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ABSTRACT

A tidal disruption event occurs when a star wanders close enough to a black hole to be
disrupted by its tidal force. The debris of a tidally disrupted star are expected to form an
accretion disc around the supermassive black hole. The light curves of these events sometimes
show a quasi-periodic modulation of the flux that can be associated with the precession of
the accretion disc due to the Lense-Thirring (‘frame-dragging’) effect. Since the initial star
orbit is in general inclined with respect to the black hole spin, this misalignment combined
with the Lense—Thirring effect leads to a warp in the disc. In this paper, we provide a simple
model of the system composed by a thick and narrow accretion disc surrounding a spinning
supermassive black hole, with the aim to: (a) compute the expected precession period as a
function of the system parameters, (b) discuss the conditions that have to be satisfied in order
to have rigid precession, (c) investigate the alignment process, highlighting how different
mechanisms play a role leading the disc and the black hole angular momenta into alignment.

Key words: accretion, accretion discs—black hole physics—hydrodynamics — galaxies:

nuclei.

1 INTRODUCTION

Recently tidal disruption events (TDEs) have received significant
attention because in principle they allow the indirect detection of
quiescent black holes in the centre of galaxies. In this way, not only
we can probe the existence of dormant black holes but the modelling
of single events can lead to constraints on the black hole parameters,
such as its mass and spin value.

In general, black hole masses can be measured through dynamical
studies of the orbital motion of individual stars and gas in galactic
nuclei. This kind of measurement can be performed using New-
tonian mechanics since the stars are far from the black hole. The
estimate of the spin is much more challenging. The spin has no grav-
itational effects in the Newtonian theory, so it can be measured only
by probing the space—time geometry close to the black hole. TDEs
occurring at distances of only a few gravitational radii from the
black hole offer just this opportunity. TDEs were discovered in the
1990s as very bright, soft X-ray outbursts from otherwise quiescent
galaxies by the ROSAT survey (Komossa & Bade 1999). Dedicated
surveys at various wavelengths have been used to detect such sig-
nals. One of the first events in the optical, detected by Pan-STARRS
is known as PS1-10jh (Gezari et al. 2012). Previously, similar UV
flares had been observed by the GALEX satellite (Gezari et al. 2009).
Using SDSS (Sloan Digital Sky Survey) other two candidate TDEs
have been identified in the optical band (van Velzen et al. 2011).
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Other observations of TDE come from the XMM-Newton survey
(Esquej et al. 2008). Note that the X-ray emission traces the very
vicinity of the supermassive black hole (SMBH) and provides an
important probe of the central regions of galaxies. The Swift satellite
led to a breakthrough in the field of TDEs. Its discovery of the first
event that launched a relativistic jet, Swift J1644+57 (Bloom et al.
2011; Burrows et al. 2011; Zauderer et al. 2011), has triggered many
theoretical studies on the formation of radio jets, and this event has
now the best covered light curve of any TDE to date (Komossa
2015). Subsequently, Cenko et al. (2012) have discovered a second
jetted TDE, Swift J2058.

The papers by Rees (1988), Phinney (1989) and Evans &
Kochanek (1989) have set the theoretical basis for the interpre-
tation of such events. A TDE occurs whenever a star wanders too
close to a black hole, enough that the pericentre of its orbit r,, is of
the order of the tidal radius

M3 M\ 3
re= R, =0.47au Xy (1
M, my

where M is the black hole mass, M, and R, are the stellar mass
and radius, respectively. We have also introduced the dimensionless
quantities Mg = M/(lO6 M@p), x. = R,/R and m, = M,/ Mg.
We assume that the initial orbit of the star is parabolic.

Usually, one defines the penetration factor 8 = r/r,. Inside
the tidal radius, thus for 8 2 1, the tidal force of the black hole
overcomes the internal self-gravity of the star. In this paper we
assume B = 1.
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The stellar debris bound to the hole lie in highly eccentric orbits
and at a time

tmin ~ 41 M ’m '} d )

after the tidal disruption they start coming back at pericentre at a
rate (Lodato & Rossi 2011)

. . 0\ 8
My, = Mp < ) > (3)
Tmin
where
1M _ _ _
= grm:, ~ 1.9 x 10° M, *m? xPgs™". (4)

Comparing the peak value of equation (4) with the Eddington limit

Miaa = 1.3 10 M, (%) L5, )
where 7 is the accretion efficiency of the black hole, one can easily
see that for a black hole with Mg = 1, the fallback rate at peak can
be as large as 100 times the Eddington rate and is therefore expected
to produce a very bright flare. The ratio between the peak fallback
accretion rate and the Eddington value scales as o« M—>/2, so the
fallback rate is expected to be only marginally super-Eddington for
a black hole with Mg = 10.

Thus a distinguishing feature of TDEs is that, to a first approxi-
mation, the fallback rate M, 1 of the stellar debris on to the black hole
should decrease with #~>/3. If the fallback rate can be directly trans-
lated into an accretion luminosity (L = nMc?), one then expects
the TDE luminosity to follow the same behaviour with time. Indeed,
a t~>/3 light curve is generally fitted to the observed luminosities of
events interpreted as stellar disruptions (Gezari et al. 2008, 2009,
2012).

