 16.0 76.5 � 15.1
Treated with beads 47.1 � 31.6b 6.7 � 5.2b 52.9 � 11.9 49.0 � 21.7 81.3 � 13.0

a,b Different superscripts within columns indicate significant differences (P < 0.01).
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After treatment of epididymal samples with magnetic
ubiquitin beads (Table 1), a significant decrease of sperm
concentration and spermcountwas observed in the fraction
of spermatozoa unbound to the beads. This finding
demonstrated the efficacy of beads in binding ubiquitinated
spermatozoa. However, the unbound fraction did not pre-
sent higher sperm motility, better morphology, or increase
in acrosomal integrity in comparison with the whole sam-
ple, suggesting that the magnetic beads did not select a
population of cat epididymal spermatozoa with better
semenquality. In accordancewith ourfinding,Mota et al. [6]
using immunofluorescence observed that besides abnormal
spermatozoa, cells that were apparently normal also tested
positive in this assay. These data reveal a lack of correlation
between ubiquitinated and abnormal spermatozoa.

The analysis by a proteomic approach of the ubiquiti-
nated spermatozoa bound to the beads contributed to
extensively characterize all the proteins ubiquitinated in
the three regions of the epididymis. The so-called shot-gun
proteomic approach, which relies on tandem mass spec-
troscopy for protein identification and characterization of
Table 2
Ubiquitinated proteins found in the three epididymal regions: caput (A), corpus

Protein ID Protein names

P231412 Liver carboxylesterase 1
H0Y8G3
H0YL13 Uncharacterized protein
O60290 Zinc finger protein 862
Q8WWQ0 PH-interacting protein
Q9UQ13 Leucine-rich repeat protein SHOC-2
Q96DR7 Rho guanine nucleotide exchange factor 26
Q8NF91 Nesprin-1
B3KSY9 E3 SUMO-protein ligase PIAS1
Q68DE3 Basic helix-loop-helix domain-containing protein KIAA2018
O95069 Potassium channel subfamily K member 2
O95989 Diphosphoinositol polyphosphate phosphohydrolase 1
A2A2Y4 FERM domain-containing protein 3
E7EUH9 Condensin-2 complex subunit G2
G3V5U4 Paired box protein Pax-2
Q8WXH0-2 Nesprin-2
H7C3W3 AF4/FMR2 family member 3
Q7Z7G2 Complexin-4
O96028 Probable histone-lysine N-methyltransferase NSD2
P45983 Mitogen-activated protein kinase 8
P51813 Cytoplasmic tyrosine-protein kinase BMX
Q8N8A8 Protein FAM169B
Q8N9L7 Putative uncharacterized protein FLJ36925
Q92908 Transcription factor GATA-6
O95257 Inducible protein GADD45 gamma
Q7Z4L5 Tetratricopeptide repeat protein 21B
Q16585 Beta-sarcoglycan
Q5THR3-4 EF-hand calcium-binding domain-containing protein 6
Q68DH5 LMBR1 domain-containing protein 2
Q92620 Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP1

The X in the PSPLUS column indicates proteins previously described as ubiquitinat
www.phosphosite.org) [27].
posttranslational modifications, has been applied here to
characterize ubiquitination of the proteins in the cat sper-
matozoa collected from different epididymal regions.

Each fraction (caput, corpus, and cauda) enriched
in ubiquitinated proteins was analyzed by liquid
chromatography-tandem mass spectrometry to determine
the identities and the ubiquitination sites of the proteins
present in the samples. The proteomic analysis, carried out
combining the results of three replicates, allowed us to
identify 766, 708, and 646 proteins in caput (A), corpus (B),
and cauda (C), respectively, (see Table S1, S2, and S3 in
Supplementary Materials) among which 212 proteins are
common in the three epididymal tracts (A, B, and C) and are
reported in Table S4 (Supplementary Materials). No one of
the 212 commonproteins is ubiquitinated. Focusing only on
the ubiquitinated proteins expressed in each epididymal
tract, it was possible to identify 7 proteins in A, 17 in B, and
6 in C: a total of 30 proteins reported in Table 2. For each of
them, one representative MS/MS spectrum of an ubiquiti-
nated peptide is reported as Supplementary Materials in
Figures S1–S30. As indicated in Table 2, ubiquitination of
(B), and cauda (C).

Gene names Localization PhosphoSite PLUS

CES1; CES1 A X
IL7R A
UNC13 C A
ZNF862 A
PHIP A X
SHOC2 A X
ARHGEF26 A
SYNE1; SYNE1; SYNE1 B X
PIAS1 B
KIAA2018; KIAA2018 B X
KCNK2 B
NUDT3 B
FRMD3 B
NCAPG2 B X
PAX2 B
SYNE2; SYNE2 B X
AFF3 B
CPLX4 B
WHSC1 B X
MAPK8; MAPK8 B X
BMX B
FAM169 B B

B
GATA6 B
GADD45 G; GADD45 G C
TTC21 B; TTC21 B C X
SGCB C X

C
LMBRD2 C X

6 DHX38 C

ed in human ormouse according to the PhosphoSite Plus Data Base (http://

http://www.phosphosite.org
http://www.phosphosite.org
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many of these proteins have been previously observed in
human or mouse, according to the PhosphoSite Plus Data
Base (http://www.phosphosite.org) [27].

