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Summary
POF1B is a candidate gene for premature ovarian failure (POF); it is mainly expressed in polarised epithelial tissues, but its function in
these tissues and the relationship with the disorder are unknown. Here we show colocalisation of POF1B with markers of both adherens

and tight junctions in human jejunum. The tight junction localisation was maintained by the human POF1B stably expressed in the
MDCK polarised epithelial cell line, whereas it was lost by the POF1B R329Q variant associated with POF. Localisation of apico-basal
polarity markers and ultrastructure of the tight junctions were maintained in cells expressing the mutant. However, tight junction
assembly was altered, cells were dysmorphic and the monolayer organisation was also altered in three-dimensional culture systems.

Moreover, cells expressing the POF1B R329Q variant showed defects in ciliogenesis and cystogenesis as a result of misorientation of
primary cilia and mitotic division. All of these defects were explained by interference of the mutant with the content and organisation of
F-actin at the junctions. A role for POF1B in the regulation of the actin cytoskeleton was further verified by shRNA silencing of the

endogenous protein in human intestinal Caco-2 cells. Taken together, these data indicate that localisation of POF1B to tight junctions
has a key role in the organisation of epithelial monolayers by regulating the actin cytoskeleton.
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Introduction
Premature ovarian failure (POF) or premature menopause affects

2–3% of women and is characterised by primary and secondary

amenorrhea, owing to the cessation of ovarian function before the

age of 40 years, associated with hypoestrogenism and high serum

gonadotropins levels. POF is usually idiopathic or sporadic

(Coulam et al., 1986), but the role of familial factors is suggested

by the frequent finding of familial cases (de Moraes-Ruehsen and

Jones, 1967). On the basis of five kindreds, it has been proposed

that POF may be a mendelian disorder, inherited paternally or

maternally as an autosomal or X-linked dominant trait (Mattison

et al., 1984).

Cytogenetic studies of X chromosome aberrations have

identified a ‘critical region’ for normal ovarian function that is

mainly within the long arm of the X chromosome (Krauss et al.,

1987; Bione et al., 1998; Davis et al., 2000). Four candidate

genes have been found to be interrupted by an X;1 balanced

translocation in this critical region, and POF1B was first

identified in a patient presenting secondary amenorrhea at the

age of 17 years (Riva et al., 1996). POF1B maps to the Xq21

region, and the presence of a homologue on the Y chromosome

has been excluded (Bione et al., 2004). Moreover, it escapes X

chromosome inactivation, which suggests that this region

contains a gene that is essential to ovarian function but might

be mutated in some non-deletion cases and lead to the same

clinical picture of premature ovarian failure. A recent study of

a Lebanese family with POF showing linkage to Xq21

identified a G-to-A transition at nucleotide 1132 in exon 10

of the gene that resulted in an Arg-to-Gln (R329Q) mutation.

The affected family members were homozygous (Lacombe et

al., 2006).

POF1B is an evolutionary novel gene found only in

vertebrates. It has a large coiled-coil region in the C-terminal

half of the protein (aa 332–532) that shows significant homology

to the C-terminal coiled-coil domain of barmotin/7H6 (Rizzolio

et al., 2007), a tight-junction-associated protein, and to the

myosin heavy chain rod domain (from residues 629–870 of the

consensus sequence of the myosin rod domain) (Lacombe et al.,

2006). In vitro assays have shown that POF1B binds to non-

muscle actin filaments, whereas the binding affinity of the

POF1B R329Q variant is greatly diminished (Lacombe et al.,

2006). Interestingly, POF1B is highly expressed in polarised

epithelial tissues characterised by the presence of tight junctions

(TJs) (Rizzolio et al., 2007); these junctions exert a barrier

function by restricting paracellular permeability through the

epithelial layers, a task that mainly relies on the ability to

organise an appropriate actin junctional cytoskeleton. In line with

a role in these junctions, the expression of POF1B during mouse

development is activated in the external layers of the epidermis

just before the formation of the epidermal permeability barrier

(Rizzolio et al., 2007). However, there are no published data

concerning the localisation and potential role of POF1B in tight
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Fig. 1. POF1B R329Q fails to localise

to TJs in fully polarised MDCK cells.

(A) Confocal analysis of

immunofluorescence double staining for

POF1B (red) and the Na+/K+-ATPase

marker of adherens junctions or the

JAM1 marker of tight junctions in

human jejunum (green).

(B) Immunofluorescence analyses of

MDCK cells stably expressing wild-type

GFP–POF1B (WT) or GFP–POF1B

R329Q (Mut). Cells grown at confluency

for .3 days in Transwell filters were

double stained for the indicated markers

and analysed by confocal microscopy.

Vertical (x–z) confocal sections are

stained for the b-catenin marker of AJs

(b-cat) and the Par3 marker of TJs (red).

POF1B localisation is revealed by GFP

fluorescence (green). (A,B) Red and

green pixel intensity along the lateral

surface of the corresponding images is

expressed in fluorescence arbitrary units

(a.u.). AP, apical region; BAS,

basal region.
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junctions, or the effects of the R329Q mutation on epithelial
polarity.

We investigated the localisation of POF1B in human jejunum,
as well as the localisation of the human wild-type and mutant
protein in the MDCK cell model of polarised epithelial cells

stably transfected with the cDNAs encoding POF1B or the
POF1B R329Q variant, respectively. The effects of the
overexpression of these proteins on TJ assembly were

investigated by means of morphological and functional
analyses. Defects during the acquisition of surface polarity
were evaluated in cells grown to confluence on Transwell filter

supports (two-dimensional cultures, 2D) and in organotypical
three-dimensional (3D) cultures using laser confocal and electron
microscopy. The organisation of the actin cytoskeleton was
analysed qualitatively (morphological and biochemical assays)

and quantitatively (FACS analysis). Moreover, the function of
POF1B in the regulation of actin dynamics was verified by
silencing the endogenous protein in the human intestinal Caco-2

cell line.

