
Research Article
Unifying Rigid and Soft Bodies Representation:
The Sulfur Physics Engine

Dario Maggiorini, Laura Anna Ripamonti, and Federico Sauro

Department of Computer Science, University of Milan, Via Comelico 39, 20135 Milan, Italy

Correspondence should be addressed to Laura Anna Ripamonti; ripamonti@di.unimi.it

Received 29 January 2014; Accepted 28 March 2014; Published 29 May 2014

Academic Editor: Ali Arya

Copyright © 2014 Dario Maggiorini et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Video games are (also) real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific
game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game
engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular,
several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent
systems composed by soft bodies), are often poorly rendered by general-purpose engines.This issuemay limit game designers when
imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately
representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and
developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from
Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.

1. Introduction

A physics simulation framework is generally conceived as a
middleware application. Physics simulators can be classified
into two main groups: scientific simulators and real-time
simulators (also called “physics engines” or simply “engines”
by game developers—see, e.g., [1, 2]). A scientific simulator
focuses on the accuracy of the simulation, disregarding the
optimization of computational time, and its major applica-
tion fields include fluid dynamics, engineering simulations,
weather forecasts, and movies. On the other hand, real-time
simulators (or physics engines) aim at computing as fast
as possible the simulation; generally, this result is obtained
by simplifying the underlying mathematical model of the
simulated phenomenon. Therefore, the resulting simulation
loses some accuracy. While a less accurate result could
become a relevant problem in a scientific application, it
becomes a by far less cumbersome issue in the area of
video games. Actually, the first and main reason for a video
game to exist is to provide fun to its players [3], which is
achieved not only through alluring game mechanics, but also
by providing an environment that fosters immersivity [4–6].

To enhance immersion in their game, designers should know
everything about the physics that applies to the world they
have created, in order to mimic it in the most appropriate
and convincing way [7, 8]. This knowledge includes at least
two synergic aspects: on the one hand, players have “a sense
of how real-world works,” and, on the other hand, many
games include some elements of “ultraphysics,” such as tele-
port, magic, gods intervention, faster-than-light travel, and
hyperdimensionality. The physics simulated by the engine
should implement all the laws that the game requires and no
more, and both physics and ultraphysics laws must adhere to
players’ näıve physics understanding [7]. At the same time,
the simulated physics—even if simplified—should guarantee
that no evident discrepancies from the expected behaviours
will suddenly pop up, destroying the illusion of the players.

The history of real-time engine for physics simulation
is quite recent. This is due mainly to two constraints: on
one hand, till the last decade, CPUs processing power was
not enough to handle the heavy burden of mathematical
models underpinning physics simulation, and, on the other
hand, developers’ attention was focused primarily on the
enhancement of graphic engines that lead to the creation of

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2014, Article ID 485019, 12 pages
http://dx.doi.org/10.1155/2014/485019

http://dx.doi.org/10.1155/2014/485019

2 International Journal of Computer Games Technology

graphic accelerators and graphics processing units (GPUs)
and fostered the rush toward high quality rendering and
photorealism. Until 1998, the only games focusing on physics
were driving simulations (one title for all: Gran Turismo [9],
whose franchise reached its sixth chapter in 2013). From that
year on, several engines focusing on physics started to appear,
among which is the well-known Havok [10]. At the moment,
a quite significant number of other engines have entered the
market, amongwhich are PhysX, Euphoria, DigitalMolecular
Matter, Bullet, ODE, CryEngine, Unreal Development Kit
(UDK), Unity3D, and many others. Nonetheless, the interest
in the improvement of engines is still high, because a good
simulation increases both players’ commitment in the game
and the exploitation of completely new gameplays.

1.1. Structure of a Physics Engine for Video Games. Engines
work on discrete intervals of time and are generally composed
of three main subsystems: one aimed at calculating new
positions of physical entities, one focused on detecting colli-
sions among entities, and the last one in charge of managing
collisions (see Figure 1).

The first component is a numerical integrator in charge of
solving some differential equations representing movement
and determining, for each frame, the new position of the
moving objects. The collision detection subsystem generally
implements a hierarchical data structure to simplify the
search for collisions (all the pairs of objects too far to collide
are excluded a priori from the collision detection process).
The remaining objects are then tested from a geometrical
point of view to verify if any intersection is taking place.
The final goal is to generate a list of colliding objects, which
specifies their contact points and relative velocities. This list
is passed on to the collision resolution subsystem that man-
ages the physics of the collisions (e.g., by making colliding
objects bounce away or shatter). From the engine perspective,
generally, in-game objects can belong to three different types:
particles, particles systems (free or also connected among
them), and rigid bodies. In this approach, soft bodies are—
generally—rendered as systems of particles connected by
spring joints [1, 11]. Rigid bodies are more complex than
particles to represent: a (system of) particle(s) has just a
position, while a rigid body can be seen like a particle, which
has both a position and an orientation (hence, also rotation
mechanics is involved). Both kinematic and dynamic can be
applied to (systems of) particles and rigid bodies (see, e.g.,
[12]).

1.2. Simulating Rigid Bodies as Particles Systems. The most
diffused approach implemented into physics engines, based
on the distinction among particles and rigid bodies, has sev-
eral drawbacks. As easily imaginable, the physics of (systems
of) rigid bodies is quite complex, from both implementative
and mathematical points of view, since it requires selecting
themost effectiveway tomanage: center ofmass,momentum,
and moment of inertia. To lower this complexity, we propose
an innovative and unified approach rooted into the idea of
representing rigid bodies through particles systems. Besides
providing a simpler representation, this approach would also

Physics engine

Collision resolution

Entity 3

Entity 2

Entity 1

Collision detection

Calculate new position

· · ·

Figure 1: Structure of a general-purpose physics engine for video
games.

offer the possibility to simulate in an easier way destruc-
tible objects (see Figure 2). These entities present several
peculiarities because they start out in an undamaged state
(they appear like one single cohesive object), but they must
be able to break into many pieces according to different
behaviours (i.e., a piece of glass shatters in a different way
from a piece of wood). Anyway, as we will see, using particles
systems to represent rigid bodies is not an easy task since
it requires integrating impulsive forces generated by springs,
a process that frequently presents problems of instability
(see Section 2).