The distribution of the 30 ubiquitinated proteins in
terms of molecular function (GOMF), cellular components
(GOCC), and biological processes (GOBP) are reported in the
corresponding histograms of Figure 2. Among the ubiq-
uitinated proteins, there are cytoskeletal proteins or pro-
teins interacting with the cytoskeleton that are key players
in the cytoskeleton organization, in cellular differentiation,
and in the morphogenesis processes. Overall, more than
Fig. 2. Histograms of the distribution of the ubiquitinated proteins in the cat
epididymal spermatozoa. The epididymal sample was enriched in ubiquiti-
nated proteins by using magnetic beads, and bound spermatozoa were
analyzed by a shot-gun proteomics approach. The distribution of the ubiq-
uitinated proteins in terms of molecular function (GOMF), cellular compo-
nents (GOCC), and biological processes (GOBP) are reported in (A, B, and C),
respectively.
30% of the ubiquitinated proteins are involved in the
anatomical structure development in keeping with the
possible role of this modification as a way to remove
defective spermatozoa in the epididymal tract. Most are
proteins important for the regulation of gene expression or
are components of signal transduction pathways, suggest-
ing that ubiquitin, by playing a major role in the modula-
tion of their homeostasis, may affect the expression level
and the activation of other proteins present in the epidid-
ymal environment.

In this environment, substantial maturational changes
of spermatozoa occur. During epididymal transit, sperma-
tozoa acquire the capability to be motile, the cytoplasmic
droplet migrates from a proximal to a distal position, the
composition of the plasma membrane changes, acrosomal
modifications occur, and sperm fertilizing ability develops
[28]. The presence of different ubiquitinated proteins in the
three regions of the epididymis suggests a role of ubiquitin
in sperm maturation, probably due to a protein turnover
typical of this process.

3.1. Conclusions

The present data demonstrated the presence of ubiquiti-
nated proteins in cat epididymal semen. However, a corre-
lationbetweenabnormal andubiquitinatedspermatozoahas
not been found, and ubiquitin cannot be considered as a
biomarker of quality of epididymal feline spermatozoa.

To author’s knowledge, this is the first identification of
all the ubiquitinated proteins of cat spermatozoa collected
from different epididymal regions. The proteomic pattern
allows a further characterization of cat epididymal semen
and represents a contribute to a better understanding of
the ubiquitin role in feline sperm maturation.
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a b s t r a c t

The aims of this study were to evaluate: (1) the effect of cryopreservation on DNA fragmen-

tation of canine epididymal spermatozoa, and (2) the potential protective effect of melatonin

on post-thaw sperm quality (motility, morphology, acrosomal and DNA integrity). Epididy-

mal spermatozoa were collected after orchiectomy of ten dogs. Sperm samples were frozen

in the presence or absence of melatonin (1 mM). DNA fragmentation index (percentage of

spermatozoa with fragmented DNA) was similar in fresh samples (3.3 � 3.6) and samples

frozen with (4.2 � 3.8) or without (3.6 � 3.7) melatonin. Sperm motility was significantly

(p < 0.0001) higher in fresh compared to frozen samples. The presence of melatonin in the

freezing extender did not affect the sperm motility. Proportions of spermatozoa with normal

morphology were similar in fresh and frozen samples, irrespective of the presence of

melatonin in the extender. Acrosome integrity was significantly decreased (p < 0.01) by

cryopreservation, and melatonin did not exert any beneficial effects. In conclusion, DNA

fragmentation of canine epididymal spermatozoa was not affected by the freezing proce-

dure, and the presence of melatonin did not preserve motility and acrosome integrity which

were adversely affected by cryopreservation. The evaluation of DNA status of thawed

gametes is particularly relevant for epididymal spermatozoa since these spermatozoa are

usually stored and used in assisted reproductive techniques.
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1. Introduction

The cryopreservation of epididymal spermatozoa is aimed at
maintaining long-term availability of male germplasm for
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the birth of offspring with a low conception rate [1–3]. The
effects of cryopreservation on motility, as well as membrane
and acrosomal integrity of canine epididymal spermatozoa
have been previously investigated [4–6], but no information is
available on its potential effect on DNA integrity.

Sperm DNA integrity has been evaluated in fresh ejaculat-
ed [7–10] and epididymal canine semen [11]. Few reports have
compared fresh and post-thaw chromatin integrity of canine
ejaculated spermatozoa, obtaining variable results [12–16],
but the post-thaw DNA stability of canine epididymal
spermatozoa has not been investigated. The integrity of the
paternal DNA is of crucial importance for embryo develop-
ment [17], and a relationship between DNA damage and
infertility has been demonstrated in humans. Spermatozoa
with severe DNA damage remain functionally intact, with
normal fertilizing ability, but a high index of DNA fragmenta-
tion results in a significant decrease in pregnancy rates
[18,19]. Nevertheless, there is no agreement neither on
whether cryopreservation induces DNA fragmentation, nor
on the mechanism which actually induces this damage
[20,21]. It has been hypothesized that the increase of reactive
oxygen species (ROS) during cryopreservation and the
decrease of antioxidant activity of the spermatozoa cause
the peroxidative damage to the sperm plasma membrane and
affect DNA integrity [13,14,20].

The role of antioxidant supplementation in protecting
the sperm DNA from oxidative damage is still under
investigation. Among antioxidants, it has been shown that
melatonin (1–2 mM), has an effective action in protecting
ram and bull spermatozoa from the freezing injuries as
evidenced by post-thaw DNA integrity, viability, motility,
morphology and fertilizing ability [22,23]. The aims of this
study were to evaluate the effect of cryopreservation on
DNA fragmentation of canine epididymal spermatozoa and
the potential protective effect of melatonin on post-thaw
sperm quality (motility, morphology, acrosomal and DNA
integrity).