Results
The R329Q substitution prevents the localisation of POF1B
to tight junctions

The specific spatial and temporal expression in gastrointestinal
tracts and granular layer of the epidermis has led to the
suggestion that POF1B has a role in the acquisition and/or

maintenance of epithelial polarity (Rizzolio et al., 2007). Because
TJs are the most relevant junctions for acquisition and
maintenance of the polarised phenotype, we first investigated

the TJ localisation of endogenous POF1B in human jejunum
(Fig. 1A), using specific antibodies against POF1B (red) and
Na+/K+-ATPase, which is a marker of the lateral surface, or
JAM1, a TJ marker (green). POF1B localises along the entire

lateral junctional domain. Staining was punctuated along the
surface homogenously labelled by the Na+/K+-ATPase antibody.
A yellow colour indicating the colocalisation was not seen in the

merged image because the green staining of the pump was
predominant; however, the red staining of POF1B was clearly
enriched in a more apical region of the lateral surface that is

devoid of Na+ pumps (Fig. 1A, see the lack of overlap between
the green and red peak of fluorescence in the apical position).
The green JAM1 staining was enriched in an apical portion of the
lateral junctional domain and the colocalisation with POF1B was

revealed by the yellow staining and by the overlap of the
fluorescence peaks. These data indicate a localisation of POF1B
along the entire lateral junctional surface, and its enrichment at

the level of the tight junctions in human jejunum.

We then investigated the effects of overexpression of full-
length POF1B (WT) and its R329Q variant (Mut) on the surface

polarisation of epithelial cells. To this end, we stably expressed
the cDNAs fused to the green fluorescent protein (GFP) in the
MDCK polarised epithelial cell line, a cell model that is widely

used to study the role of polarity proteins. At least three
independent WT and Mut clones were selected and the
localisation of the transfectant characterised by confocal and

western blot analysis (Figs 1, 2). Vertical confocal sections (x–z)
showed a similar distribution of POF1B to that observed in
human jejunum, and the localisation of the WT (green staining)

construct extended beyond the staining of the b-catenin (red
staining) marker of adherens junctions (AJs). The localisation of
POF1B at the cytoplasmic face of TJs was further confirmed by

its colocalisation with the Par3 marker of this domain (Fig. 1B,
compare the green peak with the red of b-catenin or with that of
Par 3). By contrast, the localisation of Mut did not extend in the

apical direction beyond that of b-catenin, and the mutant did not
colocalise with Par3 at the TJ level (Fig. 1B, see the almost
complete overlap between the Mut peak with that of b-catenin

but not with Par3).

Apico-basal polarity is maintained in MDCK cells
expressing POF1B R329Q

The effects of POF1B overexpression on polarity markers was
investigated by western blot analysis in MDCK cell lysates.

Approximately a threefold reduced expression of the apical marker
gp135 and the tight junctional marker claudin-2 (Cla2) was
revealed in Mut cells (Fig. 2A,B). However, claudin-2 and gp135,

as well as all the junctional polarity markers tested maintained
their specific surface localisation (Fig. 2C), thus suggesting that
apico-basal polarity is maintained in Mut cells. The reduced

expression of these markers was not due to variability among the
cell lines, because it was observed in three independent clones, and
it was associated with the level of expression of the transfectants,

whereas significant changes in the expression of other markers
were not confirmed (data not shown).

Because claudins influence the charge selectivity and electrical
resistance of junctions, we measured transepithelial electrical
resistance (TER) (Fig. 2D) and paracellular permeability to

FITC-Dextran (not shown). WT cell monolayers grown at
confluency for more than 5 days showed significantly higher
TER values than control MDCK cells or MDCK cells transfected

with the variant. Incubation with a low-calcium medium to
disassemble the junctions abolished TER in all of the cells,
whereas the replacement with regular medium induced junction

reassembly. The WT-expressing cells peaked earlier than
untransfected MDCK cells, whereas the TER peak was
virtually absent in cell lines expressing the mutant. However,
apico-basal polarity and steady-state TER in Mut cells were not

affected, and the altered TER acquisition profile did not correlate
with an increased permeability of FITC-Dextran (data not
shown), suggesting that POF1B R329Q does not interfere with

TJ barrier properties for large solutes.

Altered organisation of the monolayer in MDCK cells
expressing POF1B R329Q

No remarkable differences in TJ ultrastructure in cells expressing

the different constructs were observed by means of conventional
electron microscopy (data not shown). The ultrastructural
analysis, however, revealed that the MDCK monolayer
expressing the mutant contained cells of various shapes and

sizes that sometimes appeared as a pseudostratified monolayer
(Fig. 3A), although these cells were still capable of forming
morphologically normal junctions, as shown by the presence of

TJs in highly dysmorphic cells (Fig. 3B).

Defects in cell size and monolayer organisation were also
observed by confocal analysis of Mut distribution. POF1B and
POF1B R329Q were particularly enriched at sub-apical and basal

levels (Fig. 3C,D), although the latter staining was more
discontinuous (compare sub-apical and basal staining in 3D
image reconstructions and horizontal sections), and thus rarely

seen in vertical sections (Fig. 1B). The enrichments were
resolved as two rings, one at the sub-apical and the other at the
basal level in both horizontal sections (x–y) and 3D
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reconstructions (Fig. 3C,D, see supplementary material Movies 1
and 2). Low levels of POF1B were found between the apical and

basal enrichments, whereas the mutant protein showed a more
diffuse localisation between the two rings, which in 3D-images,
partially masked the lower ring.