The approach we propose provides two types of joints
among particles: elastic and semirigid joints. The elastic joint
is a classical spring joint with a spring able to reach a
good level of stiffness thanks to an opportune integration
method and a high refreshing rate.The semirigid connection
is assured by maintaining constant the distance among the
particles in the system and by adopting the Verlet approach
to integration [13–15]. We have developed and tested this
new approach for games in 2D, in order to limit complexity,
implementation, and testing time. Nonetheless, we have
designed all the components of the engine keeping in mind
the possibility to extend it quite easily to the third dimension.
In particular, we have developed the following.

(i) Atlax. It is a framework designed to manage all
the low-level tasks typically required by a real-time
graphic application, such as interfacing the operating
system for managing audiovisual input and output,
windows and rendering context management, data
compression, and 3D models. Particular emphasis
has been put on the design of the timing system, in
order to guarantee the possibility of decoupling the
rendering refreshing rate fromphysics processing rate
(that can rise up to 10KHz). In particular, the times-
tamp selected for the physics simulation remains fixed
for the whole simulation run. This choice has been
made in order to avoid unexpected behaviors (such
as objects exploding for no apparent reason). As

International Journal of Computer Games Technology 3

(a) (b)

Figure 2: Example of destructible objects: a series of walls crumbling.

a consequence, when the simulated system is very
complex and the required computational time cannot
cope with the predefined time interval, the simulation
will only slow down, without getting unstable.

(ii) Sulfur. It is a static library that implements the physics
engine. Sulfur contains several classes, implementing
particles and particles systems, elastic and rigid joints,
collision detection, and resolution. It is a middleware
software application; hence, it is completely separated
from Atlax.

(iii) SulfurChamber. It is a sandbox application aimed at
providing a graphical user interface (GUI) for Sulfur,
where it is possible to create and to modify physic
entities.

(iv) Escape from Quaoar [16]. It is a video game based
on mechanics aimed at exploiting the peculiarities of
Sulfur.

The remainder of this paper is organized as follows: in
Section 2, we briefly examine the state of the art in physics
simulation, also digging into the main characteristics of the
more diffused off-the-shelves engines. In Section 3, we will
describe how the Sulfur game engine has been designed,
while in Section 4 we describe the applications we have
developed to implement and test our approach. Namely, they
include Atlax, a low-level framework that interacts with the
operating system, Sulfur, the physics engine, SulfurChamber,
a sandbox aimed at experiencing and experimenting with
Sulfur, and Escape from Quaoar, a complete video game
based on Sulfur. Finally, in Section 5, we summarize themain
results we have obtained so far and present some closing
remarks and some future development for the engine.

2. State of the Art in Physics Simulation

The final goal of the majority of the game engines is the
simulation of a limited number of physic phenomena, among
which the most important are the kinematics and dynamics
of rigid and soft bodies, represented through Newton’s laws
of motion and Hooke’s law. The literature on these issues in
the field of gaming is quite limited and more often oriented

to practitioners or to teaching activities (see, e.g., [1, 2, 8, 11, 17,
18], etc.). Also, we want to point out that it is out of the main
scope of the present work to simulate the dynamics of fluids,
since it would imply addressing several more physics phe-
nomena, not included in our research focus—at least for now.
Fluidmotion is governed by theNavier-Stokes equations, and
its simulation typically requires a computational mesh of the
fluid domain. Problems arise when the geometry of the fluid
takes complex shapes, since mesh generation may become
a major bottleneck. Moreover, exterior flow problems (like,
e.g., the flow around an airfoil) require special handling. To
tackle these issues, different techniques have been proposed
and developed, and they are continuously improved, among
which it is worth remembering at least the smoothed particle
hydrodynamics (SPH) and the vortex particle methods (see,
e.g., [19]). In particular, SPH has been created to simulate
nonaxisymmetric phenomena in astrophysics, and it was
proposed for the first time by Monaghan [20]. Since its
creation, SPH has evolved into other fields, among which
are fluid simulation (see, e.g., [21, 22]) and solid mechanics
(see, e.g., [23–25], etc.). It has also been improved in order
to support interactive simulations [26]; thus, it is frequently
adopted to simulate fluid dynamics in 2D video games, even
for mobile devices. Both SPH and vortex particle methods
are mesh-free interpolation techniques, which use “particles”
to represent parcels of fluid. Their main difference lies in
the fact that SPH solves the momentum equation, while
vortex methods solve the vorticity equation. Furthermore, in
contrast to vortexmethods, each particle in SPH shows only a
local influence, thusmaking it easier to handle collisionswith,
for example, the boundaries of a container. Nonetheless, their
main application field is fluids simulation or—at most—the
simulation of fractures of rigid bodies; in both cases, accuracy
of the simulation is more important than its velocity.

The game objects managed by an interactive physics
simulation engine are, as we already saw (Section 1), of dif-
ferent types and natures (generally particles or rigid bodies)
and belong to different categories, which require specific
interactions with the engine. In particular, it is important to
distinguish between physics-driven and game-driven objects.
Physics-driven objects completely depend on the simulator
(e.g., a stone rolling down from a slide), while game-driven

4 International Journal of Computer Games Technology

objects are not subject to the simulation, because they are
usually controlled by the player (e.g., a sword wielded by a
character); nonetheless, they may have physics interactions
with the environment (e.g., the player uses the sword to break
a chest). Last but not least, the environment usually contains
a certain number of “fixed” objects (e.g., the floor) that will
interact only with the collision management system. It is
important to notice that the collision management system
should be present in whichever game engine, even if the
physics is not applied, in order to determine superimposition
and interaction among game objects. For this reason, the
collision management system is usually separated from the
remainder of the engine.