2. Materials and methods

2.1. Animals and epididymal spermatozoa retrieval

All chemicals were purchased from the Sigma Chemical
Company (St. Louis, MO, USA) unless otherwise stated. Ten
healthy and pubertal, privately owned stud dogs, aged
between 1 and 10 years (6–30 kg body weight) presented to
the Department for routine orchiectomy were included in this
study. Canine gonads were transported to the laboratory
within 10 min after surgical removal. Each epididymis was
dissected from the testis and pampiniform plexus using a
scalpel blade. The small vessels were removed with scissors to
reduce blood contamination, and each cauda epididymis was
isolated and placed in a Petri dish containing 4 mL of Ham's
F-10 medium supplemented with 2 mM glutamine, 100 IU/mL
Na-benzyl penicillin, 0.1 mg/mL streptomycin sulphate, and
5% fetal bovine serum (mOsm 285). The caudae were minced
with a scalpel blade, and after 30 min of incubation (37 8C), the
suspension was collected from each dish and divided into
three aliquots.
2.2. Semen freezing procedure

One aliquot was used as fresh control, and the others were
frozen with or without melatonin (1 mM) in a freezing
extender. After centrifugation (700 � g for 5 min) and removal
of the supernatant, the second aliquot was diluted
(200 � 106 sperm/mL) with the following freezing extender:
TRIS buffer with 5% glycerol, 1% Equex and 20% egg yolk, and
the third aliquot was diluted with the extender supplemented
with melatonin. Both aliquots were frozen according to the
Uppsala system [24]. The 0.5 mL straws placed in a styrofoam
box were submerged in liquid nitrogen vapors (10 min, 4.5 cm
above liquid nitrogen) and subsequently immersed into liquid
nitrogen. The straws were thawed in a water bath at 37 8C for
30 s.

2.3. Spermatozoa evaluation

Sperm concentration in fresh semen was determined with a
Bürker chamber. Sperm motility, morphology and acrosomal
integrity were evaluated in fresh and thawed samples. Motility
was subjectively assessed under a light microscope with a
heated stage (38 8C). The spermatozoa were considered to be
motile only if they exhibited progressive motility of a score of
at least 3 or 4 on a scale of 0–4 (0, absent; 1, weak or sluggish; 2,
definite; 3, good; 4, vigorous) [25]. Morphology of spermatozoa
was assessed following smear staining with Bengal Rose and
Victoria Blue B. At least 100 spermatozoa were evaluated under
light microscopy with oil immersion objective (1000� magni-
fication). Normal spermatozoa and defect sites (head, neck/
midpiece, tail) in abnormal spermatozoa were recorded.
Abnormal sperm heads included those that were pear-shaped,
narrow at the base or detached. Alterations of the neck/
midpiece included bent neck and proximal or distal cyto-
plasmic droplet, and abnormal tail included single bent, coiled
or broken tail.

The acrosome integrity was evaluated by staining sperma-
tozoa with Peanut agglutinin (PNA) conjugated with fluores-
cein isothiocyanate (FITC) and propidium iodide (PI).
Acrosome status was evaluated under fluorescent microscope
(Axiovert 100, Zeiss, Oberkochen, Germany) in at least 100
spermatozoa per group by FITC-PNA/PI staining according to
the procedure described for stallion spermatozoa [26]. The
observed fluorescence images of the stained spermatozoa
were classified as: (1) intact acrosome – spermatozoa display-
ing intensively bright fluorescence of the acrosomal cap
indicated an intact outer acrosomal membrane; (2) vesiculated
acrosome – spermatozoa displaying disrupted, patch-like,
fluorescence of the acrosomal cap indicated the process of
vesiculation and breakdown of the acrosomal membrane; and
(3) acrosome residues or loss – spermatozoa displaying a
fluorescent band at the equatorial segment indicated residues
of the outer acrosomal membrane or displaying no fluores-
cence indicated a complete loss of the outer acrosomal
membrane [26].

2.4. Assessment of sperm DNA fragmentation

The sperm DNA fragmentation was assessed using the Sperm-
Halomax® commercial kit specifically developed for canine



Table 1 – DNA fragmentation index and motility of canine
epididymal spermatozoa (mean W SD), fresh and frozen
with or without melatonin (1 mM).

Fresh
spermatozoa

Frozen
spermatozoa

without
melatonin

Frozen
spermatozoa

with
melatonin

DNA fragmentation
index (%)

3.3 � 3.6 3.6 � 3.7 4.2 � 3.8

Motility (%) 74.5 � 9.6a 37.5 � 15.3b 36 � 9.7b

Data derived from 10 replicates; different superscripts within a row
indicate significant differences (p < 0.0001).
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semen (Halotech DNA SL, Madrid, Spain) and based on the
sperm chromatin dispersion (SCD) test. Values of sperm DNA
fragmentation were evaluated in fresh and frozen samples at
the concentration of 50 � 106 sperm/mL and processed fol-
lowing the manufacturer's instructions. Briefly, 25 mL of
diluted samples were added to a vial with 50 mL of low melting
agarose, and mixed. Pre-treated slides were placed onto a
metallic plate which was previously cooled at 4 8C. A drop of
the cell suspension (2 mL) was spread onto the treated face of
the cooled slide, covered with a glass coverslip and maintained
at 4 8C for 5 min. The coverslip was smoothly removed, and the
layered sample was covered with the lysing solution provided
in the kit. Finally, slides were washed for 5 min, dehydrated in
sequential 70 and 100% ethanol baths and stained for 35 min in
1:1 Wright solution (Merck, Whitehouse Station, NJ, USA) and
phosphate buffer (pH 6.88, Merck). When the slides were
perfectly dried, they were mounted with Eukitt® and observed
under bright-field microscopy (400� magnification). A mini-
mum of 500 spermatozoa was evaluated in each sample. Intact
sperm showed a small and compact halo, intensely colored,
around the spermatozoa head. Spermatozoa with fragmented
DNA presented a widespread and soft halo of chromatin
dispersion. Spermatozoa showing a halo of dispersion were
considered to have high DNA fragmentation index (percentage
of spermatozoa with fragmented DNA over the total number of
sperm counted per sample) [27].