In horizontal sections of Mut monolayers, we noticed that more
than three cells often contacted each other at a single point

(Fig. 3D, vertices, compare the red masks drawn on WT and Mut

sub-apical sections) and the number of hexagonal cells was

considerably reduced, whereas the number of cells with four sides

increased threefold (Fig. 3E). Moreover, Mut cells showed a

greater variability in the length of their sides (mean value,

7.80¡0.15 mm) and the percentage of angles between 100 and 140

degrees was significantly reduced (the ideal measure of each angle

Fig. 2. Altered mechanism of TER acquisition in POF1B R329Q cells. (A) A representative western blot analysis of the total expression of junctional markers

in control MDCK cells (M), MDCK cell lines overexpressing GFP–POF1B or GFP–POF1B R329Q. Equal amounts of cell extracts were loaded onto 10% SDS-

PAGE and the transferred proteins were immunoprobed for GFP (to quantify the expression of the WT and Mut constructs in the cell lines) and markers of the

apical surface (gp135), tight junctions (Cla1, Cla2, Par3, ZO-2 and LIN7) and adherens junctions (b-cat and LIN7). (B) Quantification of the expression of gp135

and Cla2 in transfected and untransfected cells. The results are the means ¡ s.e.m. of three independent experiments performed in control, and two stable clones

for WT and Mut; one of these experiments, normalised to control MDCK cells, is shown in A (***P,0.001). (C) Vertical confocal sections (x–z) of double

immunofluorescence staining for b-catenin (green) and the apical marker gp135 or the tight junctional marker Cla2 (red) in control (M) and transfected (WT or

Mut) MDCK cells. AP: apical surface; BAS: basal surface. (D) TER assay in control (M), WT and Mut cell lines. Cell monolayers grown at confluence for more

than five days on Transwell filters were incubated with low calcium medium (low Ca2+) to disassemble the junctions (TER50). Junction reassembly induced by

calcium replacement was followed by measuring TER at the indicated times. Each value ¡ s.e.m. represents the average of three experiments performed in two

stable clones.
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if three cells contact each other at a single point is 120 degrees)

(Fig. 3F,G). It is known that epithelial cells tend to pack into

regular hexagons to reach a thermodynamically favourable state

and so an increased divergence from the shape of regular polygons

in which all angles are equal in size and all sides have the same

length (equiangular and equilateral polygon) is a clear sign of a

perturbed organisation of the monolayer (Carthew, 2005).

Decreased levels and altered organisation of F-actin in
MDCK cells expressing POF1B R329Q

Irregularity of cell shape, which disturbs the monolayer polarity,

might be a consequence of dysfunctional POF1B. Because cell

shape and specialised cellular functions depend on an underlying

network of dynamic actin polymers (F-actin) that ensure

mechanical stability and flexibility of the cortex (Van Itallie et

al., 2009), we analysed the effects of POF1B expression on the

actin cytoskeleton.

We first verified that both POF1B apical and basal rings

contained F-actin in 3D reconstructions of cells stained with

phalloidin to detect F-actin (Fig. 4A, yellow, only colocalisation

signals were represented). Note that the distribution of POF1B

(WT and Mut) is maintained, but the Mut distribution appeared

more diffuse along the entire lateral surface and less enriched at

the apical ring (compare with the 3D images in Fig. 3B),

suggesting a major overlap between F-actin and WT, as

compared with Mut. Because confluent MDCK cells had an

Fig. 3. Altered cell morphology and monolayer organisation in cells expressing POF1B R329Q. Control MDCK cells (M), MDCK cell lines transfected with

POF1B (WT) or POF1B R329Q (Mut) were grown confluent on Transwell filters for .3 days and processed for EM or immunofluorescence. (A) Semithin

sections (top), TEM images (middle) and immunofluorescence staining (bottom) using the b-catenin antibody (red) and DAPI (blue). (B) Ultrastructural analysis

in highly dysmorphic Mut cells; a 46magnification is shown on the right. (C) Immunofluorescence analysis of POF1B localisation. Tilted volume rendering of

entire volume of cells (3D-image reconstructions) showing 3D apical (upper) and side (lower) views of a group of cells. Arrows and arrowheads indicate the apical

and basal region of the cell monolayer, respectively. (D) Horizontal (x–y) confocal sections of POF1B localisation in WT and Mut cell lines taken at the sub-apical

and basal region of the cell monolayers. A red mask is drawn on sub-apical sections to highlight cell arrangement in the monolayer. (E) Quantification of cells

with four (quadrilateral), five (pentagonal), six (hexagonal) or more than six sides (n5350 for each cell line). (F) Cell side length variability was measured within

each cell on an average of 50 cells in at least three different experiments. (G) Angles measured in 100 cells per each cell line using a macro developed in ImageJ

(see the Materials and Methods). Data in E–G are the means ¡ s.e.m. of three independent experiments performed with two stable clones for each transfectant.

*P,0.05; **P,0.01; ***P,0.001.
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Fig. 4. F-actin defects in cells expressing POF1B R329Q. Cells grown confluent on Transwell filters (A–C), or Petri dishes (D,E) for .4 days were stained for

labelled phalloidin (A–C,E) and analysed as indicated. (A) 3D image reconstruction representing colocalisation of POF1B and labelled phalloidin (yellow).

POF1B and F-actin not colocalising are not considered. (B) 3D side view (left) and quantification of the percentage of POF1B and phalloidin colocalisation (right)

evaluated by Manders’ colocalisation coefficients in the apical region of the cells (brackets) (n510 cells analysed for each stable cell line; ***P,0.001).

(C) Horizontal confocal sections (upper) and their corresponding surface plot analysis (lower); the fluorescence intensity is expressed in arbitrary unit (a.u.).

(D) A representative detergent extraction experiment. Equal volumes of insoluble F- and soluble G-fractions were loaded onto 10% SDS-PAGE and blotted into

nitrocellulose; the amount of actin in each fraction was evaluated using specific antibodies (left). Quantification showing mean ¡ s.e.m. of three independent

experiments is presented in the right panel. ***P,0.001. (E) A representative graph of F-actin signals in WT (red), Mut (green) and control MDCK cells (blue),

and F-actin content comparison in transfected (WT and Mut) and untransfected (M) (set to 100%) cell lines, as determined by FACS analysis. Data represent mean

¡ s.e.m. of three independent experiments performed with at least two stable clones for each transfectant. *P,0.05; ***P,0.001.
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apical actin cytoskeleton ring that included and circumscribed the

microvilli, which was located at the same level of the apical

junctions (TJs and AJs), we analysed whether WT and Mut

codistributed with the apical actin in 3D side reconstructions of

the indicated regions (Fig. 4B). The apical ring of WT POF1B

was completely embedded into the F-actin apical enrichment,

whereas the Mut staining was partially underneath the phalloidin

staining of F-actin, further suggesting the exclusion of Mut from

apical junctional domains. A twofold increase in colocalisation of

WT and phalloidin (99%) compared with that of Mut (63.2%)

was measured using Manders’ colocalization coefficients

(Fig. 4B, histogram).