In reality this power-law evolution is expected to occur at late
times, while initially the light curve shows a smooth rise to the
peak, the details of which depend on the internal structure of the
disrupted star (Lodato, King & Pringle 2009). Also this behaviour
has been sometimes observed (Gezari et al. 2009, 2012).

The debris of the disrupted star that remain bound to the black
hole are expected to form an accretion disc around the central object.
The formation of the disc depends on the relative efficiency of three
processes (Evans & Kochanek 1989): circularization, viscous accre-
tion and radiative cooling. For non-spinning black holes, Hayasaki,
Stone & Loeb (2013) and Bonnerot et al. (2015) have demonstrated
through hydrodynamical simulations that the gas debris circularize
on a few orbital time-scale because relativistic precession causes the
stream to self-cross, forming either a thin disc at the circularization
radius 7. ~ 2 r,,, or an extended thick torus depending on the cooling
efficiency. Guillochon & Ramirez-Ruiz (2015) showed that in the
case of spinning black hole the nodal precession can deflect material
out of its original orbital plane such that an intersection is no longer
guaranteed, resulting in a significant delay before circularization.
Simulations performed by Hayasaki, Stone & Loeb (2015) reveal
that debris circularization depends sensitively on the efficiency of
radiative cooling. Recent numerical simulations by Shiokawa et al.
(2015) have shown that the circularization time-scale is close to the
period of the most bound initial orbit. Piran et al. (2015) suggest that
the energy liberated during the disc formation powers the observed
optical TDE candidates.

Since the accretion disc forms very close to the black hole, gen-
eral relativity effects must be taken into account. One of these
is the Lense-Thirring effect. (Stone & Loeb 2012, hereafter SL)
demonstrated that the Lense—Thirring precession around a spinning

Lense—Thirring precession 1947

SMBH can produce significant time evolution of the disc angular
momentum vector, since in general the initial orbit of the star is in-
clined with respect to the spinning black hole equatorial plane. For a
thin disc, it is expected that the Bardeen—Petterson effect (Bardeen
& Petterson 1975) will induce a warp in the disc structure. Lei,
Zhang & Gao (2013) argued that the precession of the jet is a pos-
sible consequence of this effect, providing an explanation of the
Swift J1644 quasi-periodic modulation of the light curve. However
the disc formed after a TDE is expected to be geometrically thick
rather than thin (Ulmer 1999; Strubbe & Quataert 2009). In this
configuration the Bardeen—Petterson effect does not occur. Still, if
the disc is narrow it can precess as a solid body rotating around the
black hole, inducing the precession of the jet and thus the modula-
tion in the light curve. Moreover, the Lense—Thirring torque induces
a warp in the disc. This warp can propagate in the diffusive regime
if @ = H/R (Pringle 1992; Lodato & Price 2010) or in the bending
waves regime if « < H/R (Nelson & Papaloizou 1999), « being the
Shakura & Sunyaev (1973) viscosity, and H being the disc thick-
ness. Since the disc formed after a TDE is expected to be thick we
are in the second regime, thus the warp propagates as a wave with
half the speed of sound inside the disc.

Shen & Matzner (2014) have reexamined this issue considering a
disc spreading both inwards and outwards from the circularization
radius and its precession as a solid body applying the model to Swift
J1644.

A precessing disc might offer a novel way to measure spin in
black hole systems, through timing observations. The prospects
for an effective determination of the spin parameter in this way
are encouraged by the successful application of such techniques to
stellar mass black holes, through the analysis of type C QPOs in
low mass X-ray binaries (e.g. Ingram, Done & Fragile 2009; Motta
etal. 2014).

In this paper, we consider a simple model with a disc that extends
from the circularization radius (about twice the tidal radius) towards
the innermost stable circular orbit (ISCO) around the SMBH. Thus
we develop the model proposed by SL, investigating the alignment
process more in details.

The paper is organized as follows. In Section 2, we describe the
structure of the accretion disc formed after a TDE. In Section 3,
we investigate the rigid precession of the disc due to the Lense—
Thirring effect, compute the precession period for different values
of the parameters of the system and investigate the conditions that
have to be satisfied in order to have rigid precession. In Section 4
we describe our time-dependent calculations and the first results,
while Section 5 contains the study of the alignment process and
the calculation of the alignment time-scale. Finally, in Section 6 we
discuss our results and draw our conclusions.

2 A SIMPLE MODEL FOR THE DISC
STRUCTURE IN TDES

The accretion disc formed after the tidal disruption of a star by a
SMBH is expected to be narrow and thick (Ulmer 1997). The inner
radius of the disc is

GM "

Rin = rin—z =15x10 Fin M(,cm, (6)
c

where ry, is the inner radius in units of the gravitational radius R, =

GM/c*. This corresponds to the ISCO for a black hole with spin a

and mass M, (Fig. 1 shows how the disc inner radius changes with

the spin value).
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Figure 1. Dimensionless inner radius of the disc as a function of the black
hole spin a.

From now on we will use » = R/R, as the dimensionless radial
coordinate.

The spin a, or dimensionless angular momentum, is defined by
the following expression for the black hole angular momentum

GM?*
h=a——, @)

and its value is restricted 0 < |a| < 1, where the lower limit refers to
a Schwarzschild black hole for which no Lense—Thirring precession
occurs.