2.5. Statistical analysis

Values are presented as mean � standard deviation (SD).
Arcsine transformation for percentage data was performed
before the use of the one-way analysis of variance (ANOVA),
followed by the post hoc Tukey test. Statistical significance
was set at p < 0.05.

3. Results

Spermatozoa concentration averaged 252.7 � 161.8 � 106

sperm/mL. Cryopreservation did not affect DNA status of
canine epididymal spermatozoa since similar DNA fragmen-
tation indices were demonstrated in fresh sperm and sperm
frozen with or without melatonin. Motility was significantly
higher (p < 0.0001) in fresh compared to frozen spermatozoa.
The presence of melatonin in the freezing extender did not
affect sperm motility (Table 1). Morphological features
of epididymal spermatozoa before and after freezing are
Table 2 – Abnormal morphological features (%; mean W SD) of 

without melatonin (1 mM).

Sperm
morphology

Fresh
spermatozoa

Normal spermatozoa 47.9 � 24.9 

Abnormal heads 13.5 � 20.4 

Abnormal necks/midpieces 19.7 � 16 

Abnormal tails 18.8 � 11.3 

Data derived from 10 replicates; no significant differences were observed
summarized in Table 2. Proportions of spermatozoa with
normal morphology as well as with abnormal heads, necks/
midpieces or tails were similar in fresh and frozen samples
irrespective of the presence of melatonin in the extender.
Acrosome integrity was significantly affected (p < 0.01) by
cryopreservation (Table 3). Proportions of spermatozoa
showing vesiculated acrosome or acrosomal residues or loss
were significantly higher in frozen samples compared to
those of fresh samples. Melatonin did not affect the integrity
of acrosome.

4. Discussion

In the current study, the DNA fragmentation index of canine
epididymal spermatozoa was not affected by the freezing
procedure, and the presence of melatonin did not preserve
motility and acrosome integrity which were adversely affected
by cryopreservation. Because the sperm morphology and DNA
integrity were not compromised by the freezing procedure in
the examined samples (both with or without melatonin), the
potential protective effect of melatonin could not be proved.

The impact of cryopreservation on sperm DNA integrity is
still a controversial matter in mammals including dogs. Some
authors showed that the freezing/thawing procedure did not
produce significant adverse effects on chromatin status in
canine ejaculated spermatozoa [12,15,16]. In contrast, Kim
et al. [14] found a higher DNA fragmentation in thawed
compared to fresh spermatozoa. In the present study, DNA
fragmentation was examined with the use of a commercial kit
Halomax® based on the sperm chromatin dispersion (SCD) test
– previously employed for ejaculated canine semen [9,16],
whereas the cited authors used the sperm chromatin structure
canine epididymal spermatozoa, fresh or frozen with and

Spermatozoa
frozen without

melatonin

Spermatozoa
frozen with
melatonin

49.9 � 17.3 52.7 � 12.9
11.8 � 25.0 11.3 � 20.7
8.2 � 8.8 10.3 � 6.9

30.2 � 11.7 25.7 � 10.0

.



Table 3 – Different acrosomal patterns (mean W SD) of canine epididymal spermatozoa, fresh and frozen with or without
melatonin (1 mM).

Acrosome pattern Fresh
spermatozoa

Spermatozoa
frozen without

melatonin

Spermatozoa
frozen with
melatonin

Intact (%) 66.6 � 25.5a 37.2 � 11.6b 36.3 � 15.0b

Vesiculated (%) 29.3 � 23.7a 52.1 � 12.1b 46.7 � 16.6b

Residues/loss (%) 4.2 � 5.5a 10.7 � 3.5b 17.0 � 7.5b

Data derived from 10 replicates, different superscripts (ab) within row indicate significant differences (p < 0.01).
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assay (SCSA) and acridine orange assay. The SCD test was
reported to be simple, highly reproducible and inexpensive
technique, and the SCD results correlated with the SCSA
results [28]. In the current paper, the DNA fragmentation
indices were similar in fresh and frozen canine epididymal
spermatozoa, which confirms the resilience of canine ejacu-
lated sperm DNA to cold stress [12,15,16]. A progressive
deterioration of DNA has been observed after exposure of fresh
or thawed spermatozoa to different stressors (e.g., incubation
time and temperature, toxicants, ROS) [21,29], indicating that
thefreezing/thawing procedure facilitates the destabilization
of the chromatin structure of spermatozoa [21]. As DNA
fragmentation appears to be a dynamic process that depends
on how quickly the iatrogenic DNA damage occurs, further
investigations on canine epididymal sperm DNA damage over
incubation time would be advisable.

The factors that determine sperm DNA status during
cryopreservation are not known and various hypotheses have
been suggested; this characteristic seems to be species-specific
[30]. In a comparative study performed on eleven different
mammalian species, a correlation was found between the
presence of protamines 1 (P1) and 2 (P2) in the sperm head and
the DNA status after thawing. The spermatozoa of species
lacking P2 resisted fragmentation during the freezing/thawing
procedure more effectively than species that contained both
protamines. The dog was not included in this study, but the
lack of P2 in canine spermatozoa [31] might explain the
resilience of its DNA to the freezing/thawing procedure.