A different distribution and content of F-actin was also

observed at cell–cell contacts in Mut cells; F-actin showed a spot-

like distribution along the adhesion surface and the staining was

particularly marked in three-cell vertices (vertices at which three

cells and three sides meet) in control cells and cells expressing

WT POF1B, but not in Mut cells, (Fig. 4C, see arrowheads).

Peaks of fluorescence in Mut cells, obtained using ImageJ surface

plot analysis, were also lower in intensity (mainly in the blue

range of the scale, whereas peaks of fluorescence in WT reach

the red range of intensity) in the vertices. No significant

difference was observed in apical and basal actin in Mut cells.

The effect of WT or Mut expression on F-actin was then

qualitatively analysed by measuring the F-actin to G-actin ratio

(Fig. 4D), and the F-actin content was quantified by FACS

analysis (Fig. 4E). The ratio assay is based on the differential

extractability of F-actin and G-actin from cells by detergent

(Blikstad and Carlsson, 1982). In these experiments, actin was

mainly found in the detergent-insoluble F-actin fraction (70%) in

control and WT MDCK cells, whereas only 50% of the cellular

actin was found in the F-actin fraction in Mut cells. Moreover,

FACS analysis revealed a 40% increase and a 20% decrease in F-

actin content, respectively in WT and Mut cells, when compared

with control MDCK cells. This result supports a role for POF1B

in the stabilisation of F-actin at cell–cell contacts and suggests

that the mutant interferes with this process.

Actin dynamic defects in Caco-2 cells expressing

POF1B shRNA

To verify the physiological role of POF1B on actin dynamics, we

silenced the endogenous protein in human intestinal Caco-2 cells

by transient transfection of shRNA1 and shRNA2 against POF1B

(see the Materials and Methods); MDCK cells were not used in

these experiments because the antibody does not cross-react with

the canine protein. Similarly to MDCK cells, endogenous POF1B

in Caco-2 cells localises at the apical region of the junctional

domain devoid of Na+/K+-ATPase (Fig. 5A). Approximately 30–

35% of the endogenous POF1B in Caco-2 cell lysates was

silenced using both shRNAs (Fig. 5B), and this value agreed with

the percentage of transfected cells (assessed by measuring the

percentage of GFP-expressing cells). Cells silenced for POF1B

(green), showed a decreased staining for phalloidin (Fig. 5C) and

a ,20% reduction in F-actin, as quantified by FACS analysis

(Fig. 5D). Moreover, cells silenced for POF1B completely lost

their epithelial morphology and eventually detached from the

monolayer when cultured for longer than 3 days (Fig. 5E), thus

we were never able to select stable clones. Because the apico-

basal polarity was maintained in cells expressing the mutant but

not in POF1B-silenced cells, these results indicate a key role for

POF1B in the regulation of the actin cytoskeleton that is partially
retained by the mutant.

Altered ciliogenesis and cystogenesis in MDCK cells
expressing POF1B R329Q

In a variety of cell systems, cytoskeleton arrangements are

regulated by the tissue polarity or planar cell polarity (PCP)
pathway. PCP corresponds to a secondary axis of polarity that is
perpendicular to the apico-basal direction (Simons and Mlodzik,

2008; Song et al., 2010), and that is crucial for the appearance of
highly organised cellular structures, such as primary cilia, as well
as for the orientation of cell division. Primary cilia are sensory

microtubule-based structures emanating from the apical surface
of many cells, including MDCK cells (Singla and Reiter, 2006),
stained by antibody against acetylated tubulin (Fig. 6A). In our
experimental conditions, not all the cells in untransfected and

transfected monolayers exhibited primary cilia, but the number of
ciliated cells appeared markedly increased in the cell lines
expressing the POF1B mutant protein (Fig. 6B). Because a direct

link between actin dynamics and ciliogenesis has been
documented (Kim et al., 2010), the altered organisation of the
actin cytoskeleton observed in Mut cells could account for the

increased number of ciliated cells. Moreover, in these cells, we
noticed that cilia emerged from the apical surface at a more
variable distance from their centre. Statistically, about twice as
many cilia emerged closer than 2 mm from the cellular centre in

WT and M cells, as compared with cilia in Mut cells (Fig. 6C,
histogram). The occasional close proximity of cilia, emerging
near the cell boundaries, might hence explain the appearance of

interlaced cilia tips in Mut-expressing cells (Fig. 6A, arrows).

Primary cilia are microtubule-based structures guided by basal
bodies that originate from and have a substructure similar to

centrioles. Interestingly, the symmetrical division of epithelial
cells to generate two identical daughter cells depends on the
correct positioning of centrioles (Jaffe et al., 2008; Hao et al.,

2010; Qin et al., 2010; Rodriguez-Fraticelli et al., 2010; Zheng et
al., 2010), suggesting possible defects in the orientation of cell
division in Mut cells. These defects are better visualised in the
organotypical 3D extracellular matrix cell culture system (Vieira

et al., 2006). Mut cells were plated into matrigel and 4-day-old
cysts were stained for DAPI to localise mitotic chromosomes
(Fig. 7A). As expected, cell division occurred in a direction

parallel to the plane of the cyst apical surface in WT and
untransfected MDCK cells (Fig. 7A, arrows), thus generating
cells that maintain the polarity of the monolayer. Conversely,

mitotic chromosomes were mislocalised in Mut cysts, with a
large fraction of Mut cells (approximately 50%) that were not
dividing in a direction parallel to the cyst surface. As a
consequence, the monolayer will not be maintained and

daughter cells will be forced to stratify or to form a new lumen
(Fig. 7A). Misorientation of mitotic spindles is known to lead to
cysts with multiple lumens (Zegers et al., 2003; Mostov et al.,

2005; Jaffe et al., 2008; Zheng et al., 2010) and, indeed, we
observed a higher percentage of cysts with multiple lumens or no
lumens in a period up to 5 days in Mut-expressing cells (Fig. 7C).