We assume the outer radius of the disc to correspond to the
circularization radius, that is about two times the tidal radius in the
case B =1:

ny

M 6 173 13 1/3
Ryt =2 x 0.47 au X, = 1.41 x 10" M¢"" cm, 8)
where in the last equality we assumed that the disrupted star is a
solar type one, thus m, = x, = 1.

In units of the gravitational radius the inner radius 7y, is a function
of the spin only, while the dimensionless outer radius depends only
on the mass of the black hole, roy = 94 M, 213,

The disc extension is then given by
Tout 1

=94 — M, ©
Tin Fin

which takes into account the dependence of the disc extension on
the black hole spin a and on the black hole mass through M.

Fig. 2 shows the extension of the disc as a function of the spin
for different values of the black hole mass. From Fig. 1, we can
see that for larger values of a, ry, decreases and thus the disc inner
radius is closer to the black hole, thus the disc is wider, since the
outer radius does not depend on the spin of the black hole but only
on its mass. We can see that the ratio roy/ri, in the most massive
case of 10’ My is very small, from 3 to roughly 10 depending on
the spin value. The disc is then relatively narrow. For lower black
hole masses, the ratio between the outer and the inner radius ranges
from ~15 to ~60.

2.1 A slim disc model for the disc structure

Since the accretion disc is narrow as we have shown above and the
accretion rate is close to the Eddington value, we can reasonably
assume that the whole disc is radiation pressure dominated. This

MNRAS 455, 1946-1956 (2016)
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Figure 2. Disc extension as a function of the black hole spin « for different
values of Mg. The dashed line refers to Mg = 1, the solid one to Mg = 5 and
the dash—dotted one to Mg = 10.

means that the sound speed is given by ¢? = €/3p, where € is the
energy density of radiation and p the gas density.

Since the disc formed after a TDE is expected to be thick, we
consider a slim disc model (Strubbe & Quataert 2009; SL) in order to
describe the density and temperature profiles of the disc. Specifically
we use the radial profile of the aspect ratio obtained by Strubbe &
Quataert (2009), who self-consistently solved the mass, momentum
and energy conservation taking into account the advective heating
term in the energy equation (see also Abramowicz et al. 1988). Note
that such a slim disc model has been often used in TDE modelling
(Strubbe & Quataert 2009; Lodato & Rossi 2011; SL). A proper
modelling should involve global magnetohydrodynamic (MHD),
General Relativity (GR) simulations, but for the simple analytical
analysis proposed in this paper we deem this approximation as
reasonable.

This approach leads to the following aspect ratio:

B ey i ) Ky (10)
R 2

where K is the following function of radius r and spin a (Strubbe &
Quataert 2009):

1 w\? 1\
Z+6f(r)(;) (r” . (an

This correction factor K(r) takes into account the modified structure
for a slim disc. The sound speed is then given by

1

o= %(271)‘/2n”cmr”/zf(r)K"(r)- (12)

The surface density dependence on the various quantities of in-
terest is

Y= E()r’3/5f3/5(r)gcm’2, (13)

where X is a constant that depends on /m = M /Mgaq, Ms and «,
and fir) = 1 — (rin/1)'/2.

In order to describe the evolution of the disc, we consider a vis-
cosity given by the a-prescription by Shakura & Sunyaev (1973).
We assume the stress tensor to be proportional to gas pressure only
rather than to total pressure, in order to avoid the Lightman & Eard-
ley (1974) instability. In our model the «-parameter is both constant
in time and isotropic. This simple assumption is commonly taken in
evolutionary models of discs in the literature, since it prevents com-
putationally expensive simulations. In order to properly compute
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the viscous stress in discs simulations, one would need to perform
MHD calculations to treat the magnetorotational instability (e.g.
Sorathia, Krolik & Hawley 2013). However, the work presented
here in this paper is a preliminary study with the aim to confirm
the validity of the model, thus we consider the simple isotropic
viscosity.

2.2 Super-Eddington phase

The viscous time in the disc is generally much shorter than the
fallback time, which would then imply that the stellar debris are
immediately processed through the disc, such that the black hole
accretion rate equals the fallback rate (Rees 1988). In reality, this
might not happen for two different reasons. First, disc accretion
might start with a significant delay with respect to fallback. In
this case, most of the debris accumulate in a ring and only start
accreting when fallback has faded significantly. In this case, the
accretion rate through the disc is dictated by viscous processes
rather than by fallback (Cannizzo, Lee & Goodman 1990; Shen &
Matzner 2014). Numerical simulations of the disc formation pro-
cess do not yet clarify the extent to which such a delay occurs
(Bonnerot et al. 2015). Here, we thus assume that — if possible
— the accretion rate does coincide with the fallback rate. Even in
this case, however, if the fallback rate is super-Eddington, most
of the debris might be expelled from the system in the form of
an outflow. The dynamics of super-Eddington discs are complex
and not well understood. While some models seem to imply that
super-Eddington rates can be sustained with little mass outflow if
the disc is radiatively inefficient (Ohsuga & Mineshige 2007; McK-
inney et al. 2014), it is in general expected that super-Eddington
rates will result in an outflow. Here, we make the simple and rea-
sonable assumption that the accretion rate inside the disc M (R)
varies such as to maintain the disc locally at the Eddington value
(Lisc(R) = Lgqa) the excess mass being expelled in an outflow. The
local disc luminosity is Lgisc(R) = GMM(R)/ZR, while the Ed-
dington limitis Lggy = nMEddcz and the efficiency can be written as
0 = GM/QRic>).