The adoption of a physics engine may have some relevant
implications. The user should be well aware of these impli-
cations, starting from the moment she is starting designing a
newgame. In particular, the presence of the engine introduces
unpredictability, emerging behaviours, and the necessity to
balance the values assumed by several variables [2]. As a
matter of fact, an object whose behavior is governed by some
approximated physics law may, from time to time, show a
behavior that is not desired or that is unexpected. In these
cases, the best solution is to “overwrite” the simulation with
predefined animation. In the same vein, players may exploit
some physic phenomena to their advantage, bending the
gameplay in ways not foreseeable by the game designer (an
example for all is the following: players may aim a rocket
launcher at the floor to get a boost for achieving a higher
jump). Finally, yet importantly, in a physics simulation, there
are many variables (e.g., friction, gravity, etc.) whose values
may affect in many ways the overall game system. It is of
paramount importance that, during the design and testing
phases of the game, these values are properly balanced in
order to produce an environment thatmatches the perception
of physics laws that the player has for that specific game.

As we saw, the main purpose of a physics engine is to
approximate bodies dynamics, that is to say, how they behave
when they are subjects to a system of forces. Hence, we need,
on the one hand, to determine, for each instant of time,
position, velocity, and rotation for each body, and, on the
other hand, to detect and resolve possible collisions among
bodies. To obtain these goals, a real-time physics simulation
is based on appropriate numerical resolution techniques for
motion laws aimed at refreshing, at each interaction, position,
velocity, and orientation in space of an object starting on
its previous state and on the forces applied on it. Actually,
it is important to underline that, since game engines are
interactive simulators, it is not possible to foresee how the
system of forces applied to each in-game object will evolve
in time. For this reason, it is necessary to approximate the
future state by applying numerical methods to the integration
of differential equations representing motion laws. There is a
certain number of different possible approaches to numerical
integration, and each method shows different qualities and
drawbacks. Digging deeply into the numerical integration
issue is out of the scope of the present work. Nonetheless,
we will now briefly go through the most diffused approaches
adopted in the field of physics simulators for video games,
highlighting the main features of each approach. Numerical

methods are all based on Taylor’s polynomial evidenced in
Taylor’s theorem. They can be classified on the basis of their
order, convergence, and stability (for a detailed description of
numerical integration methods, see, e.g., [17]).

The simplest numerical integrator is the Euler method
(also called Explicit Euler method), a first order method
usually adopted by programmers that are tackling for the
first time physics simulation. In spite of its simplicity and
execution velocity, this method is highly inaccurate, since
it focuses on velocity to determine the next position of an
object.

The SUVAT (displacement 𝑆, initial velocity 𝑈, final
velocity 𝑉, acceleration 𝐴, and time 𝑇) method is another
first order method, slightly more accurate than the previ-
ous one, since it takes into consideration also acceleration.
Nonetheless, it is quite unstable and it works well only when
acceleration is constant along the integration interval.

The symplectic Euler method (also called semi-implicit
Euler method or Newton-Størmer-Verlet (NSV) method) is
another first order method, quick and simple, but—due to
the fact that it is a symplectic method—by far more stable
than the previous approaches.Thismethod behaves quitewell
also when simulating oscillatory behaviours (like in the case
of springs).

TheRunge-Kutta 2method (orMidpointmethod) ismore
accurate than its predecessors (it is a second order integrator),
but it is also slower.

The Runge-Kutta 4 method is a fourth order integrator;
hence, it becomes useful only when execution velocity is not
a constraint, but accuracy is very relevant.

Finally, yet importantly, the class of the implicit methods
guarantees a pretty good stability, even when rigid springs
are involved, but sacrifices simplicity of implementation and
velocity of computation.

2.1. Characteristics of the More Diffused Off-the-Shelves
Engines. Before diving into the design anddevelopment from
scratch of a real-time interactive physic simulator, we have
taken into account the existing frameworks used for physics
simulation in the video games industry. We have compared
the characteristics of the more diffused ones among them,
with the aim of verifying if at least one of them could match
our specific requirements.The requirements we were looking
for can be summarized as follows:

(1) efficient support to physics simulation in 2D (eventu-
ally easily extensible to 3D);

(2) support for both rigid and soft bodies, with a seamless
gamma of stiffness;

(3) two-way interaction between rigid and soft bodies., that
is to say, the capability of soft bodies to both collide
and exert forces on rigid bodies and vice versa;

(4) affordability for a small indie team with low budget.
This requirement mirrors the fact that big players in
the video game industry usually develop andmaintain
their own solutions for physics simulation or buy
third party software applications.

International Journal of Computer Games Technology 5

All the off-the-shelves engines we have examined are
unable to satisfy the whole range of constraints we have set,
even the most renowned applications (such as Unity3D), as
Table 1 sums up (the requirements listed above have been put
in columns). Here, below, we list their major characteristics.

Box2D [27] is free to use and is tailored for 2D, but it is
lacking soft-body simulation.

Bullet [28] is a widely used open-source physics simula-
tion library, and it has been used for many games. It recently
added support to soft bodies, and it is a good candidate to
compare our results with. There is also limited support to 2D
environments, but only for rigid bodies. Although with some
tricks and somenew code it could be possible to use it anyway,
it would not satisfy our requirement (1): efficient and native
support to 2D soft-body simulation.

CryEngine 3/BeamNG [29] is an extremely powerful game
engine, one of the market leaders. It has a pretty new soft-
body physics simulator provided by the team of Rigs of Rods
(BeamNG). Unfortunately, the licensing system for indie
developers is not completely clear, and it is very likely that
it does not provide the full features set that the paid version
offers.Moreover, it would be absolutely overdimensioned and
cumbersome to use for a 2D game.