By contrast, overexpression of POF1B did not interfere with the
development of spherical cysts with a single central lumen and a
monolayer of cells with correctly polarised apical (facing the

lumen) and lateral proteins, as shown by b-catenin and gp135
staining (Fig. 7B), respectively, in 4-day-old cysts. Cell polarity
and cyst morphogenesis were therefore the same in cells
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overexpressing the WT and in untransfected cells examined over
the same time period (Fig. 7B). Interestingly, Mut cyst defects
were less noticeable after 6 days or more in culture, although the

lumens still appeared to be collapsed, as shown by analysis of the
circularity index (Akao et al., 2003) and gp135 staining (Fig. 7B–
D). Misoriented cell division is therefore associated with an

alternative mechanism of cyst lumen formation: instead of a

single lumen enlarging as the cells divide and cysts grow, cells
can first form multiple lumens that eventually generate a single
collapsed lumen.

The altered mechanism of formation of the cyst lumens,
however, did not associate with defects in cell polarity, because

Fig. 5. POF1B silencing in human intestinal Caco-2 cells. (A) Vertical confocal section (x-z) of fully polarised Caco-2 cells grown on Transwell filters for.7

days and stained for POF1B (red) and Na+/K+-ATPase (green). AP: apical surface; BAS: basal surface. (B) A representative western blot analysis is shown. Ten

mg of total protein extracts from Caco-2 cells transiently transfected with the empty pSUPER vector (CTR) or with the vector containing shRNAs (1 and 2) were

probed for POF1B expression, and the mitochondrial marker TOM20 as a loading control. The graph shows the POF1B expression level in silenced cells

normalised to control cells (n54). *P,0.05; **P,0.01. (C) Caco-2 cells transiently transfected with POF1B shRNA (green) were stained with labelled phalloidin

(actin). A merged image (left) and its corresponding individual staining for F-actin (right) are shown. (D) F-actin content comparison in cells transiently

transfected with POF1B shRNAs compared to the empty vector (set to 100%), as quantified by FACS analysis. Data represent mean ¡ s.e.m. of two independent

experiments performed with shRNA1 and 2. *P,0.05. (E) Caco-2 cells transiently expressing POF1B shRNA (green) cultured for .5 days after transfection were

stained with phalloidin (red).
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the polarity markers b-catenin and gp135 were localised

normally to cell–cell contacts and the surface facing the

abnormal lumens, respectively, in Mut cysts (Fig. 7B, see

apical staining in x–y and x–z sections). Mut expression

therefore affects processes, such as cystogenesis and

ciliogenesis, that are strictly related to tissue polarity, rather

than cell polarity.

Discussion
POF1B is a candidate gene for premature ovarian failure that is

highly and specifically expressed in polarised epithelia. Very little

is known about the function of this gene, but its expression before

the generation of the epidermal permeability barrier and its

localisation to the junctional domain of epithelial tissues have led

to the hypothesis that POF1B has a role in epithelial polarity

(Rizzolio et al., 2007). Extending this hypothesis, the overall

findings of this study converge to indicate that POF1B is involved

in the organisation of a regular array of polarised cells, through the

stabilisation of F-actin, rather than in the definition of apico-basal

polarity. In particular, our data indicate that TJs, harbouring

POF1B, are crucial structures that regulate monolayer polarity.

We found that the R329Q variant failed to accumulate in TJs

of MDCK cells; however, this mislocalisation did not induce

evident alterations in TJs or in the apico-basal polarity of these

cells, as confirmed by the proper localization of TJ and polarity

markers and a normal ultrastructure. Only the mechanism of TJ

formation appeared altered in Mut cells (absence of a TER peak),

and this defect might be explained by a difficulty in

synchronising the formation of TJs owing to the irregular

polygonal shape and sides of different length of the Mut cells.

Alternatively, because of the important role of claudins in

determining the TER value, it is also possible that

downregulation of claudin-2 might at least contribute to the

lack of a TER peak in Mut cells, although the unaffected

permeability properties of these cells might suggest that other

claudins compensate for the claudin-2 defect.

It is known that a regular cell shape (as defined by the

polygonal nature of the cells in two dimensions) is crucial for the

formation of epithelial polarised tissues. In agreement with this

knowledge, we observed that the geometry of the monolayer of

dysmorphic cells expressing the R329Q variant of POF1B was

disturbed and even acquired a pseudostratified appearance when

analysed by electron microscopy.

Cell shape is linked to the correct organisation of the actin

cytoskeleton, a process that was altered in cells expressing the

R329Q variant (lower fluorescence at the cell–cell contacts,

lower F-actin to G-actin ratio and content of F-actin/cell) and in

Caco-2 cells silenced for POF1B (decreased F-actin content and

Fig. 6. Defects in ciliogenesis in cell lines expressing POF1B R329Q. Cells grown confluent for.4 days in Transwell filters were stained for the indicated

markers. (A) Confocal z-stack projections of horizontal sections of cell monolayers in control MDCK cells (M) and MDCK cells expressing GFP-POF1B (WT) or

GFP–POF1B R329Q (Mut) stained with acetylated tubulin to visualise primary cilia (red), phalloidin in M or GFP in WT and Mut (green). The red masks

representing the cell boundary and the base of primary cilia were obtained from confocal sections taken from the sub-apical region through the emergence of

primary cilia. Arrows indicates interlaced cilia tips. (B) The number of ciliated cells in monolayers expressing WT or Mut was normalised to MDCK cells (n5350

for each cell line). (C) Scatter plot of the distance from cilia emergence and cell centre (n5150 for each cell line) measured using a macro developed in ImageJ.