At large radii, the local disc luminosity is below Eddington even
if the fallback rate is globally super-Eddington. The local disc lu-
minosity exceeds the Eddington value for radii smaller than

TEdd = MipTin, (14)

which is a function of time. We thus assume that m = g, for r
> rpqq and that the disc is locally Eddington limited for r < rgqq,
resulting in

m=—. (15)

The evolution of the disc thickness for a typical choice of param-
eters as a function of time is shown in Fig. 3. The solid line refers to
the super-Eddington phase and one can see that H/R ~ 1 and thus
the disc is thick. The ratio increases with radius until » = rgqq, while
at larger radii it scales as 1/r. The long dashed line refers to the
Eddington phase, while the dotted line refers to the sub-Eddington
phase. The time at which the accretion rate is equal to the Eddington
value can be inferred by requiring that mzg, = 1. This gives

. -3/5

M,

zEdd=( Fd“) fmin- (16)
MP

In Fig. 3 the three curves are obtained for a 10’ M black hole,
spinning with a = 0.6. For higher values of the black hole spin, the
efficiency n increases slightly and thus the disc thickness is lower.

Lense—Thirring precession 1949

3 GLOBAL PRECESSION

In the previous section, we have described the structure of an ac-
cretion disc formed after the tidal disruption of a star by a SMBH.
Since the initial stellar orbit is likely to be inclined with respect to
the black hole equatorial plane, the disc angular momentum is in
general misaligned with the black hole spin. We now focus on the
evolution of such inclined disc.

The misalignment between the disc and the black hole spin gen-
erates a relativistic torque on the disc (Lense-Thirring effect). Such
torque is proportional to R, as we will see below. A faster pre-
cession implies an enhanced viscous dissipation, thus the inner disc
tends to align with the equatorial plane while the outer regions keep
the original misalignment. Additionally, under certain conditions
the warped disc is expected to rigidly precess around the hole (e.g.
Papaloizou & Terquem 1995; Fragile & Anninos 2005; Fragile et al.
2007, see Section 3.2). Observationally, the only evidence we have
of this phenomenon might be the early periodicity of the light curve
of the event Swift J1644+57 (e.g. Shen & Matzner 2014). Here,
we aim to compute the precession period of a misaligned disc as a
function of the black hole mass and spin, such that the observed peri-
odicity in the light curve of TDEs may be used to infer fundamental
properties of the central black hole.

3.1 Precession period

In this section, we assume that the disc can rigidly precess. We
will discuss the conditions for rigid precession in Section 3.2. We
estimate the global precession frequency using the same procedure
as in Lodato & Facchini (2013). At a given radius R within the disc,
the local external torque density is T(R) = 2.1(R) x L(R) (e.g.
Lodato & Pringle 2006; Lodato & Facchini 2013), where 1(R)
is the Lense-Thirring local precession frequency induced by the
misalignment and L(R) = XQR?] is the angular momentum of
the disc per unit area. We define the vector ;r(R), and thus the
black hole spin, to be along the z-direction. If the misalignment is
small, we can write the scalar equation for the local external torque
density

T(R) = Qur(R)L(R), an

where L(R) = T R*Q, /12 + [? is the angular momentum projected
on the xy plane. The variable Q11 (R) is the precessional frequency at
which an isolated ring of material would precess under the influence
of the external torque T(R).

Now we assume that the whole disc precesses with the same
frequency €2, and then write

T;()t = Qleoh (18)
where we have defined the two quantities
Rout
Tt = / Qur(R)L(R)2mR dR 19)
Rin
and
Rout
L = / L(R)2ntRdR. (20)
Rin

These are appropriate for small amplitude warps, which is the case
we consider here. If we assume that the disc precesses as a solid
body, we obtain the following relation for €2;:

Rin

P Rou
[e™ L(R)2TR dR

Rou o 2(R)L(R)27tR AR
_fi Lr(R)L(R)2m . @1
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Figure 3. Disc ratio H/R (left-hand panel) and sound speed c;/c (right-hand panel) as a function of the radius. The solid lines refer to the super-Eddington
phase at a time ;. The dashed lines refer to the Eddington phase, reached after 2.6 f,ni, and the dotted lines refer to the sub-Eddington phase, after 3 #yin. The

curves refer to a black hole with Mg = 10 and a = 0.6.

Having defined an expression for ¥ (R) with equation (13), we now
need to derive an expression for Qrr(R), in order to compute the
precession frequency. We evaluate the external torque using the
expression

T = —SR*Q (QE_QZ) 2

B Eez x 1, (22)
where e, is the unit vector parallel to the black hole spin and €2,
is the vertical oscillation frequency due to frame dragging. The
approximate expressions for the angular and vertical frequencies
are (Kato 1990; Lubow, Ogilvie & Pringle 2002):

A 1

Q=" -
GM 32 +a

(23)

Q2 —Q2
(792 - ) =dar—* —3a’r?, (24
where —1 < a < 1 is the dimensionless hole angular momentum (a
< 0 for a retrograde disc).