Digital Molecular Matter (DMM) [30] is different from
the previous engines, because it is based on a simulation
method called finite element analysis [31–34], which is far
more accurate than the ones usually adopted in game engines.
It aims to achieve realistic results and supports a wide
range of platforms. It matches part of our requirements, but,
unfortunately, it is not free to use and again does not support
2D environments.

Havok [10] is one of the market leaders. It runs on
every platform (mobiles as well) and provides an excellent
combination of performance and accuracy. The core system
handles rigid-body dynamics, and it can be augmented with
a set of subsystems, like the recently added Cloth module,
which is aimed at simulating character’s clothes and hair. It
is not very affordable, and it does not satisfy both require-
ments (1) and (2): there is a clear separation between rigid
and soft bodies and it can be applied only to 3D environ-
ments.

Newton Game Dynamics [35] is another open-source
library, not supporting soft bodies. It is a bit outdated one also.

Open Dynamics Engine (ODE) [36] is free to use, but it is
outdated and only supports rigid bodies.

PhysX [37] is another market leader. It does not support
as many platforms as Havok, and its main feature—GPU
acceleration—is currently only available using Nvidia video
cards. The features set we are looking for seems to be more
than fully implemented in an upcoming extension called
FLEX, which promises unified rigid-body, soft-body, and
fluid simulation, but—unfortunately—it is not available on
the market yet, and it does not seem to cover 2D simulations.
Moreover, the product is free only when it is used to develop
for the Windows operating systems.

Unreal Development Kit (UDK) [38] is another powerful
and widely used game engine that supports our required
features. Unfortunately, although it offers a license tailored for
indie developers, it is not as cheap as several other solutions

and it is known to be quite cumbersome to use. Again, it is
not targeted at 2D.

Unity3D [39] is one of the most popular game devel-
opment frameworks currently around. It supports every
platform and provides a cheap license for independent
developers. It provides a basic physics module that does not
include any kind of soft-body simulation.

3. Designing the Sulfur Real-Time
Interactive Physics Engine

As we saw, the spikiest issues in physics simulation for video
games are the management of the rotation component in the
motion of rigid bodies, the accurate detection of collisions
(especially when complex nonconvex objects are involved
[40]), and a convincing visual representation of collisions
among rigid bodies.

The purpose of a physics engine is to approximate the
dynamic behaviours of objects subject to a set of forces. The
main idea behind Sulfur is to deploy an alternative approach
to rigid bodies simulation by extending the methodology
commonly applied to soft bodies, in order to avoid calculating
the rotation component of motion. Actually, this effect would
emerge spontaneously from a particle system, in which each
particle is linked to some others and translates when subject
to forces.

3.1. Simulating Soft Bodies with Sulfur. A particle is described
by its mass, position, and velocity (the latter two are repre-
sented by bidimensional vectors in the 2D case). Moreover,
when a particle is connected to some others, topological
information is needed too. To represent a deformable or
soft body (like, e.g., some jelly), we need a set of particles
connected by some elastic joint. To describe the constraints
linking two particles connected by an elastic (spring) joint,
we can use Hooke’s law that is corrected with the damping.
The resulting equation is

𝐹 (𝑡, 𝑥 (𝑡) , �̇� (𝑡)) = −𝑘 (|𝑑| − 𝑙0)
⃗𝑑 + 𝑏 (�̇� (𝑡) − ̇𝑥𝑝 (𝑡)) , (1)

where

𝐹 = −𝑘(|𝑑| − 𝑙
0
) ⃗𝑑 is Hooke’s law;

𝐹(𝑡, �̇�(𝑡)) = −𝑏�̇�(𝑡) is the damper;
̇𝑥
𝑝
(𝑡) is the velocity of the other particle connected to

the joint;
𝑡 is time;
𝑘 is the elastic constant;
𝑙
0
is the length of the spring;
𝑑 is the variation in the length of the spring;
𝑏 is the damping constant.

Adding the damper is extremely useful, not only because
it increases the realism of the resulting simulated behavior,
but also—and perhaps mainly—because it helps mitigate
oscillations intensity and duration. Since it is our aim to
simulate also rigid bodies using particle systems, it is of

6 International Journal of Computer Games Technology

Table 1: Comparison of the more diffused game engines based on the requirements we have defined.

Requirements
1 2 3 4

Box2D Yes No No Yes
Bullet Partial Yes in 3D Yes in 3D Yes
CryEngine 3/BeamNG No Yes Yes Partial
Digital Molecular Matter (DMM) No Yes Yes No
Havok No No No No
Newton Game Dynamics Yes No No Yes
Open Dynamics Engine (ODE) Yes No No Yes
PhysX No Upcoming Upcoming Only Windows
Unreal Development Kit (UDK) No Yes Yes Partial
Unity3D Yes No No Yes

Figure 3:The rope is composed of 40 particles used to tune damping
and refreshing rate in its starting state.

fundamental importance to be sure that the simulation will
behave appropriately in a large interval of possible values for
the elastic constant. For this reason, it has been necessary to
balance damping, to define the most appropriate refreshing
rate for the simulator, and to select the best possible numeric
integrator, that is to say, the one that guarantees the most
correct behavior while, at the same time, presenting good
performances in terms of calculation time (we are dealing
with real-time systems). To obtain these goals, we have tested
different configurations of damping and refreshing rate on
a linear configuration composed of a system of 40 particles,
which simulates a rope (dots in Figure 3), connected by elastic
joints (dashes in Figure 3). The starting state of the rope is
horizontal and at rest (the spring between two consecutive
particles is at rest; hence, the distance between the particles
coincides with the length of the joint). When the simulation
is started, both gravity and air friction start to affect the
system (Figure 4). In particular, the air friction constant value
has been set to 0.02, the length of the spring to 0.05m,
and the mass of the particles to 0.05 kg. It is quite easy to
spot the moment in which the system loses stability: the
rope vibrations get uncontrollable and the rope explodes due
to growing elastic snaps (Figure 5). Table 2 summarizes the
maximum values for the elastic constant when the refreshing
rate is set to 500Hz, while Table 3 summarizes the same
values when the damping constant is set to 0.2. It is possible
to notice that the values smaller than 50.0 (for the elastic
constant) are not included, since, in such cases, the spring is
too weak and its simulation loses any significance.