Another factor that may preserve DNA stability during the
freezing/thawing procedure is the presence of seminal plasma
in the sample. The post-thaw DNA integrity was improved
when human spermatozoa were frozen with seminal plasma
[20]. In dogs, the removal of plasma from the second fraction of
the ejaculate before cryopreservation is not recommended,
because the samples frozen with prostatic fluid showed higher
DNA stability [13]. The beneficial effect of seminal plasma on
DNA may be related to the presence of antioxidants in the
plasma [13] since DNA fragmentation in cryopreserved
spermatozoa may be caused by oxidative damage resulting
from the imbalance between ROS and antioxidants [13,14,20].
Epididymal semen, which does not benefit from the antioxi-
dant effect of seminal plasma, might be more vulnerable to the
oxidative stress occurring during cryopreservation. Hence, in
the present study, melatonin supplementation was used in
order to compensate for the lack of antioxidants. However, due
to the lack of cryopreservation impact on DNA fragmentation,
the potentially protective effects of melatonin on sperm DNA
could not be shown. Sperm morphology was also not affected
by cryopreservation. Kim et al. [14] found an increased DNA
fragmentation index and a higher proportion of head
abnormalities in thawed compared to fresh spermatozoa. As
a spermatozoon head consists almost entirely of DNA, it would
have been interesting if the cited study had evaluated the
correlation between head anomalies and DNA fragmentation,
as demonstrated in fresh ejaculated canine semen [7,8,10].

A potential protective effect of melatonin was also
examined in the context of other sperm parameters. Sperm
motility and acrosomal integrity were significantly affected by
cryopreservation, but no effect of melatonin was demonstrat-
ed. In ram and bull ejaculated semen, the presence of 1 or
2 mM melatonin in the freezing extender preserved post-thaw
sperm DNA integrity and motility [22,23]. In red deer
epididymal spermatozoa, melatonin gave only limited protec-
tion to sperm motility and acrosomal integrity after thawing
[32]. It remains to be elucidated whether the lack of melatonin
antioxidant effect in canine cryopreserved semen was due to
an inappropriate melatonin concentration or to iatrogenic
non-oxidative damage.

In conclusion, DNA fragmentation of canine epididymal
spermatozoa was not affected by the freezing procedure, and
the presence of melatonin did not preserve motility and
acrosome integrity which were adversely affected by cryo-
preservation. The evaluation of DNA status of thawed gametes
is particularly relevant for epididymal spermatozoa since
these spermatozoa are usually stored and used in assisted
reproductive techniques.
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Sperm DNA fragmentation is an important parameter to assess sperm quality and can be a
putative fertility predictor. Because the sperm head consists almost entirely of DNA, subtle
differences in sperm head morphometry might be related to DNA status. Several tech-
niques are available to analyze sperm DNA fragmentation, but they are labor-intensive and
require expensive instrumentations. Recently, a kit (Sperm-Halomax) based on the sperm
chromatin dispersion test and developed for spermatozoa of different species, but not for
cat spermatozoa, became commercially available. The first aim of the present study was to
verify the suitability of Sperm-Halomax assay, specifically developed for canine semen, for
the evaluation of DNA fragmentation of epididymal cat spermatozoa. For this purpose,
DNA fragmentation indexes (DFIs) obtained with Sperm-Halomax and terminal deoxy-
nucleotidyl transferase–mediated nick-end labeling (TUNEL) were compared. The second
aim was to investigate whether a correlation between DNA status, sperm head
morphology, and morphometry assessed by computer-assisted semen analysis exists in cat
epididymal spermatozoa. No differences were observed in DFIs obtained with Sperm-
Halomax and TUNEL. This result indicates that Sperm-Halomax assay provides a reliable
evaluation of DNA fragmentation of epididymal feline spermatozoa. The DFI seems to be
independent from all the measured variables of sperm head morphology and morphom-
etry. Thus, the evaluation of the DNA status of spermatozoa could effectively contribute to
the completion of the standard analysis of fresh or frozen semen used in assisted repro-
ductive technologies.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The evaluation of DNA status is not included in the
standard semen analysis, but the frequency of spermatozoa
to design the study,
d statistical analysis.
ALC. All authors have
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oni).

. All rights reserved.
4

containing fragmented DNA may be an important param-
eter of semen quality and a useful indexof fertility potential.

Spermatozoa with severe DNA damage remain func-
tionally intact, with normal fertilizing ability, but a high
incidence of DNA fragmentation results in a significant
decrease in pregnancy rates [1]. The exact mechanism of
sperm DNA damage has not yet been clarified, but envi-
ronmental stresses, gene mutations, chromosomal abnor-
malities, or oxidative damages might be involved [2].

Several methods have been developed to assess sperm
DNA fragmentation such as in situ nick translation,
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terminal deoxynucleotidyl transferase–mediated nick-end
labeling (TUNEL), comet assay, acridine orange test, and
the sperm chromatin structure assay [3,4]. However, these
techniques are labor-intensive and require expensive
instrumentations.

Recently, a kit (Sperm-Halomax) based on the sperm
chromatin dispersion (SCD) test [5] and specifically
developed for boar [6], bull [7], stallion [8], and dog
semen [9,10], but not for cat semen, became commercially
available. Spermatozoa are immersed in an agarose matrix
on a slide and briefly incubated in a lysing solution to
remove membranes and proteins. DNA fragmentation
produces large halos, whereas sperm with low levels of
fragmentation show circumscribed halos. The evaluation
can be performed by fluorescence or light microscopy.
This kit would allow the routine assessment of sperm
DNA fragmentation in laboratories dealing with andro-
logical examinations and assisted reproductive technolo-
gies (ARTs).