For r > 1, we have

_ A1
T GM
From equations (23) and (24), we obtain the following expres-

sion for the local precession frequency, in units of the gravitational
radius

(25)

1 ¢ 1
Qur(r) =

2GM7 T ta (dar™3% = 3a%r7?), (26)

which, for 7 > 1, gives the usual 3 dependence

Qur = 205y 27
LT = 2d G Mr . 27
Fig. 4 shows the dependence of the global precession period

T =2m/ <, on the black hole spin for three different values of

the hole mass. The solid lines represent the estimate of the preces-

sion period obtained from numerical integration of equation (21),

including all the terms of the expressions of the Keplerian and ver-

tical frequency (equations 23 and 24). The dashed lines indicate the
same result where we have considered only the dominant term in

the limit of » > 1 in the same equations (equations 25 and 27).

The difference between the two cases becomes relevant at high spin

MNRAS 455, 1946-1956 (2016)
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Figure 4. Dependence of the global precession period on a for a prograde
and a retrograde disc. The dashed lines show the same period using the
first-order approximated forms equations (25) and (27). This results refer to
Mg = 0.1 (green lines), Mg = 1 (red lines) and Mg = 10 (black lines).

values, where the difference in the precession period can be as large
as a factor of 2, whereas it is negligible at low spin values.

If the black hole has a large spin, the disc is wider than for low spin
values (see Fig. 2) and has therefore a larger angular momentum.
However, since the inner radius is closer to the hole, the torque that
generates the precession is stronger. The combined effect is that the
precession frequency €2, is larger. In this case, the period is short
enough to be detectable at the beginning of a TDE (~1-20 d).

3.2 Condition for rigid precession

So far we have determined the precessional frequency assuming
that the disc does globally precess around the black hole. However,
simulations and analytic studies have shown that often the disc does
not precess as a solid body. One alternative possibility is that the disc
can tear apart in discrete rings, which then precess with their local
precession frequencies (e.g. Larwood et al. 1996; Lodato & Price
2010; Nixon et al. 2012; Facchini, Lodato & Price 2013; Nixon,
King & Price 2013; Dogan et al. 2015; Nealon, Price & Nixon
2015). Nixon et al. (2013) have suggested that such mechanism
occurs in discs with a large misalignment, when the local precession
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is faster than the wave communication. When the same condition on
the time-scales is verified, but the misalignment is more moderate,
the disc will tend to get aligned to the plane perpendicular to the
spin of the black hole. Krolik & Hawley (2015) showed through
simulations that a time-steady transition can be achieved between
an inner disc region aligned with the equatorial plane and an outer
region orbiting in a different plane. Thus in this case there is no
tearing.

Papaloizou & Terquem (1995), Larwood et al. (1996) and Fragile
& Anninos (2005) have shown that the most stringent condition for
a disc to globally precess is that the local precession period at any
radius (f, = 27t/ Q) is longer than the sound crossing time fyqye.
In our case, this condition requires the local precession period at
the inner edge to be longer than the time it takes a sound wave to
communicate the torque to the whole disc. If such communication
is inefficient, the disc either tears apart, or dissipates the internal
stresses, thus going towards an aligned state.

The time-dependent equations discussed below in Section 4 con-
tain all the physics that regulates whether a disc can rigidly precess.
We have tested the analytic condition with such equations for a disc
with a simple power law for the sound speed and the surface density
profiles. We obtain good agreement between the numerical simula-
tions and the analytic prediction, indicating that the warp evolution
equations indeed contain the physics regulating the global preces-
sion condition. We are therefore confident in using the code itself to
track the evolution of the radiation pressure dominated discs of this
paper, and check a posteriori whether the disc globally precesses.
Such method is simpler than verifying the analytic condition of all
the simulated discs during the whole evolution (the properties of the
disc vary with time), given the non-trivial sound speed and surface
density profiles (see equations 12 and 13).

In general, we anticipate that global disc precession is always
observed, initially at least, in all our simulations across the whole
parameter space.

4 TIME-DEPENDENT CALCULATIONS

In this section, we consider the evolution of the disc with time
to check that rigid precession does occur and how it evolves with
time. The accretion rate is super-Eddington at the beginning and
decreases as +~>/3. This decrease with time implies a decrease of
the ratio H/R (see equation 10). When H/R drops below the value
of the disc viscosity «, the warp propagates inside the disc in a
diffusive way (Papaloizou & Pringle 1983; Pringle 1992; Lodato &
Price 2010). At this point the accretion flow is susceptible to the
Bardeen—Petterson effect (Bardeen & Petterson 1975) that leads to
alignment between the disc and the hole angular momentum.

4.1 Warp propagation in bending waves regime

The disc formed after a TDE is expected to be thick (see upper
panel in Fig. 3) enough that H/R 2 « and the warp caused by
the Lense—Thirring effect propagates in the bending waves regime
(Papaloizou & Pringle 1983). Its propagation is described by the
following linearized equations (Papaloizou & Lin 1995; Lubow &
Ogilvie 2000):

ol 9G
SRQ—=—+4T 28
or OR + (28)
0G 2=\ Q ¢z ol
(") Ze, xG+aQG = TRQE —, 29
az+< Q )2"°'~X e 40R 29)

Lense—Thirring precession 1951

where T'(R,t) is the external torque density acting on the disc,
that arises from a lack of spherical symmetry in the potential, and
G(R, t) is the internal torque. Equation (28) represents the horizon-
tal component of the angular momentum conservation equation,
including the external torque. The term on the right-hand side of
equation (29) depends on the speed of sound ¢, which changes with
time since it depends on i(¢), see equation (12). Both equations
are valid if one requires the deviation from the Keplerian potential
to be small, ie. [k? — Q2] < Q% and |Q§ — Q2] < 8Q? where
8 = H/R (Foucart & Lai 2014).