From Table 2, it is possible to notice that the accuracy of
the integrator does not imply stability; for example, Runge-
Kutta 4 (RK4) is a fourth order integrator, but it is quite
ineffective with a high stiffness. In the same vein, NSV and
inverse Euler (IE) are by far more effective than RK4, even if
they both are only first order integrators.When the refreshing
rate is taken into consideration (Table 3), it becomes clear that

Figure 4: The rope oscillates correctly under the effects of friction
and gravity.

Figure 5: The rope explodes because the system has become
instable.

semi-implicit integrators behave by far better than explicit
integrators: in the first case, it is possible even to raise the
value of the elastic constant six times without losing stability,
while in the latter case that value can be—at most—doubled.

For these reasons, we have chosen to set the default
refreshing rate at 500Hz and the damping constant to 0.2 and
to implement the symplectic Euler integrator (NSV).

Last but not least, it is important to underline that, for
both soft and rigid bodies represented by means of a particles
system, it is necessary to introduce some “internal” joint that
will guarantee that the object will not collapse on itself after
a collision. This phenomenon is depicted in Figure 6: the
deformable square on the left of the figure has collided with
the floor, but it has no internal joint among the particles, while

International Journal of Computer Games Technology 7

Table 2: Maximum values of the elastic constant with variable
damping and fixed refreshing rate (500Hz).

Damping
0.0 0.1 0.2 0.3 0.4

Eulero — 50 100 150 200
SUVAT/RK2 — 100 200 300 400
RK4 — 150 300 450 600
NSV/IE 50 8500 9000 9500 11000

Table 3: Maximum values of the elastic constant with variable
refresh rate and fixed damping (0.2).

Frequency (refresh rate—Hz)
60 100 250 500 1000

Eulero — — 50 100 1000
SUVAT/RK2 — — 100 200 400
RK4 — 60 150 300 600
NSV/IE 150 450 2700 8000 47500

the deformable square on the right has—correctly—bounced
away after the collision.

3.2. Simulating Rigid Bodies with Sulfur. Increasing the stiff-
ness of the elastic joint alone is not enough to simulate effec-
tively rigid bodies by means of a particles system. Actually,
not only the stiffness should be enough to avoid deformation
of objects during collisions, but also the simulation should
behave properly when the system includes particles with a
very different mass. In this latter case, the lighter particles
will accelerate more than the heavier ones, even if they are
all subject to the same force. Consequently, the system will
unbalance and become instable. To avoid these undesirable
effects, we are forced to introduce a new type of joint and,
subsequently, to select an integrator that is able to handle it
adequately. In particular, the new joint is a springwith infinite
stiffness. In this case, the distance of two particles situated at
the two ends of a joint is always constant, and Hooke’s law is
no longer useful.This particular joint will not generate a force
(like in the case of the soft body), but an instantaneous change
in velocity, thus modifying particles positions. Therefore,
the integrator we have applied to soft bodies is no longer
useful. As a matter of fact, traditional integrators are based
on the assumption that the instantaneous acceleration is
enough to describe completely the particle movement; in
the case of this new joint, these integrators will lose the
kinetic energy produced by the stiff spring, bringing highly
inaccurate results.

A valid choice for an alternative integrator is the Verlet
method [14, 15], a symplectic integrator of the second order,
that is able to calculate the new position 𝑥(𝑡+Δ𝑡) of a particle
after a certain interval of time has passed. The Verlet method
is based on Taylor’s theorem; it is applied two times: the

first time forward (in time) and then backward (in time), as
described by the following formulae:

𝑥 (𝑡 + Δ𝑡)

= 𝑥 (𝑡) + �̇� (𝑡) Δ𝑡 +
1

2
�̈� (𝑡) Δ𝑡

2
+
1

6
𝑥
(3)
(𝑡) Δ𝑡
3
+ 𝑂 (Δ𝑡

4
) ,

𝑥 (𝑡 − Δ𝑡)

= 𝑥 (𝑡) − �̇� (𝑡) Δ𝑡 +
1

2
�̈� (𝑡) Δ𝑡

2
−
1

6
𝑥
(3)
(𝑡) Δ𝑡
3
+ 𝑂 (Δ𝑡

4
) .

(2)

Hence,

𝑥 (𝑡 + Δ𝑡) = 2𝑥 (𝑡) − 𝑥 (𝑡 − Δ𝑡) + �̈� (𝑡) Δ𝑡
2
+ 𝑂 (Δ𝑡

4
) . (3)

In (3), velocity does not appear explicitly; if needed, it
can be derived from the difference between the starting and
final positions of the particle(s). It is precisely for this reason
that the Verlet method works well with our rigid joint: the
integrator takes into account both forces and variations in
particles positions without losing any kinetic energy. The
Velocity Verlet and Leapfrog integrators are more accurate
versions of the Verlet integrator [17], but they are more
demanding from a computational point of view, without
supplying any significant improvement to the stability of the
system. For these reasons, the Sulfur engine is based on the
Verlet method.