Red lines indicate mean values and dots indicate individual data points of the ciliated cells analysed. The lower histogram represents the percentage of the primary

cilia emerging within 2 mm from the centre. The values are means ¡ s.e.m. from three independent experiments performed with two stable clones for each

transfectant. *P,0.05; **P,0.01; ***P,0.001.
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altered cell shape). In sharp contrast, the overexpression of WT

POF1B did not alter the cell geometry or the F-actin content, and

the F-actin to G-actin ratio even increased in these cells.

Although this chain of events is clear, its remote cause is an open

question. Regulation of TJ stability has a key role in epithelial

polarity (Van Itallie et al., 2009), thus the simple absence of

POF1B variant from these junctions might prevent F-actin

stabilisation, thus destabilising them. In this respect, in vitro

experiments have shown that POF1B R329Q presents a lower

affinity for F-actin than WT POF1B (Lacombe et al., 2006). In

accordance with this finding, we observed a larger colocalisation

of F-actin with POF1B at cell–cell contacts of WT compared

with Mut cells. It is therefore possible that the stabilisation of the

cytoskeleton at TJs requires a direct interaction between F-actin

and POF1B. In line with this possibility, the altered shape of Mut

cells might be due to the lack of localisation of Mut to tight

junctions and its diffuse localisation along the entire lateral

surface; these defects together with a decreased affinity for F-

actin might account for the decreased enrichment of the actin

cytoskeleton at the junctional surface, leading to irregularity in

the cell geometry. Alternatively, the effect should involve a

functional interaction of POF1B with some partners residing at

TJs, raising questions about the number of partners and the

interactions of POF1B in these junctions. In this regard, it must

Fig. 7. Altered mechanism of

cystogenesis in cells expressing

POF1B R329Q. Single cells were

seeded in an extracellular matrix

(Matrigel) and grown for the

indicated time. The cysts were

fixed in 4% paraformaldehyde,

permeabilised, stained for the

indicated marker, and analysed by

laser confocal microscopy. The

confocal sections were taken at the

middle region of the cysts. (A)

Representative images (red, F-

actin; blue, DAPI) of 4-day-old

cysts; the arrows represent the

direction of mitotic division. Two

examples of Mut cysts showing

misoriented division in a single

lumen (a) and in a multilumen

(b) cyst. Quantification of the

direction of mitotic division is

shown in the right (n.80 for each

cell line). Experiments were

performed in triplicate with at least

two stable clones for each

transfectant. (B) Cyst polarisation

was assessed by the extent of

lumen formation and by staining

for the gp135 apical marker (red)

and the b-catenin lateral marker

(blue) in horizontal (x–y) and

vertical (x–z) confocal sections.

(C) Quantitative analysis of cyst

morphology in control (M), GFP–

POF1B (WT) or GFP–POF1B

R329Q (Mut) cell lines cultured

for 3–6 days. The values are the

percentage of cysts with the

indicated lumen morphology

(n5100 cysts for each cell line).

(D) Quantitative analysis showing

the circularity index of lumens of

cysts in cells cultured for more

than 6 days stained with Texas Red

phalloidin (n528 for each cell

line). (C,D) Data are the means ¡

s.e.m. of three independent

experiments using two stable

clones. *P,0.05;

**P,0.01; ***P,0.001.
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be noted that POF1B contains a coiled-coil domain homologous

to the rod domain of a myosin (Lacombe et al., 2006), and

common to motor and skeletal proteins. This domain might

determine the protein’s oligomerisation state, rigidity and ability

to function as a molecular recognition system (Burkhard et al.,

2001), raising the possibility that oligomerisation of the

overexpressed mutant with the endogenous protein interferes

with POF1B function in F-actin stabilisation, thus conferring to

the mutant a dominant-negative function that might also account

for the decreased expression of gp135 and claudin-2, because their

expression and/or localisation depends on the actin cytoskeleton

(Ojakian and Schwimmer, 1988; Bruewer et al., 2004).

There is accumulating evidence that regulation of actin

dynamics is a main function of PCP signalling, which acts

through small GTPases of the RhoA family (Kim and Han, 2005;

Ybot-Gonzalez et al., 2007), a formin-homology (FH)-domain

protein that binds actin and nucleates filament polymerisation

(Habas et al., 2001; Liu et al., 2008), and a myosin that controls

the cytoskeletal reorganisation of cellular junctions during

epithelial morphogenesis (Bertet et al., 2004; Rauzi et al.,

2010). In support of a role for POF1B in epithelial PCP, we have

also provided data showing altered emergence of cilia docking

sites in 2D cultures and misorientation of mitotic division in 3D

cultures of Mut cells. Interestingly, many polarity proteins

localised to TJs have been implicated in mitotic orientation

during epithelial cell division (Hao et al., 2010; Qin et al., 2010;

Zheng et al., 2010) and ciliogenesis in polarized epithelia

(Sfakianos et al., 2007). Several studies have highlighted a

primary role for the actin cytoskeleton in centriole positioning

(Vaughan and Dawe, 2011) and the described defects in

ciliogenesis and cystogenesis might be due to random

positioning of centrioles or centriole analogous structures (i.e.

basal bodies), controlling the symmetrical cell division in

proliferating cells or the cilium emergence in fully polarised

cells, respectively.

Polarised epithelial tissues regulate ovarian function in a

number of ways, and a key organiser of actin dynamics, the

formin-related gene DIAPH2 (Diaphanous-related formin-2)

(Bione et al., 1998), which also maps to the X chromosome

critical region for ovarian function, is another candidate gene for

POF. The decision of developing follicles to continue growing

and eventually to ovulate or to undergo atresia mainly depends on

the intimate relationship between oocytes and the surrounding

highly specialised epithelial granulosa cells. During the course of

this development, granulosa cells proliferate, thus contributing to

follicle enlargement (Jablonka-Shariff et al., 1996; Hirshfield,

1997; Albertini et al., 2001) and, by converting testosterone to

oestrogen, these cells are responsible for the increased level of

hormone in the bloodstream. Thus, the low levels of oestrogens

in POF might be explained by a defect in granulosa cell division.