Among different methods for the evaluation of sperm
DNA fragmentation, TUNEL presents a good correlation
with the SCD test [4,11] and has been previously used for
cat semen [12].

In cats, significant advances in ART have been achieved,
thanks to the embryo production by intracytoplasmic
sperm injection (ICSI) of mature oocytes [13]. Sperm se-
lection for ICSI is based on motility and morphology pat-
terns, and the evaluation of the DNA status is not generally
performed [14]. Because the sperm head consists almost
entirely of DNA, subtle differences in sperm head
morphometry might be related to DNA content and orga-
nization, as demonstrated in dogs [15] and humans [16]. To
the authors’ knowledge, similar studies have not been
performed in cats.

The first aim of the present study was to verify the
suitability of Sperm-Halomax assay, specifically developed
for canine semen, for the evaluation of DNA status of
epididymal cat spermatozoa. For this purpose, values of
DNA fragmentation obtained with Sperm-Halomax and
TUNEL were compared. The second aim was to investigate
whether a correlation between DNA status, sperm head
morphology, and morphometry assessed by computer-
assisted semen analysis (CASA) exists in cat epididymal
spermatozoa.

These data could contribute to achieve a better diag-
nosis in case of infertility due to male factors, to obtain a
better evaluation of spermatozoa used in ARTs, and to
refine the epididymal sperm selection criteria for ICSI.

The use of epididymal cat spermatozoa is currently a
subject of interest with the purpose of establishing an
efficient gene banking model for threatened and endan-
gered wild felids and contributing to the preservation of
genetic material fromvaluable males that die unexpectedly
or undergo orchiectomy for medical reasons.

2. Materials and methods

2.1. Semen collection

Epididymal spermatozoa were collected from 28 tom-
cats subjected to routine castration at the Department of
Health, Animal Science and Food Safety, University of
Milan, Italy. Informed owner consent was obtained.

Epididymides and vasa deferentia were dissected and
squeezed to collect epididymal fluid in a warmed (37 �C)
PBS without calcium and magnesium.

2.2. Experimental design

2.2.1. Experiment 1: Sperm-Halomax assay versus TUNEL test
Epididymal fluid collected from 10 cats was divided into

two aliquots for the evaluation of DNA status by Sperm-
Halomax for canine spermatozoa (Halotech DNA SL,
Madrid, Spain) and TUNEL test (Calbiochem FragEL DNA
fragmentation detection kit, fluorescent–terminal deoxy-
nucleotidyl transferase (TdT) enzyme; EMD Millipore Bill-
erica, MA, USA).

2.2.2. Experiment 2: Correlation between sperm DNA status,
head morphology, and morphometry

Epididymal fluid collected from the remaining 18 cats
was used for the evaluation of DNA status by Sperm-
Halomax, for the conventional sperm head morphology
evaluation, and for the sperm head morphometry by CASA.

2.3. Sperm-Halomax assay

Sperm DNA fragmentation indexes (DFIs) were evalu-
ated in semen samples diluted in PBS at the concentration
of 5 � 106 to 10 � 106 sperm/mL and processed following
the manufacturer’s instructions. Briefly, 25 mL of diluted
samples were added to a vial with 50 mL of low melting
agarose and mixed. Pretreated slides were placed onto a
metallic plate that was previously cooled at 4 �C. A drop of
the cell suspension (5 mL) was spread onto the treated face
of the cooled slide, covered with a glass cover slip, and
maintained at 4 �C for 5 minutes. The cover slip was
smoothly removed, and the layered sample was covered
with the lysing solution provided in the kit for 5 minutes.
Finally, the slides were washed for 5 minutes with distilled
water, dehydrated in sequential 70% and 100% ethanol
baths, and stained for 35 minutes in 1:1 Wright solution
(Merck, Whitehouse Station, NJ, USA) and phosphate buffer
(pH 6.88, Merck). When the slides were perfectly dried,
theyweremountedwith Eukitt and observed under bright-
field microscopy with �40 magnification lens. A minimum
of 500 spermatozoa was evaluated in each sample. Intact
sperm showed a small and compact halo, intensely colored,
around the spermatozoa head. Spermatozoa with frag-
mented DNA presented a widespread and soft halo of
chromatin dispersion. Spermatozoa showing a halo of
dispersionwere considered to have high DFI (percentage of
spermatozoa with fragmented DNA over the total number
of spermatozoa counted per sample) [17].

2.4. TUNEL test

Sperm DFI was evaluated using a detection kit (Calbio-
chem FragEL DNA fragmentation detection kit, fluorescent–
TdT enzyme; EMD Millipore Billerica). The principle of
Fluorescein-FragEL is that TdT catalyzes the addition of
fluorescein-labeled and -unlabeled deoxynucleotides to the



Fig. 1. Spermatozoa processed with Sperm-Halomax kit and stained with
Wright solution. Those with a small halo have normal status of DNA and the
spermatozoon with a large halo contains fragmented DNA. Bar represents
10 mm.
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30-OH ends generated by endonucleases during apoptotic
degeneration.