3.3. Managing Collisions with Sulfur. Even if we have chosen
to create an engine aimed at 2D environments, the idea
to simulate any type of body using only particles systems
requires a careful analysis of all the possible implications
and consequences on the collision management system. In
particular, our approach allows the creation of particles
aggregates with arbitrary shapes (linear, concave, and con-
vex). Moreover, we intend to exploit the intrinsic modular
nature of these aggregates to simulate fractures. Therefore,
we need to apply a collision detection system that is able
to track even the smallest possible aggregate: two particles
connected by a joint. It is possible to notice that a single
particle is an immaterial point with infinitesimal size; hence,
it is not subject to collisions. These peculiarities imply that
applying the most diffused techniques for collision detection
(such as Bounding Volume Hierarchy (BVH), Sweep And
Prune (SAP), Separating Axis Theorem (SAT), and Gilbert-
Johnson-Keerthi (GJK) distance algorithm; see, e.g., [41–48])
is not a viable way. In the same vein, the Bentley-Ottmann
algorithm, also called Sweep-Plane algorithm [49], which
is aimed at finding intersections between segments on a
plane, is not adaptable to our specific case. In particular, it
considers only one-dimensional segments that cannot cope
with some extreme case, such as those depicted in Figure 7.
The segment on the left of the figure would pass through
the floor unnoticed, unless we release the constraint of one
dimensionality. Similarly, the segment on the right would
cross, unnoticed, the joint in the floor.

Since no standard method to manage collision detection
seems to be able to support our approach to rigid-body

8 International Journal of Computer Games Technology

(a) (b)

Figure 6: A deformable soft square—with and without internal joint—collides with the floor.

Figure 7: Two segments that should collide with the floor.

representation, we have developed an original approach,
which preserves the two “canonical” phases: broad and
narrow phases of collision detection.

The first—broad—phase of collision detection is aimed at
detecting the objects potentially superimposing. To avoid the
trap of one-dimensional segments, we include each segment
in a “capsule” (see Figure 8(a)), which simulates thickness.We
then subdivide the plane with a uniform grid and keep track
of the cells crossed by each segment in each moment (see
Figure 8(b)). When a cell registers a collision, the capsules
are superimposing and they are selected and included in
a list of objects that will be further processed during the
following narrow phase. To guarantee that the broad phase is
executed in the shortest possible time, we have implemented
the Bresenham Line algorithm [50], which supplies good
performances, with an execution timewhich depends linearly
from the number of capsules present on the grid.

The subsequent narrow phase of collision detection takes
as input the cells selected during the broad phase and verifies
whether or not the couple of segments is really in contact and,
in case, determines the contact point.

Finally, the reaction to the collision is calculated accord-
ing to a projection approach: the bodies aremoved away from
each other theminimumdistance necessary to separate them.
The joint among the particles will guarantee that the whole
object will move away in a convincing way.

To add realism to the simulation of collisions,we have also
added a simplified version of a friction model. We take into
account only sliding friction, without any distinction between

static and dynamic frictions. The main idea is to apply to the
particles a force that is tangent to the direction of the collision
and proportional to the projection of velocity on this tangent,
but in the opposite direction. This is only a first attempt to
include friction in our simulator, and it is under improvement
for further developments.

4. Atlax, Sulfur, SulfurChamber,
and Escape from Quaoar

Both Atlax and Sulfur have been developed in C++, which
is the most diffused language for computational intensive
applications and for interactive physics simulations. All the
libraries we have adopted are independent of the operating
system in order to provide the maximum possible portability.
All the codes we have developed have been tested on both
Windows and Linux.

Atlax is a framework application aimed at supporting
the development of interactive graphic applications. Its most
relevant feature is to be based transparently on two low-level
different libraries: wxWidgets [51], a cross-platform graphical
user interface (GUI) library, and Simple DirectMedia Layer
[52], a cross-platform library designed to provide low-level
access to audio, keyboard, mouse, joystick, and graphics
hardware via OpenGL [53] and DirectX [54].The first library
is used when we need to create applications with a GUI, such
as a sandbox for the physics engine. The second library is
specifically aimed at video games. Therefore, this approach
made it possible to create an engine that can be used both
for the real game and for the editor, just by switching the
underpinning library.

Sulfur is the library of the physics engine. It is strongly
linked to Atlax, since the two share some classes (notably
to execute calculus and to dynamically manage particles and
joints). It implements the approach we have summarized in
Section 3.

Based on Atlax and Sulfur, we have developed two appli-
cations aimed at testing the effectiveness of the approach:
SulfurChamber and Escape from Quaoar.

SulfurChamber is the sandbox software application for the
Sulfur physics engine, and it is based on the Atlax-wxWidgets

International Journal of Computer Games Technology 9

(a) (b)

Figure 8: A single capsule surrounding a segment (a) and the representation of capsules on the grid.

(a) (b) (c)

Figure 9: Soft and rigid bodies in SulfurChamber.

version. Its main purpose is to allow the experimenting of
different configurations of particles with varying elasticity,
gravity, sliding friction, and air friction (Figure 9(a)). In
particular, it is possible to create objects starting from a pre-
defined set (Figure 9(b)) or by designing them from scratch
by combining sets of particles and joints (Figure 9(c)). We
have tested the performances of SulfurChamber on several
different combinations of hardware and operating system,
that is to say, AMD Atlon64 3200 with Windows XP, Intel
Core2DuoT7700withWindows 7, and Intel Core-i7 930 with
Linux-Ubuntu.The simulation has been run by simulating an
increasing number of identical squared boxes (each of which
is composed of four particles: four main rigid joints and two
internal structural joints). Couples of boxes were dropping
from above continuously; hence, no box was in a state of
rest (this would have the consequence of excluding the box
from the physics simulation).The values of friction,mass, and
gravity were set to the same values for the whole simulation.
Table 4 summarizes the percentage of consumption of the
CPU time dedicated to executing calculations to refresh the
physics simulation. From the data emerges that themaximum
numbers of boxes for which the system remains stable and
reactive are around 60 or less, depending on the combination

Table 4: Performance of Sulfur with different hardware and soft-
ware configurations.