Moreover, ovarian epithelia and the secretory epithelium of the

ovarian oviduct have primary cilia, and ovulation was impaired

in transgenic mice in which ovarian primary cilia were deleted

(Johnson et al., 2008), indicating a crucial role for this organelle

in the ovarian functions.

In conclusion, our data provide evidence of a major role for

POF1B in controlling cell shape and monolayer organisation, which

is a key feature that drives morphogenesis during development and

is critical for organ function. Moreover, we have shown that TJs are

crucial sites in determining polarisation of monolayers.

Materials and Methods
Constructs

Full-length human POF1B, corresponding to amino acids 3–589 of POF1B (NCBI
database accession # Q8WVV4), was fused to the C-terminus of GFP by subcloning
the PCR product into the XhoI–BamHI restriction fragment of the mammalian

expression vector pAcGFP1-C1 (Clonetech, CA). POF1B R329Q was generated by
means of QuikChange Site-directed Mutagenesis (Stratagene, CA) polymerase chain
reaction (PCR) using GFP–POF1B as the template and complementary
oligonucleotides containing AG instead of GA at position 986–987 of the coding
sequence (oligo upper 59-GTCTGATAAGTCACTCCAGCTAGTGCTGTCCAC-
39 and the complementary oligo lower). A BpmI site was created by the substitution
and used to identify the mutagenised product.

To create the shRNA constructs, two 19-base pair sites within human POF1B were
chosen using on-line biocomputer tools, and pairs of complementary oligonucleotides
containing the following target sequences were synthesised by Sigma: 59-
GCAAGGACTTCAAGACTCA-39 (shRNA1), corresponding to the amino acids
375–381 in the coiled-coil domain region, and 59-AATGCCATCATCACATTAT-39

(shRNA2), corresponding to the amino acids 181–187. These sequences did not have
any significant homology to other genes in the human genome database. The forward

and reverse oligos were annealed and cloned into BglII–XhoI restriction sites of the
pSUPER.gfp/neo RNAi system (OligoEngine), and the resulting plasmid was
amplified. All of the plasmid sequences were verified by means of automated
sequencing to exclude unwanted substitutions.

Cell culture and transfection

MDCK (strain II) cells were cultured and stably transfected using the Ca-PO4

method as previously described (Perego et al., 1999). The stable cell lines were
selected on the basis of growth in the antibiotic G418 (0.6 mg/ml) (Sigma), and the
expression of the constructs was assessed by fluorescence microscopy and western

blotting. Four cell lines expressing the full-length protein (WT 5, 7, 10 and 13) and
three cell lines expressing the R329Q variant (Mut 5, 6 and 12) were chosen on the
basis of their homogeneity and levels of expression, most of the figures were
obtained with WT 13 and Mut 5 unless otherwise indicated, and results from at
least two clones are presented.

For morphological and functional (transepithelial electrical resistance, TER and

Ca2+ switch) studies, the MDCK cell lines were seeded at a density of 2.56105

cells/cm2 onto Transwell filter inserts (0.4 mm pore size; Corning Costar, Sigma)
and analysed for .3 days unless otherwise indicated. For the biochemical assays,
the cells were plated at the same density on Iwaki or Falcon tissue culture dishes
and used 3 days or more after plating unless otherwise indicated.

Organotypical 3D MDCK cell cultures were used for cyst formation as

previously described (Vieira et al., 2006), the cultures grown for the time indicated
were then fixed for 1 hour in 4% paraformaldehyde. Caco-2 cells were cultured in
DMEM (Dulbecco’s Modified Eagle Medium) supplemented with 1% L-
glutamine, 1% penicillin-streptomycin and 10% fetal bovine serum (Sigma) at
37 C̊ and 5% CO2, and transiently transfected using Fugene HD (Promega,
Madison, WI) according to the manufacturer’s protocol.

Calcium-switch experiments

For the calcium-switch protocol, the original method (Cereijido et al., 1978) was
modified as follows: cell lines grown to confluency (2.56105 cells/cm2) on

Transwell filter inserts (0.4 mm pore size; 12 mm diameter; Corning Costar) for
.4 days (steady-state TER550–60 ohm6cm2) were incubated in calcium-free
DMEM (Gibco) supplemented with 1% L-glutamine (Sigma) and calcium to a
final concentration of 5 mM for 2 hours (TER50). The cells were then grown in
complete medium (1.8 mM Ca2+) for 24 hours, and cell–cell contact formation
was assessed at the indicated time by measuring TER.

Detergent extraction experiments

Detergent extraction experiments were carried out as described (Blikstad and
Carlsson, 1982). Cells were treated for 30 minutes using extraction buffer (1%

Triton X-100, 100 mM NaF, 50 mM KCl, 2 mM MgCl2, 1 mM EGTA, 10 mM
KPO4, pH 7.5, 0.5 M sucrose) supplemented with PMSF and protease cocktail
inhibitor (Sigma) to block the partial depolymerisation of actin seen in other buffers.
After extraction, the cell extracts (G-actin fraction) were centrifuged at 13,000 g for
20 minutes, cell matrices (F-actin fraction) were collected by scraping the dish in
0.1 ml extraction buffer with a rubber policeman, and both fractions were solubilised
in 0.1 ml sodium dodecyl sulfate (SDS) denaturation buffer and equal volumes of
each fraction were analysed by immunoblotting for actin content.

F-actin FACS assay

Cells were trypsinised and fixed in 4% paraformaldehyde in PBS for 5 minutes
before and after permeabilisation. Cells were stained with FITC-phalloidin (Jackson
ImmunoResearch, PA) to detect F-actin. For all samples, 10,000 gated cells were
analysed, and the mean F-actin content, as determined by the phalloidin staining,
was quantified using the Cell Quest software system in FACSCalibur flow cytometer
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(Becton Dickinson, San Jose). The values were expressed as percentage relative to
untransfected MDCK or Caco-2 cells transfected with the empty vector.