Note that the above equations, being linear, do not treat the pos-
sibility of shocks in the disc. The small warps produced in the case
considered here (see below) do not produce supersonic shear and
thus are not expected to develop shocks. During the disc formation
phase (Bonnerot et al. 2015; Shiokawa et al. 2015) shocks might
develop. However, here we treat the disc dynamics after the initial
circularization phase.

The equations were derived in the case of isotropic viscosity
v = acsH. Pringle (1992) pointed out that the viscosity may be
significantly anisotropic due to the different types of shear present
in a warped disc. In general, the viscosity parameter « in equation
(29) can be different from that responsible for the radial transfer
of mass and angular momentum. Azimuthal shear is secular where
gas particles drift further apart, whereas vertical shear is oscillatory
and thus should induce less dissipation. However, if the velocity
spectrum of the turbulence is predominantly on scales <H (Simon,
Beckwith & Armitage 2012) then it is likely to act similarly in each
direction. Recently, Nixon (2015) explored models for a disc that is
tilted and forced to precess by the radiation warping instability, to
see what constraints can be provided on the internal communication
of angular momentum in a warped disc.

We used a numerical grid code in order to solve the above equa-
tions in both space and time domain. In our code, we used the radius
R as the only spatial variable of the system. We therefore discretized
the disc into a set of thin annuli, each of which can be tilted and
interacts with the others via pressure and viscous forces. We wrote
the bending waves equations in terms of dimensionless quantities
and then we solved them using the LEAPFROG algorithm. This code is
an modified version of the code used by Lodato & Facchini (2013).
In the linear regime it has proved to recover full 3D SPH simulations
(e.g. Facchini et al. 2013; Nealon et al. 2015).

4.2 Results

We performed simulations choosing the values of the black hole pa-
rameters mass and spin referring to the observed period of the event
Swift J1644+4-57. This TDE has an observed period of 7= 2.7 d and
the quasi-periodicity of the light curve lasts approximatively 10 d
(Lei et al. 2013). Based on Fig. 4, we see that a period of 2.7 d can
be reproduced with a = 0.7 for M = 107 Mg anda = 0.9 for M =
10° M. We have performed simulations also for M < 10 M.

The evolution of the disc with time is shown in Figs 5 and 6 for
the two masses, respectively. The four curves refer to four different
radii inside the disc at which the angular momentum is evaluated.
As one can easily see, the amplitude changes slightly with radius
but the curves have exactly the same period, implying that rigid
precession is indeed occurring. The values of the rigid precession
period computed numerically agree well with the expected value,
2.74d.

As one can see (Figs 5 and 6), the amplitude of the oscillation
decreases steadily with time and the disc eventually aligns with
the black hole. The most notable difference between the two cases
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Figure 5. Evolution of the x-component of the disc angular momentum with time. The viscosity is « = 0.05, the value of the hole spin is @ = 0.7 and the
mass 107 M. The right-hand panel is a detail of the left-hand panel. The different curves refer to different radii inside the disc. Although the amplitudes are

slightly different, the period of the oscillations at different radii is the same.
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Figure 6. Evolution of the x-component of the disc angular momentum with time. The viscosity is « = 0.05, the value of the hole spin is @ = 0.9 and the
mass 10° M. The right-hand panel is a detail of the left-hand panel. The different curves refer to different radii inside the disc. Although the amplitudes are

slightly different, the period of the oscillations at different radii is the same.

shown is that while for M = 107 M alignment occurs after several
months, for M = 10° Mg, it only takes a few days to align for the
same value of «. We will discuss the alignment process in details
below.

We conclude that if we want to apply this model to Swift J1644,
where some periodicity is observed only within the first 10 d, we
would disfavour a high SMBH mass, unless « is significantly larger
than 0.05. Similarly a value of M below 10° Mg is disfavoured
since it would require an almost maximally spinning black hole. In
particular, a 2.7 d period can be reproduced only for an extremely
high value of a if M < 510° Mg (see the green lines in Fig. 4).

Fig. 7 shows the tilt 8 (defined as the misalignment between
the spin and the local disc angular momentum) as a function of the
radius for the case M = 10° M@, a=0.6 and o = 0.05 (top) and 0.5
(bottom), respectively. The first thing to notice is that while the disc
is rigidly precessing, it maintains a small warp (8 is a function of
the radius), which is necessary to balance the external torque. Note
that the disc turns out to be (slightly) more misaligned in the inner
regions than in the outer regions. This is not unexpected. As shown
by Lubow et al. (2002, see also more recently Facchini et al. 2013)

MNRAS 455, 1946-1956 (2016)

the radial profile of 8 depends on the relative signs of the nodal
and apsidal precession frequencies. While, for example, in the case
of a circumbinary disc, the tidal torque produces a monotonically
increasing tilt, in the case of Lense-Thirring precession the tilt
function is not monotonic and can show regions where the disc
warps away from alignment.

On a time-scale much longer than the precession time, the disc
slowly aligns. Comparing the two panels of Fig. 7, we note that the
alignment time-scales inversely with « and is thus proportional to
the viscous time-scale.