Number of dropping boxes per second
20 40 60 80 100 150 200

Athlon64—Win XP 12% 30% 45% 65% 83% 100% 100%
Core2Duo—Win 7 10% 22% 42% 55% 72% 95% 100%
i7-930—Ubuntu 5% 10% 20% 25% 35% 50% 75%

hardware-operating system (when the CPU consumption
reaches 80%–90%, the simulation obviously starts to slow
down, till getting irremediably stuck). Even if this maximum
number of objects was enough for the video game we have
developed to test the opportunities offered by Sulfur, it is
evident that the physics engine would benefit a lot from some
improvements aimed at optimizing code and performances.

Escape from Quaoar [16] is a side-scroller platform video
game that has been designed and developed to test the
performances of Sulfur in a real application. For this reason,
the gameplay explicitly exploits and stresses the whole range
of features provided by the physics simulator. The core
mechanic is based on an elastic rope (see Figure 10(b)), that

10 International Journal of Computer Games Technology

(a) (b)

Figure 10: Screenshots from Escape from Quaoar: example of a level (a) and the main character texture and underpinning particle system
(b).

(a) (b) (c) (d)

Figure 11: The first three objects have been modeled by elastic aggregates of particles, while the latter one is a rigid body, which stays fixed
on the floor.

is, the only locomotion mean at disposal of the player. All
the in-game objects are physics-driven (except for the main
character arm that is moved by the player to fire the rope
towards specific points). Monster and objects encountered
in the levels are—soft or rigid—particles systems masked by
appropriate textures (see Figure 11(a)). The overall behavior
of the game is very satisfying, and the game has participated
in the 13th Independent Game Festival (IGF) [55].

5. Conclusion and Future Work

The main goals of our work have been to design and create
a physics simulator for video games that are able to unify
rigid and soft bodies simulation, endowed with effective
and reactive collision detection and resolution system. The
Sulfur physics engine has reached this goal, overcoming the
stiffness problem intrinsic to traditional approaches by using
the Verlet integrator coupled with the adoption of particles
systems to simulate not only soft bodies, but also rigid ones.
This approach has an interesting side effect: it does not
mess up with angles and rotations. In the same vein, we
have obtained a sound approach to collision management
by coupling a static grid with Bresenham algorithm. Hence,
with a relatively small effort, we are able to manage a relevant
number of dynamic objects. Last but not least, we have
extensively tested the proposed solution by developing 26
levels for a side-scroller video game, whose mechanics is
based on elastic bodies, obtaining satisfying results.

Nonetheless, we are well aware that Sulfur is still in
its infancy. It needs improvements and developments from
several points of view, such as the following:

(i) increasing accuracy of simulation for friction;
(ii) creating an efficient and effective approach tomanage

curve and circular objects (at present they can only be
simulated with a huge number of particles and joints);

(iii) optimizing calculation-intensive code section, by
moving the workload to the GPU;

(iv) introducing angular joints, to decrease the number of
particles used to represent a single object;

(v) introducing a more sophisticated simulation of frac-
tures (at the moment, fractures are obtained by
removing some joints);

(vi) extending Sulfur to 3D simulation;
(vii) extending Sulfur to simulate fluids motion;
(viii) finally, yet importantly, reducing the refreshing rate

(whose value at present is around 500Hz), without
scarifying stability while—possibly—increasing per-
formances.This goal could be reached by selecting an
appropriate, but more complex, integrator that could
reduce the number of iterations.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

International Journal of Computer Games Technology 11

References

[1] D. H. Eberly, 3D Game Engine Design: A Practical Approach to
Real-Time Computer Graphics, Morgan Kaufmann, San Fran-
cisco, Calif, USA, 2001.

[2] J. Gregory, Ed., Game Engine Architecture, Taylor and Francis,
2009.

[3] R. Koster, A Theory of Fun for Game Design, Paraglyph Press,
2005.

[4] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experi-
ence, Harper Perennial, 1991.

[5] T. Fullerton, Game DesignWorkshop: A Playcentric Approach to
Creating Innovative Games, Elsevier, 2008.

[6] E. Zimmerman and K. Salen, Rules of Play: Game Design
Fundamentals, The MIT Press, 2004.

[7] R. Bartle, Designing Virtual Worlds, New Riders Pub, 2003.
[8] I. Millington,Game Physics Engine Development, Morgan Kauf-

mann, San Francisco, Calif, USA, 2007.
[9] Gran Turismo, http://www.gran-turismo.com/.
[10] Havok, http://www.havok.com/.
[11] D. H. Eberly, 3D Game Engine Architecture: Engineering Real-

Time Applications with Wild Magic, Morgan Kaufmann, San
Francisco, Calif, USA, 2005.

[12] A.Witkin and D. Baraff, “Physically based modeling: principles
and practice,” in Proceedings of the Association for Computing
Machinery Special Interest Group on Graphics (SIGGRAPH ’97),
Los Angeles, Calif, USA, 1997.

[13] T. Jakobsen, “Advanced Character Physics,” 2003, http://www
.pagines.ma1.upc.edu/∼susin/files/AdvancedCharacterPhysics
.pdf.

[14] M. Mcguire and O. C. Jenkins, Creating Games: Mechanics,
Content, and Technology, A K Peters, 2008.

[15] L. Verlet, “Computer “experiments” on classical fluids. I. Ther-
modynamical properties of Lennard-Jones molecules,” Physical
Review, vol. 159, no. 1, pp. 98–103, 1967.