Sperm samples were smeared on a slide and air-dried.
Then, the smears were fixed in 4% paraformaldehyde in
PBS for 15 minutes at room temperature and washed
twice in Tris-buffered saline (TBS) for 15 minutes. The
slides were then covered with the permeabilization so-
lution (protein kinase 2 diluted 1:100 in Tris solution
10 mM) and incubated for 6 minutes in a moist chamber.
The slides were washed twice in TBS solution and main-
tained in a moist chamber. In the dark, an aliquot of the
equilibration solution (TdT equilibration buffer diluted 1:5
in sterile water (Sigma Chemical Co., St. Louis, MO, USA))
was added to each slide that was incubated for 30 mi-
nutes in a moist chamber at room temperature. After the
removal of the equilibration solution, an aliquot of the
labeling solution (Fluorescein-FragEL TdT labeling reaction
mix diluted 1:20 in TdT enzyme) was added to each slide
that was incubated for 90 minutes in a moist chamber at
37 �C. The slides were washed three times in TBS, and a
drop of an antifade reagent (Gel Mount; BiØmeda Cor-
poration, Foster City, CA, USA) was added. The slides
covered with a cover slip were examined under fluores-
cent microscope (Eclipse E600, Nikon Corporation, Tokyo,
Japan) with �40 magnification lens and oil immersion. A
40,6-diamidino-2-phenylindole filter (330–380 nm) was
used to visualize the total cell population (blue). Using a
fluorescein filter (465–495 nm), a bright green signal
indicated positive staining (DNA-fragmented sperm cells),
whereas dull green or hard to visualize cells signified a
nonreactive cell [18]. At least 500 spermatozoa of each
sample were analyzed randomly to evaluate the per-
centage of TUNEL-positive sperm cells (DFI).

2.5. Conventional sperm head morphology

Undiluted samples were stained with a rapid Giemsa-
Wright stain (Diff-Quick, Merck), and in each sample, a
total of 200 spermatozoa was evaluated under light mi-
croscope (Diaplan Leitz, Wetzlar, Germany) with �100
magnification lens and oil immersion. Abnormal sperm
heads, included those that were pear-shaped, large, small,
or amorphous, were recorded.

2.6. CASA sperm head morphometry

The same slides stained for the conventional
morphology were examined for the evaluation of the
sperm head morphometry using a light microscope
(Olympus BX51, Olympus America Inc., Melville, NY, USA)
with �100 magnification lens and oil immersion equipped
with a video camera (Scion Corporation 1394, Frederick,
MD, USA) interfaced to a computer. The software used for
image acquisition and analysis was Image-Pro Plus 5.1;
Media Cybernetics (Immagini & Computer, Bareggio, Italy).

Each sperm head was measured for different parame-
ters: area (mm2), aspect (ratio between major and minor
axes of the ellipse), perimeter (mm), maximum diameter
(dmax, mm), minimum diameter (dmax, mm), maximum
radius (radmax, mm), minimum radius (radmin, mm), radius
ratio, and roundness [19].
2.7. Statistical analysis

Results of experiment 1 (Sperm-Halomax assay vs.
TUNEL test) have been evaluated by the Bland–Altman plot
technique [20] to assess the agreement between tests,
considering the TUNEL procedure as reference method.

In experiment 2, to establish the reference values for the
morphological sperm variables (area, aspect, perimeter,
dmax, dmin, radmax, radmin, radius ratio, roundness), a
nonparametric approach (2.5–97.5 percentile of the distri-
bution) was followed on 2425 spermatozoa.

Variables not determined on a single spermatozoon (i.e.,
DFI and head anomalies) were submitted to the calculation
of the 95% confidence interval as indicative reference values.

Aiming to evaluate the multivariate relations between
DFI and the morphological variables, a principal compo-
nent analysis (PCA) was applied: data were submitted to
PCA after normalization and the varimax rotation. The
number of retained components was calculated when at
least the 90% of the total variability was explained. More-
over, the Pearson univariate correlation between DFI and
the morphological variables was calculated (P < 0.05).
3. Results

3.1. Experiment 1: Sperm-Halomax assay versus TUNEL test

Epididymal cat spermatozoa processed with an SCD test
as Sperm-Halomax developed for dogs produce similar
patterns than those described in dog spermatozoa [9].
Spermatozoawith unfragmented DNA do not showor show
very small halos of dispersion of DNA loops, whereas those
with DNA fragmentation release peripheral halos from the
central core (Fig. 1).

No differences were observed in DFI values obtained
with Sperm-Halomax and TUNEL (4.34 � 0.93% vs.
4.26 � 0.83%; P ¼ 0.84).

The Bland–Altman test was applied to evaluate the level
of agreement between the TUNEL test and Sperm-
Halomax. The results showed that there was a good
agreement between the considered tests, because all points
lay within the boundaries (Fig. 2).



Fig. 2. Bland–Altman plot for Sperm-Halomax/TUNEL DNA fragmentation
index results agreement. The line boundaries indicate the 95% CI of the
difference between variables. Diff: difference between DFIs obtained by
TUNEL and Halomax. Mean: mean of DFIs obtained by TUNEL and Halomax.

V. Vernocchi et al. / Theriogenology 82 (2014) 982–987 985
3.2. Experiment 2: Correlation between sperm DNA status,
conventional head morphology, and CASA morphometry

The calculated reference values for the morphological
variables of the sperm head were as follows: area 7.34–
15.59 mm2; aspect 1.69–2.86; perimeter 10.44–14.87 mm;
dmax 4.09–6.19 mm; dmin 1.90–2.96 mm; radmax 2.12–
3.20 mm; radmin 0.90–1.44 mm; radius ratio 1.83–3.24;
and roundness 1.11–1.44.

The 95% confidence intervals for DFI and head anoma-
lies evaluated with conventional analysis were 0.037% to
0.044% and 0.034% to 0.047%, respectively.