5 ALIGNMENT

In general, the mechanisms that are likely to lead to alignment
are at least two. The first one can be the cooling of the disc, as a
consequence of the reduction of the accretion rate (given by equation
3). As the disc cools, it naturally becomes thinner. Eventually the
disc will transit to a regime where the warp propagation becomes
diffusive (@« > H/R). In this regime, there is no rigid precession
and the disc rapidly aligns with the black hole spin. This is the case
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Figure 7. Shape of the tilt 8 inside the disc as a function of radius. Both
panels refer to a black hole with M = 10° M and a = 0.6. The top panel
was obtained taking o = 0.05. The green, red and black lines refer to the
shape after roughly 290, 350 and 405 d. The bottom panel was obtained with
a = 0.5. The green, black, red and black lines refer to roughly 29,35 and
40.5 d.

considered by SL, who calculate the associated alignment time-
scale as

M, 1719
7} i (30)

-3/5
Tihin = Imin® / [5 f(r) -
MEddtmin r

where f,i, s the time after which the debris return to the pericentre
(equation 2). The alignment time-scale in this case is oc & ~3/°, while
we have just seen (Fig. 7) that at least for the case M = 10° M),
a = 0.6 our results indicate that #,jjg, a .

The second possible mechanism is provided by the presence of the
natural disc viscosity that damps the oscillations at a rate inversely
proportional to the viscosity (fajign ¢ a~"). Thus if the viscosity is
higher, the warp is dissipated on a shorter time-scale.

We investigate under which condition one process dominates over
the other by running several simulations with different values of «
and of the black hole parameters. In general one may expect that
since for low spin values the inner disc radius is larger, the torque
exerted on the disc is weaker and rigid precession is expected to last
on a longer time-scale. The mass of the black hole changes the disc
radial extent, thus we investigate for each values of the spin both
values 10° and 10" M.

Lense—Thirring precession 1953
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Figure 8. Evolution of the x-component of the disc angular momentum
with time. The viscosity is « = 0.05, the value of the mass is 107 M@, while
the value of the spin is @ = 0.2 for the top panel and a = 0.6 for the bottom
panel.

Different values of the black hole spin correspond to different
magnitude of the torque and also to different evolutions of the
oscillations of the disc tilt in time, as can be seen by the compar-
ison of the two panels of Fig. 8. Both show the evolution of the
x-component of the disc angular momentum with time, they differ
only by the spin value, which is @ = 0.2 and 0.6, respectively. We
note two things. First, as expected, for larger a the alignment is
faster. Secondly, since the shape of the decay with time is different
we might argue that the process that leads to alignment is not the
same in the two cases.

We investigate which process is more likely to occur by comput-
ing t,gn for each simulation and checking its dependence on . In
the cases like the one shown in the lower panel of Fig. 8, where an
exponential decay with time of the x-component of the disc angu-
lar momentum is evident, we fitted the specific angular momentum
curve with an exponential function

| = loe*f/taugn (€2))

and then extracted the alignment time-scale. For cases similar to the
one shown in the upper panel of Fig. 8, where the shape of the decay
is not exponential, rather than fitting equation (31) to the decay
function, in order to have a direct comparison with the exponential
case, we have computed the alignment time-scale evaluating the
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Figure 9. The different panels show the alignment time-scale (in days) as a function of the viscosity parameter « for different couples of values of the black
hole parameters: mass and spin. The black and red lines are representative curves fujign ¢ @~ with s = 0.6 (SL) and s = 1, respectively. The stars are the values
obtained from the simulations, the points are the values computed using equation (30) predicted by SL.

time after which the angular momentum value is reduced by the
same factor as in the exponential case, that is by 1/e.

A sample of our results is shown in Fig. 9. The top panels refer
to a case of moderate spin (a = 0.6) for the two cases M = 10° Mo
(left) and M = 10’ Mg (right). We see that the alignment time
computed from the simulation is one to two orders of magnitude
smaller than that predicted by SL (black line). Also, in this cases,
fiign Scales exactly as a~'. We conclude that viscous alignment
occurs much before the disc becomes thin enough to move into the
diffusive regime.

The situation becomes less clear for low spins (a = 0.2) as shown
in the bottom panel of Fig. 9. Here, the prediction by SL is much
closer to the observed value. Additionally, the scaling of f,j;,, With
o becomes less evident (as shown by the red lines, that indicate a
representative ! scaling).

A closer inspection of the bottom-left panel of Fig. 9 reveals
something interesting. While for larger values of a (o > 0.2) #yign
oo™, fora < 0.2 we have fygn 0 @™/, as evident in the fit shown
in Fig. 10, where we have fitted #,;sn () as a broken power law.

For each value of the black hole mass and spin, we have fitted a
function of the form

Lalign = too ™’ (32)

MNRAS 455, 1946-1956 (2016)

to the simulation data, with 7y and s as free parameters. The resulting
value of s as a function of « for different M are shown in Fig. 11.

We clearly see two regimes: for a = 0.4 we obtain s = 1 inde-
pendently of M, this indicating a viscous origin for the alignment
mechanism. For a < 0.4, s is smaller than 1. For high M it is very
close to 3/5, indicating cooling as the main alignment mechanism.
Values of s intermediate between 3/5 and 1 generally indicate cases
similar to the one in Fig. 11, where #,;,(c) is a broken power law,
such that for large o the disc aligns viscously, while for low « it
aligns due to cooling.