[16] Escape from Quaoar, http://www.escapefromquaoar.com/.
[17] D. H. Eberly, Game Physics, Morgan Kaufmann, San Francisco,

Calif, USA, 2003.
[18] D. Kodicek, Mathematics and Physics for Game Programmers,

Charles River Media, Hingham, Mass, USA, 2005.
[19] G. H. Cottet and P. D. Koumoutsakos, Vortex Methods. Theory

and Practice, Cambridge University Press, 2000.
[20] J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual

Review of Astronomy and Astrophysics, vol. 30, no. 1, pp. 543–
574, 1992.

[21] A. Hérault, G. Bilotta, A. Vicari, E. Rustico, and C. del Negro,
“Numerical simulation of lava flow using a GPU SPH model,”
Annals of Geophysics, vol. 54, no. 5, pp. 600–620, 2011.

[22] E. Rustico, G. Bilotta, A. Hérault, C. Del Negro, and G. Gallo,
“Smoothed particle hydrodynamics simulations on multi-GPU
systems,” in Proceedings of the 20th Euromicro International
Conference on Parallel, Distributed andNetwork-Based Comput-
ing, Special Session on GPU Computing and Hybrid Computing,
Munich, Germany, 2012.

[23] J. Bonet and S. Kulasegaram, “Correction and stabilization of
smooth particle hydrodynamics methods with applications in
metal forming simulations,” International Journal for Numerical
Methods in Engineering, vol. 47, no. 6, pp. 1189–1214, 2000.

[24] M. I. Herreros and M. Mabssout, “A two-steps time dis-
cretization scheme using the SPH method for shock wave

propagation,” Computer Methods in Applied Mechanics and
Engineering, vol. 200, no. 21-22, pp. 1833–1845, 2011.

[25] T. Rabczuk and J. Eibl, “Simulation of high velocity concrete
fragmentation using SPH/MLSPH,” International Journal for
NumericalMethods in Engineering, vol. 56, no. 10, pp. 1421–1444,
2003.

[26] M. Muller, D. Charypar, and M. Gross, “Particle-based fluid
simulation for interactive applications,” in Proceeding of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, pp. 154–159, Eurographics Association, 2003.

[27] Box2D, http://box2d.org/.
[28] Bullet, http://bulletphysics.org/wordpress.
[29] Cryengine, http://www.crytek.com/cryengine.
[30] “DigitalMolecularMatter—Pixelux,” http://www.pixelux.com/.
[31] I. Babuška, U. Banerjee, and J. E. Osborn, “Generalized finite

elementmethods: main ideas, results, and perspective,” Interna-
tional Journal of ComputationalMethods, vol. 1, no. 1, pp. 67–103,
2004.

[32] K. J. Bathe, Finite Element Procedures, Klaus-Jürgen Bathe,
Cambridge, Mass, USA, 2006.

[33] J. N. Reddy, An Introduction to the Finite Element Method,
McGraw-Hill, New York, NY, USA, 3rd edition, 2005.

[34] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu,TheFinite Element
Method: Its Basis and Fundamentals, Butterworth-Heinemann,
6th edition, 2005.

[35] Newton Game Dynamics, http://newtondynamics.com/forum/
newton.php.

[36] Open Dynamics Engine—ODE, http://www.ode.org/.
[37] PhysX, http://developer.nvidia.com/object/physx.html.
[38] “Unreal Development Kit—UDK,” http://www.unrealengine

.com/en/udk/.
[39] Unity3D, http://unity3d.com/.
[40] I. Millington and J. Funge, Artificial Intelligence for Games,

Morgan Kaufmann, 2nd edition, 2009.
[41] D. Baraff, Dynamic simulation of non-penetrating rigid bodies

[Ph.D. thesis], Computer Science Department, Cornell Univer-
sity, 1992.

[42] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-
COLLIDE: an interactive and exact collision detection system
for large-scale environments,” in Proceedings of the Symposium
on Interactive 3D Graphics, pp. 189–196, Monterey, Calif, USA,
April 1995.

[43] E. Christer, Real-TimeCollision Detection, Morgan Kaufmann
series in interactive 3D technology, Elsevier, Amsterdam, The
Netherlands, 2005.

[44] E. G. Gilbert, D.W. Johnson, and S. S. Keerthi, “A fast procedure
for computing the distance between complex objects in three-
dimensional space,” IEEE Journal of Robotics and Automation,
vol. 4, no. 2, pp. 193–203, 1988.

[45] Golshtein and E. G. Tretyakov, Modified Lagrangians and
Monotone Maps in Optimization, Wiley, New York, NY, USA,
1996, translated by N. V. Tretyakov.

[46] J. Günther, S. Popov, H.-P. Seidel, and P. Slusallek, “Realtime
ray tracing on GPU with BVH-based packet traversal,” in
Proceedings of the IEEE/Eurographics Interactive Ray Tracing
Symposium (IRT ’07), pp. 113–118, September 2007.

[47] K. Shimizu, Y. Ishizuka, and J. F. Bard, Nondifferentiable and
Two-Level Mathematical Programming, Kluwer Academic Pub-
lishers, Boston, Mass, USA, 1997.

12 International Journal of Computer Games Technology

[48] G. van den Bergen, Collision Detection in Interactive 3D Envi-
ronments, Morgan Kaufmann, San Francisco, Calif, USA, 2003.

[49] U. Bartuschka, K. Mehlhorn, and S. Naher, “A robust and
efficient implementation of a sweep line algorithm for the
straight-line segment intersection problem,” in Proceedings of
the Workshop on Algorithm Engineering, S. Orlando, Ed., 1997.

[50] J. E. Bresenham, “Algorithm for computer control of a digital
plotter,” IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[51] wxWidgets, http://www.wxwidgets.org/.
[52] SDL, 2013, http://www.libsdl.org/.
[53] OpenGL, http://www.opengl.org/.
[54] Direct3D, http://www.microsoft.com/en-us/download/details

.aspx?id=23803.
[55] “IGF—Independent Games Festival,” http://www.igf.com/.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