The results for PCA analysis are reported in Table 1; the
first three components account for the 96.62% of the total
variability. In particular, the morphological variables are
mainly expressed in the first two principal components
(PC) with high correlations. The third component is rep-
resented by the DFI only, accounting for the 7.6% of the total
variability. Being the PC orthogonal vectors, DFI seems to be
independent from the other measured variables. The
multivariate results are confirmed by the calculation of the
Pearson correlation coefficients: none of the r coefficients
resulted significant.
Table 1
Principal component analysis (PCA) loadings for morphological variables
and DNA fragmentation index (DFI) on the first three components.

Attribute PC 1 (51.91%) PC 2 (37.29%) PC 3 (7.63%)

Roundness L0.93238 �0.34192 �0.05891
Radius ratio L0.91686 �0.37916 �0.06608
Aspect L0.90646 �0.39293 �0.09087
Radius maximum

(mm)
L0.88915 0.45212 0.01863

Diameter maximum
(mm)

L0.88565 0.45974 0.00636

Head anomalies (%) L0.83809 �0.14168 0.01752
Perimeter (mm) L0.74541 0.66100 0.03964
Diameter minimum

(mm)
0.23555 0.96457 0.10689

Radius minimum
(mm)

0.26324 0.95855 0.08731

Area (mm2) �0.43677 0.89489 0.07500
DFI (%) �0.17188 �0.41807 0.89131

The loadings represent the correlation with the corresponding PC. Load-
ings with values greater than 0.7 are bold typed. In brackets on the
headers: variability explained by the PC.
4. Discussion

Present data show that Sperm-Halomax assay, specif-
ically developed for canine semen and based on SCD test,
provides a reliable evaluation of DNA fragmentation of
epididymal feline spermatozoa. Most of the differences
between the DFIs obtained with the Sperm-Halomax assay
and TUNEL test were within the 95% confidence interval
limits, suggesting that the level of agreement between the
two methods of analysis is satisfactory.

The conditions for sperm DNA fragmentation may not
be the same in different animals, mainly because protamine
residues, which form an important part of sperm chro-
matin, differ between species [21]. It has been found that
canine and feline spermatozoa are characterized by only
protamine 1 [22,23], and this could be the reason that the
SCD test protocol designed for dogs has resulted equally
efficient in analyzing DFI in cats.

Cat spermatozoa processed with Sperm-Halomax pro-
duce images of similar characteristics to those obtained in
dogs [9,10]. Discrimination of the size of the halos was easy
to establish in cat sperm samples because the size of the
halos of DNA dispersion was large as those obtained in
dogs.

In the present work, DFI of cat epididymal spermatozoa
ranged from 2.4% to 5.7%. These values are in agreement
with those reported in the literature and obtained with
different methods [12,24].

In humans, semen with 30% of spermatozoa with frag-
mented DNA is considered of low or poor quality to be used
in assisted reproduction [25]. In feline sperm samples,
additional data are necessary to establish a solid threshold
value of this parameter.

To the authors’ knowledge, this is the first time that
the relationship between conventional sperm head
morphology, CASA morphometry, and DNA status has been
assessed in cat spermatozoa.

With CASA system, the post-acquisition processing of
digitalized data offers an objective and detailed character-
ization of several sperm morphometric parameters that
cannot be detected by conventional visual evaluation. In
the present study, the analysis of more than 2400 sper-
matozoa representing 18 mature tomcats would also
contribute to the definition of normal values of morpho-
metric measurements that can be used as a background for
further extended studies aimed at better investigating the
phenomenon of teratozoospermia in this species.

Present data indicate that DFI is independent from
sperm head morphology and morphometry. This finding
confirms what has been demonstrated in boar [26], but it is
in contrast with the general assumption that head shape is
mainly related to the status of sperm DNA due to the fact
that most of the sperm head is compacted chromatin.
Significant relationships among sperm morphometry and
the percentage of denatured DNA have been described in
dogs [15,27], bulls [28], brown bears [29], and humans [30].

In feline epididymal spermatozoa, it has been previously
shown that head abnormalities are strongly correlated
with, and could accurately predict, sperm DNA defects
revealed by TUNEL test [12]. However, the conventional
evaluation of sperm head morphology by diff-quick
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staining was only performed, and no information on head
morphometry was reported.

Morphometry provides a more objective evaluation of
the sperm head shape compared with conventional ex-
amination of head morphology, and the results of the
present study show that head shape is not a reliable pre-
dictor of DNA fragmentation in cat spermatozoa. Thus,
different factors other than chromatin compaction might
affect the sperm head shape [26].

In felids, there are large individual variations in semen
quality, and many wild and domestic cats have a low per-
centage of normal spermatozoa [31,32]. However, ter-
atozoospermic cats may be fertile [31], and this further
supports that sperm morphology alone should be inter-
preted with caution.

For this reason, a sperm selection for ICSI, typically
based on motility and morphology attributes, might not
ensure the use of a high-quality spermatozoon. Sperm DNA
integrity is of crucial importance for the embryo develop-
ment and concerns have been raised regarding possible use
of spermatozoa with DNA damage during ICSI [33].
Although a technique for DNA evaluation in viable sperm
cells that can be subsequently used for ICSI is not available,
the percentage of fragmented spermatozoa in the sample
might have a potential role in predicting ART outcome.

4.1. Conclusions

In conclusion, Sperm-Halomax assay, specifically
developed for canine semen and based on SCD test, pro-
vides a reliable evaluation of DNA fragmentation of
epididymal feline spermatozoa. The availability of this
simple technique could be useful to improve the feline
semen evaluation in clinical practice, and it could
contribute to better select semen samples for biotechno-
logical procedures. In fact, DFI is independent from sperm
head morphology and morphometry, and the evaluation of
the DNA status of spermatozoawould be of great interest in
the completion of the standard analysis of fresh or frozen
semen used for ICSI or other ARTs.
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