5.1 Viscous alignment time-scale calculations

As shown above, the disc viscosity leads to alignment, at least for
spin values a 2 0.4. This occurs because it acts on the shearing mo-
tions inside the disc leading to energy dissipation. Bate et al. (2000)
evaluated the amount of kinetic energy dissipated by the disc vis-
cosity and the energy dissipation rate. Then from the ratio between
these two quantities the alignment time-scale can be inferred. In
terms of the viscous time, this is

1 (H\ @
[a]ign ~ IBate = ; (f) Qig . (33)
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Figure 10. Alignment time-scale behaviour as a function of the viscosity
parameter o for a black hole with ¢ = 0.2 and M = 10° M. For low-
viscosity values the time-scale follows the prediction of SL, while for higher
values it decreases with oL
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Figure 11. Values of the slope parameter as a function of the black hole
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Figure 12. Comparison between the alignment time-scales (in days) ob-
tained with the one-dimensional code and those calculated with the FL
method. The latter are represented by dots, while the star values are those
computed with our code. We choose a black hole with M = 107 Mgp.
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This result has been obtained referring to circumbinary discs, thus
for relatively thin discs with a pure power-law profile of H/R.

A more precise analysis has been performed by (Foucart & Lai
2014, hereafter FL). They argued that the damping rate of the global
precession is

1 o gy 208

Rin Tc2x3
V= Lalign - fR[f;"“ dexéSZ’ G4
where Gy is the internal stress in the disc given by
Gyr) = / ' dxE2x*Q(Q, — ZQ), (35)

Tin
where Z is the nodal precession
Q2 _ Q2

Z(r) = TZZ . (36)

Equation (35) represents the difference between the total torque
exerted by the black hole on the disc and that required in order to
keep the global precession of the disc. This difference is due to
the fact that the finite viscosity « twists the disc by an angle ¢ =
arctan(/, /), thus creating a non-zero torque on the plane defined
by the hole angular momentum and that of the disc. Using our one-
dimensional code, we evaluated the twist angle as a function of the
disc radius calculated at a fixed time for each value of «, and thus
calculated the expected t,;, based on FL.

The comparison between the results obtained with the FL. method
and those calculated with our code is shown in Fig. 12 where we
can see that there is very good agreement.

This approach is equivalent to that of Bate et al. (2000), except
for a shape factor £ that depends on the profiles of G(R) and X(R).
Considering the profiles in equations (13) and (10) and assuming
m = 1, we indeed find

1
tdamp = Z Bate Ss (37)

where £ is the shape factor that lies in the range 1 < £ < 8 and the
time-scale tp,. is evaluated at the disc outer radius R,.

6 CONCLUSIONS

In this paper, we have developed a simple model for rigid disc
precession in TDEs. We have assumed that the disc can be modelled
as a standard «-disc dominated by radiation pressure. We have thus
computed the expected precession period as a function of the main
system parameters. We find periods of the order of a few days up to
a few weeks, with smaller black hole spins and masses giving rise
to longer periods.

We have then compared our analytical expectations against time-
dependent simulations, where the disc is modelled as a series of
interacting rings, applicable to small misalignments. We have thus
confirmed that, initially, a TDE disc can globally precess across the
whole parameter range applicable to TDE, with precessional periods
matching closely the expectations of the analytical model. On a
longer time-scale, however, the system evolves towards alignment.
For a given precessional period, a smaller black hole mass implies
a faster alignment time-scale, because in this case the radial extent
of the disc is larger and warp communication less effective.

Periodic modulation of a TDE signal has rarely been observed,
with a tentative detection of a 2.7 d period decaying after ~10 d in
the case of Swift J1644 (Lei et al. 2013). If we interpret this signal
as arising from the Lense—Thirring precession of the disc, we would
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thus conclude that the black hole mass should be close to 5 x 10°—
10° M, with a moderate spin value of a ~ 0.6. A smaller black
hole mass would not produce such a small precession period, while
a larger black hole mass would result in many more precessional
cycles than observed.

We have also investigated the mechanism responsible for align-
ment. SL have proposed that alignment is associated with disc
cooling, which brings the disc into the diffusive warp propagation
regime, where the Bardeen—Petterson effect occurs. In this case, the
alignment time-scale is expected to scale with viscosity as @ =/, We
have shown that such process is responsible for alignment only in a
small region of the parameter space, for large black hole masses, low
spins and low « values. For most of the cases considered, viscous
dissipation of the warp is the leading alignment process, resulting
in Talign X a !,

Indeed, a theoretical calculation of the alignment time-scale using
the viscous dissipation model by FL is in very good agreement
with our time-dependent calculations. However, the FL model is
generally difficult to apply, since it requires a detailed knowledge
of the disc shape and in particular of the twist, which is generally
not known from observations. The simpler estimate of #,;,, by Bate
et al. (2000, equation 33), which links the alignment time-scale to
the disc aspect ratio, Keplerian frequency and global precession
rate evaluated at the outer disc edge, provides a good first-order
approximation to the actual alignment time, accurate to within a
factor of a few.

Our model can be used in conjunction with future TDE obser-
vations that show an early quasi-periodicity, in order to derive the
main system parameters, such as the black hole mass and especially
its spin.
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