Antibodies

The commercial primary antibodies were monoclonal mouse anti-b-catenin (BD),
anti-JAM1 BV16 (Cell Science, MA), anti-claudin-1, 2 and anti-ZO-2 (Zymed
Laboratories, San Francisco, CA), anti-GFP (MBL, Eppendorf, Woods Hole, MA
and Hamburg, Germany), anti-actin and anti-acetylated tubulin (Sigma) and rabbit
polyclonal anti-Par3 (Upstate, Billerica, MA). The rabbit polyclonal antibody
against mouse LIN7A and human POF1B were raised against the corresponding
fusion proteins (Perego et al., 2002; Rizzolio et al., 2007), and the rabbit
polyclonal antibodies against a1 Na+/K+-ATPase and b-catenin were raised against
specific peptides (Pietrini et al., 1992; Perego et al., 2002). The hybridoma cell line
3F2-secreting antibodies against gp135 were kindly provided by George K.
Ojakian (Ojakian and Schwimmer, 1988).

Immunoblotting

Cell extracts were solubilised in sodium dodecyl sulfate (SDS) denaturation buffer.
Equal amounts of total cell extract proteins (evaluated using Lowry’s method)
(Lowry et al., 1951) were separated on SDS-PAGE and transferred to
nitrocellulose membranes. The blots were probed using the appropriate primary
antibodies, followed by peroxidase-conjugated anti-rabbit or anti-mouse
immunoglobulin G (Sigma) as secondary reagents, and visualised by means of
an ECL Western blotting detection system (Perkin-Elmer Life Science, Waltham,
MA). Signal intensity was quantified densitometrically using NIH ImageJ.

Light and immunofluorescence microscopy

Cells grown on glass coverslips or Transwell filters were fixed with 4%
paraformaldehyde and permeabilised with 0.5% Triton X-100. Staining with the
indicated primary antibodies was followed by incubation with Rhodamine- or Cy5-
labelled rabbit and mouse secondary antibodies (Jackson Immunoresearch,
Suffolk, UK). Texas-Red-labeled phalloidin (Molecular Probes, Eugene, OR)
was used to detect filamentous actin. Samples were mounted using Vectashield
(VectorLabs) containing DAPI for nuclei and antifade reagent. The images were
acquired using a Bio-Rad MRC-1024 confocal microscope.

Sections of the frozen unfixed human jejunum (6 mm thick) were flattened over
a gelatin-coated glass slide, fixed with acetone for 3 seconds and allowed to dry
out overnight at room temperature. Sections were permeabilised with 0.5% Triton
X-100, incubated overnight at 4 C̊ with primary antibodies, washed and incubated
for 1 hour at room temperature with secondary antibodies.

Electron microscopy

Cells grown on Transwell filters were fixed in 2% (v/v) glutaraldehyde in 0.1 M
cacodylate buffer, pH 7.4, and post-fixed with 1% (w/v) OsO4 in 0.1 M cacodylate
buffer. The samples were then stained en bloc, dehydrated in ethanol and
embedded in EPON 812 (Fluka, Buchs, Switzerland) following standard
procedures. Ultrathin sections were examined using a Philips CM10
transmission electron microscope (TEM).

Transepithelial electrical resistance

TER was determined using an Electrical Resistance System (Millicell-ERS;
Millipore, San Francisco, CA). The TER values were obtained by subtracting the
contributions of the filter (no cells) and bathing solution and were expressed as
ohms 6 cm2 (Balda et al., 1996), following the manufacturer’s instructions. Three
experiments each one with three parallel filters from control and transfected cell
lines were measured for each time point.

Image and statistical analysis

Approximate values of angles at multiple cell-to-cell contacts, as well as the
distance between the cell centre and the point of emergence of the primary cilium,
were calculated by means of semi-automatic, custom procedures using the freely
available ImageJ program. To obtain values of angles from a planar image of
MDCK cells, we constructed binary maps of cell locations manually drawing the
cell contours on an image. This image was then used as input for an ImageJ macro,
which used it to identify cells, cell corners and internal angles. Centroids were
calculated using ImageJ measurement functions and represented the average of the
x and y coordinates of all of the pixels assigned to a cell. To obtain distances from
cell centre and points of cilium emergence, we used stacks obtained by z-series of
polarized cultures of MDCK cells. A binary map of cell locations was constructed
by manually drawing cell contours, as observed in the most apical portion of the
stack. This image, and the stack, were then used as inputs for a second ImageJ
macro, which used the map to identify cells and cell centroids and used the stack to
recognise the point of emergence of every cilium. The aforementioned procedures
were validated manually. Detailed descriptions of the developed macros are
available upon request.

The length of cell sides and orientation of mitotic division were calculated
manually by considering the distance between two corners along the connecting

cell wall and the position of mitotic chromosomes relative to the apical luminal
surface, respectively. The 3D image reconstructions were conducted using z-series
of MDCK cell lines (WT13 and Mut5) taken with the same confocal parameters
and processed with the ‘make isotropic’ plug-in and volume reconstruction
rendering (ImageJ 3D viewer). Colocalisation of POF1B with F-actin was
quantified by Manders’ colocalisation coefficients (ImageJ JACoP plug-in
analysis) (Bolte and Cordelieres, 2006).

The circularity of the cyst lumens was determined using the formula 4p(area)/
(perimeter)2; the values obtained with this formula are closer to 1.0 as a profile
approaches circularity (Akao et al., 2003). All quantitative data are presented as
mean ¡ s.e.m. Multiple comparisons among groups were carried out by Student’s
t-test using Prism software (GraphPad PrismTM software). Statistical analyses
were obtained from three different experiments performed with at least two clones
for each transfectant, *P,0.05, **P,0.01 and ***P,0.001.
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